EP2405454B1 - Commutateur de puissance électrique et procédé de fonctionnement d'un commutateur de puissance électrique - Google Patents

Commutateur de puissance électrique et procédé de fonctionnement d'un commutateur de puissance électrique Download PDF

Info

Publication number
EP2405454B1
EP2405454B1 EP11172751.7A EP11172751A EP2405454B1 EP 2405454 B1 EP2405454 B1 EP 2405454B1 EP 11172751 A EP11172751 A EP 11172751A EP 2405454 B1 EP2405454 B1 EP 2405454B1
Authority
EP
European Patent Office
Prior art keywords
circuit breaker
sensor
measurement signal
parameter
electrical circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP11172751.7A
Other languages
German (de)
English (en)
Other versions
EP2405454A1 (fr
Inventor
Shailendra Singh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Sachsenwerk GmbH
Original Assignee
Schneider Electric Sachsenwerk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44588413&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2405454(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schneider Electric Sachsenwerk GmbH filed Critical Schneider Electric Sachsenwerk GmbH
Publication of EP2405454A1 publication Critical patent/EP2405454A1/fr
Application granted granted Critical
Publication of EP2405454B1 publication Critical patent/EP2405454B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • H01H2071/044Monitoring, detection or measuring systems to establish the end of life of the switching device, can also contain other on-line monitoring systems, e.g. for detecting mechanical failures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere

Definitions

  • the invention relates to a circuit breaker according to claim 1 and a method for operating a circuit breaker according to claim 8.
  • DE102005047740 A1 discloses a circuit breaker according to the preamble of claim 1.
  • DE19504714 A1 discloses another example of a circuit breaker with a device for monitoring a state variable.
  • the invention is based on the problem, a device and a method for determining a mechanical condition of an electrical circuit breaker create, so that the mechanical properties of the individual elements of the circuit breaker can be detected and evaluated.
  • the electrical circuit breaker comprises two sensors, each generating a measurement signal and are arranged together at a distance from the same element. In this way, they independently of one another depict the mechanical properties of the element and thus of the circuit breaker.
  • By linking the measuring signals of the mechanical state of the circuit breaker or an element of the circuit breaker can be determined. This can provide accurate information about when a circuit breaker has reached or will reach a critical level of mechanical condition.
  • a breakage of an essential for the function of the circuit breaker element of the circuit breaker can be switched off immediately and a correspondingly redundantly interconnected circuit breaker can be put into operation. If a shaft has, for example, a break between two sensors, then the rotational movement changes and this change can be detected by two sensors arranged correspondingly on both sides of the break and a corresponding evaluation of the measurement signals.
  • judging the mechanical condition can also determine when a circuit breaker should or should be maintained to maintain operability. Furthermore, it can also be determined which element needs to be replaced, whereby the use of the required material can be advantageously planned.
  • a detection unit and a processing unit are provided.
  • the measuring signals of the sensors are brought together centrally at the detection unit.
  • the measurement signals can be tapped at a point for further processing and, on the other hand, a recording of the measurement signals can be coordinated.
  • the processing unit ensures that the measurement signals are converted into a different data representation or other data or signals are derived from the measurement signals.
  • a linking unit is provided.
  • the linking unit establishes a link between a signal assigned to the measuring signal or the measuring signal itself and a further signal.
  • the linking unit is assigned a memory unit for providing further signals. These further signals are supplied to the linking unit.
  • the memory unit advantageously allows signals from simulation, experimental measurement as well as Measuring signals from earlier times can be kept. As a result, the memory unit advantageously allows various connection possibilities from which, for example, a future trend of the mechanical state can be determined.
  • a decision unit judges the status signal or another signal detected by the linking unit. This assessment can lead to appropriate measures that are initiated by the decision-making unit. Examples of this are the already mentioned switch-off of the circuit breaker, the planning of a maintenance operation or the display of a possible failure to take appropriate action.
  • the measurement signal of the first sensor is linked to a further signal, wherein the further signal is associated with the first sensor.
  • the further signal can come from an earlier point in time and it can be advantageously determined from the result of the linkage the progress of the reduction of the mechanical state.
  • the measurement signal of the first sensor is linked to a signal of the second sensor.
  • a breakage of the element can be detected, since the signals have different characteristics.
  • signals for linking with the measurement signal are determined from an experimental study or a simulation. Through the experimental study as well as through the simulation will be Expected values defined for a given mechanical state. This particular condition may correspond to a mechanical condition that is ideal, diminished or defective. If the circuit breaker does not meet these expected values in the sense of a premature reduction in the mechanical state, it is advantageously possible to carry out a corresponding measure for maintaining the functional capability. If the circuit breaker exceeds these expected values, ie if it is not so strongly affected by a reduction in the mechanical state as expected, then the circuit breaker can advantageously continue to operate without corresponding measures and thus provisionally without additional maintenance costs. Thus, no superfluous maintenance work is carried out, but only for a determined need. This reduces the costs of maintenance while increasing operational safety.
  • an externally excited, damped spring-mass model is used to determine the mechanical state.
  • the spring-mass model advantageously detects vibrations or movements and forms them accordingly in a comparison parameter or a comparison parameter curve.
  • a mass of the externally excited, damped spring-mass model is changed.
  • a combination of the comparison parameter or the comparison parameter curve with the instantaneous measured value then shows that a breakage of a mechanically stressed element can be detected by the linkage.
  • a stiffness or the damping is changed.
  • a combination of the comparison parameter or the comparison parameter curve then results in that a change with respect to a clearance of a mechanically stressed element is detected by the association.
  • signals are determined substantially during an opening or during a closure of the electrical circuit breaker.
  • the time periods are used to determine the mechanical state in which the mechanically movable and stationary elements are in motion or under load.
  • the method can be limited to an evaluation of the measurement signals that occur during a short period of time during opening or closing.
  • FIG. 1 shows a schematically illustrated portion 2 of a first circuit breaker with sensors S1 to S19 arranged therein.
  • the portion 2 shows mechanically movable elements and directly or indirectly arranged thereon, fixed elements of the first circuit breaker. The elements are mechanically stressed.
  • the portion 2 shows a switching shaft 22 which extends along a z-direction of a Cartesian coordinate system 14.
  • the Cartesian coordinate system 14 has an x-axis and a y-axis.
  • the switching shaft 22 is mounted in a coupling region 62 on a support member 42.
  • the switching shaft 22 is mounted in a coupling region 64 on a support member 44.
  • the support member 42 is fixedly connected to a stationary member 48 of the first circuit breaker.
  • the support member 44 is fixedly connected to a fixed element 52 of the first circuit breaker.
  • the storage of the switching shaft 22 allows self-rotation according to a double arrow 202.
  • a switching shaft lever 24 is fixedly connected to the switching shaft 22.
  • the switching shaft lever 24 is connected to a coupling rod 32 via a coupling region 66.
  • the coupling rod 32 is fed to a contact device 28 of the first circuit breaker.
  • the contact device 28 is fixedly connected to a fixed element 54 of the first circuit breaker.
  • a shift shaft lever 26 is fixedly connected to the shift shaft 22. Via a coupling region 68 of the shift lever 26 is connected to a first control rod 36, an actuating element 34 and a second control rod 38.
  • the second control rod 38 is connected via a coupling region 72 with the support member 46.
  • the support member 46 is fixedly connected to a fixed element 56 of the first circuit breaker.
  • the actuator 34 is adapted to increase or decrease along its longitudinal direction.
  • the actuator 34 ensures that the length of the assembly of the first control rod 36, the actuator 34 and the second control rod 38 in the longitudinal direction of the actuating element 34 is variable.
  • the actuator 34 may for example have a spring function.
