EP2410602B1 - Verfahren zur ladung und entladung einer lithiumionen-sekundärbatterie sowie lade-/entladesystem dafür - Google Patents

Verfahren zur ladung und entladung einer lithiumionen-sekundärbatterie sowie lade-/entladesystem dafür Download PDF

Info

Publication number
EP2410602B1
EP2410602B1 EP11759102.4A EP11759102A EP2410602B1 EP 2410602 B1 EP2410602 B1 EP 2410602B1 EP 11759102 A EP11759102 A EP 11759102A EP 2410602 B1 EP2410602 B1 EP 2410602B1
Authority
EP
European Patent Office
Prior art keywords
threshold
lithium ion
ion secondary
secondary batteries
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11759102.4A
Other languages
English (en)
French (fr)
Other versions
EP2410602A1 (de
EP2410602A4 (de
Inventor
Hiroo Hongo
Koji Kudo
Hisato Sakuma
Ryosuke Kuribayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to EP13170789.5A priority Critical patent/EP2642583A1/de
Publication of EP2410602A1 publication Critical patent/EP2410602A1/de
Publication of EP2410602A4 publication Critical patent/EP2410602A4/de
Application granted granted Critical
Publication of EP2410602B1 publication Critical patent/EP2410602B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a charging and discharging method for lithium ion secondary batteries having a manganese positive polarity material and a charging and discharging system for the same.
  • lithium ion secondary batteries that bind and give off lithium ions have advantages such as high energy densities, high operating voltages, and so forth over nickel cadmium (Ni-Cd) batteries and nickel metal hydride (Ni-MH) batteries of the same capacities, they have been widely used for information processing devices and communication devices such as personal computers and mobile phones that require miniaturization and lightweightness.
  • Ni-Cd nickel cadmium
  • Ni-MH nickel metal hydride
  • lithium ion secondary batteries have been assessed to be usable as power supplies for electric bicycles, hybrid automobiles, and so forth and also they are being introduced as batteries that store electric power generated by renewable power supplies such as solar batteries to accomplish a low-carbon society that solves global warming problems.
  • Patent Literature 1 and Patent Literature 2 propose techniques that reduce the shortening of the life cycles of lithium ion secondary batteries by controlling charging and discharging of these batteries.
  • Patent Literature 1 presents that charging and discharging of a lithium ion secondary battery are controlled such that the number of lithium ions that migrate between a positive electrode material and a negative electrode active material when the lithium ion secondary battery is charged or discharged is 95 % or less of the number of lithium ions that migrate in the reverse direction.
  • Patent Literature 2 presents that charging and discharging of a lithium ion secondary battery are controlled such that the end-of-discharge voltage when the lithium ion secondary battery is discharged ranges from 3.2 to 3.1 V and such that the upper limit voltage when the lithium ion secondary battery is charged ranges from 4.0 to 4.5 V.
  • positive electrode materials (positive electrode active materials) of lithium ion secondary batteries compositions using lithium cobalt oxide, lithium manganese oxide, and lithium nickel oxide are known.
  • negative electrode materials (negative electrode active materials) compositions using graphites and cokes are known.
  • SOC represents the ratio of the capacity of the lithium ion secondary battery to the amount of electric charge.
  • "store” in the specification of the present patent application denotes that a lithium ion secondary battery is kept in the state of a particular voltage of the SOC.
  • the phenomenon in which the battery performance deteriorates in the particular SOC is not significantly related to a case in which the lithium ion secondary battery is stored in the fully charged state, for example, when it is used for a UPS (Uninterruptable Power Supply).
  • UPS Uninterruptable Power Supply
  • the lithium ion secondary battery in an application where a lithium ion secondary battery is stored in any SOC between the maximum SOC and the minimum SOC, for example in an application where electric power generated by the above-described renewable power supply is stored, the lithium ion secondary battery can be understood as being kept in the above-described particular SOC. In such a case, the battery performance of the lithium ion secondary battery will quickly deteriorate.
  • an object of the present invention is to provide a charging and discharging method for manganese lithium ion secondary batteries and a charging and discharging system for the same that can reduce a shortening of the life cycle of manganese lithium ion secondary batteries when they are stored.
  • a charging and discharging method for lithium ion secondary batteries is a charging and discharging method for lithium ion secondary batteries having manganese positive electrode material, the method comprising the steps of:
  • a charging and discharging system is a charging and discharging system that controls charging and discharging for lithium ion secondary batteries having manganese positive electrode material, comprising:
  • Fig. 1 is a block diagram exemplifying a charging and discharging system according to the first exemplary embodiment
  • Fig. 2 is a block diagram exemplifying an information processing device shown in Fig. 1 .
  • the charging and discharging system is structured to provide N (where N is a positive integer) lithium ion secondary batteries (hereinafter simply referred to as secondary batteries) 1 1 to 1 N whose positive and negative electrodes are connected in parallel to corresponding electric wires), monitor device 2 that detects the values of the SOCs of individual secondary batteries 1 1 to 1 N , information processing device 3 that controls charging and discharging of secondary batteries 1 1 ; to 1 N , and a plurality of switches 4 1 to 4 N that are provided corresponding to secondary batteries 1 1 to 1 N and that respectively connect or disconnect secondary batteries 1 1 to 1 N and the electric wires.
  • N lithium ion secondary batteries
  • an electric power supply source that supplies electric power necessary to charge the secondary batteries, for example a renewable electric power supply that an electric power user (residence or facility) provides, and a terminal voltage transformer that distributes electric power supplied from a distribution substation of an electric power company to each electric power user.
  • a load that consumes electric power discharged from the secondary batteries for example, one of various types of electric devices and a certain type of heat pump hot water supplier that the electric power user (residence or facility) provides and that consumes electric power.
  • Fig. 1 shows that N secondary batteries 1 1 to 1 N are closely arranged, they may be arranged in any manner as long as their charging and discharging can be controlled.
  • a plurality of secondary batteries (cells) 1 1 to 1 N may be contained in one package (battery pack) or secondary batteries 1 1 to 1 N may be distributed for electric power storage of individual electric power users (residences or facilities) who live or that exist in remote areas. If secondary batteries 1 1 to 1 N are distributed separately from each other, a connection between information processing device 3 and monitor device 2 and connections between information processing device 3 and switches 4 1 to 4 N can be made through a known information communication means such that information, commands and so forth can be transmitted and received.
  • a known wireless communication means or a known wired communication means can be used as the information communication means.
  • the wireless communication means can be considered appropriate for a known Zigbee wireless system that uses for example a 950 MHz band radio frequency.
  • the wired communication means can be considered appropriate for a known PLC (Power Line Communication) system that transmits and receives information through electric wires.
  • the charging and discharging system according to this exemplary embodiment can be connected to any system as long as this system can supply predetermined electric power to secondary batteries 1 1 to 1 N when these batteries are charged and supply electric power to one of various types of electric devices (load) when these batteries are discharged.
  • secondary batteries 1 1 to 1 N are manganese lithium ion secondary batteries.
