EP2410602B1 - Verfahren zur ladung und entladung einer lithiumionen-sekundärbatterie sowie lade-/entladesystem dafür - Google Patents
Verfahren zur ladung und entladung einer lithiumionen-sekundärbatterie sowie lade-/entladesystem dafür Download PDFInfo
- Publication number
- EP2410602B1 EP2410602B1 EP11759102.4A EP11759102A EP2410602B1 EP 2410602 B1 EP2410602 B1 EP 2410602B1 EP 11759102 A EP11759102 A EP 11759102A EP 2410602 B1 EP2410602 B1 EP 2410602B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- threshold
- lithium ion
- ion secondary
- secondary batteries
- soc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00306—Overdischarge protection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a charging and discharging method for lithium ion secondary batteries having a manganese positive polarity material and a charging and discharging system for the same.
- lithium ion secondary batteries that bind and give off lithium ions have advantages such as high energy densities, high operating voltages, and so forth over nickel cadmium (Ni-Cd) batteries and nickel metal hydride (Ni-MH) batteries of the same capacities, they have been widely used for information processing devices and communication devices such as personal computers and mobile phones that require miniaturization and lightweightness.
- Ni-Cd nickel cadmium
- Ni-MH nickel metal hydride
- lithium ion secondary batteries have been assessed to be usable as power supplies for electric bicycles, hybrid automobiles, and so forth and also they are being introduced as batteries that store electric power generated by renewable power supplies such as solar batteries to accomplish a low-carbon society that solves global warming problems.
- Patent Literature 1 and Patent Literature 2 propose techniques that reduce the shortening of the life cycles of lithium ion secondary batteries by controlling charging and discharging of these batteries.
- Patent Literature 1 presents that charging and discharging of a lithium ion secondary battery are controlled such that the number of lithium ions that migrate between a positive electrode material and a negative electrode active material when the lithium ion secondary battery is charged or discharged is 95 % or less of the number of lithium ions that migrate in the reverse direction.
- Patent Literature 2 presents that charging and discharging of a lithium ion secondary battery are controlled such that the end-of-discharge voltage when the lithium ion secondary battery is discharged ranges from 3.2 to 3.1 V and such that the upper limit voltage when the lithium ion secondary battery is charged ranges from 4.0 to 4.5 V.
- positive electrode materials (positive electrode active materials) of lithium ion secondary batteries compositions using lithium cobalt oxide, lithium manganese oxide, and lithium nickel oxide are known.
- negative electrode materials (negative electrode active materials) compositions using graphites and cokes are known.
- SOC represents the ratio of the capacity of the lithium ion secondary battery to the amount of electric charge.
- "store” in the specification of the present patent application denotes that a lithium ion secondary battery is kept in the state of a particular voltage of the SOC.
- the phenomenon in which the battery performance deteriorates in the particular SOC is not significantly related to a case in which the lithium ion secondary battery is stored in the fully charged state, for example, when it is used for a UPS (Uninterruptable Power Supply).
- UPS Uninterruptable Power Supply
- the lithium ion secondary battery in an application where a lithium ion secondary battery is stored in any SOC between the maximum SOC and the minimum SOC, for example in an application where electric power generated by the above-described renewable power supply is stored, the lithium ion secondary battery can be understood as being kept in the above-described particular SOC. In such a case, the battery performance of the lithium ion secondary battery will quickly deteriorate.
- an object of the present invention is to provide a charging and discharging method for manganese lithium ion secondary batteries and a charging and discharging system for the same that can reduce a shortening of the life cycle of manganese lithium ion secondary batteries when they are stored.
- a charging and discharging method for lithium ion secondary batteries is a charging and discharging method for lithium ion secondary batteries having manganese positive electrode material, the method comprising the steps of:
- a charging and discharging system is a charging and discharging system that controls charging and discharging for lithium ion secondary batteries having manganese positive electrode material, comprising:
- Fig. 1 is a block diagram exemplifying a charging and discharging system according to the first exemplary embodiment
- Fig. 2 is a block diagram exemplifying an information processing device shown in Fig. 1 .
- the charging and discharging system is structured to provide N (where N is a positive integer) lithium ion secondary batteries (hereinafter simply referred to as secondary batteries) 1 1 to 1 N whose positive and negative electrodes are connected in parallel to corresponding electric wires), monitor device 2 that detects the values of the SOCs of individual secondary batteries 1 1 to 1 N , information processing device 3 that controls charging and discharging of secondary batteries 1 1 ; to 1 N , and a plurality of switches 4 1 to 4 N that are provided corresponding to secondary batteries 1 1 to 1 N and that respectively connect or disconnect secondary batteries 1 1 to 1 N and the electric wires.
- N lithium ion secondary batteries
- an electric power supply source that supplies electric power necessary to charge the secondary batteries, for example a renewable electric power supply that an electric power user (residence or facility) provides, and a terminal voltage transformer that distributes electric power supplied from a distribution substation of an electric power company to each electric power user.
- a load that consumes electric power discharged from the secondary batteries for example, one of various types of electric devices and a certain type of heat pump hot water supplier that the electric power user (residence or facility) provides and that consumes electric power.
- Fig. 1 shows that N secondary batteries 1 1 to 1 N are closely arranged, they may be arranged in any manner as long as their charging and discharging can be controlled.
- a plurality of secondary batteries (cells) 1 1 to 1 N may be contained in one package (battery pack) or secondary batteries 1 1 to 1 N may be distributed for electric power storage of individual electric power users (residences or facilities) who live or that exist in remote areas. If secondary batteries 1 1 to 1 N are distributed separately from each other, a connection between information processing device 3 and monitor device 2 and connections between information processing device 3 and switches 4 1 to 4 N can be made through a known information communication means such that information, commands and so forth can be transmitted and received.
- a known wireless communication means or a known wired communication means can be used as the information communication means.
- the wireless communication means can be considered appropriate for a known Zigbee wireless system that uses for example a 950 MHz band radio frequency.
- the wired communication means can be considered appropriate for a known PLC (Power Line Communication) system that transmits and receives information through electric wires.
- the charging and discharging system according to this exemplary embodiment can be connected to any system as long as this system can supply predetermined electric power to secondary batteries 1 1 to 1 N when these batteries are charged and supply electric power to one of various types of electric devices (load) when these batteries are discharged.
- secondary batteries 1 1 to 1 N are manganese lithium ion secondary batteries.
- Manganese lithium ion secondary batteries are batteries whose positive electrode materials are mainly lithium manganese oxide (Li x Mn y O z : x is around 1 or around 0.65 or around 0.1 to 0.5; y is around 2; z is around 4).
- the compositional ratio of Li, Mn, and O is not limited to those values.
- the positive electrode material may contain various types of substances such as Al, Mg, Cr, Fe, Co, Ni, and Cu as long as the positive electrode material is mainly lithium manganese oxide.