  • the actuator 34 can be biased by a first rotation of the switching shaft 22 by a drive, not shown, the actuator 34. This energy is stored in the actuator 34 and can be used by triggering the actuator 34 to a second rotation of the switching shaft 22 against the first rotation.
  • the sensor S1 is attached to the stationary member 48.
  • the sensor S2 is attached to the support member 42.
  • the sensor S3 is mounted on the shift shaft 22 between the coupling portion 62 and the shift lever 24.
  • the sensor S4 is attached to the shift lever 24.
  • the sensor S5 is at the Coupling rod 32 attached.
  • the sensor S6 is attached to the contactor 28.
  • the sensor S7 is attached to the fixed member 54.
  • the sensor S8 is attached to the shift shaft 22 between the shift lever 24 and the shift lever 26.
  • the sensor S9 is attached to the shift lever 26.
  • the sensor S10 is attached to the control rod 36.
  • the sensor S11 is attached to the actuator 34.
  • the sensor S12 is attached to the second control rod 38.
  • the sensor S13 is attached to the support member 46.
  • the sensor S14 is attached to the fixed member 56.
  • the sensors S15 and S16 are adjacent to the shift shaft 22 between the coupling portion 64 and the shift shaft lever 26, but spaced apart.
  • the sensor S17 is arranged on the support element 44.
  • the sensor S18 is attached to the fixed member 52.
  • the sensor S19 is attached to a stationary element 58 of the first circuit breaker.
  • FIG. 2 shows a schematically illustrated portion 4 of a second circuit breaker with sensors S20 to S28 arranged therein. Mechanically movable elements as well as fixed elements of the second circuit breaker are shown.
  • a shaft 74 fixedly connected to a flywheel 76.
  • the Cartesian coordinate system 16 has an x-axis and a y-axis besides the z-axis.
  • the flywheel 76 is supported via the shaft 74 such that the flywheel 76 is movable to a self-rotation corresponding to a double arrow 204.
  • Radially outward, the flywheel 76 is connected via a coupling region 98 with a coupling rod 78.
  • the coupling rod 78 in turn is connected via a coupling region 102 with a control rod 82.
  • the control rod 82 is fed to a contact device 84.
  • the contact device 84 is fixed to a fixed element 92 of the second circuit breaker connected.
  • the control rod 82 is guided by a guide member 86 and a guide member 88 along the y-direction.
  • the guide member 86 is fixedly connected to a fixed element 94 of the second circuit breaker.
  • the guide member 88 is fixedly connected to a fixed element 96 of the second circuit breaker.
  • the control rod 82 is adapted to move in the contactor 84 a portion of a switch contact, not shown.
  • the control rod 82 is movable in or counter to the y-direction and thus leads to a closing or opening of the switching contact in the contact device 84.
  • the rotational movement of the shaft 74 is via the flywheel 76 and arranged between the flywheel 76 and control rod 82 coupling rod 78 converted into a rectilinear movement of the control rod 82 along the y-direction.
  • the sensors S20 and S21 are mounted at different locations of the flywheel 76.
  • the sensor S22 is attached to the coupling rod 78.
  • the sensors S23 and S26 are mounted on the control rod 82 at a distance.
  • the sensor S24 is attached to the stationary member 96.
  • the sensor S25 is attached to the guide member 88.
  • the sensor S27 is attached to the contactor 84.
  • the sensor S28 is attached to the stationary member 92.
  • the attachment of the sensors S1 to S28 from the respective FIGS. 1 and 2 can be different.
  • the sensors S1 to S28 may be attached to a fixed or a movable element of the first or the second circuit breaker. Furthermore, it is possible to attach a plurality of sensors to one element.
  • the sensors S1 to S28 from the FIGS. 1 and 2 can each be designed differently.
  • One of the sensors S1 to S28 is attached to an element and detects characteristics of the element or characteristics of the environment of the element.
  • one of the sensors S1 to S28 as an accelerometer or acceleration sensor for measuring the acceleration of a mechanically movable or to measure the vibration of a fixed element, as a tensiometer for measuring a mechanical stress, as a rotation angle sensor or as an acoustic sensor for measuring an acoustic signal or be designed as a pressure wave sensor.
  • An accelerometer may, for example, be embodied as a MEMS component, wherein MEMS stands for "Micro Electrical Mechanical System" and denotes a miniaturized component.
  • the acceleration can be measured in one or more axes. Depending on the need, for example, a measurement of a movement, for example in the form of an acceleration, in a single axis is already sufficient.
  • a measurement signal is formed.
  • the measuring signal can be transmitted by cable or wirelessly.
  • a wireless communication for example, an IEEE 802.11 compliant transmission is possible.
  • a corresponding device for transmitting the measurement signal is in this case already on the sensor S1 to S28.
  • Measurement signals, recorded measurement signals, parameters / parameter curves, comparison parameters, comparison parameter curves, etc. are generally also referred to as signals.
  • FIG. 3 shows a schematic block diagram of a device 18 for detection and processing of measurement signals.
  • Sensors Sa and Sz represent the sensors S1 to S28 of FIG FIGS. 1 and 2 .
  • the sensor Sa transmits Measuring signal according to an arrow 116 to a detection unit 104.
  • the sensor Sz sends a measurement signal according to an arrow 118 to the detection unit 104th
  • the detection unit 104 is supplied with a trigger signal 122 and a time signal 124.
  • the trigger signal 122 serves to determine a start or end time of a recording of a measurement signal of the sensor Sa and / or Sz. Usually, when the circuit breaker is closed, the start of closing is selected as the start time and the end of closing as the end time. When opening, usually the start of the opening is chosen as the start time and the end of the opening as the end time.
  • the time signal 124 serves to provide a recorded measurement signal with a time stamp.
  • the detection unit 104 assumes the function of a multiplexer for a central combination and recording of measurement signals.
  • Recorded measurement signals are supplied from the detection unit 104 according to an arrow 126 and an arrow 127 to a processing unit 106.
  • the processing unit 106 serves to transform recorded measurement signals into a parameter or a parameter curve.
  • the processing unit 106 is not required if a measurement signal already corresponds to a parameter or a parameter curve.
  • An example of the function of the processing unit 106 is the transformation of measurement signals of an accelerometer.
  • the processing unit 106 may transform the measured acceleration, ie the acceleration over time, into a speed-time parameter curve or a path-time parameter curve.
  • the processing unit 106 transforms detected measurement signals into the frequency domain.
  • both examples explained above can also be combined.
  • a parameter or a parameter curve determined by the processing unit 106 is supplied to a linking unit 108 according to an arrow 128 and / or according to an arrow 129. Furthermore, the linking unit 108 is provided with comparison parameters or comparison parameter curves from a memory unit 112 in accordance with a double arrow 132. Likewise, the other units may be equipped with a storage unit, not shown.
  • the linking unit 108 serves to perform a link, wherein this linkage is performed on the basis of the supplied parameter / parameter curves and / or the provided comparison parameters / comparison parameter curves.
  • a link in addition to a logical operation, such as, for example, greater than or equal to an arithmetic or other, even more complex operation is to be understood, which establishes a connection between the linked signals.
  • one or more state variables are determined.
  • An example of a state variable is the failure probability of the circuit breaker.
