EP2422347B1 - Magnetisches legierungsmaterial und verfahren zu seiner herstellung - Google Patents

Magnetisches legierungsmaterial und verfahren zu seiner herstellung Download PDF

Info

Publication number
EP2422347B1
EP2422347B1 EP10718525.8A EP10718525A EP2422347B1 EP 2422347 B1 EP2422347 B1 EP 2422347B1 EP 10718525 A EP10718525 A EP 10718525A EP 2422347 B1 EP2422347 B1 EP 2422347B1
Authority
EP
European Patent Office
Prior art keywords
alloy material
magnetic alloy
particles
magnetic
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10718525.8A
Other languages
English (en)
French (fr)
Other versions
EP2422347A1 (de
Inventor
Julia Lyubina
Oliver Gutfleisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Original Assignee
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV filed Critical Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Publication of EP2422347A1 publication Critical patent/EP2422347A1/de
Application granted granted Critical
Publication of EP2422347B1 publication Critical patent/EP2422347B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/017Compounds

Definitions

  • the invention relates to the field of materials science and material physics and relates to a magnetic alloy material which can be used, for example, as a magnetic cooling material (magnetocaloric material) for cooling purposes or for power generation purposes, and a method for its production.
  • a magnetic cooling material magnetictocaloric material
  • Magnetic cooling by magnetic alloy materials provides an environmentally friendly, energy and cost effective alternative to conventional gas compression refrigeration.
  • MCE magnetocaloric effect
  • Magnetic materials with a crystal structure of NaZn 13 type show a particularly large MCE, which is caused by a thermally and field-induced phase transition from the paramagnetic to the ferromagnetic state near the Curie temperature T c of the material.
  • Magnetic alloy materials of the NaZn 13 type crystal structure are known and could be used as magnetic cooling materials.
  • the composition of such materials can be given by the formula R (T 1-a M a ) 13 H d , where R is rare earth elements or a combination of rare earth elements, T is Fe or a combination of Fe and Co and M is Al, Si, Ga or Ge or combinations thereof.
  • R rare earth elements or a combination of rare earth elements
  • T Fe or a combination of Fe and Co
  • M Al, Si, Ga or Ge or combinations thereof.
  • 0.05 ⁇ a ⁇ 0.2 and for d, 0 ⁇ d ⁇ 3.0 Such materials have very good magnetocaloric properties at temperatures near the Curie temperature and are considered to be promising candidates for magnetic cooling [ C. Zimm et al., Int. J. Refrigeration 29, 1302 (2006 )].
  • such magnetic alloys are produced by means of an arc or high-frequency melting process and then, for example, for about 168 h at about 1050 ° C. under vacuum ( DE 103 38 467 A1 ) heat treated. It is also possible to melt the alloying elements at 1200 to 1800 ° C, then cool the alloy at a cooling rate of 10 2 to 10 6 ° C / s (solidify rapidly) and then thermally treat the rapidly solidified alloy [ US 2006/0076084 A1 ; A. Yan, K.-H. Müller, O. Gutées, J. Appl. Phys. 97, 036102 (2005 ); XB Liu, Z. Altounian, GH Tu, J. Phys .: Condens. Matter 16, 8043 (2004 )].
  • a number of magnetic alloys such as Gd 5 Si 2 Ge 2 , MnAs, Mn 1 -x Fe x As, Ni 2 MnSn and (Mn, Fe) 2 (P, As) are known, some of which is a particularly large MCE which is caused by a thermally and / or field-induced magnetic phase transition near the Curie temperature T c and / or near a structural phase transition
  • MCE magnetic alloys
  • a significant disadvantage of these alloys is known to be the occurrence of volume changes due to isotropic or anisotropic expansion of the crystal lattice during the magnetic or structural phase transition, especially in the alloys showing a first-order phase transition [ A. Fujita et al., Phys. Rev B 65, 014410 (2001 ); H. Yabuta et al., J. Phys. Soc. Japan, 75, 113707 (2006 )]. These changes in volume can result in significantly reduced mechanical integrity and thus severely limiting conditions of use.
  • the object of the present invention is to provide a magnetic alloy material having improved mechanical properties with comparable magnetic and / or magnetocaloric properties over the prior art materials, and to provide an effective method for producing the magnetic alloy material.
  • the magnetic alloy material of the present invention exhibiting a magnetocaloric effect is an alloy material in which particles of the magnetic alloy material are embedded in a matrix material having higher ductility than the magnetic alloy material.
  • ⁇ 35 vol .-% of the magnetic alloy material has a crystal structure NaZn 13 type, whereby even more advantageously at least 50 vol .-%, more advantageously from 80 to 90 vol .-%, the magnetic alloy material has a crystal structure NaZn 13 type on.
  • the conditions of 2 ⁇ z ⁇ 15 at% and / or 3 ⁇ y ⁇ 16 and / or 0.3 ⁇ x ⁇ 9 are realized to change the Curie temperature of the magnetic alloy material, wherein with varying proportion z and / or y and / or x the Curie temperature changes between 170 K and 400 K.
  • particles of the magnetic alloy material with a particle size of 10 nm to 1 mm are embedded in a matrix material.
  • the matrix material with a higher ductility than the magnetic alloy material comprises at least one element of Al, Ag, Au, Bi, C, Co, Cu, Fe, Ga, Ni, Pb, Pd, Pt, Sn, Ti , Zn or combinations and / or reaction products thereof.
  • a second material of at least one element of Al, Ag, Au, Bi, C, Co, Cu, Fe, Ga, Ni, Nb, Pb, Pd, Pt, Sn, Ta, Ti , V, Zn, Zr or combinations and / or reaction products also with the matrix material thereof is present.
  • the matrix material has at least a 10% higher ductility than the magnetic alloy material.
  • the particles of the magnetic alloy material are in the form of a band, a wire, a plate, a foil or a flake, a needle or in the form of powder particles.
  • particles of the magnetic alloy material are mixed with a matrix material having a higher ductility than the magnetic alloy material and then heated to the extent that the matrix material forms the matrix around the particles of the magnetic alloy material.
  • particles of the magnetic alloy material and of the matrix material are mixed and processed into a shaped body and subsequently heated to a temperature at which the matrix material at least softens and covers the particles of the magnetic alloy material substantially completely.
  • the application temperature is adjusted by applying a vacuum.
  • the magnetic alloy material can be processed in the form of particles in a suspension to a shaped body or applied to a foam structure and processed after drying and a temperature increase to the magnetic alloy material.
  • the particles of the magnetic alloy material may be in the form of a band, a wire, a plate, a foil or a flake, a needle or in the form of powder particles.
  • the particles may also be in the form of a band, a wire, a plate, a foil or a flake, a needle or in the form of powder particles.
  • the particle size can be from a few nanometers to ⁇ 100 microns.
  • the particles of the magnetic alloy material can then be mixed with particles of the matrix material and processed into a shaped body. Subsequently, the molding is exposed to a temperature increase, wherein at least one such temperature must be achieved that the matrix material forms a matrix around the particles of the magnetic alloy material and substantially completely covers the surface of the particles as possible.
  • the magnetic alloy material according to the invention exhibits a significantly higher mechanical strength, since the volume changes of the magnetic alloy material can be significantly better absorbed by the phase transition, which is present at a pore or the ductile matrix material, and thus counteract the cracking and possibly even the destruction of the molding and prevent it partially or completely.
  • the solution according to the invention shows, in particular, improved results in the predominant use of magnetic alloy materials whose crystal structure is of the NaZn 13 type. These materials are known to have a large magnetocaloric effect and therefore can be used particularly advantageously.