  • Manganese lithium ion secondary batteries are batteries whose positive electrode materials are mainly lithium manganese oxide (Li x Mn y O z : x is around 1 or around 0.65 or around 0.1 to 0.5; y is around 2; z is around 4).
  • the compositional ratio of Li, Mn, and O is not limited to those values.
  • the positive electrode material may contain various types of substances such as Al, Mg, Cr, Fe, Co, Ni, and Cu as long as the positive electrode material is mainly lithium manganese oxide.
  • Dotted lines over secondary batteries 1 1 to 1 N shown in Fig. 1 represent the particular SOCs in which the performance of secondary batteries 1 1 to 1 N quickly deteriorates when they are stored (hereinafter referred to as the progressively deteriorating SOC d ).
  • solid lines over secondary batteries 1 1 to 1 N shown in Fig. 1 schematically represent the quantity of stored electricity compared to the capacities of secondary batteries 1 1 to 1 N.
  • Those legends apply to dotted lines and solid lines of secondary batteries shown in Fig. 3 , Fig. 4 , and Fig. 7 .
  • Fig. 1 exemplifies that the capacities of secondary batteries 1 1 to 1 N are the same, they may differ from each other.
  • Switches 4 1 to 4 N are for example MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) that can turn on/off relatively large amounts of electric power and that can be easily controlled. Switches 4 1 to 4 N are connected to information processing device 3 that controls on/off of switches 4 1 to 4 N . Switches 4 1 to 4 N are provided with driving circuits that turn on/off their contacts. Switches 4 1 to 4 N may be arranged in the vicinity of secondary batteries 1 1 to 1 N or information processing device 3. The contacts of switches 4 1 to 4 N are not necessary to be integrated with their driving circuits; instead, the contacts may be arranged in the vicinity of secondary batteries 1 1 to 1 N and the driving circuits may be arranged in the vicinity of information processing device 3.
  • MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • Monitor device 2 can be accomplished by a known charging device or protection device that is supplied by the manufacturer or supplier of secondary batteries 1 1 to 1 N and that is manufactured based on the performance and characteristic of secondary batteries 1 1 to 1 N .
  • the protection device detects the SOCs of individual secondary batteries 1 1 to 1 N and current values that are input to and output from secondary batteries 1 1 to 1 N
  • the charging device changes the charging current (constant current) and charging voltage (constant voltage) based on the SOCs and current values detected by the protection device.
  • monitor device 2 may detect the output voltage values of secondary batteries 1 1 to 1 N instead of the SOCs.
  • monitor device 2 may be provided with an A/D converter that converts the values of the SOCs into digital values.
  • the A/D converter may be provided in information processing device 3.
  • Monitor device 2 may be structured to provide N detectors that individually detect SOCs of individual secondary batteries 1 1 to 1 N or provide one detector that detects the values of the SOCs of secondary batteries 11 to 1 N.
  • Information processing device 3 receives the values of the SOCs of secondary batteries 1 1 to 1 N from monitor device 2 when they are charged and discharged and turns on/off switches 4 1 to 4 N based on the received Values of the SOCs so as to control charging and discharging of individual secondary batteries 1 1 to 1 N .
  • Information processing device 3 can be accomplished for example by a computer having the structure shown in Fig. 2 .
  • Information processing device 3 is not limited to the computer having the structure shown in Fig. 2 .
  • information processing device 3 can be realized by a microcomputer or the like that is composed of one or a plurality of ICs (Integrated Circuits).
  • the computer shown in Fig. 2 is structured to provide processing device 10 that executes a predetermined process according to a program, input device 20 that inputs commands, information, and so forth into processing device 10, and output device 30 that outputs a processed result of processing device 10.
  • Processing device 10 is structured to provide CPU 11, main storage device 12 that temporarily stores information that is necessary for a process that CPU 11 executes, recording medium 13 that has recorded a program that causes CPU 11 to execute a process according to the present invention, data storage device 14 that stores rating capacity, maximum SOC, and minimum SOC, first threshold SOC L , second threshold SOC U , and so forth of individual secondary batteries 1 1 to 1 N (first threshold SOC L , second threshold SOC U will be described later), memory control interface section 15 that controls data transferred among main storage device 12, recording medium 13, and data storage device 14, I/O interface section 16 that is an interface device between input device 20 and output device 30, and communication control device 16 that transmits and receives information and commands between monitor device 2 and switches 4 1 to 4 N and those devices that are connected through bus 18.
  • main storage device 12 that temporarily stores information that is necessary for a process that CPU 11 executes
  • recording medium 13 that has recorded a program that causes CPU 11 to execute a process according to the present invention
  • data storage device 14 that stores rating capacity, maximum SOC, and
  • Processing device 10 executes a procedure that will be described later according to the program recorded on recording medium 13 so as to control charging and discharging of individual secondary batteries 1 1 to 1 N .
  • Recording medium 13 may be a magnetic disk, a semiconductor memory, an optical disc, or another type of recording medium.
  • data storage device 14 may or may not to be provided in processing device 10, it can be provided by an independent device.
  • Fig. 3(a) to (c) and Fig. 4(a) to (e) are schematic diagrams showing a controlling method performed by the charging and discharging system according to the first exemplary embodiment.
  • Fig. 3(a) to (c) exemplify that charging and discharging of two secondary batteries 1 1 and 1 2 connected in parallel are controlled
  • Fig. 4(a) to (e) exemplify that charging and discharging of a plurality of secondary batteries 1 1 to 1 N connected in parallel are controlled.
  • the charging and discharging system controls secondary batteries 1 1 to 1 N such that the charging operation or discharging operation does not stop in the progressively deteriorating SOC d of each of secondary batteries 1 1 to 1 N .
  • the first threshold SOC L that is less than progressively deteriorating SOC d of each of secondary batteries 1 1 to 1 N and the second threshold SOC U that is greater than the progressively deteriorating SOC d are pre-set.
  • the first threshold SOC L and the second threshold SOC U can be preset depending on the progressively deteriorating SOC d of individual secondary batteries 1 1 to 1 N by the manufacturer, supplier, or user thereof and can be pre-stored in data storage device 14 of information processing device 3.
  • two secondary batteries 1 1 and 1 2 are charged as shown in Fig. 3(a) to (c) such that two secondary batteries 11 and 12 are simultaneously charged until they reach the above-described progressively deteriorating SOC d , that when the values of the SOCs of two secondary batteries 1 1 and 1 2 have reached the first threshold SOC L , only secondary battery 1 1 is charged from the first threshold SOC L to the second threshold SOC U , then only the other secondary battery 1 2 is charged from the first threshold SOC L to the second threshold SOC U and then two secondary batteries 1 1 and 1 2 are simultaneously charged again.
  • two secondary batteries 1 1 and 1 2 are discharged such that they are simultaneously discharged until the values of the SOCs reach the above-described progressively deteriorating SOC d , that when the values of the SOCs of two secondary batteries 11 and 1 2 have reached the second threshold SOC U , only one secondary battery 1 1 is discharged from the second threshold SOC U to the first threshold SOC L , then only the other secondary battery 1 2 is discharged from the second threshold SOC U to the first threshold SOC L , and then two secondary batteries 1 1 and 1 2 are simultaneously discharged again.
  • Fig. 3 (a) shows that two secondary batteries 11 and 12 are simultaneously being charged.
  • Fig. 3 (a) exemplifies that the values of the SOCs of two secondary batteries 1 1 and 1 2 that are being charged are the same.
