EP2417663A1 - Pile à combustible, empilement de piles à combustible et procédé d'étanchéification d'une pile à combustible - Google Patents

Pile à combustible, empilement de piles à combustible et procédé d'étanchéification d'une pile à combustible

Info

Publication number
EP2417663A1
EP2417663A1 EP10713834A EP10713834A EP2417663A1 EP 2417663 A1 EP2417663 A1 EP 2417663A1 EP 10713834 A EP10713834 A EP 10713834A EP 10713834 A EP10713834 A EP 10713834A EP 2417663 A1 EP2417663 A1 EP 2417663A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
electrode assembly
membrane
distribution
sealing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10713834A
Other languages
German (de)
English (en)
Inventor
Christian Martin Erdmann
Eyuep Akin ÖZDENIZ
Tobias Lux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP2417663A1 publication Critical patent/EP2417663A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell with a membrane-electrode arrangement, which is arranged between a first distribution element for charging an anode of the membrane electrode assembly with a fuel and a second distribution element for charging a cathode of the membrane-electrode assembly with an oxidizing agent ,
  • the fuel cell comprises a sealing element, which is connected to the membrane electrode assembly.
  • the sealing element and at least one of the distribution elements are at least partially contacted, whereby a contact area is formed.
  • the invention relates to a fuel cell stack with a plurality of such fuel cells and a method for sealing a fuel cell.
  • EP 1 614 181 B1 describes a membrane-electrode assembly with integrated seal.
  • a sealing element arranged at an edge of the membrane-electrode arrangement is formed in a connection region between the seal and the membrane-electrode arrangement in such a way that sealing material penetrates pores of the cathode or of the anode.
  • the porous electrodes are thus saturated in the connection region with the material of the sealing element.
  • the sealing material forms a cushion whose thickness is greater than a thickness of the planar membrane-electrode arrangement.
  • the sealing material also forms a second, more towards the edge of the outside than the cushion arranged sealing bead, wherein a thickness of the sealing bead is greater than a thickness of the pad.
  • the sealing bead is received in grooves of the bipolar plates.
  • the grooves have a width that in addition to the sealing bead and the cushion is added. If the bipolar plates are then pressed together, the peripheral sealing bead deforms.
  • the sealing bead can be relatively compressed during compression of the bipolar plates and thereby deformed without the compression of the sealing element leads to a shear stress in the region of the pad. This ensures that the compression of the sealing element does not lead to a detachment of the seal from the membrane-electrode assembly in the connection region.
  • Formed on the pad is a bevel which, prior to compression of the bipolar plates, is brought into abutment with a groove formed in the groove to properly align and center the bipolar plates with respect to the membrane-electrode assembly.
  • the object of the present invention is to provide an improved fuel cell of the aforementioned type, an improved fuel cell stack and an improved method for sealing a fuel cell.
  • the fuel cell according to the invention comprises a membrane-electrode arrangement which is arranged between two distribution elements.
  • a first of the two distribution elements is used to apply a fuel to an anode of the membrane-electrode arrangement.
  • the second distribution element is used to apply a cathode to an electrode of the membrane-electrode assembly with an oxidizing agent.
  • a sealing element is connected to the membrane-electrode assembly.
  • the sealing element and at least one of the distribution elements at least partially in contact, so that a contact area is formed.
  • a sliding surface is provided, by means of which, when the two distribution elements are compressed, a shear stress can be applied to the membrane-electrode arrangement arranged between the two distribution elements.
  • Such a fuel cell allows a cost-effective, particularly reliable and reproducible assembly.
  • the fuel cell has a particularly long life.
  • the sliding surface is provided as a slope on the sealing element. During the compression of the two distribution elements, at least one of the distribution elements slides down along the slope and thus acts on the membrane-electrode arrangement with the shear stress.
  • a further sliding surface is provided as a slope on at least one of the two distribution elements.
  • the two distribution elements have the bevel, which correlate with a respective slope on the sealing element. Upon compression of the two distribution elements then slide the slips along each other and thus cause the tensioning of the membrane-electrode assembly.
  • the provision of the bevels on both the sealing element and on the two distribution elements simplifies a particularly low-friction sliding along the slopes to each other.
  • a length of the slope on the sealing element is equal to a length of the slope on the distribution element.
  • a comparatively large sliding surface is provided, which enables a particularly extensive reduction of the sliding friction of the bevels.
  • this contact surface is flat.
  • planar contact surfaces can adjoin at both ends of the sliding surface.
  • a particularly high sealing force can be achieved in the region of the abutment surface when the distributor element is compressed with the membrane-electrode assembly arranged between the two distributor elements.
  • a constant and constantly high surface pressure between the sealing element and the distribution elements can be achieved when the distribution elements are compressed.
  • the membrane-electrode arrangement is formed circumferentially around the membrane-electrode arrangement, when the membrane-electrode arrangement is acted upon by the shear stress, a circulating and defined clamping of the membrane-electrode arrangement takes place.
  • a circulating and defined clamping of the membrane-electrode arrangement takes place.
  • Membrane electrode assembly connected sealing element during compression of the distribution elements an equidistant, circumferential circumferential enlargement.
  • sealing element in particular a more rigid frame for the membrane-electrode assembly.
  • the membrane-electrode assembly with the connected thereto sealing element is so easy to handle.
  • the, in particular an elastomer comprehensive, sealing element is welded to the membrane-electrode assembly.
  • the joining of the membrane-electrode arrangement comprising a polymer electrolyte membrane (PEM) to the sealing element by a plastic welding process ensures a particularly secure connection of the sealing element to the membrane-electrode arrangement, which resistance is the shear stress when the distribution elements are compressed.
  • the elastic sealing element may be formed as a thermoplastic elastomer, and / or rubber and / or silicone material.