  • H, B, C and / or N are present in the alloy material.
  • These elements are known to be incorporated into interstitial sites and in particular affect the Curie temperature T c , which is known to be important for magnetic alloy materials, and which determines the temperature of use by increasing the Curie temperature as the proportion of these elements, and in particular H, increases.
  • T c Curie temperature
  • an application temperature for the magnetic alloy material is adjustable within relatively wide limits.
  • the effect of loading the magnetic alloy material with these elements is further improved by the solution according to the invention, since the increased brittleness of the magnetic alloy material resulting from the incorporation is also absorbed by the foam-like structure or the matrix material.
  • the Curie or application temperature setting can be done for example by applying a vacuum during the temperature increase, which is also in the compaction by means of hot pressing or pressing at moderate temperatures feasible. About the height of the temperature or time, the application temperature can be adjusted.
  • hydrogen can be introduced interstitially into the crystal lattice or substitute elements such as Co, Ni, Cu by Fe diffusion processes and thereby increase the Curie temperature T c .
  • the hydrogen can be formed in a secondary reaction, such as released as a by-product of a cathodic electrode reaction or during the oxidation of the reducing agent.
  • prepared magnetic alloy material according to the invention has open and / or closed pores, with a particularly advantageous even a regular porosity can be adjusted.
  • the pores are arranged directionally in the material, so that, for example, an effective flow through a (cooling) liquid can be achieved.
  • a high specific surface area of the porous material is also very advantageous for effective heat exchange.
  • the magnetic alloy material according to the invention has a density between 50% and 99% of the theoretically achievable density of the magnetic alloy material.
  • this may also contain a further material or the further material may be formed by reactions of the matrix material or of another material.
  • This further material can also be deposited on the surface of the particles of the magnetic alloy material.
  • the magnetic entropy change remains virtually unchanged, ie the relative cooling power remains high.
  • the adiabatic temperature change ⁇ T ad decreases slightly.
  • a high reproducibility after significantly more work cycles in comparison to a solid material is advantageous.
  • a solid material having the composition LaFe 11.6 Si 1.4 is produced by induction melting and subsequent heat treatment at 1050 ° C. for 7 days.
  • the resulting material consists of 97 wt .-% of the NaZn 13 -type phase and 3 wt .-% of ⁇ -Fe.
  • the solid material with the composition LaFe 11.6 Si 1.4 shows at a magnetic field change of 2 Tesla a maximum entropy change ⁇ S max of 162 kJ / m 3 K at 194 K.
  • the half width is 8 K and the relative cooling capacity is 1.5 MJ / m 3 .
  • the entropy change and the relative cooling power remain unchanged after thermal cycling.
  • the maximum adiabatic temperature change ⁇ T ad max at a magnetic field change of 1.9 Tesla 7.3 K at 191 K when cooling from room temperature.
  • the maximum adiabatic temperature change decreases with a magnetic field change from 1.9 Tesla to 5.2 K at 194 K.
  • the thermal hysteresis is 3 K and magnetic hysteresis up to 0.7 T.
  • ⁇ T ad max decreases to 6.7 K and 6.6 K when cooling from room temperature to 5 K and 4.9 K when heating 170 K to room temperature.
  • the thermal hysteresis is 2.2 K and 2.1 K in the second and third thermal cycle.
  • a porous, foam-like material is produced from the pulverized solid material by hot pressing at a pressing temperature of 600 - 1423 K and a pressing pressure of the order of magnitude of ⁇ 10 2 - 10 3 MPa.
  • the resulting material consists of 91% by weight of the NaZn 13 -type phase and 9% by weight of ⁇ -Fe.
  • the density of the pressed material is 70 to 90% of the theoretical density of the material which consists of 91% by weight of LaFe 11.6 Si 1.4 and 9% by weight of ⁇ -Fe.
  • 2 plates are cut from a cylindrical hot-pressed material having dimensions of 8 mm ⁇ 4 mm ⁇ 1 mm.
  • the hot-pressed material with the composition LaFe 11.6 Si 1.4 shows a maximum entropy change ⁇ S max of 110 kJ / m 3 K at 194 K with a magnetic field change of 2 Tesla.
  • the half-width is 10.5 K and the relative cooling capacity is 1.3 MJ / m 3 .
  • the entropy change and the relative cooling power remain unchanged after thermal cycling.
  • the adiabatic temperature change ⁇ T ad also remains unchanged after the thermal and magnetic field alternating stress and amounts to 4.3 K during cooling from room temperature and when heating from 170 K to room temperature with a magnetic field change of 1.9 Tesla.
  • the thermal hysteresis is less than 1 K, ie significantly lower compared to the solid material.
  • the magnetic field dependence of the adiabatic temperature change is nearly hysteresis-free (less than 0.05 T).
  • the mechanical integrity of the hot-pressed material remains after multiple thermal or field cycling cycles.
  • an alloy having the composition LaFe 11.6 Si 1.4 is produced by means of an arc melting process.
  • the alloy is then rapidly solidified with the surface speed of the copper wheel of 30 m / s and then heat treated at 1050 ° C for 2 hours.
  • the resulting material is in the form of a band having a thickness of 60 microns and consists of 90 wt .-% of the NaZn 13 -type phase and 10 wt .-% of ⁇ -Fe.
  • a porous, foam-like material is produced by pressing at room temperature (cold pressing) and pressing pressure of 500 MPa.
  • the dimensions of the pressed LaFe 11.6 Si 1.4 alloy are 11 mm diameter x 1 mm height and the density is 85% of the theoretical density of the material.
  • the cold-pressed LaFe 11.6 Si 1.4 alloy shows a maximum magnetic entropy change ⁇ S max of 145 kJ / m 3 K at 193 K and a magnetic field change of 2 Tesla.
  • the half width is 8.3 K and the relative cooling capacity is 1.5 MJ / m 3 .
  • the adiabatic temperature change ⁇ T ad remains unchanged after the thermal and magnetic field alternating stress and is 4.3 K at 193 K on cooling from room temperature and during heating of 170 K to room temperature with a magnetic field change of 1.9 Tesla. It is the thermal hysteresis less than 0.5 K.
  • the magnetic field dependence of the adiabatic temperature change is almost hysteresis-free.
  • This cold-pressed LaFe 11.6 Si 1.4 alloy is hydrogenated at 400 ° C in 0.5 MPa hydrogen gas.
  • the hydrogen concentration of z 1.64 was measured by hot extraction. This corresponds to a composition of LaFe 11.6 Si 1.4 H 1.64 .
  • the temperature at which the maximum of the entropy change or the adiabatic temperature change occurs shifts to 338 K.
  • the adiabatic temperature change ⁇ T ad remains unchanged after the thermal and magnetic field cycling and is 3.7 K on cooling Room temperature and when heating from 170 K to room temperature with a magnetic field change of 1.9 Tesla.
  • the temperature and magnetic field dependence of the adiabatic temperature change are almost hysteresis-free.
  • the rapidly solidified and heat-treated ribbons are hydrogenated at 400 ° C in 0.5 MPa of hydrogen gas and then produced at a temperature of 650 K and a compacting pressure of 500 MPa.
  • the adiabatic temperature change ⁇ T ad remains unchanged after the thermal and magnetic field alternating stress and is 3.6 K at 335 K with a magnetic field change of 1.9 Tesla.
  • the temperature and magnetic field dependence of the adiabatic temperature change are almost hysteresis-free.
  • the pressing at a temperature of 650 K under vacuum can be used at the same time for setting the Curie temperature or application temperature.
  • the temperature at which the maximum of the entropy change or adiabatic temperature change occurs shifts to 300 K.
  • the mechanical integrity of the hot or cold pressed material or material pressed at a temperature of 650 is maintained after multiple thermal or field cycling cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