  • a state variable represents the actual mechanical state of an element, part of the circuit breaker or the entire circuit breaker.
  • the linking unit 108 it is also possible for the linking unit 108 to store / store parameter / parameter curves, state variables or other data in the memory unit 112.
  • a reduction of the mechanical state of an element, of a subarea or of the entire circuit breaker can, for example, be linked to the lifetime of the circuit breaker by linking a current, actually determined measured value and recorded measured values in the past. This can be used, for example, to draw conclusions about the future and a possible future outage.
  • One or more state variables are supplied to a decision unit 114 according to the arrow 134.
  • an evaluation of the supplied state variable (s) is performed and, if necessary, a corresponding measure 150 is initiated.
  • a measure 150 may include, for example, shutting down the circuit breaker, predicting a fault, or initiating or scheduling a corresponding maintenance of the circuit breaker.
  • Demarcations I, II, III and IV each describe a possible embodiment of the device 18.
  • the delimitations I, II, III and IV each refer to a separation between a domain of the circuit breaker and an external domain.
  • the domain of the circuit breaker refers to the inside of the circuit breaker and directly on the circuit breaker associated elements or units.
  • the external domain refers to elements or units not directly associated with the circuit breaker.
  • a unit assigned to the external domain can be a decision unit 114 connected via a data network.
  • the determination of the delimitation I, II, III or IV with respect to the domain of the circuit breaker can serve an additional delineation I, II, III or IV for further separation into sub-devices or subsystems.
  • the detection unit 104 is outside the domain of the circuit breaker.
  • Example of the detection unit 104 is a portable device, which is in the vicinity of the Circuit breaker is brought to wirelessly according to the arrows 116 and 118 to detect the measurement signals generated by the sensors Sa to Sz.
  • the detection unit 104 is located within the domain of the circuit breaker.
  • An example of this is a multiplexer corresponding to the detection unit 104, which receives the measurement signals of the sensors Sa to Sz and forwards them via a connection for data transmission to the processing unit 106 arranged outside the domain of the circuit breaker according to the arrows 126 and 127. A transformation of the recorded measurement signals thus takes place outside the domain of the circuit breaker.
  • processing unit 106 is within the domain of the circuit breaker.
  • a processing or transformation of the recorded measurement signals takes place within the domain of the circuit breaker and the corresponding parameters / parameter curves are thus available to the outside for further processing by the linking unit 108.
  • linkage unit 108 is within the domain of the circuit breaker.
  • a state variable is thus determined within the domain of the circuit breaker and forwarded to the decision unit 114 according to the arrow 134.
  • the evaluation of the mechanical state of the circuit breaker takes place to initiate a measure outside the domain of the circuit breaker.
  • the entire data acquisition and processing is performed on the circuit breaker and the determined state variables can be centralized one or more decision units 114 supplied.
  • the decision unit 114 may be a monitoring center connected via data networks with the corresponding power switches, from which maintenance operations are planned and / or a shutdown is performed.
  • the entire device 18 is located within the circuit breaker.
  • the circuit breaker for example, is able to set the operation independently as soon as it is determined by the decision unit 114 that the mechanical state is no longer sufficient to ensure safe operation.
  • a further circuit breaker connected in parallel for example, can be put into operation by means of a corresponding output as a replacement for the circuit breaker taken out of operation.
  • units may be omitted between the sensors Sa to Sz and the decision unit 114, skipping a unit in communication. For example, if the measurement signals are present in the required form, they need not be transformed by the processing unit 106. The processing unit 106 is therefore not required and the detection unit 104 supplies the recorded measurement signals directly to the association unit 108.
  • the respective communication according to the arrows 116, 118, 122, 124, 126, 127, 128, 129, 132, 134 and 150 may be wired or wireless.
  • FIG. 4 shows an overview diagram 6, which includes various embodiments of a combination of parameters and / or parameter curves.
  • the overview diagram 6 comprises three dimensions.
  • signals at a time n0 describe the mechanical state of a new-value circuit breaker, that is, for example, at the time of delivery in the past.
  • a time np describes a time after the delivery in the past and a time nc describes the current time.
  • the abovementioned times each describe a time of the recording of the measuring signal or a time associated with the recording.
  • An S-axis describes a sensor axis, by which the different attachment points or mounting locations of the sensors are taken into account. On the S-axis, two different sensors Sx and Sy are plotted.
  • an embodiment CB0 corresponds to the actual circuit breaker under consideration, in which the mechanical state is to be determined and evaluated.
  • An embodiment CBx describes a representative circuit breaker which has been determined, for example, from data collections via a plurality of identical circuit breakers and over a real, specific period of time.
  • An embodiment of CBs corresponds to a simulated circuit breaker.
  • an S-CB plane and its parallel planes there are signals which are assigned to a particular point in time.
  • signals which are each assigned to a sensor Sx or Sy In an n-S plane and its parallel planes, there are signals which are respectively assigned to a respective embodiment CB0, CBx or CBs of the power switch.
  • coordinates D000 to D221 are shown, which for parameter / parameter curves or Comparison parameters / comparison parameter curves stand.
  • the coordinates D200 and D201 represent parameters / parameter curves which were determined at a current time nc, these parameters / parameter curves corresponding to the parameters / parameter curves supplied according to the arrows 128 and 129 of the linking unit 108.
  • the other coordinates D000, D100, D010, D110, D210, D020, D120, D220, D001, D101, D011, D111, D211, D021, D121, D221 are the same as those provided by the memory unit 112 of the link unit 108
  • FIG. 3 provided comparison parameters / comparison parameter curves.
  • the overview diagram 6 shows examples of possible links 136, 138, 142 and 144.
  • the starting point of the links 136, 138, 142 and 144 is the parameter or the parameter curve at the coordinate D200, wherein behind the coordinate D200 a currently determined measurement signal of the sensor Sx of real existing circuit breaker is.
  • parameters / parameter curves of coordinates D200 and D201 are compared. This means that parameters / parameter curves are compared that originate from different sensors Sx and Sy at the same time nc of the considered circuit breaker CB0. If the sensor Sx corresponds to the sensor S15, for example FIG. 1 and the sensor Sy on the S16 sensor FIG. 1 Thus, by the link 136, for example, a breakage of the switching shaft 22 from FIG. 1 be closed between the sensors S15 and S16.
  • link 136 may include parameter / parameter curves from more than two sensors.
  • An example of this is the arrangement of the sensors S4, S3 and S8 in FIG FIG. 1
  • the parameter / parameter curves are based, for example, on a break of the switching shaft 22 or of the shift lever 24 FIG. 1 can be closed.
  • a break of the flywheel 76 from FIG. 2 with the sensors S20 and S21 arranged thereon can be determined by the link 136.