  • a distribution space for a reaction medium is provided by at least one of the distribution elements in at least one edge region adjoining the sealing element in cooperation with the membrane-electrode arrangement.
  • a gap with a constant, defined height between the membrane-electrode arrangement and the distribution element is advantageously provided.
  • one of the distribution elements at least on a side facing the membrane electrode assembly, has a plurality of ribs, in particular parallel to one another.
  • the ribs are then brought into contact with the membrane-electrode arrangement, so that it is particularly possible to achieve a constant surface pressure between the distribution element and the membrane-electrode arrangement.
  • the distribution elements are electrically conductive.
  • the distribution elements thus serve not only for distributing the reaction agent on the anode or the cathode, but in particular for contacting a plurality of fuel cells coupled to one another via the electrically conductive distribution elements.
  • a fuel cell stack which comprises a plurality of fuel cells according to the invention. If indeed a comparatively large number, for example 200 to 350 pieces, of individual fuel cells are to form the fuel cell stack, then the defined clamping of the respective membrane electrode assemblies can be used particularly meaningfully by the sliding surface provided in the contact region.
  • the individual membrane-electrode assemblies with the shear stress so namely a high density of the fuel cell stack and a constant surface pressure can be achieved. Also undefined flow-specific channel cross-sectional constrictions and undefined length expansions of the fuel cell stack are thus avoidable.
  • a distribution element within the fuel cell stack is in each case in contact with a membrane-electrode arrangement arranged on the top side of the distribution element and with a membrane-electrode arrangement arranged on the bottom side of the same distribution element.
  • one and the same distribution element each delimits two membrane-electrode assemblies of adjacent fuel cells from each other. Only in the case of the membrane-electrode assemblies arranged at the bottom and the top in the stack, does the distribution element close to an outside of the stack.
  • an improved method of sealing a fuel cell in which a membrane-electrode assembly is connected to a sealing member, and wherein the membrane-electrode assembly is interposed between a first manifold member for urging an anode of the membrane assembly.
  • Electrode arrangement is arranged with a fuel and a second distribution element for charging a cathode of the membrane-electrode assembly with an oxidizing agent to form a contact area.
  • FIG. 1 shows a detail of a perspective sectional view of a fuel cell, in which a membrane-electrode assembly is held stretched between two bipolar plates in an extension plane of the membrane-electrode assembly;
  • FIG. 2 shows a detail of a bipolar plate of the fuel cell according to FIG. 1 with a sealing frame arranged on the bipolar plate;
  • Fig. 1 shows in a perspective sectional view of a fuel cell 1 of a fuel cell stack.
  • the fuel cell 1 comprises a
  • Membrane electrode assembly 2 in which a polymer electrolyte membrane (PEM) separates a cathode from an anode.
  • PEM polymer electrolyte membrane
  • the planar, ie, flat in the direction of an X-Y plane extending, membrane-electrode assembly 2 is connected, in particular by welding with a sealing frame 3.
  • the membrane-electrode assembly 2 is inserted into a groove 4 formed in the sealing frame 3 (see Fig. 2).
  • the sealing frame 3 is made of an elastomer and, according to FIG. 1, is in contact with a first bipolar plate 5 and with a second bipolar plate 6.
  • the bipolar plates 5, 6 serve as distributing elements for charging the anode of the membrane electrode assembly 2 with a fuel and for charging a cathode of the membrane electrode assembly 2 with an oxidizing agent.
  • the bipolar plates 5, 6 ensure that the fuel cell 1 supplied reactant evenly distributing a continuous electrochemical reaction to the respective electrodes.
  • each of the bipolar plates 5, 6 are in the direction of a Z-axis which is perpendicular to the X-Y plane, ribs 7, wherein 7 channels are formed for the reagent between the mutually parallel ribs.
  • the ribs 7 protrude from the bipolar plates 5, 6 both in the direction of the Z-axis and in a direction opposite to the direction of the Z-axis.
  • the bipolar plates 5, 6 are each symmetrical with respect to a plane of symmetry which is parallel to the X-Y plane.
  • a distribution space 9 for the respective reaction agent is provided in a bordering on the sealing frame 3 edge region 8 of the bipolar plates 5, 6 no ribs are formed (see Fig .. 2), so that in this edge region 8 in the fuel cell 1 in cooperation with the membrane-electrode assembly 2, a distribution space 9 for the respective reaction agent is provided.
  • a height of the distribution space 9 corresponds to a height of the ribs 7.
  • a contact region 10 in which the sealing frame 3 and the bipolar plates 5 6 are in contact includes a slope 11.
  • the bevel 11 of the sealing frame 3 adjoins a first planar contact surface 12.
  • the sealing frame 3 has a further, also flat contact surface 13 which adjoins the bevel 11 towards the outside.
  • the slope 11 thus has an inclination to the X-Y plane, while the abutment surfaces 12, 13 are parallel to the X-Y plane.
  • the membrane-electrode assembly 2 When assembling the fuel cell 1, first, the membrane-electrode assembly 2 is connected to the sealing frame 3 by welding.
  • the present rectangular sealing frame 3 summarizes here the membrane electrode assembly 2 circumferentially.
  • pressing force 14 is a surface area of an assembly, which the membrane-electrode assembly 2 and the associated with this sealing frame. 3 comprises, smaller than a respective areal extent of the bipolar plates 5, 6.
  • the bevels 11 provided on the sealing frame 3 and on the bipolar plates 5, 6 slide along one another until the respective contact surfaces 12, 13 of the sealing frame 3 and the bipolar plates 5, 6 lie on one another.
  • the sliding of the bevels 11 together causes the diaphragm-electrode assembly 2 to be acted upon by a shear stress 15, that is to say with a force exciting the membrane-electrode assembly 2, which acts tangentially to the X-Y plane.
  • the shear stress 15 is illustrated in FIG. 3 by another force arrow.
  • One end of the sliding surface 11 serving as a slope 11 in the direction of the shear stress 15 is presently formed by a kink 16. The bend 16 thus delimits the bevel 11 from the respective contact surfaces 12, 13.
  • the pressing force acts 14 on bipolar plates 5, 6 as sealing force on these contact surfaces 12, 13.
  • the bipolar plates 5, 6 are also electrically isolated from each other in the compressed state of the fuel cell 1.
  • a distance 17 between the bipolar plates 5, 6 is defined and constant over the entire surface of the fuel cell 1 after the compression of the bipolar plates 5, 6 and bringing the abutment surfaces 12, 13 into engagement, so that the distribution spaces 9 of the fuel cell 1 also have a constant height extent.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