  • Die Erfindung bezieht sich auf das Gebiet der Werkstoffwissenschaften und der Materialphysik und betrifft ein magnetisches Legierungsmaterial, welches beispielsweise als magnetisches Kühlmaterial (magnetokalorisches Material) für Kühlzwecke oder für Energieerzeugungzwecke eingesetzt werden kann, und ein Verfahren zu seiner Herstellung.
  • Die magnetische Kühlung durch magnetische Legierungsmaterialien eröffnet eine umweltfreundliche, energie- und kosteneffektive Alternative zu der konventionellen Gaskompressionskühlung. Die magnetische Kühlung basiert auf dem magnetokalorischen Effekt (MCE = magnetocaloric effect), bei welchem eine Temperaturänderung infolge der Änderung der Magnetisierung des Materials auftritt. Für Anwendungen sind insbesondere Materialien mit einem großen MCE interresant.
  • Magnetische Materialien mit einer Kristallstruktur von NaZn13-Typ zeigen dabei einen besonders großen MCE, der durch einen thermisch- und feld-induzierten Phasenübergang vom paramagnetischen zum ferromagnetischen Zustand nahe der Curie-Temperatur Tc des Materials verursacht wird.
  • Magnetische Legierungsmaterialien der Kristallstruktur vom Typ NaZn13 sind bekannt und könnten als magnetische Kühlmaterialien eingesetzt werden. Die Zusammensetzung derartiger Materialien kann durch die Formel R(T1-aMa)13Hd angegeben werden, wobei für R Seltenerdelemente oder eine Kombination Seltenerdelemente, für T Fe oder eine Kombination von Fe und Co und für M Al, Si, Ga oder Ge oder Kombinationen davon eingesetzt werden. Für a gilt 0,05 ≤ a ≤ 0,2 und für d gilt 0 ≤ d ≤ 3,0. Derartige Materialien weisen sehr gute magnetokalorische Eigenschaften bei Temperaturen nahe Curie-Temperatur auf und sind als erfolgversprechende Kandidaten für die magnetische Kühlung eingestuft [C. Zimm et al., Int. J. Refrigeration 29, 1302 (2006)].
  • Bekanntermaßen werden derartige magnetische Legierungen mittels eines Lichtbogen- oder Hochfrequenz-Schmelzverfahrens hergestellt und anschließend für beispielsweise ca. 168 h bei etwa 1050 °C unter Vakuum ( DE 103 38 467 A1 ) wärmebehandelt. Ebenfalls ist es möglich, die Legierungselemente bei 1200 bis 1800 °C aufzuschmelzen, dann mit Abkühlgeschwindigkeiten von 102 bis 106 °C/s die Legierung abzukühlen (rasch erstarren) und anschließend die rascherstarrte Legierung thermisch zu behandeln [ US 2006/0076084 A1 ; A. Yan, K.-H. Müller, O. Gutfleisch, J. Appl. Phys. 97, 036102 (2005); X.B. Liu, Z. Altounian, G.H. Tu, J. Phys.: Condens. Matter 16, 8043 (2004)].
  • Weiterhin sind eine Reihe magnetischer Legierungen, wie z.B. Gd5Si2Ge2, MnAs, Mn1-xFexAs, Ni2MnSn und (Mn,Fe)2(P,As) bekannt, die zum Teil einen besonders großen MCE zeigen, der durch einen thermisch- und/oder feld-induzierten magnetischen Phasenübergang nahe der Curie-Temperatur Tc und/oder nahe einem strukturellen Phasenübergang verursacht wird [V.K. Pecharsky and K.A. Gschneidner, Jr., Phys. Rev. Lett. 78, 4494 (1997); H. Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001); A. de Campos et al., Nature Materials 5, 802 (2006); T. Krenke et al., Nature Materials 4, 450 (2005); O. Tegus, E. Brück, K.H.J. Buschow, and F.R. de Boer, Nature 415, 150 (2002); DE 103 38 467 A1 , US 2007/0137732 A1 , US 2004/007944 A1 , US 7,186,303 B2 , US 2006/0231163 ; US Patent 7069729 ].
  • Ein wesentlicher Nachteil dieser Legierungen ist bekanntermaßen das Auftreten von Volumenänderungen durch isotrope bzw. anisotrope Ausdehnung der Kristallgitter während des magnetischen oder strukturellen Phasenübergangs, insbesondere bei den Legierungen, die eine Phasenübergang ertster Ordnung zeigen [A. Fujita et al., Phys. Rev B 65, 014410 (2001); H. Yabuta et al., J. Phys. Soc. Japan, 75, 113707 (2006)]. Diese Volumenänderungen können zu einer signifikant verringerten mechanischen Integrität und damit zur starken Einschränkung von Einsatzbedingungen führen.
  • Die Aufgabe der vorliegenden Erfindung besteht in der Angabe eines magnetischen Legierungsmaterial, welches bei vergleichbaren magnetischen und/oder magnetokalorischen Eigenschaften gegenüber den Materialien des Standes der Technik verbesserte mechanische Eigenschaften aufweist, und in der Angabe eines effektiven Verfahrens zur Herstellung des magnetischen Legierungsmaterials.
  • Die Aufgabe wird durch die in den Ansprüchen angegebene Erfindung gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
  • Das erfindungsgemäße magnetische Legierungsmaterial, welches einen magnetokalorischen Effekt zeigt, ist ein Legierungsmaterial bei dem Partikel des magnetischen Legierungsmaterials in einem Matrixmaterial mit einer höheren Duktilität als das magnetische Legierungsmaterial eingebettet sind.
  • Vorteilhafterweise weisen ≥ 35 Vol.-% des magnetischen Legierungsmaterials eine Kristallstruktur vom NaZn13-Typ auf, wobei noch vorteilhafterweise mindestens 50 Vol.-%, noch vorteilhafterweise 80 - 90 Vol.-%, des magnetischen Legierungsmaterials eine Kristallstruktur vom NaZn13-Typ auf.
  • Ebenfalls vorteilhafterweise weist das magnetische Legierungsmaterial eine Zusammensetzung gemäß der Formel auf:

