EP2422347B1 - Matériau allié magnétique et son procédé de fabrication - Google Patents

Matériau allié magnétique et son procédé de fabrication Download PDF

Info

Publication number
EP2422347B1
EP2422347B1 EP10718525.8A EP10718525A EP2422347B1 EP 2422347 B1 EP2422347 B1 EP 2422347B1 EP 10718525 A EP10718525 A EP 10718525A EP 2422347 B1 EP2422347 B1 EP 2422347B1
Authority
EP
European Patent Office
Prior art keywords
alloy material
magnetic alloy
particles
magnetic
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10718525.8A
Other languages
German (de)
English (en)
Other versions
EP2422347A1 (fr
Inventor
Julia Lyubina
Oliver Gutfleisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Original Assignee
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV filed Critical Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Publication of EP2422347A1 publication Critical patent/EP2422347A1/fr
Application granted granted Critical
Publication of EP2422347B1 publication Critical patent/EP2422347B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/017Compounds

Definitions

  • the invention relates to the field of materials science and material physics and relates to a magnetic alloy material which can be used, for example, as a magnetic cooling material (magnetocaloric material) for cooling purposes or for power generation purposes, and a method for its production.
  • a magnetic cooling material magnetictocaloric material
  • Magnetic cooling by magnetic alloy materials provides an environmentally friendly, energy and cost effective alternative to conventional gas compression refrigeration.
  • MCE magnetocaloric effect
  • Magnetic materials with a crystal structure of NaZn 13 type show a particularly large MCE, which is caused by a thermally and field-induced phase transition from the paramagnetic to the ferromagnetic state near the Curie temperature T c of the material.
  • Magnetic alloy materials of the NaZn 13 type crystal structure are known and could be used as magnetic cooling materials.
  • the composition of such materials can be given by the formula R (T 1-a M a ) 13 H d , where R is rare earth elements or a combination of rare earth elements, T is Fe or a combination of Fe and Co and M is Al, Si, Ga or Ge or combinations thereof.
  • R rare earth elements or a combination of rare earth elements
  • T Fe or a combination of Fe and Co
  • M Al, Si, Ga or Ge or combinations thereof.
  • 0.05 ⁇ a ⁇ 0.2 and for d, 0 ⁇ d ⁇ 3.0 Such materials have very good magnetocaloric properties at temperatures near the Curie temperature and are considered to be promising candidates for magnetic cooling [ C. Zimm et al., Int. J. Refrigeration 29, 1302 (2006 )].
  • such magnetic alloys are produced by means of an arc or high-frequency melting process and then, for example, for about 168 h at about 1050 ° C. under vacuum ( DE 103 38 467 A1 ) heat treated. It is also possible to melt the alloying elements at 1200 to 1800 ° C, then cool the alloy at a cooling rate of 10 2 to 10 6 ° C / s (solidify rapidly) and then thermally treat the rapidly solidified alloy [ US 2006/0076084 A1 ; A. Yan, K.-H. Müller, O. Gutées, J. Appl. Phys. 97, 036102 (2005 ); XB Liu, Z. Altounian, GH Tu, J. Phys .: Condens. Matter 16, 8043 (2004 )].
  • a number of magnetic alloys such as Gd 5 Si 2 Ge 2 , MnAs, Mn 1 -x Fe x As, Ni 2 MnSn and (Mn, Fe) 2 (P, As) are known, some of which is a particularly large MCE which is caused by a thermally and / or field-induced magnetic phase transition near the Curie temperature T c and / or near a structural phase transition
  • MCE magnetic alloys
  • a significant disadvantage of these alloys is known to be the occurrence of volume changes due to isotropic or anisotropic expansion of the crystal lattice during the magnetic or structural phase transition, especially in the alloys showing a first-order phase transition [ A. Fujita et al., Phys. Rev B 65, 014410 (2001 ); H. Yabuta et al., J. Phys. Soc. Japan, 75, 113707 (2006 )]. These changes in volume can result in significantly reduced mechanical integrity and thus severely limiting conditions of use.