- Dotted lines over secondary batteries 1 1 to 1 N shown in Fig. 1 represent the particular SOCs in which the performance of secondary batteries 1 1 to 1 N quickly deteriorates when they are stored (hereinafter referred to as the progressively deteriorating SOC d ).
- solid lines over secondary batteries 1 1 to 1 N shown in Fig. 1 schematically represent the quantity of stored electricity compared to the capacities of secondary batteries 1 1 to 1 N.
- Those legends apply to dotted lines and solid lines of secondary batteries shown in Fig. 3 , Fig. 4 , and Fig. 7 .
- Fig. 1 exemplifies that the capacities of secondary batteries 1 1 to 1 N are the same, they may differ from each other.
- Switches 4 1 to 4 N are for example MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) that can turn on/off relatively large amounts of electric power and that can be easily controlled. Switches 4 1 to 4 N are connected to information processing device 3 that controls on/off of switches 4 1 to 4 N . Switches 4 1 to 4 N are provided with driving circuits that turn on/off their contacts. Switches 4 1 to 4 N may be arranged in the vicinity of secondary batteries 1 1 to 1 N or information processing device 3. The contacts of switches 4 1 to 4 N are not necessary to be integrated with their driving circuits; instead, the contacts may be arranged in the vicinity of secondary batteries 1 1 to 1 N and the driving circuits may be arranged in the vicinity of information processing device 3.
- MOSFETs Metal Oxide Semiconductor Field Effect Transistors
- Monitor device 2 can be accomplished by a known charging device or protection device that is supplied by the manufacturer or supplier of secondary batteries 1 1 to 1 N and that is manufactured based on the performance and characteristic of secondary batteries 1 1 to 1 N .
- the protection device detects the SOCs of individual secondary batteries 1 1 to 1 N and current values that are input to and output from secondary batteries 1 1 to 1 N
- the charging device changes the charging current (constant current) and charging voltage (constant voltage) based on the SOCs and current values detected by the protection device.
- monitor device 2 may detect the output voltage values of secondary batteries 1 1 to 1 N instead of the SOCs.
- monitor device 2 may be provided with an A/D converter that converts the values of the SOCs into digital values.
- the A/D converter may be provided in information processing device 3.
- Monitor device 2 may be structured to provide N detectors that individually detect SOCs of individual secondary batteries 1 1 to 1 N or provide one detector that detects the values of the SOCs of secondary batteries 11 to 1 N.
- Information processing device 3 receives the values of the SOCs of secondary batteries 1 1 to 1 N from monitor device 2 when they are charged and discharged and turns on/off switches 4 1 to 4 N based on the received Values of the SOCs so as to control charging and discharging of individual secondary batteries 1 1 to 1 N .
- Information processing device 3 can be accomplished for example by a computer having the structure shown in Fig. 2 .
- Information processing device 3 is not limited to the computer having the structure shown in Fig. 2 .
- information processing device 3 can be realized by a microcomputer or the like that is composed of one or a plurality of ICs (Integrated Circuits).
- the computer shown in Fig. 2 is structured to provide processing device 10 that executes a predetermined process according to a program, input device 20 that inputs commands, information, and so forth into processing device 10, and output device 30 that outputs a processed result of processing device 10.
- Processing device 10 is structured to provide CPU 11, main storage device 12 that temporarily stores information that is necessary for a process that CPU 11 executes, recording medium 13 that has recorded a program that causes CPU 11 to execute a process according to the present invention, data storage device 14 that stores rating capacity, maximum SOC, and minimum SOC, first threshold SOC L , second threshold SOC U , and so forth of individual secondary batteries 1 1 to 1 N (first threshold SOC L , second threshold SOC U will be described later), memory control interface section 15 that controls data transferred among main storage device 12, recording medium 13, and data storage device 14, I/O interface section 16 that is an interface device between input device 20 and output device 30, and communication control device 16 that transmits and receives information and commands between monitor device 2 and switches 4 1 to 4 N and those devices that are connected through bus 18.
- main storage device 12 that temporarily stores information that is necessary for a process that CPU 11 executes
- recording medium 13 that has recorded a program that causes CPU 11 to execute a process according to the present invention
- data storage device 14 that stores rating capacity, maximum SOC, and
- Processing device 10 executes a procedure that will be described later according to the program recorded on recording medium 13 so as to control charging and discharging of individual secondary batteries 1 1 to 1 N .
- Recording medium 13 may be a magnetic disk, a semiconductor memory, an optical disc, or another type of recording medium.
- data storage device 14 may or may not to be provided in processing device 10, it can be provided by an independent device.
- Fig. 3(a) to (c) and Fig. 4(a) to (e) are schematic diagrams showing a controlling method performed by the charging and discharging system according to the first exemplary embodiment.
- Fig. 3(a) to (c) exemplify that charging and discharging of two secondary batteries 1 1 and 1 2 connected in parallel are controlled
- Fig. 4(a) to (e) exemplify that charging and discharging of a plurality of secondary batteries 1 1 to 1 N connected in parallel are controlled.
- the charging and discharging system controls secondary batteries 1 1 to 1 N such that the charging operation or discharging operation does not stop in the progressively deteriorating SOC d of each of secondary batteries 1 1 to 1 N .
- the first threshold SOC L that is less than progressively deteriorating SOC d of each of secondary batteries 1 1 to 1 N and the second threshold SOC U that is greater than the progressively deteriorating SOC d are pre-set.
- the first threshold SOC L and the second threshold SOC U can be preset depending on the progressively deteriorating SOC d of individual secondary batteries 1 1 to 1 N by the manufacturer, supplier, or user thereof and can be pre-stored in data storage device 14 of information processing device 3.
- two secondary batteries 1 1 and 1 2 are charged as shown in Fig. 3(a) to (c) such that two secondary batteries 11 and 12 are simultaneously charged until they reach the above-described progressively deteriorating SOC d , that when the values of the SOCs of two secondary batteries 1 1 and 1 2 have reached the first threshold SOC L , only secondary battery 1 1 is charged from the first threshold SOC L to the second threshold SOC U , then only the other secondary battery 1 2 is charged from the first threshold SOC L to the second threshold SOC U and then two secondary batteries 1 1 and 1 2 are simultaneously charged again.
- two secondary batteries 1 1 and 1 2 are discharged such that they are simultaneously discharged until the values of the SOCs reach the above-described progressively deteriorating SOC d , that when the values of the SOCs of two secondary batteries 11 and 1 2 have reached the second threshold SOC U , only one secondary battery 1 1 is discharged from the second threshold SOC U to the first threshold SOC L , then only the other secondary battery 1 2 is discharged from the second threshold SOC U to the first threshold SOC L , and then two secondary batteries 1 1 and 1 2 are simultaneously discharged again.