La présente invention concerne une pile à combustible (1) dotée d'un ensemble membrane-électrode (2). L'ensemble membrane-électrode (2) est disposé entre deux plaques bipolaires (5, 6) et relié à un élément d'étanchéité (3). L'élément d'étanchéité (3) et les plaques bipolaires (5, 6) sont en contact et forment une zone d'appui (10). La zone d'appui (10) comporte une surface de glissement (11) qui permet, lors d'une compression des deux plaques bipolaires (5, 6), d'appliquer une contrainte de cisaillement (15) sur l'ensemble membrane-électrode (2) disposé entre les deux plaques bipolaires (5, 6). La présente invention concerne en outre un empilement de piles à combustible équipé de telles piles à combustible (1) ainsi qu'un procédé pour étanchéifier une pile à combustible (1).
EP10713834A 2009-04-08 2010-04-06 Pile à combustible, empilement de piles à combustible et procédé d'étanchéification d'une pile à combustible Withdrawn EP2417663A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009016934A DE102009016934A1 (de) 2009-04-08 2009-04-08 Brennstoffzelle, Brennstoffzellenstapel und Verfahren zum Abdichten einer Brennstoffzelle
PCT/EP2010/002155 WO2010115605A1 (fr) 2009-04-08 2010-04-06 Pile à combustible, empilement de piles à combustible et procédé d'étanchéification d'une pile à combustible