  • the object of the present invention is to provide a magnetic alloy material having improved mechanical properties with comparable magnetic and / or magnetocaloric properties over the prior art materials, and to provide an effective method for producing the magnetic alloy material.
  • the magnetic alloy material of the present invention exhibiting a magnetocaloric effect is an alloy material in which particles of the magnetic alloy material are embedded in a matrix material having higher ductility than the magnetic alloy material.
  • ⁇ 35 vol .-% of the magnetic alloy material has a crystal structure NaZn 13 type, whereby even more advantageously at least 50 vol .-%, more advantageously from 80 to 90 vol .-%, the magnetic alloy material has a crystal structure NaZn 13 type on.
  • the conditions of 2 ⁇ z ⁇ 15 at% and / or 3 ⁇ y ⁇ 16 and / or 0.3 ⁇ x ⁇ 9 are realized to change the Curie temperature of the magnetic alloy material, wherein with varying proportion z and / or y and / or x the Curie temperature changes between 170 K and 400 K.
  • particles of the magnetic alloy material with a particle size of 10 nm to 1 mm are embedded in a matrix material.
  • the matrix material with a higher ductility than the magnetic alloy material comprises at least one element of Al, Ag, Au, Bi, C, Co, Cu, Fe, Ga, Ni, Pb, Pd, Pt, Sn, Ti , Zn or combinations and / or reaction products thereof.
  • a second material of at least one element of Al, Ag, Au, Bi, C, Co, Cu, Fe, Ga, Ni, Nb, Pb, Pd, Pt, Sn, Ta, Ti , V, Zn, Zr or combinations and / or reaction products also with the matrix material thereof is present.
  • the matrix material has at least a 10% higher ductility than the magnetic alloy material.
  • the particles of the magnetic alloy material are in the form of a band, a wire, a plate, a foil or a flake, a needle or in the form of powder particles.
  • particles of the magnetic alloy material are mixed with a matrix material having a higher ductility than the magnetic alloy material and then heated to the extent that the matrix material forms the matrix around the particles of the magnetic alloy material.
  • particles of the magnetic alloy material and of the matrix material are mixed and processed into a shaped body and subsequently heated to a temperature at which the matrix material at least softens and covers the particles of the magnetic alloy material substantially completely.
  • the application temperature is adjusted by applying a vacuum.
  • the magnetic alloy material can be processed in the form of particles in a suspension to a shaped body or applied to a foam structure and processed after drying and a temperature increase to the magnetic alloy material.
  • the particles of the magnetic alloy material may be in the form of a band, a wire, a plate, a foil or a flake, a needle or in the form of powder particles.
  • the particles may also be in the form of a band, a wire, a plate, a foil or a flake, a needle or in the form of powder particles.
  • the particle size can be from a few nanometers to ⁇ 100 microns.
  • the particles of the magnetic alloy material can then be mixed with particles of the matrix material and processed into a shaped body. Subsequently, the molding is exposed to a temperature increase, wherein at least one such temperature must be achieved that the matrix material forms a matrix around the particles of the magnetic alloy material and substantially completely covers the surface of the particles as possible.
  • the magnetic alloy material according to the invention exhibits a significantly higher mechanical strength, since the volume changes of the magnetic alloy material can be significantly better absorbed by the phase transition, which is present at a pore or the ductile matrix material, and thus counteract the cracking and possibly even the destruction of the molding and prevent it partially or completely.
  • the solution according to the invention shows, in particular, improved results in the predominant use of magnetic alloy materials whose crystal structure is of the NaZn 13 type. These materials are known to have a large magnetocaloric effect and therefore can be used particularly advantageously.