- Fig. 3 (a) shows that two secondary batteries 11 and 12 are simultaneously being charged.
- Fig. 3 (a) exemplifies that the values of the SOCs of two secondary batteries 1 1 and 1 2 that are being charged are the same.
- Fig. 3(b) shows that the values of the SOCs of two secondary batteries 1 1 and 1 2 have reached the first threshold SOC L from the state shown in Fig. 3 (a) , that the charging operation for secondary battery 1 2 on the right side is stopped, and then only secondary battery 1 1 on the left side is charged to the second threshold SOC U .
- Fig. 3(c) shows that after the state shown in Fig. 3 (b) , the charging operation for secondary battery 1 1 on the left side is stopped and then only secondary battery 1 2 on the right side is charged to the second threshold SOC U .
- three or more secondary batteries 1 1 to 1 N as shown in Fig. 4(a) to (e) are charged such that individual secondary batteries 1 1 to 1 N are simultaneously charged until the values of their SOCs reach the above-described progressively deteriorating SOC d , that when the values of the SOCs of secondary batteries 1 1 to 1 N have reached the first threshold SOC L , individual secondary batteries 1 1 to 1 N are successively charged from the first threshold SOC L to the second threshold SOC U , and then individual secondary batteries 1 1 to 1 N are simultaneously charged again.
- three or more secondary batteries 1 1 to 1 N are discharged such that secondary batteries 1 1 to 1 N are simultaneously discharged until the values of their SOCs reach the above-described progressively deteriorating SOC d , that when the values of the SOCs of secondary batteries 1 1 to 1 N have reached the second threshold SOC U , individual secondary batteries 1 1 to 1 N are successively discharged from the second threshold SOC U to the first threshold SOC L , and then individual secondary batteries 1 1 to 1 N are simultaneously discharged again.
- Fig. 4(a) shows that a plurality of secondary batteries 1 1 to 1 N are being simultaneously charged.
- Fig. 4(a) exemplifies that the values of the SOCs of individual secondary batteries 1 1 to 1 N that are being charged are the same.
- Fig. 4(b) shows that after the state shown in Fig. 4(a) , the values of the SOCs of individual secondary batteries 1 1 to 1 N have reached the first threshold SOC L , the charging operation for all secondary batteries 1 2 to 1 N other than secondary battery 1 1 on the leftmost side is stopped, and that then only secondary battery 1 1 on the leftmost side is charged until the value of the SOC reaches the second threshold SOC U .
- Fig. 4(c) shows that after the state shown in Fig.
- the charging operation and discharging operation for individual secondary batteries 1 1 to 1 N can be controlled by causing switches 4 1 to 4 N to connect or disconnect the electric wires and secondary batteries 1 1 to 1 N .
- Fig. 3(a) to (c) , and Fig. 4(a) to (e) exemplify that when the charging operation and discharging operation are started, the values of the SOCs of individual secondary batteries 1 1 to 1 N are the same, when the charging operation and discharging operation are started, the values of the SOCs of individual secondary batteries is to 1 N may be different from each other.
- the values of the SOCs of secondary batteries 1 1 to 1 N have reached the first threshold SOC L , they can be successively charged from the first threshold SOC L to the second threshold SOC U .
- the values of the SOCs of secondary batteries 1 1 to 1 N have reached the second threshold SOC U .
- Fig. 3(a) to (c) , and Fig. 4(a) to (e) exemplify that the first threshold SOC L and the second threshold SOC U that are set for each of secondary batteries 1 1 to 1 N are the same, the first threshold SOC L and the second threshold SOC U that are set for each of secondary batteries 1 1 to 1 N may be different from each other.
- the first threshold SOC L and the second threshold SOC U that are set for each of secondary batteries 1 1 to 1 N may be different from each other.
- the values of the SOCs of secondary batteries secondary batteries 1 1 to 1 N they can be successively charged from the first threshold SOC L to the second threshold SOC U .
- the values of the SOCs of secondary batteries secondary batteries 11 to 1 N have reached the second threshold SOC U , they can be successfully discharged from the second threshold SOC U to the first threshold SOC L .
- the charging and discharging method between the first threshold SOC L and the second threshold SOC U is not restricted, however, while secondary batteries 1 1 1 to 1 N are being charged from the first threshold SOC L to the second threshold SOC U , the charging speed can be increased by increasing the charging current and charging voltage in the allowable range of secondary batteries 1 1 to 1 N . Likewise, while secondary batteries 1 1 to 1 N are being discharged from the second threshold SOC U to the first threshold SOC L , the discharging speed can be increased by increasing current that flows in a load in the allowable range of secondary batteries 1 1 to 1 N .
- the charging current and charging voltage can be controlled by the above-described charging device manufactured according to the performance and characteristic of secondary batteries 1 1 to 1 N .
- the information communication means may be a known wireless communication means or a known wired communication means.
- Fig. 5 is a flow chart exemplifying a charging procedure of the charging and discharging method based on which the lithium ion secondary batteries are charged according to the first exemplary embodiment
- Fig. 6 is a flow chart exemplifying a discharging procedure of the charging and discharging method based on which the lithium ion secondary batteries are discharged according to the first exemplary embodiment.
- i may be assigned to any secondary battery and may switch as the process proceeds instead of having been assigned thereto so as to identifying them.
- processing device 10 determines whether or not the value of i is N (at step A3). Unless the value of i is N, processing device 10 turns off SW i corresponding to the value of i, increments the value of i by "1" (at step A4), and repeats the process from step A1. If the value of i is N, processing device 10 advances to the process at step A13 that will be described later.
- Processing device 10 simultaneously charges these target secondary batteries. At this point, while processing device 10 charges these target secondary batteries, it successively obtains the values of the SOCs of secondary batteries 1 j to 1 N from monitor device 2.
- processing device 10 After processing device 10 obtains the value of the SOC of i-th secondary battery 1 i , SOC i (at step A5), it compares the SOC i with the preset first threshold SOC L (at step A6).
- processing device 10 determines whether or not the value of i is N (at step A7). Unless the value of i is N, processing device 10 increments the value of i by "1" (at step A8) and repeats the process from step A6. If the value of i is N, processing device 10 advances to the process at step A13 that will be described later.
- processing device 10 compares the SOC i with the preset second threshold SOC U (at step A10). If the SOC i is equal to or less than the second threshold SOC U , processing device 10 repeats the process at step A10. If the SOC i is greater than the second threshold SOC U , processing device 10 determines whether or not the value of i is N (at step A11). Unless the value of i is N, processing device 10 turns on SW i + 1 corresponding to (i + 1)-th secondary battery 1 i + 1 and then turns off SW i corresponding to i-th secondary battery 1 i . Thereafter, processing device 10 increments the value of i by "1" (at step A12).