  • Fig. 3(b) shows that the values of the SOCs of two secondary batteries 1 1 and 1 2 have reached the first threshold SOC L from the state shown in Fig. 3 (a) , that the charging operation for secondary battery 1 2 on the right side is stopped, and then only secondary battery 1 1 on the left side is charged to the second threshold SOC U .
  • Fig. 3(c) shows that after the state shown in Fig. 3 (b) , the charging operation for secondary battery 1 1 on the left side is stopped and then only secondary battery 1 2 on the right side is charged to the second threshold SOC U .
  • three or more secondary batteries 1 1 to 1 N as shown in Fig. 4(a) to (e) are charged such that individual secondary batteries 1 1 to 1 N are simultaneously charged until the values of their SOCs reach the above-described progressively deteriorating SOC d , that when the values of the SOCs of secondary batteries 1 1 to 1 N have reached the first threshold SOC L , individual secondary batteries 1 1 to 1 N are successively charged from the first threshold SOC L to the second threshold SOC U , and then individual secondary batteries 1 1 to 1 N are simultaneously charged again.
  • three or more secondary batteries 1 1 to 1 N are discharged such that secondary batteries 1 1 to 1 N are simultaneously discharged until the values of their SOCs reach the above-described progressively deteriorating SOC d , that when the values of the SOCs of secondary batteries 1 1 to 1 N have reached the second threshold SOC U , individual secondary batteries 1 1 to 1 N are successively discharged from the second threshold SOC U to the first threshold SOC L , and then individual secondary batteries 1 1 to 1 N are simultaneously discharged again.
  • Fig. 4(a) shows that a plurality of secondary batteries 1 1 to 1 N are being simultaneously charged.
  • Fig. 4(a) exemplifies that the values of the SOCs of individual secondary batteries 1 1 to 1 N that are being charged are the same.
  • Fig. 4(b) shows that after the state shown in Fig. 4(a) , the values of the SOCs of individual secondary batteries 1 1 to 1 N have reached the first threshold SOC L , the charging operation for all secondary batteries 1 2 to 1 N other than secondary battery 1 1 on the leftmost side is stopped, and that then only secondary battery 1 1 on the leftmost side is charged until the value of the SOC reaches the second threshold SOC U .
  • Fig. 4(c) shows that after the state shown in Fig.
  • the charging operation and discharging operation for individual secondary batteries 1 1 to 1 N can be controlled by causing switches 4 1 to 4 N to connect or disconnect the electric wires and secondary batteries 1 1 to 1 N .
  • Fig. 3(a) to (c) , and Fig. 4(a) to (e) exemplify that when the charging operation and discharging operation are started, the values of the SOCs of individual secondary batteries 1 1 to 1 N are the same, when the charging operation and discharging operation are started, the values of the SOCs of individual secondary batteries is to 1 N may be different from each other.
  • the values of the SOCs of secondary batteries 1 1 to 1 N have reached the first threshold SOC L , they can be successively charged from the first threshold SOC L to the second threshold SOC U .
  • the values of the SOCs of secondary batteries 1 1 to 1 N have reached the second threshold SOC U .
  • Fig. 3(a) to (c) , and Fig. 4(a) to (e) exemplify that the first threshold SOC L and the second threshold SOC U that are set for each of secondary batteries 1 1 to 1 N are the same, the first threshold SOC L and the second threshold SOC U that are set for each of secondary batteries 1 1 to 1 N may be different from each other.
  • the first threshold SOC L and the second threshold SOC U that are set for each of secondary batteries 1 1 to 1 N may be different from each other.
  • the values of the SOCs of secondary batteries secondary batteries 1 1 to 1 N they can be successively charged from the first threshold SOC L to the second threshold SOC U .
  • the values of the SOCs of secondary batteries secondary batteries 11 to 1 N have reached the second threshold SOC U , they can be successfully discharged from the second threshold SOC U to the first threshold SOC L .
  • the charging and discharging method between the first threshold SOC L and the second threshold SOC U is not restricted, however, while secondary batteries 1 1 1 to 1 N are being charged from the first threshold SOC L to the second threshold SOC U , the charging speed can be increased by increasing the charging current and charging voltage in the allowable range of secondary batteries 1 1 to 1 N . Likewise, while secondary batteries 1 1 to 1 N are being discharged from the second threshold SOC U to the first threshold SOC L , the discharging speed can be increased by increasing current that flows in a load in the allowable range of secondary batteries 1 1 to 1 N .
  • the charging current and charging voltage can be controlled by the above-described charging device manufactured according to the performance and characteristic of secondary batteries 1 1 to 1 N .
  • the information communication means may be a known wireless communication means or a known wired communication means.
  • Fig. 5 is a flow chart exemplifying a charging procedure of the charging and discharging method based on which the lithium ion secondary batteries are charged according to the first exemplary embodiment
  • Fig. 6 is a flow chart exemplifying a discharging procedure of the charging and discharging method based on which the lithium ion secondary batteries are discharged according to the first exemplary embodiment.
  • i may be assigned to any secondary battery and may switch as the process proceeds instead of having been assigned thereto so as to identifying them.
  • processing device 10 determines whether or not the value of i is N (at step A3). Unless the value of i is N, processing device 10 turns off SW i corresponding to the value of i, increments the value of i by "1" (at step A4), and repeats the process from step A1. If the value of i is N, processing device 10 advances to the process at step A13 that will be described later.
  • Processing device 10 simultaneously charges these target secondary batteries. At this point, while processing device 10 charges these target secondary batteries, it successively obtains the values of the SOCs of secondary batteries 1 j to 1 N from monitor device 2.
  • processing device 10 After processing device 10 obtains the value of the SOC of i-th secondary battery 1 i , SOC i (at step A5), it compares the SOC i with the preset first threshold SOC L (at step A6).
  • processing device 10 determines whether or not the value of i is N (at step A7). Unless the value of i is N, processing device 10 increments the value of i by "1" (at step A8) and repeats the process from step A6. If the value of i is N, processing device 10 advances to the process at step A13 that will be described later.
  • processing device 10 compares the SOC i with the preset second threshold SOC U (at step A10). If the SOC i is equal to or less than the second threshold SOC U , processing device 10 repeats the process at step A10. If the SOC i is greater than the second threshold SOC U , processing device 10 determines whether or not the value of i is N (at step A11). Unless the value of i is N, processing device 10 turns on SW i + 1 corresponding to (i + 1)-th secondary battery 1 i + 1 and then turns off SW i corresponding to i-th secondary battery 1 i . Thereafter, processing device 10 increments the value of i by "1" (at step A12).
  • processing device 10 turns on all switches SW i to SW N-1 corresponding to the other charging target secondary batteries other than switch SW N corresponding to N-th secondary battery 1 N (at step A13) and continues the charging operation (at step A14).
  • the charging operation can be continued until the values of the SOCs of all secondary batteries 1 1 to 1 N reach the maximum SOC.
  • processing device 10 determines whether or not the value of i is N (at step B3). Unless the value of i is N, processing device 10 turns off SW i corresponding to the value of i, increments the value of i by "1" (at step B4), and repeats the process from step B1. If the value of i is N, processing device 10 advances to the process at step B 13.
  • Processing device 10 simultaneously discharges these discharging target secondary batteries. At this point, while processing device 10 discharges these discharging target secondary batteries, it successively obtains the values of the SOCs of secondary batteries 1 j to 1 N from monitor device 2.
  • processing device 10 After processing device 10 obtains the value of the SOC of i-th secondary battery 1 i , SOC i , (at step B5), processing device 10 compares the SOC i with the preset second threshold SOC U (at step B6).