  • H, B, C and / or N are present in the alloy material.
  • These elements are known to be incorporated into interstitial sites and in particular affect the Curie temperature T c , which is known to be important for magnetic alloy materials, and which determines the temperature of use by increasing the Curie temperature as the proportion of these elements, and in particular H, increases.
  • T c Curie temperature
  • an application temperature for the magnetic alloy material is adjustable within relatively wide limits.
  • the effect of loading the magnetic alloy material with these elements is further improved by the solution according to the invention, since the increased brittleness of the magnetic alloy material resulting from the incorporation is also absorbed by the foam-like structure or the matrix material.
  • the Curie or application temperature setting can be done for example by applying a vacuum during the temperature increase, which is also in the compaction by means of hot pressing or pressing at moderate temperatures feasible. About the height of the temperature or time, the application temperature can be adjusted.
  • hydrogen can be introduced interstitially into the crystal lattice or substitute elements such as Co, Ni, Cu by Fe diffusion processes and thereby increase the Curie temperature T c .
  • the hydrogen can be formed in a secondary reaction, such as released as a by-product of a cathodic electrode reaction or during the oxidation of the reducing agent.
  • prepared magnetic alloy material according to the invention has open and / or closed pores, with a particularly advantageous even a regular porosity can be adjusted.
  • the pores are arranged directionally in the material, so that, for example, an effective flow through a (cooling) liquid can be achieved.
  • a high specific surface area of the porous material is also very advantageous for effective heat exchange.
  • the magnetic alloy material according to the invention has a density between 50% and 99% of the theoretically achievable density of the magnetic alloy material.
  • this may also contain a further material or the further material may be formed by reactions of the matrix material or of another material.
  • This further material can also be deposited on the surface of the particles of the magnetic alloy material.
  • the magnetic entropy change remains virtually unchanged, ie the relative cooling power remains high.
  • the adiabatic temperature change ⁇ T ad decreases slightly.
  • a high reproducibility after significantly more work cycles in comparison to a solid material is advantageous.
  • a solid material having the composition LaFe 11.6 Si 1.4 is produced by induction melting and subsequent heat treatment at 1050 ° C. for 7 days.
  • the resulting material consists of 97 wt .-% of the NaZn 13 -type phase and 3 wt .-% of ⁇ -Fe.
  • the solid material with the composition LaFe 11.6 Si 1.4 shows at a magnetic field change of 2 Tesla a maximum entropy change ⁇ S max of 162 kJ / m 3 K at 194 K.
  • the half width is 8 K and the relative cooling capacity is 1.5 MJ / m 3 .
  • the entropy change and the relative cooling power remain unchanged after thermal cycling.
  • the maximum adiabatic temperature change ⁇ T ad max at a magnetic field change of 1.9 Tesla 7.3 K at 191 K when cooling from room temperature.
  • the maximum adiabatic temperature change decreases with a magnetic field change from 1.9 Tesla to 5.2 K at 194 K.
  • the thermal hysteresis is 3 K and magnetic hysteresis up to 0.7 T.
  • ⁇ T ad max decreases to 6.7 K and 6.6 K when cooling from room temperature to 5 K and 4.9 K when heating 170 K to room temperature.
  • the thermal hysteresis is 2.2 K and 2.1 K in the second and third thermal cycle.
  • a porous, foam-like material is produced from the pulverized solid material by hot pressing at a pressing temperature of 600 - 1423 K and a pressing pressure of the order of magnitude of ⁇ 10 2 - 10 3 MPa.
  • the resulting material consists of 91% by weight of the NaZn 13 -type phase and 9% by weight of ⁇ -Fe.