- processing device 10 turns on all switches SW i to SW N-1 corresponding to the other charging target secondary batteries other than switch SW N corresponding to N-th secondary battery 1 N (at step A13) and continues the charging operation (at step A14).
- the charging operation can be continued until the values of the SOCs of all secondary batteries 1 1 to 1 N reach the maximum SOC.
- processing device 10 determines whether or not the value of i is N (at step B3). Unless the value of i is N, processing device 10 turns off SW i corresponding to the value of i, increments the value of i by "1" (at step B4), and repeats the process from step B1. If the value of i is N, processing device 10 advances to the process at step B 13.
- Processing device 10 simultaneously discharges these discharging target secondary batteries. At this point, while processing device 10 discharges these discharging target secondary batteries, it successively obtains the values of the SOCs of secondary batteries 1 j to 1 N from monitor device 2.
- processing device 10 After processing device 10 obtains the value of the SOC of i-th secondary battery 1 i , SOC i , (at step B5), processing device 10 compares the SOC i with the preset second threshold SOC U (at step B6).
- processing device 10 determines whether or not the value of i is N (at step B7). Unless the value of i is N, processing device 10 increments the value of i by "1" (at step B8) and repeats the process from step B6. If the value of i is N, processing device 10 advances to the process at step B 13 that will be described later.
- processing device 10 compares the SOC i with the preset first threshold SOC L (at step B10). If the SOC i is equal to or less than the first threshold SOC L , processing device 10 repeats the process at step B10. If the SOC i is greater than the first threshold SOC L , processing device 10 determines whether or not the value of i is N (at step B11). Unless the value of i is N, processing device 10 turns on SW i + 1 corresponding to (i + 1)-th secondary battery 1 i + 1 and then turns off SW 1 corresponding to i-th secondary battery 1 i . Thereafter, processing device 10 increments the value of i by "1" (at step B12).
- processing device 10 turns on all SW i to SW N - 1 corresponding to the other discharging target secondary batteries other than switch SW N corresponding to N-th secondary battery 1 N (at step B13) and then continues the discharging operation (at step B14).
- the discharging operation can be continued until the values of the SOCs of all secondary batteries 1 1 to 1 N reach the minimum SOC.
- Fig. 5 and Fig. 6 described above exemplify processes in which monitor device 2 is provided with N detectors and can independently obtain the values of the SOCs of N secondary batteries 1 1 to 1 N.
- FIG. 7 and Fig. 8 exemplify processes in which monitor device 2 is provided with one detector that detects the values of the SOCs of individual secondary batteries 1 1 to 1 N .
- Fig. 7 is a flow chart further exemplifying the charging procedure of the charging and discharging method based on which the lithium ion secondary batteries are charged according to the first exemplary embodiment
- Fig. 8 is a flow chart further exemplifying the discharging procedure of the charging and discharging method based on which the lithium ion secondary batteries are discharged according to the first exemplary embodiment.
- i may be assigned to any secondary battery and may switch as the process proceeds instead of having been assigned thereto so as to identify them.
- processing device 10 obtains the value of the SOC of i-th secondary battery 1 i , SOC i , and compares the SOC i with the preset second threshold SOC U (at step C2). If the obtained SOC i is equal to or less than the second threshold SOC U , processing device 10 repeats the process at step C2. At this point, secondary battery 1 i is continuously charged until the value of the SOC exceeds the first threshold SOC L and reaches the second threshold SOC U .
- processing device 10 determines whether or not the value of i is N (at step C3). Unless the value of i is N, processing device 10 turns on SW i + 1 corresponding to (i + 1)-th secondary battery 1 i + 1 and then turns off SW i corresponding to i-th secondary battery 1 i . Thereafter, processing device 10 increments the value of i by "1" (at step C4) and then repeats the process from step C2.
- processing device 10 turns on all SW i to SW N - 1 other than switch SW N corresponding to N-th secondary battery 1 N (at step C5) and continues charging (at step C6).
- the charging operation can be continued until the values of the SOCs of all secondary batteries 1 1 to 1 N reach the maximum SOC.
- processing device 10 obtains the value of the SOC of i-th secondary battery 1 i , SOC i , from monitor device 2 and then compares the SOC i with the preset first threshold SOC L (at step D2). If the obtained SOC i is equal to or greater than the first threshold SOC L , processing device 10 repeats the process at step D2. At this point, secondary battery 1 i is continuously discharged until the value of the SOC becomes less than the second threshold SOC U and reaches the first threshold SDC L .
- processing device 10 determines whether or not the value of i is N (at step D3). Unless the value of i is N, processing device 10 turns on SW i + 1 corresponding to (i + 1)-th secondary battery 1 i + 1 and then turns off SW i corresponding to i-th secondary battery 1 i . Thereafter, processing device 10 increments the value of i by "1" (at step D4) and then repeats the process from step D2.
- processing device 10 turns on all SW i to SW N - 1 other than switch SW N corresponding to N-th secondary battery 1 N (at step D5) and continues discharging (at step D6).
- the discharging operation can be continued until the values of the SOCs of all secondary batteries 1 1 to 1 N reach the minimum SOC.
- the progressively deteriorating SOC d of individual secondary batteries 1 1 to 1 N is constant, it may vary depending on the operation times and the numbers of charging and discharging times of secondary batteries 1 1 to 1 N .
- the above-described first threshold SOC L and second threshold SOC U may be changed depending on the operation times and the numbers of charging and discharging times.
- Fig. 9 is a block diagram exemplifying a structure of a charging and discharging system according to a second exemplary embodiment.
- the first exemplary embodiment exemplified that a plurality of secondary batteries 1 1 to 1 N connected in parallel are controlled such that the charging operation or discharging operation does not stop in the progressively deteriorating SOC d .
- the second exemplary embodiment exemplifies that one secondary battery 1 is controlled such that the charging operation or discharging operation does not stop in the progressively deteriorating SOC d .
- the charging and discharging system of the second exemplary embodiment is different from that of the first exemplary embodiment in that the number of control target secondary batteries is one.
- an information processing device of the second exemplary embodiment is connected for example to a type of heat pump hot water supplier through an information communication means and the hot water supplier can be controlled by the information processing device. Since the structure of the other sections of the charging and discharging system of the second exemplary embodiment is the same as that of the first exemplary embodiment, description will be omitted.
- the information communication means may be a known wireless communication means or a known wired communication means.
- the wireless communication means can be understood to be a known Zigbee wireless system that uses for example a 950 MHz band radio frequency.
- the wired communication means can be considered appropriate for a known PLC (Power Line Communication) system that transmits and receives information using for example electric wires.
- PLC Power Line Communication
- the charging and discharging system controls switch 4 such that the charging operation is continued from the first threshold SOC L to the second threshold SOC U based on the value of the SOC of secondary battery 1 and that the discharging operation is continued from the second threshold SOC U to the first threshold SOC L . based on the value of the SOC of secondary battery 1.