  • the mechanical state of the connection between fixed parts can be judged by the link 136.
  • Corresponding arrangements can be found in FIG. 1 in sensor pairs S1 and S2, S6 and S7, S13 and S14, and S17 and S18. In FIG.
  • Such arrangements are found in the pairs of sensors S24 and S25 and S27 and S28.
  • a reduction in the mechanical state of a bearing can be achieved by the combination 136 of parameters / parameter curves of the sensor pairs S2 and S3, S5 and S6, S16 and S17 FIG. 1 and sensor pairs S26 and S27, S25 and S26 FIG. 2 be determined.
  • a reduction in the mechanical state of a coupling between two mechanically movable elements can also be determined by the link 136. Examples of required sensor pairs can be found in FIG. 1 in S4 and S5 as well as S9 and S10. In FIG. 2 Such sensor pairs can be found in S21 and S22 as well as S22 and S23.
  • Link 138 involves comparison parameters / comparison parameter curves of the same sensor from a past measurement at time np with coordinate D100. These comparison parameters / comparison parameter curves can also be averaged values from previous measurements. The link 138 can thus be used to determine how a reduction or change in the mechanical state over time develops.
  • the comparison parameters / comparison parameter curves of the coordinate D100 become in the memory unit 112 after FIG. 3 held and updated by the linking unit 108 and retrieved when needed.
  • Link 142 relates instantaneous parameter / parameter curves of coordinate D200 to comparison parameters / comparison parameter curves of a simulated circuit breaker CBs.
  • the Comparison parameters / comparison parameter curves of the coordinate D020 of the simulated circuit breaker CBs refer to the instant n0.
  • the actual state of the power switch CB0 is compared in the form of a signal at the coordinate D200 with the delivery target state of a simulated circuit breaker CBs in the form of a signal at the coordinate D020.
  • Link 144 relates instantaneous parameters / parameter curves to comparison parameters / comparison parameter curves of a representative circuit breaker CBx.
  • the comparison parameters / comparison parameter curves of coordinate D210 are values determined and averaged over several circuit breakers in the experiment. This can be used to determine how much the reduction of the mechanical state of the circuit breaker or an element of the circuit breaker, the sensor is associated with the Sx has progressed compared to a standard reduction at the same time of operation.
  • the links 136, 138, 142 and 144 each represent examples of a link. Links of any kind, that is in any other combination, are conceivable.
  • An exemplary embodiment of the method provides for the combination of measurement signals or recorded measurement signals from at least two sensors.
  • at least two sensors are arranged on one element of the circuit breaker.
  • certain expected values for the measurement signals result.
  • the sensors are arranged on a shaft, for example, which is usually exposed to a similar rotational movement, it is expected that a nearly identical measuring signal will be generated by a sensor at all locations. If this is not the case or if there is too much deviation from a certain tolerance range, then it is possible to link the measurement signals to one another damage to the shaft, other associated elements or the bearing of the shaft are closed.
  • Another embodiment of the method relates to the comparison of measurement signals with signals from a simulation, corresponding to the signals of the embodiment CBs FIG. 4 .
  • This embodiment is based on an externally excited, damped spring-mass model, which will be explained below.
  • Equation 1 shows the ordinary differential equation of an externally excited, damped spring-mass model.
  • Equation 1 m is a mass, c is an attenuation constant, k is a spring constant, x is an acceleration, x is a velocity, and x is a displacement or a path.
  • the right-hand part of equation 1 corresponds to a periodic excitation by a force with F 0 as force amplitude, f as frequency and t as time.
  • Equation 2 A stationary solution of Equation 1 is shown in Equation 2.
  • x t X cos 2 ⁇ ft - ⁇
  • Equation 2 X is the amplitude, ⁇ is the phase, and x ( t ) is a simulated measurement signal.
  • the mass m , the damping constant c and the spring constant k in Equation 1 predetermined such that these specifications correspond to a specific mechanical state of the associated element of the circuit breaker.
  • the mass m for example, a break of an element of the circuit breaker can be taken into account.
  • Relaxation and an increased play of connections is determined by the change of the damping constant c and / or the spring constant k .
  • the simulated measurement signal x ( t ) can be determined by solving the differential equation according to Equation 1.
  • harmonic excitation was based on the damped spring-mass model.
  • the externally excited, damped spring-mass model can be extended in such a way that even non-harmonic forces in Equation 1 can be applied to the externally excited, damped spring-mass model.
  • the Fourier transform converts a time signal into the frequency domain. According to the superposition principle, the solutions of different forces can be summed up when the system is linear.
  • the externally excited, damped spring-mass model is linear when the spring force is proportional to the displacement and the damping is proportional to the speed in the range considered. With the help of the Fourier transformation, therefore, a force, such as in FIG. 5 shown to be used for the procedure.
  • FIG. 5 shows a force-time diagram 12, wherein perpendicularly a force F and horizontally a time t are plotted.
  • the force according to a characteristic curve 336 acts, for example, on one of the mechanically more movable elements of the circuit breaker.
  • the characteristic curve 336 further corresponds, for example, to one Comparison parameter curve as shown at coordinate D020 of FIG. 4 assigned.
  • Such a force can be linked, for example, as a Fourier transform in a simple manner with the correspondingly transformed above spring-mass model.
  • Equation 3 [M] corresponding to a mass matrix, [C] a damping matrix, [K] of a stiffness matrix, ⁇ x ⁇ of the acceleration, ⁇ x ⁇ speed, ⁇ x ⁇ of the deflection and ⁇ f ⁇ is the exciting force.
  • the matrices [ M ], [ C ] and [ K ] are adapted according to the situation to be simulated in order to determine a comparison parameter or a comparison parameter curve, corresponding to a simulated measurement signal, which corresponds to a specific mechanical state , and to compare this comparison parameter or this comparison parameter curve with a current measurement signal.
  • a simulation of a fraction of an element is determined by a change in the mass matrix [ M ].
  • the comparison parameter determined from the spring-mass model or the comparison parameter curve allows actual fractions of an element or between two or several elements.
  • the automatic release or increasing play of joints or bearings is influenced by the change of the stiffness matrix [ K ] and / or the damping matrix [ C ].
  • the link is based on a comparison of different frequency responses H ( ⁇ ).
  • the Fourier transformation allows the deflection x or ⁇ x ⁇ , the velocity ⁇ or ⁇ ⁇ ⁇ or the acceleration x or ⁇ ⁇ ⁇ to be transformed into the Fourier transform X ( ⁇ ).
  • the force can also be described as a Fourier transform F ( ⁇ ).
  • the frequency response H ( ⁇ ) thus results from the ratio of the Fourier transformed X ( ⁇ ) of the deflection to the Fourier transformed F ( ⁇ ) of the exciting force.
  • H ⁇ X ⁇ F ⁇
  • the frequency response H ( ⁇ ) from a measurement signal recorded at a current point in time contains the information about the actual mechanical state.
  • a typical frequency response H ( ⁇ ) can have characteristics typical of certain mechanical state reductions. By an appropriate comparison with several typical frequency responses, an actually existing reduction in the mechanical state can be detected.