  • processing device 10 determines whether or not the value of i is N (at step B7). Unless the value of i is N, processing device 10 increments the value of i by "1" (at step B8) and repeats the process from step B6. If the value of i is N, processing device 10 advances to the process at step B 13 that will be described later.
  • processing device 10 compares the SOC i with the preset first threshold SOC L (at step B10). If the SOC i is equal to or less than the first threshold SOC L , processing device 10 repeats the process at step B10. If the SOC i is greater than the first threshold SOC L , processing device 10 determines whether or not the value of i is N (at step B11). Unless the value of i is N, processing device 10 turns on SW i + 1 corresponding to (i + 1)-th secondary battery 1 i + 1 and then turns off SW 1 corresponding to i-th secondary battery 1 i . Thereafter, processing device 10 increments the value of i by "1" (at step B12).
  • processing device 10 turns on all SW i to SW N - 1 corresponding to the other discharging target secondary batteries other than switch SW N corresponding to N-th secondary battery 1 N (at step B13) and then continues the discharging operation (at step B14).
  • the discharging operation can be continued until the values of the SOCs of all secondary batteries 1 1 to 1 N reach the minimum SOC.
  • Fig. 5 and Fig. 6 described above exemplify processes in which monitor device 2 is provided with N detectors and can independently obtain the values of the SOCs of N secondary batteries 1 1 to 1 N.
  • FIG. 7 and Fig. 8 exemplify processes in which monitor device 2 is provided with one detector that detects the values of the SOCs of individual secondary batteries 1 1 to 1 N .
  • Fig. 7 is a flow chart further exemplifying the charging procedure of the charging and discharging method based on which the lithium ion secondary batteries are charged according to the first exemplary embodiment
  • Fig. 8 is a flow chart further exemplifying the discharging procedure of the charging and discharging method based on which the lithium ion secondary batteries are discharged according to the first exemplary embodiment.
  • i may be assigned to any secondary battery and may switch as the process proceeds instead of having been assigned thereto so as to identify them.
  • processing device 10 obtains the value of the SOC of i-th secondary battery 1 i , SOC i , and compares the SOC i with the preset second threshold SOC U (at step C2). If the obtained SOC i is equal to or less than the second threshold SOC U , processing device 10 repeats the process at step C2. At this point, secondary battery 1 i is continuously charged until the value of the SOC exceeds the first threshold SOC L and reaches the second threshold SOC U .
  • processing device 10 determines whether or not the value of i is N (at step C3). Unless the value of i is N, processing device 10 turns on SW i + 1 corresponding to (i + 1)-th secondary battery 1 i + 1 and then turns off SW i corresponding to i-th secondary battery 1 i . Thereafter, processing device 10 increments the value of i by "1" (at step C4) and then repeats the process from step C2.
  • processing device 10 turns on all SW i to SW N - 1 other than switch SW N corresponding to N-th secondary battery 1 N (at step C5) and continues charging (at step C6).
  • the charging operation can be continued until the values of the SOCs of all secondary batteries 1 1 to 1 N reach the maximum SOC.
  • processing device 10 obtains the value of the SOC of i-th secondary battery 1 i , SOC i , from monitor device 2 and then compares the SOC i with the preset first threshold SOC L (at step D2). If the obtained SOC i is equal to or greater than the first threshold SOC L , processing device 10 repeats the process at step D2. At this point, secondary battery 1 i is continuously discharged until the value of the SOC becomes less than the second threshold SOC U and reaches the first threshold SDC L .
  • processing device 10 determines whether or not the value of i is N (at step D3). Unless the value of i is N, processing device 10 turns on SW i + 1 corresponding to (i + 1)-th secondary battery 1 i + 1 and then turns off SW i corresponding to i-th secondary battery 1 i . Thereafter, processing device 10 increments the value of i by "1" (at step D4) and then repeats the process from step D2.
  • processing device 10 turns on all SW i to SW N - 1 other than switch SW N corresponding to N-th secondary battery 1 N (at step D5) and continues discharging (at step D6).
  • the discharging operation can be continued until the values of the SOCs of all secondary batteries 1 1 to 1 N reach the minimum SOC.
  • the progressively deteriorating SOC d of individual secondary batteries 1 1 to 1 N is constant, it may vary depending on the operation times and the numbers of charging and discharging times of secondary batteries 1 1 to 1 N .
  • the above-described first threshold SOC L and second threshold SOC U may be changed depending on the operation times and the numbers of charging and discharging times.
  • Fig. 9 is a block diagram exemplifying a structure of a charging and discharging system according to a second exemplary embodiment.
  • the first exemplary embodiment exemplified that a plurality of secondary batteries 1 1 to 1 N connected in parallel are controlled such that the charging operation or discharging operation does not stop in the progressively deteriorating SOC d .
  • the second exemplary embodiment exemplifies that one secondary battery 1 is controlled such that the charging operation or discharging operation does not stop in the progressively deteriorating SOC d .
  • the charging and discharging system of the second exemplary embodiment is different from that of the first exemplary embodiment in that the number of control target secondary batteries is one.
  • an information processing device of the second exemplary embodiment is connected for example to a type of heat pump hot water supplier through an information communication means and the hot water supplier can be controlled by the information processing device. Since the structure of the other sections of the charging and discharging system of the second exemplary embodiment is the same as that of the first exemplary embodiment, description will be omitted.
  • the information communication means may be a known wireless communication means or a known wired communication means.
  • the wireless communication means can be understood to be a known Zigbee wireless system that uses for example a 950 MHz band radio frequency.
  • the wired communication means can be considered appropriate for a known PLC (Power Line Communication) system that transmits and receives information using for example electric wires.
  • PLC Power Line Communication
  • the charging and discharging system controls switch 4 such that the charging operation is continued from the first threshold SOC L to the second threshold SOC U based on the value of the SOC of secondary battery 1 and that the discharging operation is continued from the second threshold SOC U to the first threshold SOC L . based on the value of the SOC of secondary battery 1.
  • information processing device 3 of this exemplary embodiment will continue the charging operation for secondary battery 1 with electric power being supplied from the electric power company through the power distribution system.
  • information processing device 3 of this exemplary embodiment operates the above-described type of heat pump hot water supplier so as to continue the discharging operation of secondary battery 1 and thereby prevents the discharging operation of secondary battery 1 from stopping in the progressively deteriorating SOC d .
  • a secondary battery that is being charged is equivalent to an electric device that is consuming electric power viewed from other secondary batteries.
  • the discharging operation for secondary battery 1 can be continued such that the external secondary battery is charged. If the discharging operation of secondary battery 1 stops in the progressively deteriorating SOC d , information processing device 3 can prevent secondary battery 1 from entering the progressively deteriorating SOC d in such a manner that information processing device 3 causes secondary battery 1 to be charged with electric power supplied from the power distribution system.
  • the charging operation or discharging operation does not stop when secondary battery 1 enters the progressively deteriorating SOC d .
  • a reduction in the product life cycle can be prevented from shortening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Claims (9)