  • the density of the pressed material is 70 to 90% of the theoretical density of the material which consists of 91% by weight of LaFe 11.6 Si 1.4 and 9% by weight of ⁇ -Fe.
  • 2 plates are cut from a cylindrical hot-pressed material having dimensions of 8 mm ⁇ 4 mm ⁇ 1 mm.
  • the hot-pressed material with the composition LaFe 11.6 Si 1.4 shows a maximum entropy change ⁇ S max of 110 kJ / m 3 K at 194 K with a magnetic field change of 2 Tesla.
  • the half-width is 10.5 K and the relative cooling capacity is 1.3 MJ / m 3 .
  • the entropy change and the relative cooling power remain unchanged after thermal cycling.
  • the adiabatic temperature change ⁇ T ad also remains unchanged after the thermal and magnetic field alternating stress and amounts to 4.3 K during cooling from room temperature and when heating from 170 K to room temperature with a magnetic field change of 1.9 Tesla.
  • the thermal hysteresis is less than 1 K, ie significantly lower compared to the solid material.
  • the magnetic field dependence of the adiabatic temperature change is nearly hysteresis-free (less than 0.05 T).
  • the mechanical integrity of the hot-pressed material remains after multiple thermal or field cycling cycles.
  • an alloy having the composition LaFe 11.6 Si 1.4 is produced by means of an arc melting process.
  • the alloy is then rapidly solidified with the surface speed of the copper wheel of 30 m / s and then heat treated at 1050 ° C for 2 hours.
  • the resulting material is in the form of a band having a thickness of 60 microns and consists of 90 wt .-% of the NaZn 13 -type phase and 10 wt .-% of ⁇ -Fe.
  • a porous, foam-like material is produced by pressing at room temperature (cold pressing) and pressing pressure of 500 MPa.
  • the dimensions of the pressed LaFe 11.6 Si 1.4 alloy are 11 mm diameter x 1 mm height and the density is 85% of the theoretical density of the material.
  • the cold-pressed LaFe 11.6 Si 1.4 alloy shows a maximum magnetic entropy change ⁇ S max of 145 kJ / m 3 K at 193 K and a magnetic field change of 2 Tesla.
  • the half width is 8.3 K and the relative cooling capacity is 1.5 MJ / m 3 .
  • the adiabatic temperature change ⁇ T ad remains unchanged after the thermal and magnetic field alternating stress and is 4.3 K at 193 K on cooling from room temperature and during heating of 170 K to room temperature with a magnetic field change of 1.9 Tesla. It is the thermal hysteresis less than 0.5 K.
  • the magnetic field dependence of the adiabatic temperature change is almost hysteresis-free.
  • This cold-pressed LaFe 11.6 Si 1.4 alloy is hydrogenated at 400 ° C in 0.5 MPa hydrogen gas.
  • the hydrogen concentration of z 1.64 was measured by hot extraction. This corresponds to a composition of LaFe 11.6 Si 1.4 H 1.64 .
  • the temperature at which the maximum of the entropy change or the adiabatic temperature change occurs shifts to 338 K.
  • the adiabatic temperature change ⁇ T ad remains unchanged after the thermal and magnetic field cycling and is 3.7 K on cooling Room temperature and when heating from 170 K to room temperature with a magnetic field change of 1.9 Tesla.
  • the temperature and magnetic field dependence of the adiabatic temperature change are almost hysteresis-free.
  • the rapidly solidified and heat-treated ribbons are hydrogenated at 400 ° C in 0.5 MPa of hydrogen gas and then produced at a temperature of 650 K and a compacting pressure of 500 MPa.
  • the adiabatic temperature change ⁇ T ad remains unchanged after the thermal and magnetic field alternating stress and is 3.6 K at 335 K with a magnetic field change of 1.9 Tesla.
  • the temperature and magnetic field dependence of the adiabatic temperature change are almost hysteresis-free.
  • the pressing at a temperature of 650 K under vacuum can be used at the same time for setting the Curie temperature or application temperature.
  • the temperature at which the maximum of the entropy change or adiabatic temperature change occurs shifts to 300 K.
  • the mechanical integrity of the hot or cold pressed material or material pressed at a temperature of 650 is maintained after multiple thermal or field cycling cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Claims (10)