Claims (15)

  1. Commutateur de puissance électrique comprenant des éléments (22-58; 74-92) sollicités mécaniquement, les éléments (22-58; 74-92) étant mobiles mécaniquement ou fixes, le commutateur de puissance électrique comprenant deux capteurs (S1-S28; Sa, Sx; Sx, Sy), un signal de mesure (116; 118) pouvant être généré dans chaque cas par les deux capteurs (S1-S28; Sa, Sx; Sx, Sy), caractérisé en ce que les deux capteurs (S1-S28; Sa, Sx; Sx, Sy) sont agencés à distance l'un de l'autre sur un des éléments (22-58; 74-92) sollicités mécaniquement et en ce qu'une diminution d'un état mécanique du commutateur de puissance électrique ou de l'élément (22-58; 74-92) du commutateur de puissance électrique est déterminée sur la base d'une combinaison des deux signaux de mesure (116, 118).
  2. Commutateur de puissance électrique selon la revendication 1, un des signaux de mesure (116; 118) pouvant être amené à une unité de détection (104) à partir d'un des deux capteurs (S1-S28; Sa, Sx; Sx, Sy), l'unité de détection (104) étant conçue pour que les signaux de mesure (116; 118) des deux capteurs (S1-S28; Sa, Sx; Sx, Sy) puissent être regroupés de manière centrale, un signal de mesure reçu (126; 127) pouvant être délivré par l'unité de détection (104), le signal de mesure (116; 118) ou le signal de mesure reçu (126; 127) pouvant être amené à une unité de traitement (106), l'unité de traitement (106) étant conçue pour qu'un paramètre ou une courbe de paramètre (128; 129) soit produits à partir du signal de mesure (116; 118) ou à partir du signal de mesure reçu (126; 127).
  3. Commutateur de puissance électrique selon la revendication 1 ou 2, le signal de mesure (116; 118), le signal de mesure reçu (126; 127) ou le paramètre ou la courbe de paramètre (128; 129) pouvant être amenés à une unité de combinaison (108), l'unité de combinaison (108) assurant qu'une combinaison entre le signal de mesure (116; 118), un autre signal de mesure (116; 118), le signal de mesure reçu (126; 127), un autre signal de mesure reçu (126; 127), le paramètre ou la courbe de paramètre (128; 129), un autre paramètre ou une autre courbe de paramètre (128; 129) et un paramètre de comparaison ou une courbe de paramètre de comparaison (132) puisse être réalisée, et en ce que l'état mécanique du commutateur de puissance électrique est déterminé à partir de la combinaison.
  4. Commutateur de puissance électrique selon la revendication 3, une unité de mémoire (112) étant associée à l'unité de combinaison (108), le paramètre de comparaison ou la courbe de paramètre de comparaison (132) pouvant être mis à disposition dans l'unité de mémoire (112), et d'autres paramètres de comparaison ou d'autres courbes de paramètre de comparaison (132) pouvant être mis en mémoire dans l'unité de mémoire (112) par l'unité de comparaison (108).
  5. Commutateur de puissance électrique selon l'une quelconque des revendications précédentes, le signal de mesure (116; 118), le signal de mesure reçu (126; 127) ou le paramètre ou la courbe de paramètres (128; 129) ou l'état mécanique pouvant être amené à une unité de décision (114), l'unité de décision (114) permettant de prendre une décision, la décision permettant d'induire une mesure concernant le commutateur de puissance électrique, et la mesure concernant un rétablissement d'un état mécanique ou l'influence de l'état de fonctionnement du commutateur de puissance électrique.
  6. Commutateur de puissance électrique selon l'une quelconque des revendications précédentes, les deux capteurs (S1-S28; Sa, Sx; Sx, Sy) étant réalisés sous la forme d'un capteur d'accélération, d'un tensiomètre, d'un capteur d'angle de rotation ou d'un capteur d'ondes de pression.
  7. Commutateur de puissance électrique selon l'une quelconque des revendications précédentes, le capteur (S1-S28; Sa, Sx; Sx, Sy), l'unité de détection (104), l'unité de traitement (106), l'unité de combinaison (108), l'unité de mémoire (112) et/ou l'unité de décision (114) étant conçues pour établir une communication sans fil avec une des autres unités (S1-S28; Sa, Sx; Sx, Sy; 104; 106; 108; 112; 114).
  8. Procédé permettant de faire fonctionner un commutateur de puissance électrique, le commutateur de puissance comprenant des éléments (22-58; 74-92) sollicités mécaniquement, les éléments (22-58; 74-92) étant mobiles mécaniquement ou fixes, le commutateur de puissance électrique comprenant un premier capteur (S1-S28; Sa, Sx; Sx, Sy) et un deuxième capteur (S1-S28; Sa, Sx; Sx, Sy), en ce que le premier et le deuxième capteur (S1-S28; Sa, Sx; Sx, Sy) sont agencés à distance l'un de l'autre sur un des éléments (22-58; 74-92) sollicités mécaniquement, en ce que, selon le procédé, un signal de mesure (116; 118) est généré dans chaque cas par les capteurs (S1-S28; Sa, Sx; Sx, Sy), et en ce qu'une diminution d'un état mécanique du commutateur de puissance électrique ou de l'élément (22-58; 74-92) du commutateur de puissance électrique est déterminée sur la base d'une combinaison des deux signaux de mesure (116, 118).
  9. Procédé selon la revendication 8, le signal de mesure (116) associé au premier capteur (Sx) ou un signal (126; 128) associé au premier capteur (Sx) étant combiné à un paramètre de comparaison ou à une courbe de paramètre de comparaison (132) associés au premier capteur (Sx).
  10. Procédé selon la revendication 8, le signal de mesure (116) associé au premier capteur (Sx) ou un signal (126; 128) associé au premier capteur (Sx) étant combiné à un signal (118; 127; 129; 132) associé au deuxième capteur (Sy).
  11. Procédé selon la revendication 9 ou 10, le paramètre de comparaison ou la courbe de paramètre de comparaison (132) associés au premier capteur (Sx) et/ou le signal (118; 127; 129; 132) associé au deuxième capteur (Sy) étant générés par une étude expérimentale (CBx) concernant plusieurs commutateurs de puissance ou par une simulation (CBs) du commutateur de puissance.
  12. Procédé selon l'une quelconque des revendications 8 à 11, un modèle ressort-masse amorti, excité de manière externe, étant utilisé pour déterminer le paramètre de comparaison ou la courbe de paramètre de comparaison (132), un signal sous la forme d'une force (F; {f}) étant fourni préalablement au modèle ressort-masse, et une masse (m; [M]), une rigidité (k; [K]) et un amortissement (c; [C]) étant fournis préalablement au modèle ressort-masse.
  13. Procédé selon la revendication 12, la masse (m; [M]) étant modifiée.
  14. Procédé selon la revendication 12 ou 13, la rigidité (k; [K]) et/ou l'amortissement (c; [C]) étant modifiés.
  15. Procédé selon l'une quelconque des revendications 8 à 14, le signal de mesure (116; 118) étant détecté sensiblement pendant une ouverture ou une fermeture du commutateur de puissance.
EP11172751.7A 2010-07-08 2011-07-05 Commutateur de puissance électrique et procédé de fonctionnement d'un commutateur de puissance électrique Revoked EP2405454B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010026528 DE102010026528A1 (de) 2010-07-08 2010-07-08 Elektrischer Leistungsschalter und Verfahren zum Betreiben eines elektrischen Leistungsschalters