  1. Lade- und Entladeverfahren für Lithium-Ionen-Sekundärbatterien mit Mangan als Material der positiven Elektrode, wobei das Verfahren folgende Schritte umfasst:
    Veranlassen eines Computers, einen voreingestellten ersten Schwellwert, der geringer als ein sich zunehmend verschlechternder SOC ist, der ein SOC ist, in dem sich eine Batterieleistungsfähigkeit der Lithium-Ionen-Sekundärbatterie verschlechtert, wenn die Lithium-Ionen-Sekundärbatterie gelagert wird, zu speichern und einen voreingestellten zweiten Schwellwert, der größer als der sich zunehmend verschlechternde SOC ist, zu speichern;
    Veranlassen des Computers, einen Schalter, der zwischen elektrischen Drähten und der Lithium-Ionen-Sekundärbatterie bereitgestellt ist, eine elektrische Energieversorgungsquelle, die elektrische Energie, die notwendig ist, um die Lithium-Ionen-Sekundärbatterie zu laden, bereitstellt, und eine Last, die elektrische Energie, die von der Lithium-Ionen-Sekundärbatterie, die mit den elektrischen Drähten verbunden ist, entladen wird, verbraucht, derart zu steuern, dass ein Ladebetrieb für die Lithium-Ionen-Sekundärbatterie auf Basis eines Wertes des SOC der Lithium-Ionen-Sekundärbatterie von dem ersten Schwellwert zu dem zweiten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterie geladen wird, wobei der Wert des SOC von einer Überwachungsvorrichtung, die den Wert des SOC der Lithium-Ionen-Sekundärbatterie ermittelt, während die Lithium-Ionen-Sekundärbatterie geladen oder entladen wird, übertragen wird; und
    Veranlassen des Computers, den Schalter derart zu steuern, dass ein Entladebetrieb für die Lithium-Ionen-Sekundärbatterie von dem zweiten Schwellwert zu dem ersten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterie entladen wird.
  2. Lade- und Entladeverfahren für Lithium-Ionen-Sekundärbatterien nach Anspruch 1,
    wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien geladen wird, der erste Steuerschritt durch Veranlassen des Computers, die entsprechend den Lithium-Ionen-Sekundärbatterien bereitgestellte Anzahl an Schaltern derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den ersten Schwellwert erreicht haben, sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert geladen werden, ausgeführt wird, und
    wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien entladen wird, der zweite Steuerschritt durch Veranlassen des Computers, die entsprechend den Lithium-Ionen-Sekundärbatterien bereitgestellten Schalter derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den zweiten Schwellwert erreicht haben, sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert entladen werden, ausgeführt wird.
  3. Lade- und Entladeverfahren für Lithium-Ionen-Sekundärbatterien nach Anspruch 1 oder 2,
    wobei, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert geladen werden und, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert entladen werden,
    wenn die Lithium-Ionen-Sekundärbatterien geladen werden, sie gleichzeitig von dem minimalen SOC zu dem ersten Schwellwert geladen werden und sie gleichzeitig von dem zweiten Schwellwert zu dem maximalen SOC geladen werden und, wenn die Lithium-Ionen-Sekundärbatterien entladen werden, sie gleichzeitig von dem maximalen SOC zu dem zweiten Schwellwert entladen werden und sie gleichzeitig von dem ersten Schwellwert zu dem minimalen SOC entladen werden,
    wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, sie sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert geladen werden und, wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, sie sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert entladen werden,
    der erste Schwellwert, der zweite Schwellwert und der sich zunehmend verschlechternde SOC, die für jede der Lithium-Ionen-Sekundärbatterien eingestellt sind, voneinander verschieden sind, und
    wenn der Ladebetrieb für die Lithium-Ionen-Sekundärbatterie in dem sich zunehmend verschlechternden SOC fortgeführt wird, der Computer den Ladebetrieb für die Lithium-Ionen-Sekundärbatterie mit elektrischer Energie, die von dem Energieverteilungssystem bereitgestellt wird, fortführen wird.
  4. Lade- und Entladesystem, das ein Laden und Entladen für Lithium-Ionen-Sekundärbatterien mit Mangan als Material der positiven Elektrode steuert, das Folgendes umfasst:
    eine Überwachungsvorrichtung, die eingerichtet ist, SOCs der Lithium-Ionen-Sekundärbatterien zu ermitteln;
    Schalter, die eingerichtet sind, Drähte und die Lithium-Ionen-Sekundärbatterien zu verbinden oder zu trennen, eine Energieversorgungsquelle, die eingerichtet ist, elektrische Energie, die notwendig ist, um die Lithium-Ionen-Sekundärbatterien zu laden, bereitzustellen, und eine Last, die eingerichtet ist, elektrische Energie, die von den Lithium-Ionen-Sekundärbatterien, die mit den elektrischen Drähten verbunden sind, entladen wird, zu verbrauchen; und
    eine Informationsverarbeitungseinrichtung, die eingerichtet ist, einen voreingestellten ersten Schwellwert, der geringer als ein sich zunehmend verschlechternder SOC ist, der ein SOC ist, in dem sich eine Batterieleistungsfähigkeit der Lithium-Ionen-Sekundärbatterien verschlechtert, wenn die Lithium-Ionen-Sekundärbatterien gelagert werden, und einen voreingestellten zweiten Schwellwert, der größer als der sich zunehmend verschlechternde SOC ist, zu speichern und die die Schalter derart steuert, dass auf Basis von Werten der SOCs der Lithium-Ionen-Sekundärbatterien ein Ladebetrieb für die Lithium-Ionen-Sekundärbatterien von dem ersten Schwellwert zu dem zweiten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterien geladen werden, und ein Entladebetrieb für die Lithium-Ionen-Sekundärbatterien von dem zweiten Schwellwert zu dem ersten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterien entladen werden, wobei die Werte der SOCs von der Überwachungsvorrichtung ermittelt werden, während die Lithium-Ionen-Sekundärbatterie geladen oder entladen wird.
  5. Lade- und Entladesystem nach Anspruch 4,
    wobei die Schalter entsprechend den Lithium-Ionen-Sekundärbatterien bereitgestellt sind,
    wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien geladen wird, die Informationsverarbeitungsvorrichtung eingerichtet ist, die Schalter derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den ersten Schwellwert erreicht haben, sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert geladen werden, und
    wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien entladen wird, die Informationsverarbeitungsvorrichtung eingerichtet ist, die Schalter derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den zweiten Schwellwert erreicht haben, sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert entladen werden.
  6. Lade- und Entladesystem nach Anspruch 4 oder 5,