  1. Matériau d'alliage magnétique, qui comprend des particules ayant une composition selon la formule

            RaFe100-a-x-y-zTxMyLz

    avec
    R = La ou une combinaison de La avec Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu et/ou Y,
    T = au moins un élément choisi dans le groupe Sc, Ti, V, Cr, Mn, Co, Ni, Cu et/ou Zn,
    M = Al, Si, P, Ga, Ge, In et/ou Sn,
    L = H, B, C et/ou N,
    5 ≤ a ≤ 11 et 0 ≤ x ≤ 12 et 2 ≤ y ≤ 20 et 2 ≤ z ≤ 18 (tous en % atomique), qui présentent un effet magnétocalorique, les particules du matériau d'alliage magnétique étant incorporées dans un matériau de matrice de ductilité plus élevée que le matériau d'alliage magnétique.
  2. Matériau d'alliage selon la revendication 1, dans lequel, pour la modification de la température de Curie du matériau d'alliage magnétique, les conditions 2 ≤ z ≤ 15 % atomique et/ou 3 ≤ y ≤ 16 et/ou 0,3 ≤ x ≤ 9 sont réalisées, la température de Curie variant entre 170 K et 400 K lorsque les proportions z et/ou y et/ou x varient.
  3. Matériau d'alliage selon la revendication 1, dans lequel des particules du matériau d'alliage magnétique d'une taille de particule de 10 nm à 1 mm sont incorporées dans un matériau de matrice.
  4. Matériau d'alliage selon la revendication 1, dans lequel le matériau de matrice de ductilité plus élevée que le matériau d'alliage magnétique est constitué d'au moins un élément parmi Al, Ag, Au, Bi, C, Co, Cu, Fe, Ga, Ni, Pb, Pd, Pt, Sn, Ti, Zn ou leurs combinaisons et/ou produits de réaction.
  5. Matériau d'alliage selon la revendication 1, dans lequel, en plus du matériau de matrice, un second matériau d'au moins un élément parmi Al, Ag, Au, Bi, C, Co, Cu, Fe, Ga, Ni, Nb, Pb, Pd, Pt, Sn, Ta, Ti, V, Zn, Zr ou leurs combinaisons et/ou produits de réaction, également avec le matériau de matrice, est présent.
  6. Matériau d'alliage selon la revendication 1, dans lequel le matériau de matrice présente une ductilité au moins 10 % supérieure au matériau d'alliage magnétique.
  7. Matériau d'alliage selon la revendication 1, dans lequel les particules du matériau d'alliage magnétique se présentent sous la forme d'une bande, d'un fil, d'une plaque, d'une feuille ou d'un flocon, d'une aiguille ou sous la forme de particules de poudre.
  8. Procédé de fabrication d'un matériau d'alliage magnétique selon au moins l'une quelconque des revendications 1 à 7, dans lequel des particules du matériau d'alliage magnétique sont mélangées avec un matériau de matrice qui présente une ductilité supérieure au matériau d'alliage magnétique, puis chauffées jusqu'à ce que le matériau de matrice forme la matrice autour des particules du matériau d'alliage magnétique, la température appliquée, qui est déterminée par la température de Curie, étant ajustée par application d'un vide.
  9. Procédé selon la revendication 8, dans lequel le compactage est réalisé par compression à chaud ou à froid.
  10. Procédé selon la revendication 8, dans lequel des particules du matériau d'alliage magnétique et du matériau de matrice sont mélangées et transformées en un corps moulé, puis ce corps moulé est porté à une température à laquelle le matériau de matrice est au moins ramolli et recouvre en totalité les particules du matériau d'alliage magnétique.
EP10718525.8A 2009-04-24 2010-04-19 Matériau allié magnétique et son procédé de fabrication Not-in-force EP2422347B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910002640 DE102009002640A1 (de) 2009-04-24 2009-04-24 Magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung
PCT/EP2010/055086 WO2010121977A1 (fr) 2009-04-24 2010-04-19 Matériau allié magnétique et son procédé de fabrication

Publications (2)

Publication Number Publication Date
EP2422347A1 EP2422347A1 (fr) 2012-02-29
EP2422347B1 true EP2422347B1 (fr) 2015-11-25

Family

ID=42224392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10718525.8A Not-in-force EP2422347B1 (fr) 2009-04-24 2010-04-19 Matériau allié magnétique et son procédé de fabrication

Country Status (3)