- information processing device 3 of this exemplary embodiment will continue the charging operation for secondary battery 1 with electric power being supplied from the electric power company through the power distribution system.
- information processing device 3 of this exemplary embodiment operates the above-described type of heat pump hot water supplier so as to continue the discharging operation of secondary battery 1 and thereby prevents the discharging operation of secondary battery 1 from stopping in the progressively deteriorating SOC d .
- a secondary battery that is being charged is equivalent to an electric device that is consuming electric power viewed from other secondary batteries.
- the discharging operation for secondary battery 1 can be continued such that the external secondary battery is charged. If the discharging operation of secondary battery 1 stops in the progressively deteriorating SOC d , information processing device 3 can prevent secondary battery 1 from entering the progressively deteriorating SOC d in such a manner that information processing device 3 causes secondary battery 1 to be charged with electric power supplied from the power distribution system.
- the charging operation or discharging operation does not stop when secondary battery 1 enters the progressively deteriorating SOC d .
- a reduction in the product life cycle can be prevented from shortening.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Claims (9)
- Lade- und Entladeverfahren für Lithium-Ionen-Sekundärbatterien mit Mangan als Material der positiven Elektrode, wobei das Verfahren folgende Schritte umfasst:Veranlassen eines Computers, einen voreingestellten ersten Schwellwert, der geringer als ein sich zunehmend verschlechternder SOC ist, der ein SOC ist, in dem sich eine Batterieleistungsfähigkeit der Lithium-Ionen-Sekundärbatterie verschlechtert, wenn die Lithium-Ionen-Sekundärbatterie gelagert wird, zu speichern und einen voreingestellten zweiten Schwellwert, der größer als der sich zunehmend verschlechternde SOC ist, zu speichern;Veranlassen des Computers, einen Schalter, der zwischen elektrischen Drähten und der Lithium-Ionen-Sekundärbatterie bereitgestellt ist, eine elektrische Energieversorgungsquelle, die elektrische Energie, die notwendig ist, um die Lithium-Ionen-Sekundärbatterie zu laden, bereitstellt, und eine Last, die elektrische Energie, die von der Lithium-Ionen-Sekundärbatterie, die mit den elektrischen Drähten verbunden ist, entladen wird, verbraucht, derart zu steuern, dass ein Ladebetrieb für die Lithium-Ionen-Sekundärbatterie auf Basis eines Wertes des SOC der Lithium-Ionen-Sekundärbatterie von dem ersten Schwellwert zu dem zweiten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterie geladen wird, wobei der Wert des SOC von einer Überwachungsvorrichtung, die den Wert des SOC der Lithium-Ionen-Sekundärbatterie ermittelt, während die Lithium-Ionen-Sekundärbatterie geladen oder entladen wird, übertragen wird; undVeranlassen des Computers, den Schalter derart zu steuern, dass ein Entladebetrieb für die Lithium-Ionen-Sekundärbatterie von dem zweiten Schwellwert zu dem ersten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterie entladen wird.
- Lade- und Entladeverfahren für Lithium-Ionen-Sekundärbatterien nach Anspruch 1,
wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien geladen wird, der erste Steuerschritt durch Veranlassen des Computers, die entsprechend den Lithium-Ionen-Sekundärbatterien bereitgestellte Anzahl an Schaltern derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den ersten Schwellwert erreicht haben, sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert geladen werden, ausgeführt wird, und
wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien entladen wird, der zweite Steuerschritt durch Veranlassen des Computers, die entsprechend den Lithium-Ionen-Sekundärbatterien bereitgestellten Schalter derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den zweiten Schwellwert erreicht haben, sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert entladen werden, ausgeführt wird. - Lade- und Entladeverfahren für Lithium-Ionen-Sekundärbatterien nach Anspruch 1 oder 2,
wobei, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert geladen werden und, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert entladen werden,
wenn die Lithium-Ionen-Sekundärbatterien geladen werden, sie gleichzeitig von dem minimalen SOC zu dem ersten Schwellwert geladen werden und sie gleichzeitig von dem zweiten Schwellwert zu dem maximalen SOC geladen werden und, wenn die Lithium-Ionen-Sekundärbatterien entladen werden, sie gleichzeitig von dem maximalen SOC zu dem zweiten Schwellwert entladen werden und sie gleichzeitig von dem ersten Schwellwert zu dem minimalen SOC entladen werden,
wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, sie sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert geladen werden und, wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, sie sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert entladen werden,
der erste Schwellwert, der zweite Schwellwert und der sich zunehmend verschlechternde SOC, die für jede der Lithium-Ionen-Sekundärbatterien eingestellt sind, voneinander verschieden sind, und
wenn der Ladebetrieb für die Lithium-Ionen-Sekundärbatterie in dem sich zunehmend verschlechternden SOC fortgeführt wird, der Computer den Ladebetrieb für die Lithium-Ionen-Sekundärbatterie mit elektrischer Energie, die von dem Energieverteilungssystem bereitgestellt wird, fortführen wird. - Lade- und Entladesystem, das ein Laden und Entladen für Lithium-Ionen-Sekundärbatterien mit Mangan als Material der positiven Elektrode steuert, das Folgendes umfasst:eine Überwachungsvorrichtung, die eingerichtet ist, SOCs der Lithium-Ionen-Sekundärbatterien zu ermitteln;Schalter, die eingerichtet sind, Drähte und die Lithium-Ionen-Sekundärbatterien zu verbinden oder zu trennen, eine Energieversorgungsquelle, die eingerichtet ist, elektrische Energie, die notwendig ist, um die Lithium-Ionen-Sekundärbatterien zu laden, bereitzustellen, und eine Last, die eingerichtet ist, elektrische Energie, die von den Lithium-Ionen-Sekundärbatterien, die mit den elektrischen Drähten verbunden sind, entladen wird, zu verbrauchen; undeine Informationsverarbeitungseinrichtung, die eingerichtet ist, einen voreingestellten ersten Schwellwert, der geringer als ein sich zunehmend verschlechternder SOC ist, der ein SOC ist, in dem sich eine Batterieleistungsfähigkeit der Lithium-Ionen-Sekundärbatterien verschlechtert, wenn die Lithium-Ionen-Sekundärbatterien gelagert werden, und einen voreingestellten zweiten Schwellwert, der größer als der sich zunehmend verschlechternde SOC ist, zu speichern und die die Schalter derart steuert, dass auf Basis von Werten der SOCs der Lithium-Ionen-Sekundärbatterien ein Ladebetrieb für die Lithium-Ionen-Sekundärbatterien von dem ersten Schwellwert zu dem zweiten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterien geladen werden, und ein Entladebetrieb für die Lithium-Ionen-Sekundärbatterien von dem zweiten Schwellwert zu dem ersten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterien entladen werden, wobei die Werte der SOCs von der Überwachungsvorrichtung ermittelt werden, während die Lithium-Ionen-Sekundärbatterie geladen oder entladen wird.