Publications (1)

Publication Number Publication Date
EP2417663A1 true EP2417663A1 (fr) 2012-02-15

Family

ID=42340802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10713834A Withdrawn EP2417663A1 (fr) 2009-04-08 2010-04-06 Pile à combustible, empilement de piles à combustible et procédé d'étanchéification d'une pile à combustible

Country Status (6)

Country Link
US (1) US20120034546A1 (fr)
EP (1) EP2417663A1 (fr)
JP (1) JP2012523656A (fr)
CN (1) CN102388493A (fr)
DE (1) DE102009016934A1 (fr)
WO (1) WO2010115605A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496186C1 (ru) * 2012-04-19 2013-10-20 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Топливный элемент и батарея топливных элементов

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777124A (zh) 2011-10-27 2020-02-11 威尔斯达眼科制剂公司 编码视杆细胞来源的视锥细胞活力因子的载体
CN105144456B (zh) * 2013-04-25 2018-06-08 日产自动车株式会社 绝缘结构体、燃料电池以及燃料电池堆
JP7401349B2 (ja) * 2020-03-05 2023-12-19 本田技研工業株式会社 樹脂枠付き電解質膜・電極構造体及び発電セル
JP7408446B2 (ja) * 2020-03-18 2024-01-05 本田技研工業株式会社 樹脂枠付き電解質膜・電極構造体及び燃料電池用樹脂枠部材の製造方法
DE102020207350A1 (de) * 2020-06-15 2021-12-16 Mahle International Gmbh Membranverbund für eine Befeuchtungseinrichtung
DE102021124791A1 (de) * 2021-09-24 2023-03-30 Aerostack GmbH Brennstoffzellenstruktur mit Verstärkung zum Aufnehmen von lateralen Kräften

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001755A1 (fr) * 2006-06-26 2008-01-03 Panasonic Corporation Pile à combustible à électrolyte polymère solide

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061869A1 (fr) * 2001-01-31 2002-08-08 Matsushita Electric Industrial Co., Ltd. Pile a carburant electrolytique de haut polymere et ensemble joint a film electrolytique destine a la pile a carburant
JP4000790B2 (ja) * 2001-06-08 2007-10-31 トヨタ自動車株式会社 シール構造を有する燃料電池
JP3991681B2 (ja) * 2001-12-28 2007-10-17 大同特殊鋼株式会社 金属セパレータおよびこれを用いた燃料電池
US7799419B2 (en) * 2002-12-24 2010-09-21 Versa Power Systems, Ltd. High temperature gas seals
US7405019B2 (en) * 2003-03-14 2008-07-29 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7070876B2 (en) * 2003-03-24 2006-07-04 Ballard Power Systems, Inc. Membrane electrode assembly with integrated seal
JP4621970B2 (ja) * 2004-07-29 2011-02-02 東海ゴム工業株式会社 固体高分子型燃料電池用セパレータおよびそれを用いた固体高分子型燃料電池用セル
US20060046131A1 (en) * 2004-08-26 2006-03-02 Hydrogenics Corporation Fuel cell apparatus improvements
JP5142530B2 (ja) * 2004-10-08 2013-02-13 パナソニック株式会社 高分子電解質形燃料電池
CN100568599C (zh) * 2005-04-01 2009-12-09 松下电器产业株式会社 Mea、mea的制造方法和高分子电解质型燃料电池
JP4882314B2 (ja) * 2005-08-31 2012-02-22 日産自動車株式会社 電解質膜−電極接合体およびその製造方法
JP2007193970A (ja) * 2006-01-17 2007-08-02 Toyota Motor Corp 燃料電池
US7709123B2 (en) * 2006-06-16 2010-05-04 Panasonic Corporation Film electrode assembly for fuel cell, polymer electrolytic cell for fuel cell and method for manufacturing polymer electrolytic fuel cell and film electrode assembly
US7862936B2 (en) * 2007-01-12 2011-01-04 Gm Global Technology Operations, Inc. Water removal channel for PEM fuel cell stack headers
JP4719771B2 (ja) * 2007-06-11 2011-07-06 パナソニック株式会社 燃料電池用の電極−膜−枠接合体およびその製造方法、並びに高分子電解質型燃料電池およびその製造方法
KR100949423B1 (ko) * 2008-05-28 2010-03-24 파나소닉 주식회사 연료전지