Publications (2)

Publication Number Publication Date
EP2405454A1 EP2405454A1 (fr) 2012-01-11
EP2405454B1 true EP2405454B1 (fr) 2017-01-18

Family

ID=44588413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11172751.7A Revoked EP2405454B1 (fr) 2010-07-08 2011-07-05 Commutateur de puissance électrique et procédé de fonctionnement d'un commutateur de puissance électrique

Country Status (3)

Country Link
EP (1) EP2405454B1 (fr)
CN (1) CN102394190B (fr)
DE (1) DE102010026528A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8924168B2 (en) 2011-01-27 2014-12-30 General Electric Company Method and system to detect actuation of a switch using vibrations or vibration signatures
CN106662616B (zh) 2014-11-12 2019-05-10 Abb瑞士股份有限公司 枢转支撑结构和断路器
CN107976684B (zh) * 2016-10-25 2023-08-04 日立能源瑞士股份公司 用于监测电路断路器的系统和方法
WO2018224155A1 (fr) * 2017-06-08 2018-12-13 Abb Schweiz Ag Dispositif de surveillance pour systèmes de commutation
FR3101191B1 (fr) 2019-09-25 2023-05-12 Schneider Electric Ind Sas Détermination d’un état d’un appareil de coupure
EP3886128B1 (fr) * 2020-03-24 2024-01-24 ABB Schweiz AG Dispositif interrupteur électrique