    wobei, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, das System eingerichtet ist, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert zu laden, und, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, das System eingerichtet ist, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert zu entladen,
    wenn die Lithium-Ionen-Sekundärbatterien geladen werden, das System eingerichtet ist, sie gleichzeitig von dem minimalen SOC zu dem ersten Schwellwert zu laden und sie gleichzeitig von dem zweiten Schwellwert zu dem maximalen SOC zu laden, und, wenn die Lithium-Ionen-Sekundärbatterien entladen werden, das System eingerichtet ist, sie gleichzeitig von dem maximalen SOC zu dem zweiten Schwellwert zu entladen und sie gleichzeitig von dem ersten Schwellwert zu dem minimalen SOC zu entladen,
    wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, das System eingerichtet ist, sie sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert zu laden, und, wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, das System eingerichtet ist, sie sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert zu entladen,
    der erste Schwellwert, der zweite Schwellwert und der sich zunehmend verschlechternde SOC, die für jede der Lithium-Ionen-Sekundärbatterien eingestellt sind, voneinander verschieden sind, und
    wenn der Ladebetrieb für die Lithium-Ionen-Sekundärbatterie in dem sich zunehmend verschlechternden SOC fortgeführt wird, der Computer eingerichtet ist, den Ladebetrieb für die Lithium-Ionen-Sekundärbatterie mit elektrischer Energie, die von dem Energieverteilungssystem bereitgestellt wird, fortzuführen.
  7. Informationsverarbeitungsvorrichtung, die ein Laden und Entladen für Lithium-Ionen-Sekundärbatterien mit Mangan als Material der positiven Elektrode steuert, die Folgendes umfasst:
    eine Speichervorrichtung, die eingerichtet ist, einen voreingestellten ersten Schwellwert, der geringer als ein sich zunehmend verschlechternder SOC ist, der ein SOC ist, in dem sich eine Batterieleistungsfähigkeit der Lithium-Ionen-Sekundärbatterien verschlechtert, wenn die Lithium-Ionen-Sekundärbatterien gelagert werden, zu speichern, und die einen voreingestellten zweiten Schwellwert, der größer als der sich zunehmend verschlechternde SOC ist, speichert; und
    eine Verarbeitungsvorrichtung, die eingerichtet ist, Schalter, die zwischen elektrischen Drähten und den Lithium-Ionen-Sekundärbatterien bereitgestellt sind, eine elektrische Energieversorgungsquelle, die eingerichtet ist, elektrische Energie, die nötig ist, um die Lithium-Ionen-Sekundärbatterien zu laden, bereitzustellen, und eine Last, die eingerichtet ist, elektrische Energie, die von den Lithium-Ionen-Sekundärbatterien, die mit den elektrischen Drähten verbunden sind, entladen wird, zu verbrauchen, derart zu steuern, dass auf Basis von Werten der SOCs der Lithium-Ionen-Sekundärbatterien ein Ladebetrieb für die Lithium-Ionen-Sekundärbatterien von dem ersten Schwellwert zu dem zweiten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterien geladen werden, und ein Entladebetrieb für die Lithium-Ionen-Sekundärbatterien von dem zweiten Schwellwert zu dem ersten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterien entladen werden, wobei die Werte der SOCs von einer Überwachungsvorrichtung, die die Werte der SOCs der Lithium-Ionen-Sekundärbatterien ermittelt, während die Lithium-Ionen-Sekundärbatterie geladen oder entladen wird, übertragen werden.
  8. Informationsverarbeitungsvorrichtung nach Anspruch 7,
    wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien geladen wird, die Informationsverarbeitungsvorrichtung eingerichtet ist, die entsprechend den Lithium-Ionen-Sekundärbatterien bereitgestellten Schalter derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den ersten Schwellwert erreicht haben, sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert geladen werden, und
    wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien entladen wird, die Informationsverarbeitungsvorrichtung eingerichtet ist, die entsprechend den Lithium-Ionen-Sekundärbatterien bereitgestellten Schalter derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den zweiten Schwellwert erreicht haben, sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert entladen werden.
  9. Informationsverarbeitungsvorrichtung nach einem der Ansprüche 7 bis 8,
    wobei, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, die Verarbeitungsvorrichtung eingerichtet ist, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert zu laden, und, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, die Verarbeitungsvorrichtung eingerichtet ist, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert zu entladen,
    wenn die Lithium-Ionen-Sekundärbatterien geladen werden, die Verarbeitungsvorrichtung eingerichtet ist, sie gleichzeitig von dem minimalen SOC zu dem ersten Schwellwert zu laden und sie gleichzeitig von dem zweiten Schwellwert zu dem maximalen SOC zu laden, und, wenn die Lithium-Ionen-Sekundärbatterien entladen werden, die Verarbeitungsvorrichtung eingerichtet ist, sie gleichzeitig von dem maximalen SOC zu dem zweiten Schwellwert zu entladen und sie gleichzeitig von dem ersten Schwellwert zu dem minimalen SOC zu entladen,
    wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, die Verarbeitungsvorrichtung eingerichtet ist, sie sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert zu laden, und, wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, die Verarbeitungsvorrichtung eingerichtet ist, sie sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert zu entladen,
    der erste Schwellwert, der zweite Schwellwert und der sich zunehmend verschlechternde SOC, die für jede der Lithium-Ionen-Sekundärbatterien eingestellt sind, voneinander verschieden sind, und
    wenn der Ladebetrieb für die Lithium-Ionen-Sekundärbatterie in dem sich zunehmend verschlechternden SOC fortgeführt wird, der Computer eingerichtet ist, den Ladebetrieb für die Lithium-Ionen-Sekundärbatterie mit elektrischer Energie, die von dem Energieverteilungssystem bereitgestellt wird, fortzuführen.
EP11759102.4A 2010-03-23 2011-02-17 Verfahren zur ladung und entladung einer lithiumionen-sekundärbatterie sowie lade-/entladesystem dafür Not-in-force EP2410602B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13170789.5A EP2642583A1 (de) 2010-03-23 2011-02-17 Lade- und Entladeverfahren für Lithium-Ion-Sekundärbatterie und Lade- und Entladesystem dafür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010066107 2010-03-23
PCT/JP2011/053339 WO2011118294A1 (ja) 2010-03-23 2011-02-17 リチウムイオン二次電池の充放電方法及び充放電システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP13170789.5A Division-Into EP2642583A1 (de) 2010-03-23 2011-02-17 Lade- und Entladeverfahren für Lithium-Ion-Sekundärbatterie und Lade- und Entladesystem dafür