            RaFe100-a-x-y-zTxMyLz

    mit
    • R = La oder eine Kombination von La mit Ce, Pr, Nd, Sm, Gd, Tb,
    • Dy, Ho, Er, Tm, Yb, Lu und/oder Y,
    • T = mindestens ein Element ausgewählt aus der Gruppe Sc, Ti, V, Cr,
    • Mn, Co, Ni, Cu und/oder Zn,
    • M = Al, Si, P, Ga, Ge, In und/oder Sn,
    • L = H, B, C und/oder N,
    • 5 ≤ a ≤ 11 und 0 ≤ x ≤ 12 und 2 ≤ y ≤ 20 und 2 ≤ z ≤ 18, (alles in Atom-%).
  • Weiterhin vorteilhafterweise sind zur Veränderung der Curie-Temperatur des magnetischen Legierungsmaterials die Bedingungen 2 ≤ z ≤ 15 Atom-% und/oder 3 ≤ y ≤ 16 und/oder 0.3 ≤ x ≤ 9 realisiert, wobei mit variierendem Anteil z und/oder y und/oder x die Curie-Temperatur sich zwischen 170 K und 400 K ändert.
  • Vorteilhaft ist es auch, wenn Partikel des magnetischen Legierungsmaterials mit einer Partikelgröße von 10 nm bis 1 mm in ein Matrixmaterial eingebettet sind.
  • Ebenfalls vorteilhaft ist es, wenn das Matrixmaterial mit einer höheren Duktilität als das magnetische Legierungsmaterial aus mindestens einem Element von Al, Ag, Au, Bi, C, Co, Cu, Fe, Ga, Ni, Pb, Pd, Pt, Sn, Ti, Zn oder Kombinationen und/oder Reaktionsprodukten davon, besteht.
  • Weiterhin vorteilhaft ist es, wenn neben dem Matrixmaterial ein zweites Material aus mindestens einem Element von Al, Ag, Au, Bi, C, Co, Cu, Fe, Ga, Ni, Nb, Pb, Pd, Pt, Sn, Ta, Ti, V, Zn, Zr oder Kombinationen und/oder Reaktionsprodukten auch mit dem Matrixmaterial davon, vorhanden ist.
  • Und auch vorteilhaft ist es, wenn das Matrixmaterial eine um mindestens 10 % höhere Duktilität als das magnetische Legierungsmaterial aufweist.
  • Von Vorteil ist es auch, wenn die Partikel des magnetischen Legierungsmaterials in Form eines Bandes, eines Drahtes, einer Platte, einer Folie oder einer Flocke, einer Nadel oder in Form von Pulverpartikeln vorliegen.
  • Bei dem erfindungsgemäßen Verfahren zur Herstellung eines magnetischen Legierungsmaterials werden Partikel des magnetischen Legierungsmaterials mit einem Matrixmaterial, welches eine höhere Duktilität als das magnetische Legierungsmaterial aufweist, gemischt und dann soweit erwärmt, dass das Matrixmaterial die Matrix um die Partikel des magnetischen Legierungsmaterials ausbildet.
  • Vorteilhafterweise werden Partikel des magnetischen Legierungsmaterials und des Matrixmaterials gemischt und zu einem Formkörper verarbeitet und nachfolgend dieser Formkörper auf eine Temperatur erwärmt, bei dem das Matrixmaterial mindestens erweicht und die Partikel des magnetischen Legierungsmaterials im Wesentlichen vollständig bedeckt.
  • Ebenfalls vorteilhafterweise wird die Anwendungstemperatur durch Anlegen eines Vakuums eingestellt.
  • Mit der erfindungsgemäßen Lösung wird es erstmals möglich, ein magnetisches Legierungsmaterial anzugeben, dessen mechanische Eigenschaften, insbesondere die Festigkeit (Integrität), bei Beibehaltung der guten magnetischen Eigenschaften bezüglich des magnetokalorischen Effektes, deutlich verbessert worden sind.
  • Dies wird erfindungsgemäß dadurch erreicht, dass Partikel des magnetischen Legierungsmaterials in einem Matrixmaterial eingebettet sind, welches eine höhere Duktilität als das magnetische Legierungsmaterial aufweist.
  • Das magnetische Legierungsmaterial kann dabei in Form von Partikeln in einer Suspension zu einem Formkörper verarbeitet oder auf eine Schaumstruktur aufgebracht werden und nach Trocknung und einer Temperaturerhöhung zu dem magnetischen Legierungsmaterial verarbeitet werden. Die Partikel des magnetischen Legierungsmaterials können dabei in Form von Form eines Bandes, eines Drahtes, einer Platte, einer Folie oder einer Flocke, einer Nadel oder in Form von Pulverpartikeln vorliegen.
  • Im Falle, dass das erfindungsgemäße magnetische Legierungsmaterial als Partikel in ein Matrixmaterial eingebettet ist, können die Partikel ebenfalls Form eines Bandes, eines Drahtes, einer Platte, einer Folie oder einer Flocke, einer Nadel oder in Form von Pulverpartikeln vorliegen. Die Partikelgröße kann dabei von einigen Nanometern bis ∼ 100 µm betragen.
  • Die Partikel des magnetischen Legierungsmateriales können dann mit Partikeln des Matrixmateriales gemischt und zu einem Formkörper verarbeitet werden. Nachfolgend wird der Formkörper einer Temperaturerhöhung ausgesetzt, wobei mindestens eine solche Temperatur erreicht werden muss, dass das Matrixmaterial eine Matrix um die Partikel des magnetischen Legierungsmaterials ausbildet und die Oberfläche der Partikel im Wesentlichen möglichst vollständig bedeckt.
  • Das erfindungsgemäße magnetische Legierungsmaterial zeigt eine deutlich höhere mechanische Festigkeit, da die Volumenänderungen des magnetischen Legierungsmaterials deutlich besser durch den Phasenübergang, der an einer Pore oder dem duktileren Matrixmaterial vorliegt, aufgefangen werden können und damit der Rissbildung und möglicherweise sogar der Zerstörung des Formkörpers entgegenwirken und diese teilweise oder ganz verhindern.
  • Die erfindungsgemäße Lösung zeigt insbesondere verbesserte Ergebnisse beim überwiegenden Einsatz von magnetischen Legierungsmaterialien, deren Kristallstruktur vom NaZn13-Typ ist. Diese Materialien zeigen bekanntermaßen einen großen magnetokalorischen Effekt und sind deshalb besonders vorteilhaft einsetzbar.
  • Ebenfalls vorteilhaft ist es, wenn die erfindungsgemäße Lösung für magnetische Legierungsmaterialien eingesetzt wird, die eine Zusammensetzung gemäß der Formel RxT100-x-y-zMyLz mit den bekannten Elementen, Elementkombinationen und Anteilen aufweisen.