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3505818A1 (de) * 1985-02-20 1986-08-21 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Ueberwachungs- und kontrolleinrichtung fuer schaltgeraete
CN1107227A (zh) * 1994-02-16 1995-08-23 中国电力工业部电力科学研究院 高电压断路器机械特性测试系统及在线诊断方法
DE4408631C2 (de) * 1994-03-09 1996-11-14 Siemens Ag Einrichtung zur Funktionssicherheitsüberwachung von Leistungsschalteinrichtungen (Diagnosegerät)
DE19504714B4 (de) * 1995-02-14 2006-08-24 Daimlerchrysler Ag Verfahren und Vorrichtung zur Überwachung einer Zustandsgröße eines Leistungsschalters
DE19519721C1 (de) * 1995-05-30 1996-10-24 Aeg Energietechnik Gmbh Leistungsschalter und Verfahren zur Überwachung des Schalterantriebs
DE19604203A1 (de) * 1996-02-06 1997-08-07 Abb Patent Gmbh Verfahren zur Überwachung eines Mittel- oder Hochspannungsleistungsschalters
DE10260248B4 (de) * 2002-12-20 2005-07-21 Siemens Ag Verfahren zur Bestimmung der Restlebensdauer eines Schaltgerätes und zugehörige Anordnung
WO2005073992A1 (fr) * 2004-01-30 2005-08-11 Abb Technology Ltd. Moniteur d'etat destine a un dispositif de distribution electrique
CN2852052Y (zh) * 2005-05-23 2006-12-27 湖南科技大学 用于回转窑运行轴线快速检测的便携式装置
DE102005047740A1 (de) * 2005-09-29 2007-04-05 Siemens Ag Energieverteilungsgerät, insbesondere Leistungsschalter
EP2037212B1 (fr) * 2007-09-12 2015-12-30 Siemens Aktiengesellschaft Procédé et capteur de détermination de déflection et/ou souche
DE102008033320B3 (de) * 2008-07-16 2010-03-04 Ean Elektroschaltanlagen Gmbh Verfahren zur Überwachung einer Schalteinrichtung für elektronische Heizstromkreise

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2405454A1 (fr) 2012-01-11
CN102394190A (zh) 2012-03-28
DE102010026528A1 (de) 2012-01-12
CN102394190B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
EP2405454B1 (fr) Commutateur de puissance électrique et procédé de fonctionnement d'un commutateur de puissance électrique
EP3297794A1 (fr) Procédé et dispositif de commande/régulation d'une articulation de robot entraînée par actionneur
DE102009002682B4 (de) Einrichtung und Verfahren zur Residuenauswertung eines Residuums zur Erkennung von Systemfehlern im Systemverhalten eines Systems eines Flugzeugs
DE10353672A1 (de) Verfahren zur Lastbegrenzung in Antriebssystemen
DE102011008561A1 (de) Funktionsüberwachtes Führungssystem zur Verstellung zumindest einer Systemkomponente sowie Verfahren zur Funktionsüberwachung eines solchen Führungssystems
EP2656087B1 (fr) Essai d'un dispositif de contrôle destiné à déterminer un état de tension d'un réseau de bord à haute tension
DE102006025878A1 (de) Verfahren zur Prüfung eines dynamischen Drehmomenterzeugers und Vorrichtung zur Ermittlung des dynamischen Verhaltens einer Verbindungswelle
EP3891518B1 (fr) Système et procédé de détection d'usure d'un dispositif de commutation électromécanique
EP3145681A1 (fr) Procédé permettant d'éviter à un robot de subir des collisions dans une station de travail
DE102017103020B4 (de) Gebäudetürsystem für zumindest einen elektromotorisch angetriebenen Türflügel einer Tür und Verfahren zum Erzeugen von Wartungsinformationen für ein Gebäudetürsystem
EP1163532A1 (fr) Procede pour la reconnaissance d'etat d'un accumulateur d'energie
DE10344088A1 (de) Funktionsprüfvorrichtung für ein Feldgerät und Verfahren zur Funktionsprüfung eines Feldgeräts und Feldgerät
DE102019217740B3 (de) Verfahren und Anordnung zur Überprüfung eines Zustands eines Koordinatenmessgeräts oder eines Drehtisches
WO2013186183A1 (fr) Composant de machine d'une chaîne cinématique ainsi que procédé de conception et/ou de mise en service et/ou de fonctionnement d'une telle chaîne cinématique
EP3283762A1 (fr) Procédé servant à déterminer la durée de vie restante d'une éolienne
WO2014154633A1 (fr) Système diagnostique pour un capteur de force
DE102007037616A1 (de) Verfahren und Anordnung zum Einfahren und Kalibrieren eines elektromechanischen Parkbremsensystem
EP1750188A1 (fr) Procédé et dispositif de couplage destinés à la surveillance d'état sécurisée d'une unité d'entraînement munie d'un moteur polyphasé
DE102018116444A1 (de) Verfahren zum Steuern eines Windparks
DE102005023252A1 (de) Verfahren zur Bestimmung des Schädigungsgrades und der Restlebensdauer von sicherheitsrelevanten Anlagenteilen an Großanlagen
EP2473818A1 (fr) Dispositif pour mesurer et/ou enregistrer des distances et des variations de distance et dispositif pour mesurer et/ou enregistrer des contraintes mécaniques
EP1555683A1 (fr) Procédé pour contrôler un disjoncteur
DE102011002832B4 (de) Ruder für Schiffe mit einer Ruderüberwachungsvorrichtung
DE102013215157B3 (de) Verfahren zur aktiven oder passiven Schwingungsdämpfung
DE102007017708A1 (de) Motor mit Schwingungsaufnehmer

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120706

17Q First examination report despatched

Effective date: 20150105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 11/00 20060101AFI20160729BHEP

Ipc: H01H 71/04 20060101ALN20160729BHEP

Ipc: H01H 9/54 20060101ALN20160729BHEP

INTG Intention to grant announced

Effective date: 20160817

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 863330

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011011536

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011011536

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: ABB SCHWEIZ AG

Effective date: 20171010

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

R26 Opposition filed (corrected)

Opponent name: ABB SCHWEIZ AG

Effective date: 20171010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 863330

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110705

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190619

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190625

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190703

Year of fee payment: 9

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502011011536

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502011011536

Country of ref document: DE

R26 Opposition filed (corrected)

Opponent name: ABB POWER GRIDS SWITZERLAND AG

Effective date: 20171010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20200223

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20200223

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 863330

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200223