Publications (3)

Publication Number Publication Date
EP2410602A1 EP2410602A1 (de) 2012-01-25
EP2410602A4 EP2410602A4 (de) 2012-10-31
EP2410602B1 true EP2410602B1 (de) 2014-11-26

Family

ID=44672867

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11759102.4A Not-in-force EP2410602B1 (de) 2010-03-23 2011-02-17 Verfahren zur ladung und entladung einer lithiumionen-sekundärbatterie sowie lade-/entladesystem dafür
EP13170789.5A Withdrawn EP2642583A1 (de) 2010-03-23 2011-02-17 Lade- und Entladeverfahren für Lithium-Ion-Sekundärbatterie und Lade- und Entladesystem dafür

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13170789.5A Withdrawn EP2642583A1 (de) 2010-03-23 2011-02-17 Lade- und Entladeverfahren für Lithium-Ion-Sekundärbatterie und Lade- und Entladesystem dafür

Country Status (7)

Country Link
US (1) US20130009605A1 (de)
EP (2) EP2410602B1 (de)
JP (2) JP4957875B2 (de)
CN (1) CN102388499B (de)
BR (1) BR112012023951A2 (de)
ES (1) ES2526393T3 (de)
WO (1) WO2011118294A1 (de)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138981A (ja) * 2010-12-24 2012-07-19 Nec Energy Devices Ltd 放電制御装置、放電制御方法およびプログラム
WO2013038763A1 (ja) * 2011-09-15 2013-03-21 日本電気株式会社 二次電池システム及びその充放電方法
EP2757652A4 (de) * 2011-09-15 2015-05-13 Nec Corp Sekundärbatteriesystem und verfahren zum betreiben einer sekundärbatterie
CN103023082A (zh) * 2011-09-27 2013-04-03 深圳富泰宏精密工业有限公司 电池充放电控制系统及方法
JP2013207844A (ja) * 2012-03-27 2013-10-07 Nec Corp 電池管理装置、電池装置、ディスクアレイ装置および電池管理方法
FR2990766B1 (fr) * 2012-05-15 2014-05-09 Renault Sa Systeme et procede correspondant d'estimation de l'etat de charge d'une batterie
JP5812025B2 (ja) 2013-02-25 2015-11-11 トヨタ自動車株式会社 定置用蓄電システム及び制御方法
US10505375B2 (en) * 2013-06-20 2019-12-10 Volvo Truck Corporation Method for controlling an energy storage system
JP6235251B2 (ja) 2013-06-28 2017-11-22 日立オートモティブシステムズ株式会社 二次電池システム
WO2015008757A1 (ja) * 2013-07-16 2015-01-22 日本電気株式会社 蓄電池の急速充電方法、急速充電システムおよびプログラム
KR102002343B1 (ko) 2013-09-17 2019-07-22 에스케이이노베이션 주식회사 무정전 전원장치용 배터리 충방전 장치 및 방법
WO2016011437A1 (en) 2014-07-18 2016-01-21 Iterna, Llc Extending shelf life of rechargeable batteries
US9595955B2 (en) * 2014-08-08 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including power storage elements and switches
US10742054B2 (en) * 2014-09-30 2020-08-11 International Business Machines Corporation Intelligent composable multi-function battery pack
US9853473B2 (en) * 2014-10-13 2017-12-26 Lenovo (Singapore) Pte. Ltd. Battery pack assembly and method
DE102015002072A1 (de) 2015-02-18 2016-08-18 Audi Ag Einstellen von Ladungszuständen von Batteriezellen
US10094880B2 (en) 2015-04-14 2018-10-09 Semiconductor Components Industries, Llc Determining battery state of charge using an open circuit voltage measured prior to a device operation stage
KR101985812B1 (ko) * 2015-08-18 2019-06-04 주식회사 엘지화학 전지 충전 한계 예측 방법과 이를 이용한 전지 급속 충전 방법 및 장치
US11862978B2 (en) * 2016-03-30 2024-01-02 Panasonic Energy Co., Ltd. Power supply system, control system and power control method for power supply system
CN106374151A (zh) * 2016-09-30 2017-02-01 上海空间电源研究所 一种空间用锂离子电池荷电态的调节装置及调节方法
CN108092301A (zh) * 2016-11-23 2018-05-29 江苏三棱智慧物联发展股份有限公司 一种复合可再生能源发电系统移动控制系统
US11121569B2 (en) * 2018-04-04 2021-09-14 International Business Machines Corporation Battery state-of-charge indication
CN109904538A (zh) * 2019-01-14 2019-06-18 清华大学 锂离子电池及其内部电流分布检测电路
JP7254597B2 (ja) * 2019-04-12 2023-04-10 株式会社日立製作所 電池システム、鉄道車両および電池管理方法
US20220200313A1 (en) * 2019-06-12 2022-06-23 Mitsubishi Electric Corporation Charge and discharge control device and charge and discharge control method
US11815557B2 (en) * 2019-09-09 2023-11-14 Battelle Energy Alliance, Llc Systems and methods for managing energy storage operations
WO2021079922A1 (ja) * 2019-10-25 2021-04-29 株式会社村田製作所 蓄電装置および充放電の制御方法
DE102019216961A1 (de) * 2019-11-04 2021-05-06 Robert Bosch Gmbh Verfahren zum Laden von zumindest zwei elektrischen Energiespeichern und Fahrzeug
US20220410755A1 (en) * 2021-06-25 2022-12-29 Zoox, Inc. Fleet charging station architecture
JP2023069402A (ja) * 2021-11-05 2023-05-18 Fdk株式会社 バッテリバンクユニット、充電残時間算出方法、および、充電残時間算出プログラム
DE102022211078A1 (de) 2022-10-19 2024-04-25 Volkswagen Aktiengesellschaft Batteriezellverband