  • Dabei ist besonders vorteilhaft, wenn insbesondere H, B, C und/oder N in dem Legierungsmaterial vorhanden sind. Diese Elemente werden bekanntermaßen auf Zwischengitterplätze eingebaut und wirken sich insbesondere auf die für magnetische Legierungsmaterialien wichtige Curie-Temperatur Tc, die bekanntermaßen die Anwendungstemperatur bestimmt, aus, indem mit steigendem Anteil dieser Elemente, und dabei insbesondere H, die Curie-Temperatur erhöht wird. Damit ist eine Anwendungstemperatur für das magnetische Legierungsmaterial in relativ weiten Grenzen einstellbar.
  • Der Effekt der Beladung des magnetischen Legierungsmaterials mit diesen Elementen wird durch die erfindungsgemäße Lösung noch verbessert, da die durch die Einlagerung resultierende erhöhte Sprödigkeit des magnetischen Legierungsmaterials ebenfalls durch die schaumartige Struktur oder das Matrixmaterial aufgefangen werden.
  • Die Curie- bzw. Anwendungstemperatureinstellung kann beispielsweise durch Anlegen eines Vakuums während der Temperaturerhöhung erfolgen, was auch bei der Kompaktierung mittels Heisspressens oder Pressens bei moderaten Temperaturen realisierbar ist. Über die Höhe der Temperatur oder Zeit kann die Anwendungstemperatur eingestellt werden.
  • Mit einer speziell ausgewählten Beschichtungsmethode, wie der elektrochemischen Beschichtung oder Beschichtung durch stromloses Metallisieren, kann gleichzeitig Wasserstoff interstitiell in das Kristallgitter eingebracht werden oder Elemente, wie z.B. Co, Ni, Cu, durch Diffusionsprozesse Fe substituieren und dabei die Curie-Temperatur Tc erhöhen. Der Wasserstoff kann bei einer sekundären Reaktion entstehen, wie z.B. als Beiprodukt einer kathodischen Elektrodenreaktion oder während der Oxidation des Reduktionsmittels freigesetzt werden. So zeigt sich dieser Effekt auch bei der erfindungsgemäßen Lösung in nahezu unveränderter Art und Weise, so dass neben verbesserten mechanischen Eigenschaften auch verbesserte primäre Eigenschaften, wie Anwendungstemperatur und Größe der MCE, mit der erfindungsgemäßen Lösung erreicht werden können.
  • Das durch Kompaktierung, z.B. durch Heiß- oder Kaltpressen, hergestellte erfindungsgemäße magnetische Legierungsmaterial weist offene und/oder geschlossene Poren auf, wobei besonders vorteilhafterweise auch eine reguläre Porosität eingestellt werden kann. Darunter soll erfindungsgemäß verstanden werden, dass die Poren gerichtet im Material angeordnet sind, so dass beispielsweise eine effektive Durchströmung einer (Kühl)Flüssigkeit erreicht werden kann. Eine hohe spezifische Oberfläche des porösen Materials is ebenfalls für einen effektiven Wärmetausch sehr vorteilhaft.
  • Aufgrund der erfindungsgemäßen Porosität weist das erfindungsgemäße magnetische Legierungsmaterial eine Dichte zwischen 50 % und 99 % der theoretisch erreichbaren Dichte des magnetischen Legierungsmaterials auf.
  • Im Falle des Einsatzes des Matrixmaterials kann dieses auch ein weiteres Material enthalten oder das weitere Material kann durch Reaktionen des Matrixmaterials oder eines weiteren Materials entstanden sein. Dieses weitere Material kann sich dabei ebenfalls an der Oberfläche der Partikel aus dem magnetischen Legierungsmaterial anlagern.
  • Sehr vorteilhaft ist die Reduzierung der magnetischen bzw. thermischen Hysterese, die mit dem erfindungsgemäßen magnetischen Legierungsmaterial erzielt werden kann. Für Anwendungen soll die Hysterese minimiert werden. Durch die Porösität oder die Duktilität der zweiten Phase wird die Volumenänderung oder Ausdehnung nicht verhindert und die Hysterese reduziert.
  • Dabei bleibt die magnetische Entropieänderung nahezu unverändert, d.h. die relative Kühlleistung bleibt groß. Die adiabatische Temperaturänderung ΔTad verringert sich leicht. Vorteilhaft ist aber eine hohe Reproduzierbarkeit nach deutlich mehreren Arbeitszyklen im Vergleich zu einem massiven Material.
  • Nachfolgend wird die Erfindung anhand von zwei Ausführungsbeispielen näher erläutert.
  • Beispiel 1
  • Aus den Elementen La, Fe, und Si wird durch ein Induktionsschmelzen und anschließende Wärmebehandlung bei 1050 °C für 7 Tage ein Massivmaterial mit der Zusammensetzung LaFe11,6Si1,4 hergestellt. Das resultierende Material besteht zu 97 Gew.-% aus der NaZn13-Typ-Phase und zu 3 Gew.-% aus α-Fe.
  • Anschließend werden 2 Platten mit den Abmessungen von 8 mm x 4 mm x 1 mm aus dem Massivmaterial für die Untersuchung der magnetischen Eigenschaften geschnitten.
  • Das Massivmaterial mit der Zusammensetzung LaFe11,6Si1,4 zeigt bei einer Magnetfeldänderung von 2 Tesla eine maximale Entropieänderung ΔSmax von 162 kJ/m3K bei 194 K. Dabei beträgt die Halbwertsbreite 8 K und die relative Kühlleistung beträgt 1,5 MJ/m3. Die Entropieänderung sowie die relative Kühlleistung bleiben nach der thermischen Wechselbeanspruchung unverändert.
  • Dennoch wird eine Abnahme der adiabatischen Temperaturänderung ΔTad beobachtet. Beim ersten thermischen Zyklus beträgt die maximale adiabatische Temperaturänderung ΔTad max bei einer Magnetfeldänderung von 1,9 Tesla 7,3 K bei 191 K beim Abkühlen von Raumtemperatur. Beim Aufheizen von 170 K auf Raumtemperatur verringert sich die maximale adiabatische Temperaturänderung bei einer Magnetfeldänderung von 1,9 Tesla auf 5,2 K bei 194 K. Dabei beträgt die thermische Hysterese 3 K und magnetische Hysterese bis zu 0,7 T.
  • Beim zweiten und dritten thermischen Zyklus verringert sich ΔTad max auf 6,7 K und 6,6 K beim Abkühlen von Raumtemperatur und auf 5 K und 4,9 K beim Aufheizen von 170 K auf Raumtemperatur. Dabei beträgt die thermische Hysterese 2,2 K und 2,1 K beim zweiten und dritten thermischen Zyklus.