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001755A1 (fr) * 2006-06-26 2008-01-03 Panasonic Corporation Pile à combustible à électrolyte polymère solide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496186C1 (ru) * 2012-04-19 2013-10-20 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Топливный элемент и батарея топливных элементов

Also Published As

Publication number Publication date
CN102388493A (zh) 2012-03-21
DE102009016934A1 (de) 2010-10-14
JP2012523656A (ja) 2012-10-04
WO2010115605A1 (fr) 2010-10-14
US20120034546A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
DE602004001520T2 (de) Membranelektrodenbaugruppe mit integrierter dichtung
DE69804829T2 (de) Elastische dichtung für eine membranelektrodenanordnung in einer elektrochemischen brennstoffzelle und herstellungsverfahren dafür
EP2417663A1 (fr) Pile à combustible, empilement de piles à combustible et procédé d'étanchéification d'une pile à combustible
DE112007002945B4 (de) Brennstoffzelle mit elastischem Element
EP1032065B1 (fr) Agencement d'étanchéité pour des éléments minces à grande surface
DE112010005607B4 (de) Konnektor und Brennstoffzelle
DE60301036T2 (de) Membranelektrodeneinheit für Brennstoffzellen
DE112012002733T5 (de) Brennstoffzelle und Verfahren zum Herstellen einer Brennstoffzelle
DE112008000004B4 (de) Brennstoffzellenmodul, Brennstoffzelle und Verfahren zum Herstellen eines Brennstoffzellenmoduls
DE102008042942B4 (de) Gassensor und Verfahren zum Herstellen dessleben
DE112006000501T5 (de) Brennstoffzellenstapel
EP2510571B1 (fr) Dispositif de conversion d'énergie, en particulier empilement de piles à combustible ou d'électrolyseurs
WO2016062523A1 (fr) Module de batterie de véhicule automobile
DE112008000567T5 (de) Polymerelektrolytbrennstoffzelle
DE102017201644A1 (de) Verfahren zur herstellung eines brennstoffzellenstapels und verfahren zur herstellung eines metallseparators für eine brennstoffzelle
WO2016062550A1 (fr) Pile à combustible
DE102006054849A1 (de) Bipolarplatte, insbesondere für eine Brennstoffzelle
EP4166691A1 (fr) Cadre pour cellules d'électrolyse pem et empilement de cellules d'électrolyse pem destiné à la production de l'hydrogène à haute pression par électrolyse à pression différentielle
DE102014015219A1 (de) Ausrichtungsbestandteil und Verfahren zum Ausrichten in Brennstoffzellenstapeln
DE102016202481A1 (de) Brennstoffzellenstapel und Verfahren zum Herstellen eines solchen Brennstoffzellenstapels
EP1653538A1 (fr) Module de plaque de refroidissement avec une etancheite integrée pour une pile à combustible
WO2022223657A2 (fr) Ensemble de cellules individuelles pour un empilement de pile à combustible
WO2020007731A1 (fr) Procédé de fabrication d'un élément d'étanchéité sur une couche de diffusion gazeuse d'une unité électrochimique et module constitué d'une couche de diffusion gazeuse et d'un élément d'étanchéité
DE102013223817A1 (de) Brennstoffzellenelement, Brennstoffzellenstapel und Verfahren zum Herstellen einer Brennstoffzelle oder eines Brennstoffzellenstapels
DE102014210509A1 (de) Brennstoffzelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LUX, TOBIAS

Inventor name: OEZDENIZ, EYUEP, AKIN

Inventor name: ERDMANN, CHRISTIAN, MARTIN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140425

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20141029