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729116A (en) * 1996-12-20 1998-03-17 Total Battery Management, Inc. Shunt recognition in lithium batteries
JPH10123225A (ja) * 1996-10-21 1998-05-15 Fuji Elelctrochem Co Ltd 並列電池の放電装置及び充放電装置
JP2000030751A (ja) 1998-07-10 2000-01-28 Toyota Central Res & Dev Lab Inc リチウム二次電池の充放電方法
JP2001307781A (ja) 2000-04-24 2001-11-02 Hitachi Ltd リチウム二次電池及びその充放電方法
JP3966702B2 (ja) * 2001-08-31 2007-08-29 松下電器産業株式会社 バッテリ制御装置
US7071653B2 (en) * 2003-05-30 2006-07-04 Matsushita Electric Industrial Co., Ltd. Method for charging a non-aqueous electrolyte secondary battery and charger therefor
US7564213B2 (en) * 2004-08-13 2009-07-21 Eaton Corporation Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery
US7525285B2 (en) * 2004-11-11 2009-04-28 Lg Chem, Ltd. Method and system for cell equalization using state of charge
JP4538418B2 (ja) * 2006-02-15 2010-09-08 トヨタ自動車株式会社 二次電池の充放電制御装置
JP4572850B2 (ja) * 2006-03-24 2010-11-04 株式会社日立製作所 電源制御装置
JP5319903B2 (ja) * 2007-09-18 2013-10-16 三菱重工業株式会社 電力貯蔵システム
JP2010022128A (ja) * 2008-07-10 2010-01-28 Toyota Motor Corp 蓄電装置充放電制御システム
JP2010066107A (ja) 2008-09-10 2010-03-25 Isuzu Motors Ltd 流体流量計及びmaf測定方法
JP5478870B2 (ja) * 2008-10-15 2014-04-23 三菱重工業株式会社 蓄電システム及び電力貯蔵システム

Also Published As

Publication number Publication date
ES2526393T3 (es) 2015-01-12
US20130009605A1 (en) 2013-01-10
JP4957875B2 (ja) 2012-06-20
JPWO2011118294A1 (ja) 2013-07-04
CN102388499B (zh) 2014-06-18
CN102388499A (zh) 2012-03-21
JP5682583B2 (ja) 2015-03-11
JP2012143151A (ja) 2012-07-26
EP2642583A1 (de) 2013-09-25
WO2011118294A1 (ja) 2011-09-29
EP2410602A1 (de) 2012-01-25
EP2410602A4 (de) 2012-10-31
BR112012023951A2 (pt) 2017-12-19

Similar Documents

Publication Publication Date Title
EP2410602B1 (de) Verfahren zur ladung und entladung einer lithiumionen-sekundärbatterie sowie lade-/entladesystem dafür
US9450439B2 (en) Secondary battery system and operating method of secondary battery
US10141551B2 (en) Battery system
JP4966998B2 (ja) 充電制御回路、電池パック、及び充電システム
CN103329338B (zh) 电池组和电力消耗设备
US8907616B2 (en) Hybrid power supply system
US9531212B2 (en) Secondary battery system and charge and discharge method for the same
US8476869B2 (en) Battery voltage equalizer circuit and method for using the same
KR101562015B1 (ko) 병렬 연결된 이차 전지들의 충전 제어 장치 및 방법
JP2011004509A5 (de)
JP2013520947A (ja) バッテリセルコンバータ管理システム
EP3314718A1 (de) Batterieausgleichsschaltung
US7994754B2 (en) Battery charging apparatus, battery pack, battery charging system, and battery charging method
JP2013172551A (ja) 組電池充電システムおよび組電池充電方法
Vitols Efficiency of LiFePO4 battery and charger with a mixed two level balancing
JPH03173323A (ja) 二次電池の充電装置
WO2024069759A1 (ja) 放電制御装置および蓄電池システム
EP3772153A1 (de) Batterieschutzsystem
CN118399554A (zh) 均衡电路、均衡方法、电子设备、电池管理系统和车辆
CN116190823A (zh) 电池模组及电子设备

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

A4 Supplementary search report drawn up and despatched

Effective date: 20121002

RIC1 Information provided on ipc code assigned before grant

Ipc: H02J 7/00 20060101ALI20120926BHEP

Ipc: H01M 10/44 20060101AFI20120926BHEP

Ipc: H01M 4/505 20100101ALI20120926BHEP

Ipc: H01M 10/0525 20100101ALI20120926BHEP

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130906

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140616

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 698642

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011011759

Country of ref document: DE

Effective date: 20150108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2526393

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150112

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141126

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 698642

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141126

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150326

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150326

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150227

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011011759

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

26N No opposition filed

Effective date: 20150827

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160222

Year of fee payment: 6

Ref country code: DE

Payment date: 20160209

Year of fee payment: 6

Ref country code: ES

Payment date: 20160113

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160217

Year of fee payment: 6

Ref country code: FR

Payment date: 20160108

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011011759

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170217

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170217

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126