  • Die Verringerung der adiabatischen Temperaturänderung und der thermischen Hysterese ist größtenteils auf eine mikroskopische Rissbildung zurückzuführen, die nach mehrmaligen thermischen oder Feldänderungszyklen zum Verlust der mechanischen Integrität führen kann.
  • Es wird ein poröses, schaumartiges Material aus dem pulverisierten Massivmaterial durch Heisspressen bei Presstemperatur von 600 - 1423 K und Pressdruck mit einer Größenordnung von ∼102 - 103 MPa hergestellt. Das resultierende Material besteht zu 91 Gew.-% aus der NaZn13-Typ-Phase und zu 9 Gew.-% aus α-Fe. Die Dichte des gepressten Material beträgt je nach Pressbedienungen 70 bis 90 % der theoretischen Dichte des Materials der zu 91 Gew.-% aus LaFe11,6Si1,4 und zu 9 Gew.-% aus α-Fe besteht.
  • Für die Untersuchung der magnetischen Eigenschaften werden 2 Platten aus einem zylinderförmigen heißgepressten Material mit den Abmessungen von 8 mm x 4 mm x 1 mm geschnitten.
  • Das heißgepresste Material mit der Zusammensetzung LaFe11,6Si1,4 zeigt bei einer Magnetfeldänderung von 2 Tesla eine maximale Entropieänderung ΔSmax von 110 kJ/m3K bei 194 K. Dabei beträgt die Halbwertsbreite 10,5 K und die relative Kühlleistung beträgt 1,3 MJ/m3. Die Entropieänderung sowie die relative Kühlleistung bleiben nach der thermischen Wechselbeanspruchung unverändert.
  • Auch die adiabatische Temperaturänderung ΔTad bleibt nach der thermischen und Magnetfeld-Wechselbeanspruchung unverändert und beträgt 4,3 K beim Abkühlen von Raumtemperatur sowie beim Aufheizen von 170 K auf Raumtemperatur bei einer Magnetfeldänderung von 1,9 Tesla. Dabei beträgt die thermische Hysterese weniger als 1 K, d.h. deutlich geringer verglichen mit dem Massivmaterial. Die Magnetfeld-Abhängigkeit der adiabatischen Temperaturänderung ist nahezu Hysterese-frei (weniger als 0,05 T).
  • Die mechanische Integrität des heißgepressten Materials bleibt nach dem mehrmaligen thermischen oder Feldänderungszyklen erhalten.
  • Beispiel 2
  • Aus den Elementen La, Fe und Si wird mittels eines Lichtbogen-Schmelzverfahrens eine Legierung mit der Zusammensetzung LaFe11,6Si1,4 hergestellt. Die Legierung wird danach mit der Oberflächengeschwindigkeit des Kupferrades von 30 m/s rasch erstarrt und anschließend bei 1050 °C für 2 Stunden wärmebehandelt [J. Lyubina et al., J. Magn. Magn. Mater. 320, 2252 (2008)]. Das resultierende Material ist in Form eines Bandes mit einer Dicke von 60 µm und besteht zu 90 Gew.-% aus der NaZn13-Typ-Phase und zu 10 Gew.-% aus α-Fe.
  • Aus den pulverisierten rasch erstarrten Bändern wird ein poröses, schaumartiges Material durch das Pressen bei Raumtemperatur (Kaltpressen) und Pressdruck von 500 MPa hergestellt. Die Abmessungen von der gepressten LaFe11,6Si1,4-Legierung sind 11 mm Durchmesser x 1 mm Höhe und die Dichte beträgt 85 % der theoretischen Dichte des Materials.
  • Die kaltgepresste LaFe11,6Si1,4-Legierung zeigt eine maximale magnetische Entropieänderung ΔSmax von 145 kJ/m3K bei 193 K und einer Magnetfeldänderung von 2 Tesla. Dabei beträgt die Halbwertsbreite 8,3 K und die relative Kühlleistung beträgt 1,5 MJ/m3. Die adiabatische Temperaturänderung ΔTad bleibt nach der thermischen und Magnetfeld-Wechselbeanspruchung unverändert und beträgt 4,3 K bei 193 K beim Abkühlen von Raumtemperatur sowie beim Aufheizen von 170 K auf Raumtemperatur bei einer Magnetfeldänderung von 1,9 Tesla. Dabei beträgt die thermische Hysterese weniger als 0,5 K. Die Magnetfeld-Abhängigkeit der adiabatischen Temperaturänderung ist nahezu Hysterese-frei.
  • Diese kaltgepresste LaFe11,6Si1,4-Legierung wird bei 400 ° C in 0,5 MPa Wasserstoffgas hydriert. Die Wasserstoffkonzentration von z = 1.64 wurde mittels Heissextraktion gemessen. Das entspricht einer Zusammensetzung von LaFe11,6Si1,4H1.64.
  • Nach der Wasserstoffbeladung des kaltgepressten Materials verschiebt sich die Temperatur, bei welcher das Maximum der Entropieänderung oder der adiabatischen Temperaturänderung auftritt, auf 338 K. Die adiabatische Temperaturänderung ΔTad bleibt nach der thermischen und Magnetfeld-Wechselbeanspruchung unverändert und beträgt 3,7 K beim Abkühlen von Raumtemperatur sowie beim Aufheizen von 170 K auf Raumtemperatur bei einer Magnetfeldänderung von 1,9 Tesla. Dabei sind die Temperatur- sowie Magnetfeld-Abhängigkeit der adiabatischen Temperaturänderung nahezu Hysterese-frei.
  • Alternativ werden die rasch erstarrten und wärmebehandelten Bänder bei 400 °C in 0,5 MPa Wasserstoffgas hydriert und anschließend bei einer Temperatur von 650 K und einem Pressdruck von 500 MPa hergestellt. Die adiabatische Temperaturänderung ΔTad bleibt nach der thermischen und Magnetfeld-Wechselbeanspruchung unverändert und beträgt 3,6 K bei 335 K bei einer Magnetfeldänderung von 1,9 Tesla. Dabei sind die Temperatur- sowie Magnetfeld-Abhängigkeit der adiabatischen Temperaturänderung nahezu Hysterese-frei.
  • Das Pressen bei einer Temperatur von 650 K unter Vakuum kann gleichzeitig zur Einstellung der Curie-Temperatur oder Anwendungstemperatur genutzt werden. Beim Pressen im Vakuum von 1 Pa bei 423 K verschiebt sich die Temperatur, bei welcher das Maximum der Entropieänderung oder adiabatischen Temperaturänderung auftritt, auf 300 K.
  • Die mechanische Integrität des heiss- oder kaltgepressten Materials oder bei einer Temperatur von 650 gepressten Materials bleibt nach dem mehrmaligen thermischen oder Feldänderungszyklen erhalten.