Country Link
EP (1) EP2422347B1 (fr)
DE (1) DE102009002640A1 (fr)
WO (1) WO2010121977A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015119103A1 (de) * 2015-11-06 2017-05-11 Technische Universität Darmstadt Verfahren zum Herstellen eines magnetokalorischen Verbundmaterials und Verbundmaterial mit einem magnetokalorischen Pulver
CN109313971A (zh) * 2016-06-10 2019-02-05 巴斯夫欧洲公司 包含锰、铁、硅、磷和碳的磁热材料

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128357A1 (fr) 2009-05-06 2010-11-11 Vacuumschmelze Gmbh & Co. Kg Article pour un échange de chaleur magnétique et procédé de fabrication d'un tel article
US9245673B2 (en) 2013-01-24 2016-01-26 Basf Se Performance improvement of magnetocaloric cascades through optimized material arrangement
JP6285463B2 (ja) * 2013-01-24 2018-02-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 材料配列の最適化による磁気熱量カスケードの性能改良
CN103388766B (zh) * 2013-07-26 2015-06-03 宁波市爱使电器有限公司 一种高密封高散热的led灯
DE102015222075A1 (de) * 2015-11-10 2017-05-11 Robert Bosch Gmbh Verfahren zu Herstellung eines magnetischen Materials und elektrische Maschine
DE102017102163B4 (de) 2017-02-03 2020-10-01 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Magnetokalorischer Wärmeübertrager und Verfahren zu seiner Herstellung
DE102017128765A1 (de) 2017-12-04 2019-06-06 Technische Universität Darmstadt Verfahren zur Herstellung eines magnetokalorischen Verbundmaterials und ein entsprechender Wärmetauscher

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0217347B1 (fr) * 1985-09-30 1993-02-03 Kabushiki Kaisha Toshiba Utilisage se substances polycristallines magnétiques pour la réfrigération magnétique
US6003320A (en) * 1996-10-30 1999-12-21 Kabushiki Kaisha Toshiba Cold accumulating material for extremely low temperature cold, refrigerator using the same and heat shielding member
JP4622179B2 (ja) * 2001-07-16 2011-02-02 日立金属株式会社 磁気冷凍作業物質および蓄冷式熱交換器ならびに磁気冷凍装置
NL1018668C2 (nl) 2001-07-31 2003-02-03 Stichting Tech Wetenschapp Materiaal geschikt voor magnetische koeling, werkwijze voor het bereiden ervan en toepassing van het materiaal.
US6798117B2 (en) 2002-07-10 2004-09-28 Piezomotor Uppsala Ab Fine control of electromechanical motors
US7186303B2 (en) 2002-08-21 2007-03-06 Neomax Co., Ltd. Magnetic alloy material and method of making the magnetic alloy material
EP1554411B1 (fr) 2002-10-25 2013-05-08 Showa Denko K.K. Procede de fabrication d'un alliage contenant un element des terres rares
JP4240380B2 (ja) * 2003-10-14 2009-03-18 日立金属株式会社 磁性材料の製造方法
US7578892B2 (en) 2005-03-31 2009-08-25 Hitachi Metals, Ltd. Magnetic alloy material and method of making the magnetic alloy material
JP2007031831A (ja) * 2005-06-23 2007-02-08 Sumitomo Metal Mining Co Ltd 磁気冷凍用希土類−鉄−水素系合金粉末とその製造方法、および得られる押出構造体とその製造方法、並びにそれを用いた磁気冷凍システム
DE102006046041A1 (de) * 2006-09-28 2008-04-03 Siemens Ag Wärmeübertragungssystem für magnetokalorische Kühleinrichtungen und Herstellungsverfahren für einen dabei verwendeten Wärmeübertrager
DE112007003321B4 (de) * 2007-02-12 2017-11-02 Vacuumschmelze Gmbh & Co. Kg Gegenstand zum magnetischen Wärmeaustausch und Verfahren zu dessen Herstellung
JP2010516042A (ja) * 2007-02-12 2010-05-13 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー 磁気熱交換用構造体及びその製造方法
US8551210B2 (en) * 2007-12-27 2013-10-08 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
EP2109119A1 (fr) * 2008-04-07 2009-10-14 Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) Matériau magnétocalorique perméable et réfrigérateur magnétique, pompe à chaleur ou générateur de puissance utilisant ce matériau