- Lade- und Entladesystem nach Anspruch 4,
wobei die Schalter entsprechend den Lithium-Ionen-Sekundärbatterien bereitgestellt sind,
wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien geladen wird, die Informationsverarbeitungsvorrichtung eingerichtet ist, die Schalter derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den ersten Schwellwert erreicht haben, sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert geladen werden, und
wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien entladen wird, die Informationsverarbeitungsvorrichtung eingerichtet ist, die Schalter derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den zweiten Schwellwert erreicht haben, sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert entladen werden. - Lade- und Entladesystem nach Anspruch 4 oder 5,
wobei, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, das System eingerichtet ist, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert zu laden, und, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, das System eingerichtet ist, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert zu entladen,
wenn die Lithium-Ionen-Sekundärbatterien geladen werden, das System eingerichtet ist, sie gleichzeitig von dem minimalen SOC zu dem ersten Schwellwert zu laden und sie gleichzeitig von dem zweiten Schwellwert zu dem maximalen SOC zu laden, und, wenn die Lithium-Ionen-Sekundärbatterien entladen werden, das System eingerichtet ist, sie gleichzeitig von dem maximalen SOC zu dem zweiten Schwellwert zu entladen und sie gleichzeitig von dem ersten Schwellwert zu dem minimalen SOC zu entladen,
wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, das System eingerichtet ist, sie sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert zu laden, und, wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, das System eingerichtet ist, sie sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert zu entladen,
der erste Schwellwert, der zweite Schwellwert und der sich zunehmend verschlechternde SOC, die für jede der Lithium-Ionen-Sekundärbatterien eingestellt sind, voneinander verschieden sind, und
wenn der Ladebetrieb für die Lithium-Ionen-Sekundärbatterie in dem sich zunehmend verschlechternden SOC fortgeführt wird, der Computer eingerichtet ist, den Ladebetrieb für die Lithium-Ionen-Sekundärbatterie mit elektrischer Energie, die von dem Energieverteilungssystem bereitgestellt wird, fortzuführen. - Informationsverarbeitungsvorrichtung, die ein Laden und Entladen für Lithium-Ionen-Sekundärbatterien mit Mangan als Material der positiven Elektrode steuert, die Folgendes umfasst:eine Speichervorrichtung, die eingerichtet ist, einen voreingestellten ersten Schwellwert, der geringer als ein sich zunehmend verschlechternder SOC ist, der ein SOC ist, in dem sich eine Batterieleistungsfähigkeit der Lithium-Ionen-Sekundärbatterien verschlechtert, wenn die Lithium-Ionen-Sekundärbatterien gelagert werden, zu speichern, und die einen voreingestellten zweiten Schwellwert, der größer als der sich zunehmend verschlechternde SOC ist, speichert; undeine Verarbeitungsvorrichtung, die eingerichtet ist, Schalter, die zwischen elektrischen Drähten und den Lithium-Ionen-Sekundärbatterien bereitgestellt sind, eine elektrische Energieversorgungsquelle, die eingerichtet ist, elektrische Energie, die nötig ist, um die Lithium-Ionen-Sekundärbatterien zu laden, bereitzustellen, und eine Last, die eingerichtet ist, elektrische Energie, die von den Lithium-Ionen-Sekundärbatterien, die mit den elektrischen Drähten verbunden sind, entladen wird, zu verbrauchen, derart zu steuern, dass auf Basis von Werten der SOCs der Lithium-Ionen-Sekundärbatterien ein Ladebetrieb für die Lithium-Ionen-Sekundärbatterien von dem ersten Schwellwert zu dem zweiten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterien geladen werden, und ein Entladebetrieb für die Lithium-Ionen-Sekundärbatterien von dem zweiten Schwellwert zu dem ersten Schwellwert fortgeführt wird, wenn die Lithium-Ionen-Sekundärbatterien entladen werden, wobei die Werte der SOCs von einer Überwachungsvorrichtung, die die Werte der SOCs der Lithium-Ionen-Sekundärbatterien ermittelt, während die Lithium-Ionen-Sekundärbatterie geladen oder entladen wird, übertragen werden.
- Informationsverarbeitungsvorrichtung nach Anspruch 7,
wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien geladen wird, die Informationsverarbeitungsvorrichtung eingerichtet ist, die entsprechend den Lithium-Ionen-Sekundärbatterien bereitgestellten Schalter derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den ersten Schwellwert erreicht haben, sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert geladen werden, und
wobei, wenn die Anzahl an Lithium-Ionen-Sekundärbatterien entladen wird, die Informationsverarbeitungsvorrichtung eingerichtet ist, die entsprechend den Lithium-Ionen-Sekundärbatterien bereitgestellten Schalter derart zu steuern, dass die Lithium-Ionen-Sekundärbatterien, die den zweiten Schwellwert erreicht haben, sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert entladen werden. - Informationsverarbeitungsvorrichtung nach einem der Ansprüche 7 bis 8,
wobei, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, die Verarbeitungsvorrichtung eingerichtet ist, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert zu laden, und, wenn die Werte des SOC der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, die Verarbeitungsvorrichtung eingerichtet ist, einzelne Lithium-Ionen-Sekundärbatterien sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert zu entladen,
wenn die Lithium-Ionen-Sekundärbatterien geladen werden, die Verarbeitungsvorrichtung eingerichtet ist, sie gleichzeitig von dem minimalen SOC zu dem ersten Schwellwert zu laden und sie gleichzeitig von dem zweiten Schwellwert zu dem maximalen SOC zu laden, und, wenn die Lithium-Ionen-Sekundärbatterien entladen werden, die Verarbeitungsvorrichtung eingerichtet ist, sie gleichzeitig von dem maximalen SOC zu dem zweiten Schwellwert zu entladen und sie gleichzeitig von dem ersten Schwellwert zu dem minimalen SOC zu entladen,
wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den ersten Schwellwert erreicht haben, die Verarbeitungsvorrichtung eingerichtet ist, sie sukzessive von dem ersten Schwellwert zu dem zweiten Schwellwert zu laden, und, wenn die Werte der SOCs der Lithium-Ionen-Sekundärbatterien den zweiten Schwellwert erreicht haben, die Verarbeitungsvorrichtung eingerichtet ist, sie sukzessive von dem zweiten Schwellwert zu dem ersten Schwellwert zu entladen,
der erste Schwellwert, der zweite Schwellwert und der sich zunehmend verschlechternde SOC, die für jede der Lithium-Ionen-Sekundärbatterien eingestellt sind, voneinander verschieden sind, und
wenn der Ladebetrieb für die Lithium-Ionen-Sekundärbatterie in dem sich zunehmend verschlechternden SOC fortgeführt wird, der Computer eingerichtet ist, den Ladebetrieb für die Lithium-Ionen-Sekundärbatterie mit elektrischer Energie, die von dem Energieverteilungssystem bereitgestellt wird, fortzuführen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13170789.5A EP2642583A1 (de) | 2010-03-23 | 2011-02-17 | Lade- und Entladeverfahren für Lithium-Ion-Sekundärbatterie und Lade- und Entladesystem dafür |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010066107 | 2010-03-23 | ||
PCT/JP2011/053339 WO2011118294A1 (ja) | 2010-03-23 | 2011-02-17 | リチウムイオン二次電池の充放電方法及び充放電システム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13170789.5A Division-Into EP2642583A1 (de) | 2010-03-23 | 2011-02-17 | Lade- und Entladeverfahren für Lithium-Ion-Sekundärbatterie und Lade- und Entladesystem dafür |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2410602A1 EP2410602A1 (de) | 2012-01-25 |
EP2410602A4 EP2410602A4 (de) | 2012-10-31 |
EP2410602B1 true EP2410602B1 (de) | 2014-11-26 |
Family
ID=44672867
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11759102.4A Not-in-force EP2410602B1 (de) | 2010-03-23 | 2011-02-17 | Verfahren zur ladung und entladung einer lithiumionen-sekundärbatterie sowie lade-/entladesystem dafür |
EP13170789.5A Withdrawn EP2642583A1 (de) | 2010-03-23 | 2011-02-17 | Lade- und Entladeverfahren für Lithium-Ion-Sekundärbatterie und Lade- und Entladesystem dafür |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13170789.5A Withdrawn EP2642583A1 (de) | 2010-03-23 | 2011-02-17 | Lade- und Entladeverfahren für Lithium-Ion-Sekundärbatterie und Lade- und Entladesystem dafür |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130009605A1 (de) |
EP (2) | EP2410602B1 (de) |
JP (2) | JP4957875B2 (de) |
CN (1) | CN102388499B (de) |
BR (1) | BR112012023951A2 (de) |
ES (1) | ES2526393T3 (de) |
WO (1) | WO2011118294A1 (de) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012138981A (ja) * | 2010-12-24 | 2012-07-19 | Nec Energy Devices Ltd | 放電制御装置、放電制御方法およびプログラム |
WO2013038763A1 (ja) * | 2011-09-15 | 2013-03-21 | 日本電気株式会社 | 二次電池システム及びその充放電方法 |
EP2757652A4 (de) * | 2011-09-15 | 2015-05-13 | Nec Corp | Sekundärbatteriesystem und verfahren zum betreiben einer sekundärbatterie |
CN103023082A (zh) * | 2011-09-27 | 2013-04-03 | 深圳富泰宏精密工业有限公司 | 电池充放电控制系统及方法 |
JP2013207844A (ja) * | 2012-03-27 | 2013-10-07 | Nec Corp | 電池管理装置、電池装置、ディスクアレイ装置および電池管理方法 |
FR2990766B1 (fr) * | 2012-05-15 | 2014-05-09 | Renault Sa | Systeme et procede correspondant d'estimation de l'etat de charge d'une batterie |
JP5812025B2 (ja) | 2013-02-25 | 2015-11-11 | トヨタ自動車株式会社 | 定置用蓄電システム及び制御方法 |
US10505375B2 (en) * | 2013-06-20 | 2019-12-10 | Volvo Truck Corporation | Method for controlling an energy storage system |
JP6235251B2 (ja) | 2013-06-28 | 2017-11-22 | 日立オートモティブシステムズ株式会社 | 二次電池システム |
WO2015008757A1 (ja) * | 2013-07-16 | 2015-01-22 | 日本電気株式会社 | 蓄電池の急速充電方法、急速充電システムおよびプログラム |
KR102002343B1 (ko) | 2013-09-17 | 2019-07-22 | 에스케이이노베이션 주식회사 | 무정전 전원장치용 배터리 충방전 장치 및 방법 |
WO2016011437A1 (en) | 2014-07-18 | 2016-01-21 | Iterna, Llc | Extending shelf life of rechargeable batteries |
US9595955B2 (en) * | 2014-08-08 | 2017-03-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including power storage elements and switches |
US10742054B2 (en) * | 2014-09-30 | 2020-08-11 | International Business Machines Corporation | Intelligent composable multi-function battery pack |
US9853473B2 (en) * | 2014-10-13 | 2017-12-26 | Lenovo (Singapore) Pte. Ltd. | Battery pack assembly and method |
DE102015002072A1 (de) | 2015-02-18 | 2016-08-18 | Audi Ag | Einstellen von Ladungszuständen von Batteriezellen |
US10094880B2 (en) | 2015-04-14 | 2018-10-09 | Semiconductor Components Industries, Llc | Determining battery state of charge using an open circuit voltage measured prior to a device operation stage |
KR101985812B1 (ko) * | 2015-08-18 | 2019-06-04 | 주식회사 엘지화학 | 전지 충전 한계 예측 방법과 이를 이용한 전지 급속 충전 방법 및 장치 |
US11862978B2 (en) * | 2016-03-30 | 2024-01-02 | Panasonic Energy Co., Ltd. | Power supply system, control system and power control method for power supply system |
CN106374151A (zh) * | 2016-09-30 | 2017-02-01 | 上海空间电源研究所 | 一种空间用锂离子电池荷电态的调节装置及调节方法 |
CN108092301A (zh) * | 2016-11-23 | 2018-05-29 | 江苏三棱智慧物联发展股份有限公司 | 一种复合可再生能源发电系统移动控制系统 |
US11121569B2 (en) * | 2018-04-04 | 2021-09-14 | International Business Machines Corporation | Battery state-of-charge indication |
CN109904538A (zh) * | 2019-01-14 | 2019-06-18 | 清华大学 | 锂离子电池及其内部电流分布检测电路 |
JP7254597B2 (ja) * | 2019-04-12 | 2023-04-10 | 株式会社日立製作所 | 電池システム、鉄道車両および電池管理方法 |
US20220200313A1 (en) * | 2019-06-12 | 2022-06-23 | Mitsubishi Electric Corporation | Charge and discharge control device and charge and discharge control method |
US11815557B2 (en) * | 2019-09-09 | 2023-11-14 | Battelle Energy Alliance, Llc | Systems and methods for managing energy storage operations |
WO2021079922A1 (ja) * | 2019-10-25 | 2021-04-29 | 株式会社村田製作所 | 蓄電装置および充放電の制御方法 |
DE102019216961A1 (de) * | 2019-11-04 | 2021-05-06 | Robert Bosch Gmbh | Verfahren zum Laden von zumindest zwei elektrischen Energiespeichern und Fahrzeug |
US20220410755A1 (en) * | 2021-06-25 | 2022-12-29 | Zoox, Inc. | Fleet charging station architecture |