Claims (10)

  1. Magnetisches Legierungsmaterial, welches Partikel eine Zusammensetzung gemäß der Formel

            RaFe100-a-x-y-zTxMyLz

    mit
    R = La oder eine Kombination von La mit Ce, Pr, Nd, Sm, Gd, Tb,
    Dy, Ho, Er, Tm, Yb, Lu und/oder Y,
    T = mindestens ein Element ausgewählt aus der Gruppe Sc, Ti, V, Cr, Mn, Co, Ni, Cu und/oder Zn,
    M = Al, Si, P, Ga, Ge, In und/oder Sn,
    L = H, B, C und/oder N,
    5 ≤ a ≤ 11 und 0 ≤ x ≤ 12 und 2 ≤ y ≤ 20 und 2 ≤ z ≤ 18, (alles in Atom-%) aufweist, die einen magnetokalorischen Effekt zeigen, und die Partikel des magnetischen Legierungsmaterials in einem Matrixmaterial mit einer höheren Duktilität als das magnetische Legierungsmaterial eingebettet sind.
  2. Legierungsmaterial nach Anspruch 1, bei dem zur Veränderung der Curie-Temperatur des magnetischen Legierungsmaterials die Bedingungen 2 ≤ z ≤ 15 Atom-% und/oder 3 ≤ y ≤ 16 und/oder 0.3 ≤ x ≤ 9 realisiert sind, wobei mit variierendem Anteil z und/oder y und/oder x die Curie-Temperatur sich zwischen 170 K und 400 K ändert.
  3. Legierungsmaterial nach Anspruch 1, bei dem Partikel des magnetischen Legierungsmaterials mit einer Partikelgröße von 10 nm bis 1 mm in ein Matrixmaterial eingebettet sind.
  4. Legierungsmaterial nach Anspruch 1, bei dem das Matrixmaterial mit einer höheren Duktilität als das magnetische Legierungsmaterial aus mindestens einem Element von Al, Ag, Au, Bi, C, Co, Cu, Fe, Ga, Ni, Pb, Pd, Pt, Sn, Ti, Zn oder Kombinationen und/oder Reaktionsprodukten davon, besteht.
  5. Legierungsmaterial nach Anspruch 1, bei dem neben dem Matrixmaterial ein zweites Material aus mindestens einem Element von Al, Ag, Au, Bi, C, Co, Cu, Fe, Ga, Ni, Nb, Pb, Pd, Pt, Sn, Ta, Ti, V, Zn, Zr oder Kombinationen und/oder Reaktionsprodukten auch mit dem Matrixmaterial davon, vorhanden ist.
  6. Legierungsmaterial nach Anspruch 1, bei dem das Matrixmaterial eine um mindestens 10 % höhere Duktilität als das magnetische Legierungsmaterial aufweist.
  7. Legierungsmaterial nach Anspruch 1, bei dem die Partikel des magnetischen Legierungsmaterials in Form eines Bandes, eines Drahtes, einer Platte, einer Folie oder einer Flocke, einer Nadel oder in Form von Pulverpartikeln vorliegen.
  8. Verfahren zur Herstellung eines magnetischen Legierungsmaterials nach mindestens einem der Ansprüche 1 bis 7, bei dem Partikel des magnetischen Legierungsmaterials mit einem Matrixmaterial, welches eine höhere Duktilität als das magnetische Legierungsmaterial aufweist, gemischt und dann soweit erwärmt wird, dass das Matrixmaterial die Matrix um die Partikel des magnetischen Legierungsmaterials ausbildet, wobei die Anwendungstemperatur, die durch die Curie-Temperatur bestimmt wird, durch Anlegen eines Vakuums eingestellt wird.
  9. Verfahren nach Anspruch 8, bei dem die Kompaktierung durch Heiß- oder Kaltpressen durchgeführt wird.
  10. Verfahren nach Anspruch 8, bei dem Partikel des magnetischen Legierungsmaterials und des Matrixmaterials gemischt und zu einem Formkörper verarbeitet werden und nachfolgend dieser Formkörper auf eine Temperatur erwärmt wird, bei dem das Matrixmaterial mindestens erweicht und die Partikel des magnetischen Legierungsmaterials vollständig bedeckt.
EP10718525.8A 2009-04-24 2010-04-19 Magnetisches legierungsmaterial und verfahren zu seiner herstellung Not-in-force EP2422347B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910002640 DE102009002640A1 (de) 2009-04-24 2009-04-24 Magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung
PCT/EP2010/055086 WO2010121977A1 (de) 2009-04-24 2010-04-19 Magnetisches legierungsmaterial und verfahren zu seiner herstellung

Publications (2)

Publication Number Publication Date
EP2422347A1 EP2422347A1 (de) 2012-02-29
EP2422347B1 true EP2422347B1 (de) 2015-11-25

Family

ID=42224392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10718525.8A Not-in-force EP2422347B1 (de) 2009-04-24 2010-04-19 Magnetisches legierungsmaterial und verfahren zu seiner herstellung

Country Status (3)

Country Link
EP (1) EP2422347B1 (de)
DE (1) DE102009002640A1 (de)
WO (1) WO2010121977A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015119103A1 (de) * 2015-11-06 2017-05-11 Technische Universität Darmstadt Verfahren zum Herstellen eines magnetokalorischen Verbundmaterials und Verbundmaterial mit einem magnetokalorischen Pulver
CN109313971A (zh) * 2016-06-10 2019-02-05 巴斯夫欧洲公司 包含锰、铁、硅、磷和碳的磁热材料

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128357A1 (en) 2009-05-06 2010-11-11 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
US9245673B2 (en) 2013-01-24 2016-01-26 Basf Se Performance improvement of magnetocaloric cascades through optimized material arrangement
BR112015017315A2 (pt) * 2013-01-24 2017-07-11 Basf Se cascata magnetocalórica, processo para produzir cascatas magnetocalóricas, uso de uma cascata magnetocalórica, e, sistemas de refrigeração, unidades de controle de clima e bombas de calor
CN103388766B (zh) * 2013-07-26 2015-06-03 宁波市爱使电器有限公司 一种高密封高散热的led灯
DE102015222075A1 (de) * 2015-11-10 2017-05-11 Robert Bosch Gmbh Verfahren zu Herstellung eines magnetischen Materials und elektrische Maschine
DE102017102163B4 (de) 2017-02-03 2020-10-01 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Magnetokalorischer Wärmeübertrager und Verfahren zu seiner Herstellung
DE102017128765A1 (de) * 2017-12-04 2019-06-06 Technische Universität Darmstadt Verfahren zur Herstellung eines magnetokalorischen Verbundmaterials und ein entsprechender Wärmetauscher

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0217347B1 (de) * 1985-09-30 1993-02-03 Kabushiki Kaisha Toshiba Verwendung polykristalliner magnetischer Substanzen zur magnetischen Abkühlung
US6003320A (en) * 1996-10-30 1999-12-21 Kabushiki Kaisha Toshiba Cold accumulating material for extremely low temperature cold, refrigerator using the same and heat shielding member
JP4622179B2 (ja) * 2001-07-16 2011-02-02 日立金属株式会社 磁気冷凍作業物質および蓄冷式熱交換器ならびに磁気冷凍装置
NL1018668C2 (nl) 2001-07-31 2003-02-03 Stichting Tech Wetenschapp Materiaal geschikt voor magnetische koeling, werkwijze voor het bereiden ervan en toepassing van het materiaal.
US6798117B2 (en) 2002-07-10 2004-09-28 Piezomotor Uppsala Ab Fine control of electromechanical motors
US7186303B2 (en) 2002-08-21 2007-03-06 Neomax Co., Ltd. Magnetic alloy material and method of making the magnetic alloy material
WO2004038055A1 (en) 2002-10-25 2004-05-06 Showa Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
JP4240380B2 (ja) * 2003-10-14 2009-03-18 日立金属株式会社 磁性材料の製造方法
US7578892B2 (en) 2005-03-31 2009-08-25 Hitachi Metals, Ltd. Magnetic alloy material and method of making the magnetic alloy material
JP2007031831A (ja) * 2005-06-23 2007-02-08 Sumitomo Metal Mining Co Ltd 磁気冷凍用希土類−鉄−水素系合金粉末とその製造方法、および得られる押出構造体とその製造方法、並びにそれを用いた磁気冷凍システム
DE102006046041A1 (de) * 2006-09-28 2008-04-03 Siemens Ag Wärmeübertragungssystem für magnetokalorische Kühleinrichtungen und Herstellungsverfahren für einen dabei verwendeten Wärmeübertrager
WO2008099234A1 (en) * 2007-02-12 2008-08-21 Vacuumschmelze Gmbh & Co. Kg. Article for magnetic heat exchange and method of manufacturing the same
WO2008099235A1 (en) * 2007-02-12 2008-08-21 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of manufacturing the same
WO2009090442A1 (en) * 2007-12-27 2009-07-23 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
EP2109119A1 (de) * 2008-04-07 2009-10-14 Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD) Permeables magnetokalorisches Material und magnetischer Kühlschrank sowie Wärmepumpe oder Stromgenerator zur Verwendung dieses Materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015119103A1 (de) * 2015-11-06 2017-05-11 Technische Universität Darmstadt Verfahren zum Herstellen eines magnetokalorischen Verbundmaterials und Verbundmaterial mit einem magnetokalorischen Pulver
CN109313971A (zh) * 2016-06-10 2019-02-05 巴斯夫欧洲公司 包含锰、铁、硅、磷和碳的磁热材料

Also Published As

Publication number Publication date
DE102009002640A1 (de) 2011-01-20
EP2422347A1 (de) 2012-02-29
WO2010121977A1 (de) 2010-10-28

Similar Documents

Publication Publication Date Title
EP2422347B1 (de) Magnetisches legierungsmaterial und verfahren zu seiner herstellung
DE102008054522B4 (de) Verfahren zur Beschichtung der Oberflächeeines magnetischen Legierungsmaterials sowie ein solches Legierungsmaterial
DE112007003321B4 (de) Gegenstand zum magnetischen Wärmeaustausch und Verfahren zu dessen Herstellung
DE60036586T2 (de) Hartmagnetisches interstitielles Material mit mehreren Elementen und Herstellungsverfahren eines magnetischen Pulvers und Magnet daraus
DE60206031T2 (de) Verfahren zur herstellung von seltenerdlegierungs sinterformteilen
DE19626049C2 (de) Magnetwerkstoff und Verbundmagnet
DE10338467A1 (de) Magnetisches Legierungsmaterial und Verfahren zur Herstellung des magnetischen Legierungsverfahrens
DE102011052614A1 (de) Gegenstand für einen magnetischen Wärmeaustausch und ein Verfahren zum Herstellen einer Arbeitskomponente für den magnetischen Wärmeaustausch
DE102011052611A1 (de) Arbeitskomponente für einen magnetischen Wärmeaustausch und Verfahren zur Erzeugung einer Arbeitskomponente für eine magnetische Kühlung
DE4408114B4 (de) Magnetisches Material
DE112014005910B4 (de) Verfahren zur Herstellung eines Seltene-Erden-Magneten
DE102018200817A1 (de) Äußerst hitzebeständiges Seltenerd-Permanentmagnetmaterial, Herstellungsverfahren desselben und Magnet, der dasselbe enthält
DE102013009940A1 (de) Magnetisches Material, seine Verwendung und Verfahren zu dessen Herstellung
DE60129506T2 (de) Herstellungsverfahren für Seltenerd-Dauermagneten
DE10310572A1 (de) Permanentmagnet und Motor
DE10255604B4 (de) Verfahren zum Herstellen eines anisotropen Magnetpulvers und eines gebundenen anisotropen Magneten daraus
DE60031914T2 (de) Magnetpulver und isotroper Verbundmagnet
WO2013164202A1 (de) Magnetisches material, seine verwendung und verfahren zu dessen herstellung
DE112012001234T5 (de) Magnetisches Material
DE2121596A1 (de) Hartmagnetische legierung
DE60220773T2 (de) Verfahren zur herstellung eines sinterprodukts
DE102020113223A1 (de) Gesinterter r2m17-magnet und verfahren zur herstellung eines r2m17-magneten
DE102006032520B4 (de) Verfahren zur Herstellung von Magnetkernen, Magnetkern und induktives Bauelement mit einem Magnetkern
DE4021990A1 (de) Verfahren zur herstellung eines permamentmagneten aus metall der seltenerden und einer eisenkomponente
DE69829872T2 (de) Herstellungsverfahren von R-FE-B Verbundmagneten mit hohem Korrosionswiderstand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUTFLEISCH, OLIVER

Inventor name: LYUBINA, JULIA

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 762960

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010010700

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010010700

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160419

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160419

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160419

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 762960

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220519

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010010700

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103