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015119103A1 (de) * 2015-11-06 2017-05-11 Technische Universität Darmstadt Verfahren zum Herstellen eines magnetokalorischen Verbundmaterials und Verbundmaterial mit einem magnetokalorischen Pulver
CN109313971A (zh) * 2016-06-10 2019-02-05 巴斯夫欧洲公司 包含锰、铁、硅、磷和碳的磁热材料

Also Published As

Publication number Publication date
WO2010121977A1 (fr) 2010-10-28
DE102009002640A1 (de) 2011-01-20
EP2422347A1 (fr) 2012-02-29

Similar Documents

Publication Publication Date Title
EP2422347B1 (fr) Matériau allié magnétique et son procédé de fabrication
DE102008054522B4 (de) Verfahren zur Beschichtung der Oberflächeeines magnetischen Legierungsmaterials sowie ein solches Legierungsmaterial
DE112007003321B4 (de) Gegenstand zum magnetischen Wärmeaustausch und Verfahren zu dessen Herstellung
DE60036586T2 (de) Hartmagnetisches interstitielles Material mit mehreren Elementen und Herstellungsverfahren eines magnetischen Pulvers und Magnet daraus
DE60206031T2 (de) Verfahren zur herstellung von seltenerdlegierungs sinterformteilen
DE10338467A1 (de) Magnetisches Legierungsmaterial und Verfahren zur Herstellung des magnetischen Legierungsverfahrens
DE102011052614A1 (de) Gegenstand für einen magnetischen Wärmeaustausch und ein Verfahren zum Herstellen einer Arbeitskomponente für den magnetischen Wärmeaustausch
DE102011052611A1 (de) Arbeitskomponente für einen magnetischen Wärmeaustausch und Verfahren zur Erzeugung einer Arbeitskomponente für eine magnetische Kühlung
DE4408114B4 (de) Magnetisches Material
DE112014005910B4 (de) Verfahren zur Herstellung eines Seltene-Erden-Magneten
DE102018200817A1 (de) Äußerst hitzebeständiges Seltenerd-Permanentmagnetmaterial, Herstellungsverfahren desselben und Magnet, der dasselbe enthält
DE102013009940A1 (de) Magnetisches Material, seine Verwendung und Verfahren zu dessen Herstellung
DE60129506T2 (de) Herstellungsverfahren für Seltenerd-Dauermagneten
DE10310572A1 (de) Permanentmagnet und Motor
DE10255604B4 (de) Verfahren zum Herstellen eines anisotropen Magnetpulvers und eines gebundenen anisotropen Magneten daraus
DE60031914T2 (de) Magnetpulver und isotroper Verbundmagnet
WO2013164202A1 (fr) Matériau magnétique, son utilisation et son procédé de fabrication
DE112012001234T5 (de) Magnetisches Material
DE2121596A1 (de) Hartmagnetische legierung
DE60220773T2 (de) Verfahren zur herstellung eines sinterprodukts
DE102020113223A1 (de) Gesinterter r2m17-magnet und verfahren zur herstellung eines r2m17-magneten
DE2705384C3 (de) Dauermagnet-Legierung und Verfahren zur Wärmebehandlung gesinterter Dauermagnete
DE102006032520B4 (de) Verfahren zur Herstellung von Magnetkernen, Magnetkern und induktives Bauelement mit einem Magnetkern
DE4021990A1 (de) Verfahren zur herstellung eines permamentmagneten aus metall der seltenerden und einer eisenkomponente
DE69829872T2 (de) Herstellungsverfahren von R-FE-B Verbundmagneten mit hohem Korrosionswiderstand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUTFLEISCH, OLIVER

Inventor name: LYUBINA, JULIA

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 762960

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010010700

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010010700

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160419

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160419

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160419

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 762960

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220519

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010010700

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103