JP2023069402A (ja) * | 2021-11-05 | 2023-05-18 | Fdk株式会社 | バッテリバンクユニット、充電残時間算出方法、および、充電残時間算出プログラム |
DE102022211078A1 (de) | 2022-10-19 | 2024-04-25 | Volkswagen Aktiengesellschaft | Batteriezellverband |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5729116A (en) * | 1996-12-20 | 1998-03-17 | Total Battery Management, Inc. | Shunt recognition in lithium batteries |
JPH10123225A (ja) * | 1996-10-21 | 1998-05-15 | Fuji Elelctrochem Co Ltd | 並列電池の放電装置及び充放電装置 |
JP2000030751A (ja) | 1998-07-10 | 2000-01-28 | Toyota Central Res & Dev Lab Inc | リチウム二次電池の充放電方法 |
JP2001307781A (ja) | 2000-04-24 | 2001-11-02 | Hitachi Ltd | リチウム二次電池及びその充放電方法 |
JP3966702B2 (ja) * | 2001-08-31 | 2007-08-29 | 松下電器産業株式会社 | バッテリ制御装置 |
US7071653B2 (en) * | 2003-05-30 | 2006-07-04 | Matsushita Electric Industrial Co., Ltd. | Method for charging a non-aqueous electrolyte secondary battery and charger therefor |
US7564213B2 (en) * | 2004-08-13 | 2009-07-21 | Eaton Corporation | Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery |
US7525285B2 (en) * | 2004-11-11 | 2009-04-28 | Lg Chem, Ltd. | Method and system for cell equalization using state of charge |
JP4538418B2 (ja) * | 2006-02-15 | 2010-09-08 | トヨタ自動車株式会社 | 二次電池の充放電制御装置 |
JP4572850B2 (ja) * | 2006-03-24 | 2010-11-04 | 株式会社日立製作所 | 電源制御装置 |
JP5319903B2 (ja) * | 2007-09-18 | 2013-10-16 | 三菱重工業株式会社 | 電力貯蔵システム |
JP2010022128A (ja) * | 2008-07-10 | 2010-01-28 | Toyota Motor Corp | 蓄電装置充放電制御システム |
JP2010066107A (ja) | 2008-09-10 | 2010-03-25 | Isuzu Motors Ltd | 流体流量計及びmaf測定方法 |
JP5478870B2 (ja) * | 2008-10-15 | 2014-04-23 | 三菱重工業株式会社 | 蓄電システム及び電力貯蔵システム |
-
2011
- 2011-02-17 JP JP2011537087A patent/JP4957875B2/ja not_active Expired - Fee Related
- 2011-02-17 EP EP11759102.4A patent/EP2410602B1/de not_active Not-in-force
- 2011-02-17 EP EP13170789.5A patent/EP2642583A1/de not_active Withdrawn
- 2011-02-17 CN CN201180002555.4A patent/CN102388499B/zh not_active Expired - Fee Related
- 2011-02-17 US US13/265,414 patent/US20130009605A1/en not_active Abandoned
- 2011-02-17 WO PCT/JP2011/053339 patent/WO2011118294A1/ja active Application Filing
- 2011-02-17 ES ES11759102.4T patent/ES2526393T3/es active Active
- 2011-02-17 BR BR112012023951A patent/BR112012023951A2/pt not_active IP Right Cessation
-
2012
- 2012-03-08 JP JP2012051790A patent/JP5682583B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
ES2526393T3 (es) | 2015-01-12 |
US20130009605A1 (en) | 2013-01-10 |
JP4957875B2 (ja) | 2012-06-20 |
JPWO2011118294A1 (ja) | 2013-07-04 |
CN102388499B (zh) | 2014-06-18 |
CN102388499A (zh) | 2012-03-21 |
JP5682583B2 (ja) | 2015-03-11 |
JP2012143151A (ja) | 2012-07-26 |
EP2642583A1 (de) | 2013-09-25 |
WO2011118294A1 (ja) | 2011-09-29 |
EP2410602A1 (de) | 2012-01-25 |
EP2410602A4 (de) | 2012-10-31 |
BR112012023951A2 (pt) | 2017-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2410602B1 (de) | Verfahren zur ladung und entladung einer lithiumionen-sekundärbatterie sowie lade-/entladesystem dafür | |
US9450439B2 (en) | Secondary battery system and operating method of secondary battery | |
US10141551B2 (en) | Battery system | |
JP4966998B2 (ja) | 充電制御回路、電池パック、及び充電システム | |
CN103329338B (zh) | 电池组和电力消耗设备 | |
US8907616B2 (en) | Hybrid power supply system | |
US9531212B2 (en) | Secondary battery system and charge and discharge method for the same | |
US8476869B2 (en) | Battery voltage equalizer circuit and method for using the same | |
KR101562015B1 (ko) | 병렬 연결된 이차 전지들의 충전 제어 장치 및 방법 | |
JP2011004509A5 (de) | ||
JP2013520947A (ja) | バッテリセルコンバータ管理システム | |
EP3314718A1 (de) | Batterieausgleichsschaltung | |
US7994754B2 (en) | Battery charging apparatus, battery pack, battery charging system, and battery charging method | |
JP2013172551A (ja) | 組電池充電システムおよび組電池充電方法 | |
Vitols | Efficiency of LiFePO4 battery and charger with a mixed two level balancing | |
JPH03173323A (ja) | 二次電池の充電装置 | |
WO2024069759A1 (ja) | 放電制御装置および蓄電池システム | |
EP3772153A1 (de) | Batterieschutzsystem | |
CN118399554A (zh) | 均衡电路、均衡方法、电子设备、电池管理系统和车辆 | |
CN116190823A (zh) | 电池模组及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111020 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20121002 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H02J 7/00 20060101ALI20120926BHEP Ipc: H01M 10/44 20060101AFI20120926BHEP Ipc: H01M 4/505 20100101ALI20120926BHEP Ipc: H01M 10/0525 20100101ALI20120926BHEP |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130906 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140616 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 698642 Country of ref document: AT Kind code of ref document: T Effective date: 20141215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011011759 Country of ref document: DE Effective date: 20150108 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2526393 Country of ref document: ES Kind code of ref document: T3 Effective date: 20150112 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 698642 Country of ref document: AT Kind code of ref document: T Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150226 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150326 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150326 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150227 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011011759 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150217 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
26N | No opposition filed |
Effective date: 20150827 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160222 Year of fee payment: 6 Ref country code: DE Payment date: 20160209 Year of fee payment: 6 Ref country code: ES Payment date: 20160113 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160217 Year of fee payment: 6 Ref country code: FR Payment date: 20160108 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011011759 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170901 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170217 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |