EP2405412A1 - Verfahren zum Färben eines Melders - Google Patents
Verfahren zum Färben eines Melders Download PDFInfo
- Publication number
- EP2405412A1 EP2405412A1 EP11008071A EP11008071A EP2405412A1 EP 2405412 A1 EP2405412 A1 EP 2405412A1 EP 11008071 A EP11008071 A EP 11008071A EP 11008071 A EP11008071 A EP 11008071A EP 2405412 A1 EP2405412 A1 EP 2405412A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- detector
- measuring
- measuring chamber
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000004040 coloring Methods 0.000 title description 3
- 239000000463 material Substances 0.000 claims abstract description 26
- 239000011248 coating agent Substances 0.000 claims abstract description 3
- 238000000576 coating method Methods 0.000 claims abstract description 3
- 238000004043 dyeing Methods 0.000 claims 1
- 239000000779 smoke Substances 0.000 abstract description 59
- 241000238631 Hexapoda Species 0.000 description 33
- 238000005259 measurement Methods 0.000 description 30
- 238000011109 contamination Methods 0.000 description 24
- 230000003287 optical effect Effects 0.000 description 10
- 239000004984 smart glass Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 5
- 229960003351 prussian blue Drugs 0.000 description 5
- 239000013225 prussian blue Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 229910021543 Nickel dioxide Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- KZYDBKYFEURFNC-UHFFFAOYSA-N dioxorhodium Chemical compound O=[Rh]=O KZYDBKYFEURFNC-UHFFFAOYSA-N 0.000 description 1
- 238000011990 functional testing Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- MRHPUNCYMXRSMA-UHFFFAOYSA-N nickel(2+) oxygen(2-) Chemical compound [O--].[O--].[Ni++] MRHPUNCYMXRSMA-UHFFFAOYSA-N 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/103—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
- G08B17/107—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/11—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
- G08B17/113—Constructional details
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/12—Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/12—Checking intermittently signalling or alarm systems
- G08B29/14—Checking intermittently signalling or alarm systems checking the detection circuits
- G08B29/145—Checking intermittently signalling or alarm systems checking the detection circuits of fire detection circuits
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B5/00—Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied
- G08B5/22—Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission
- G08B5/36—Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission using visible light sources
Definitions
- the present invention relates to a method of coloring a fire or smoke detector.
- Fire and smoke alarms warn of dangers such as fire and smoke and must therefore be ready for use at all times.
- the detectors must be regularly checked and serviced. A large part of the necessary functional tests, such as the testing of the sensors, the detectors can perform themselves in the context of conventional self-tests. The results of these self-tests can then be documented in the detector or in a central office. If an error is detected in such a self-test, this is indicated with display means as a fault of the detector. Depending on the configuration of the existing installation, this fault can either be displayed only at the detector, at a control panel or at other terminals. In addition, it is conceivable that service personnel will be informed directly about a communication medium via the fault.
- smoke detectors require a visual inspection. In this visual inspection soiling of the smoke inlet openings should be detected. Since, in particular, when the regular checks are to be carried out by service personnel, high costs are incurred due to the necessary inspections of properties, solutions are sought by which the detection of soiling of smoke inlets can be carried out automatically by the detector itself.
- a scattered light smoke detector which detects the pollution of an insect screen.
- the insect screen protects the measuring chamber of a smoke detector against the ingress of insects, which could otherwise trigger false alarms, but lets smoke pass, which can then be detected in the measuring chamber.
- an auxiliary light transmitter is mounted inside the housing. The light from the auxiliary light transmitter penetrates the insect screen and then enters the measuring chamber of the smoke detector. There it can be measured by the receiver, who otherwise only detects the light scattered by smoke. By comparing the current light intensity with the original one, the level of contamination of the detector can be used.
- this solution has the following disadvantages: Since the auxiliary light source is located inside the housing, only a statement about the degree of contamination of the insect screen, but not about the pollution of the smoke inlet openings in the housing of the detector can be taken. In addition, after passing through the insect screen, the light from the auxiliary light source must still pass through a labyrinth that has the task of preventing light from outside the measuring chamber from entering the measuring chamber. The labyrinth thus also prevents the auxiliary light from entering the measuring chamber and thus reduces the measuring effect.
- Another device for detecting contamination of the insect screen of a scattered light fire detector is in the JP 02227800 shown.
- an auxiliary light source outside the insect screen attached.
- this is so appropriate that the light emitted by it is directed directly in the direction of the measuring light receiver in the measuring chamber.
- a labyrinth element that would lie between the auxiliary light transmitter and the measurement receiver is omitted and replaced by an external labyrinth element mounted outside the insect screen behind the auxiliary light transmitter.
- the pollution of the insect screen can be monitored only at a single point, which is also protected by the external labyrinth element against the rest of the grid from contamination. Therefore, the contamination measurement at this point does not allow in most cases a reliable statement about the pollution of the rest of the grid.
- a scattered light smoke detector with a switchable optical aperture between the scattered light measuring receiver and the measuring volume known.
- the aperture serves to switch between two different measurement volumes in two different spatial areas.
- the invention is therefore an object of the invention to provide a smoke detector of the type mentioned above, which eliminates the disadvantages of the prior art mentioned or at least improved and moreover offers further advantages.
- the detector in carrying out the same Procedure, must be externally coated first with electrochromatic or photoelectrochromatic material.
- switches are opened or closed and / or a voltage is applied to the electrochromatic material.
- the electrochromatic material colors and the detector assumes a different color. This can be useful, for example, in rooms that are darkened for photo lectures and in which reflexes on bright detectors then have a disturbing effect. It is also conceivable that an existing alarm or a malfunction of the detector are displayed via the color change.
- a scattered light fire detector comprises a housing and a scattered light measuring volume in a measuring chamber with a labyrinth, in which at least one measuring light transmitter and a scattered light measuring receiver are mounted, the receiver receiving light of the measuring light transmitter scattered in the scattered light measuring volume of smoke or other aerosols.
- the detector housing and / or the measuring chamber are at least partially made of a material whose optical properties are switchable. Since it is regarded as the main effect of the invention to deliberately let light from outside the detector into the measuring chamber, the switchable material is not between the measuring light transmitter or the scattered light measuring receiver and the measuring volume to fulfill there the function of a switchable diaphragm.
- the transparency properties of this material may preferably be changed from transparent or translucent (translucent) to opaque (opaque). This makes it possible, on the one hand, to allow light from outside the detector to be deliberately let into the measuring chamber and detected there. On the other hand, extraneous light coming from outside the detector can be specifically prevented from penetrating into the measuring chamber that a scattered light smoke measurement can be carried out undisturbed in the usual way.
- the optically switchable material used is electrochromatic or photoelectrochromatic material.
- Electrochromatic material changes its optical properties with respect to color, transparency, translucency or opacity when an electrical voltage is applied to the material. It is sufficient if the voltage is present only during the state change and is applied again for the renewed change with reversed polarity.
- a voltage must be applied at least during the entire duration of a state.
- charge carriers which are necessary for the state change and which are supplied by the applied voltage in the case of electrochromatic material are supplied by an internal solar cell.
- Electrochromic material can be produced by coating a transparent support material, such as glass, with a substance which changes its optical properties, in particular the color and transparency, after the application or reversal of a voltage.
- a transparent support material such as glass
- Substances having such properties include, for example, tungsten oxide, molybdenum oxide, titanium dioxide, nickel dioxide, iridium dioxide, rhodium dioxide, polyanilines, polypyrrole and Prussian blue. These substances are preferably embedded between two transparent electrodes, via which the necessary voltage can be applied.
- At least one window is provided in the housing and / or the measuring chamber, in particular the measuring chamber housing, which is switchable in its optical properties with respect to color, transparency, translucency or opacity.
- At least one window is mounted in the measuring chamber and the housing. These two windows are arranged against each other so that in the transparent state of both windows, light from outside the detector falls on a receiver inside the measuring chamber.
- at least one of the windows is designed as a switchable window in the mentioned optical properties.
- At least one switchable window is mounted in the measuring chamber such that light passes through the smoke inlet openings of the housing onto a receiver in the measuring chamber in the light-permeable state of this window.
- this can be designed so that at least one element of the optical labyrinth of the measuring chamber is designed as a switchable window.
- auxiliary light source which radiates into the detector.
- This auxiliary light source can also be modulated, for example, to switch between the light of the Auxiliary light source and the foreign light components to distinguish.
- auxiliary light source may be guided as an annular light guide to the housing. This allows the light-emitting component can be inexpensively mounted inside the detector in SMD technology on a circuit board and yet light from outside the detector can be radiated through all the smoke inlet openings in the detector into it.
- a scattered light fire detector comprises a unit for detecting soiling of the smoke inlet openings, comprising at least one auxiliary light source which is mounted outside of the detector and a light guide which is annularly placed inside the detector and collects incident light from outside and a receiver in the Interior of the detector directs.
- auxiliary light source is guided as an annular light guide to the housing. It is also within the meaning of the invention, when the light guide itself has electrochromatic properties.
- the invention relates to a method for operating a detector described above.
- all switchable windows in the housing and / or in the measuring chamber are switched to opaque. This ensures that no light from outside the detector can penetrate into the measuring chamber.
- the detector now corresponds to a standard scattered light smoke detector with a measuring chamber.
- a scattered light measurement is performed in which the light emitter is turned on in the measuring chamber and the incoming at the receiver Light is converted into electrical signals, which are evaluated in a known manner to detect smoke.
- at least one window in the housing and / or the measuring chamber is switched to a light-permeable state and the light incident in the measuring chamber is detected.
- the previously translucently switched windows are again rendered opaque in order to again carry out a scattered light smoke measurement.
- One of the selectable measuring tasks is the detection of fire and / or flames.
- the light incident into the measuring chamber can be evaluated, for example, with regard to intensity and flicker frequency.
- Another measuring task is the determination of the brightness state outside the detector, for which purpose the intensity of the light incident in the measuring chamber is detected and evaluated.
- the brightness measurement is used for a contamination measurement described below.
- Another measuring task is to watch the light entering the measuring chamber for information or commands contained therein which have been transmitted by a transmitter, for example a remote control.
- the information contained is evaluated or Commands for the detector concerned.
- the receiver present in the measuring chamber can also serve as a communication receiver.
- a preferred measuring task is to be seen in that the amount of light incident in the measuring chamber for the detection of contamination of the smoke inlet openings and / or the insect screen of the detector is evaluated. This preferably takes place in that a first and / or second window in the measuring chamber and / or in the housing are switched translucent, a first light measurement is performed, the first and / or second window are switched opaque again, a third window is switched to translucent and a second light measurement is performed. The degree of contamination is then assessed on the basis of the measured values of the first and second light measurements. For the assessment, an attenuation value is determined from the measured values of the first and second light measurements.
- the degree of soiling is determined based on the attenuation value and otherwise based on the measured value of the second measurement. Contamination is detected when the attenuation value or the second measured value exceeds or falls below a predetermined reference value.
- a light source is activated, which is outside the detector or outside of the detector is mounted. This makes it possible to send a defined light intensity into the detector, which considerably simplifies the comparison with the reference value. It is particularly advantageous if at least one auxiliary light source is arranged annularly around the smoke inlet openings.
- the light which has passed through the smoke inlet openings and / or the insect screen is collected by a light guide which is arranged annularly on the inside of the insect screen and directed onto a contamination measuring receiver. From the first and the second light measurement, the attenuation value that is used for the detection of contamination is then determined. Only if no usable brightness value is available, the use of the auxiliary light source is necessary.
- the Fig. 1 shows in greatly simplified form a scattered light smoke detector (1) with a housing (2) and a measuring chamber (3).
- a measuring light transmitter (4) which emits light into the measuring chamber (3)
- a scattered light measuring receiver (5) which receives light emitted by the measuring light transmitter (4) and smoke in a scattered light measuring volume (19) or other aerosols was scattered.
- Above the scattered light measuring receiver (5) is located in the measuring chamber (3) or the measuring chamber housing (3) a first window (6)
- Above the first window (6) in the housing (2) of the detector (1) has a second window (7 ) appropriate.
- a lens (8) is inserted here.
- the lens (8) can also be part of the first and / or second window (6/7).
- At least one of the windows (6/7) is made of electrochromic material, such as transparent electrodes and tungsten oxide coated glass or transparent plastic. Via a line, not shown, a voltage to the first and / or second window (6/7) can be created. As a result, they become transparent or at least translucent and light can penetrate through both windows (6/7) into the measuring chamber (3) and be detected by the scattered light measuring receiver (5). This allows the scattered light measuring receiver (5) to perform other tasks and be used for example as a communication receiver, flame sensor or brightness sensor. The signals supplied by the scattered light measuring receiver (5) are then, as in the scattered light measurement, evaluated in a known manner by an evaluation circuit, not shown.
- electrochromic material such as transparent electrodes and tungsten oxide coated glass or transparent plastic.
- the signals are analyzed for intensity, flicker frequency or modulated information in the evaluation circuit.
- the scattered light measuring receiver (5) is used as a flame sensor, it makes sense to use the lens (8) as Fisheye lens directly into the second window (7), so that the largest possible area can be monitored. It is within the meaning of the invention that the lens (8) is made of electrochromatic material.
- the electrochromic material By re-applying a voltage of opposite polarity to the first and / or the second window (6/7), the electrochromic material again becomes opaque. As a result, the measuring chamber (3) again protected against the ingress of extraneous light and a scattered light smoke measurement can be carried out in a known manner.
- the in Fig. 1 detector shown additionally has an auxiliary light source (9a) which is mounted outside the housing. Light emitted from this auxiliary light source (9a) penetrates through the smoke inlet openings (10) into the housing (2) of the detector (1) and through an insect screen (11). In order for the light emitted by the auxiliary light source (9a) to be detected by the scattered light measuring receiver (5) for detecting contamination of the smoke inlet openings and the insect screen (11), at least one labyrinth element (12) is provided which is made of electrochromatic material.
- the labyrinth element By applying a voltage to the labyrinth element it becomes transparent and the light emitted by the auxiliary light source (9a) can pass through the smoke inlet openings (10) in the housing (2), the insect screen (11) and the labyrinth element (12) onto the scattered light measuring receiver (5). fall and be detected there. In an evaluation circuit, not shown, the degree of attenuation of this light is used to assess the pollution of smoke inlet openings (10) and insect screens (11).
- an auxiliary light source (9b) can also be mounted directly on the printed circuit board (14) within the housing (2).
- a light guide (13) is provided, which leads the light emitted by the auxiliary light source (9b) to the outside.
- the light guide (13) is designed so that the light is emitted through the smoke inlet openings (10) into the interior of the detector (1).
- a detector (1) with another device for detecting contamination of the smoke inlet openings (10) and the insect screen (11) shown.
- This embodiment has, as well as in Fig. 1 shown, via an auxiliary light source (9b) and a light guide (13) which receives the light emitted from the auxiliary light source light and radiates outside of the detector housing (2) in the direction of the smoke inlet openings.
- the light guide (13) is as in Fig. 5 can be seen outside the housing (2) annularly guided around the smoke inlet openings (10).
- the attenuation of the light emitted by the auxiliary light transmitter (9b) and measured by the pollution measuring receiver (15) light as a measure of the degree of contamination of the smoke inlet openings (10) and the insect screen (11) is evaluated.
- the Fig. 3 schematically shows a measuring chamber (3) of a scattered light smoke detector (1) with a measuring light transmitter (4), a Scattered light measuring receiver (5), a scattered light measuring volume (19) and a labyrinth (17), which consists of several approximately L-shaped opaque labyrinth elements (18) and a labyrinth element (12) which is switchable in its optical properties and preferably made of electrochromatic material is.
- an auxiliary light source (9a) is mounted, which is used for the detection of contamination of the insect screen (11) and the smoke inlet openings (10) not shown here.
- An in Fig. 4 shown detector (1) differs from that in Fig. 3 shown in that in addition a part of the housing (2) is shown, on which a plurality of auxiliary light sources (9a) are mounted along the circumference.
- Each of these auxiliary light sources (9a) is assigned a labyrinth element (12) which can be switched in its optical properties.
- the scattered light measuring receiver (5) is mounted here in the middle of the measuring chamber (3) and can receive light from each of the auxiliary light sources (9a) equally.
- Fig. 5 are opposite to the representation in Fig. 4 the outside auxiliary light sources (9a) are replaced by at least one auxiliary light source (9b) located inside the detector housing (2), the light of which is led out through a first light guide (13) and from the latter through the smoke inlet openings (10) into the interior of the detector (1 ) is blasted.
- the first light guide (13) surrounds the smoke inlet openings (10) annularly, whereby the contamination state of the smoke inlet openings (10) and the insect screen (11) over the full circumference of the measuring chamber (3) can be measured.
- a second light guide (16) is annularly arranged, the light, which in the detector (1) penetrates collects, and on a pollution measuring receiver (15) passes.
- the labyrinth (17) contains a plurality of switchable labyrinth elements (12) which can also be switched individually via separate voltage lines, not shown. As a result, individual smoke inlet openings (10) or segments can be specifically examined for contamination.
- the detector (1) behaves like an ordinary scattered light smoke detector with a measuring chamber and a smoke measurement is carried out in a known manner.
- both windows (6, 7) and the lens (8) are transparent and light from an observation area outside the detector (1) can penetrate through the measuring chamber housing (3) into the measuring chamber (3) and fall onto the scattered light measuring receiver (5) ,
- the scattered light measuring receiver (5) converts the light incident on it into electrical signals which are examined by an evaluation circuit. To detect flames, the signal is examined for intensity and flicker frequency, as in known flame detectors. In addition, the intensity of the incident light can also be used to measure the brightness of the interstitial space.
- the brightness information can now either be used inside the detector, for example, to issue fault messages only from a certain brightness, because can be expected that in dark rooms either no one is present and the fault message can not be perceived anyway, or people want to sleep, which should not be disturbed unnecessarily. As soon as a certain minimum brightness is detected, the fault messages, for example for a weak battery of a smoke detector, are emitted again.
- the brightness information could also be passed through an interface to a building management system, which automatically closes shutters, for example, when too much sunlight falls into the room.
- the signals can be examined for contained information such as commands for the detector itself.
- commands can be sent to the detector via a remote control, which can perform a self-test on the detector (1) or mute a pending alarm.
- the brightness of the interstitial space is known from a previously performed brightness measurement described above, then directly from the brightness value and the "Transwert" the light attenuation caused by the smoke inlet openings (10) and the insect grid (11) are determined, wherein the dark value for the correction of both measured values is subtracted from these. Since a clogged insect screen (11) or even masked smoke inlet openings (10) have a significantly higher attenuation than clean smoke inlet openings (10) and insect screens (11), the value of the light attenuation serves as a measure of the pollution of the smoke inlet openings (10) and the insect screen ( 11). The currently determined damping is compared with a stored initial value. In this case, if the difference between the two values exceeds a predetermined level, a fault message is issued and a fouling flag is set.
- auxiliary light source (9a / 9b) is switched on and a third measured value is stored as "auxiliary transmittance". Since the radiation intensity of the auxiliary light source (9a / 9b) can be assumed to be approximately constant, the difference between "auxiliary transmittance" and "transvalue” can serve as a measure for the contamination of the smoke inlet openings (10) and the insect screen (11). If in the detector (1) a circuit for extraneous light suppression is provided, as they are known from the light barrier technology or extinction fire detectors ago or in the dark in the surveillance area can already be used as a measure of pollution, the corrected "Hilfstranswert. In these cases, only the "auxiliary" value is compared with a predefined threshold and a fault is detected if it is exceeded.
- an initially white housing (2) of a detector (1) is coated with transparent electrodes, between which Prussian blue is applied. Thereafter, a first voltage is applied to the electrodes, which reduces the Prussian blue and thus becomes colorless. Thus, the detector (1) first receives its base color. As soon as a different color is desired, a second voltage is applied with a polarity opposite to the first voltage. This turns the Prussian blue and thus the detector (1) blue. If other color effects are to be realized, then the Prussian blue is replaced by another electrochromic substance such as tungsten oxide.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Electromagnetism (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Fire-Detection Mechanisms (AREA)
Abstract
Description
- Die vorliegende Erfindung betrifft ein Verfahren zum Färben eines Brand- oder Rauchmelders.
- Brand- beziehungsweise Rauchmelder warnen vor Gefahren wie Feuer und Rauch und müssen daher jederzeit einsatzbereit sein. Damit die nötige Einsatzbereitschaft stets gewährleistet ist, müssen die Melder regelmäßig geprüft und gewartet werden. Einen großen Teil der nötigen Funktionsprüfungen, wie zum Beispiel die Überprüfung der Sensorik, können die Melder im Rahmen von üblichen Selbsttests selbst durchführen. Die Ergebnisse dieser Selbsttests können dann im Melder oder auch in einer Zentrale dokumentiert werden. Wird bei einem solchen Selbsttest ein Fehler erkannt, wird dies mit Anzeigemitteln als Störung des Melders angezeigt. Diese Störung kann dabei, je nach Ausbaustufe der vorhandenen Installation, entweder nur am Melder, an einer Zentrale oder weiteren Terminals angezeigt werden. Außerdem ist es denkbar, dass Servicepersonal direkt über ein Kommunikationsmedium über die Störung informiert wird. Im Rahmen einer mindestens jährlich durchzuführenden Funktionskontrolle schreibt zum Beispiel die DIN 14676 für Rauchwarnmelder unter anderem eine Sichtprüfung vor. Bei dieser Sichtprüfung sollen Verschmutzungen der Raucheintrittsöffnungen erkannt werden. Da insbesondere dann, wenn die regelmäßigen Prüfungen von Servicepersonal durchgeführt werden sollen, hohe Kosten durch die nötigen Begehungen von Liegenschaften entstehen, wird nach Lösungen gesucht, durch die auch die Erkennung der Verschmutzung von Raucheintrittsöffnungen automatisch durch den Melder selbst erfolgen kann.
- So ist zum Beispiel aus der
EP 0 503 167 B1 ein Streulichtrauchmelder bekannt, der die Verschmutzung eines Insektengitters erkennt. Das Insektengitter schützt die Messkammer eines Rauchmelders vor dem Eindringen von Insekten, die sonst Fehlalarme auslösen könnten, lässt aber Rauch passieren, der dann in der Messkammer erkannt werden kann. Bei dieser Lösung wird ein Hilfslichtsender innerhalb des Gehäuses angebracht. Das Licht des Hilfslichtsenders durchdringt das Insektengitter und gelangt anschließend in die Messkammer des Rauchmelders. Dort kann es von dem Empfänger, der sonst nur das an Rauch gestreute Licht detektiert, gemessen werden. Durch einen Vergleich der aktuellen Lichtintensität mit der ursprünglichen, kann auf den Verschmutzungsgrad des Melders zurückgegriffen werden. Diese Lösung weist jedoch folgende Nachteile auf: Da die Hilfslichtquelle innerhalb des Gehäuses sitzt, kann nur eine Aussage über den Verschmutzungsgrad des Insektengitters, jedoch nicht über die Verschmutzung der Raucheintrittsöffnungen im Gehäuse des Melders getroffen werden. Außerdem muss das Licht der Hilfslichtquelle, nachdem es das Insektengitter passiert hat, noch durch ein Labyrinth dringen, das gerade die Aufgabe hat, Licht von außerhalb der Messkammer am Eindringen in die Messkammer abzuhalten. Das Labyrinth hindert somit auch das Hilfslicht am Eindringen in die Messkammer und verringert somit den Messeffekt. - Eine andere Vorrichtung zum Erkennen von Verschmutzungen des Insektengitters eines Streulichtbrandmelders wird in der
JP 02227800 EP 0 503 167 B1 ist hier eine Hilfslichtquelle außerhalb des Insektengitters angebracht. Hier ist dies so angebracht, dass das von ihr ausgestrahlte Licht direkt in Richtung des Messlichtempfängers in der Messkammer gerichtet ist. Damit das Hilfslicht jedoch nicht durch das Messkammerlabyrinth am Auftreffen am Empfänger gehindert wird, wird ein Labyrinthelement, das zwischen dem Hilfslichtsender und dem Messempfänger liegen würde, weggelassen und durch ein externes Labyrinthelement ersetzt, das außerhalb des Insektengitters hinter dem Hilfslichtsender angebracht ist. Mit dieser Vorrichtung kann die Verschmutzung des Insektengitters jedoch nur an einer einzigen Stelle überwacht werden, die zudem noch durch das externe Labyrinthelement gegenüber dem Rest des Gitters vor Verschmutzung geschützt ist. Die Verschmutzungsmessung an dieser Stelle erlaubt daher in den meisten Fällen keine zuverlässige Aussage über die Verschmutzung des restlichen Gitters. - Darüber hinaus ist aus der
DE 101 10 231 A1 ein Streulichtrauchmelder mit einer schaltbaren optischen Blende zwischen dem Streulichtmessempfänger und dem Messvolumen bekannt. Die Blende dient darin zum Umschalten zwischen zwei verschiedenen Messvolumina in zwei verschiedenen Raumbereichen. - Der Erfindung liegt daher die Aufgabe zugrunde, einen Rauchmelder der eingangs genannten Art bereit zu stellen, der die genannten Nachteile des Standes der Technik behebt oder zumindest verbessert und darüber hinaus weitere Vorteile bietet.
- Die Lösung der Aufgabe erfolgt nach den Merkmalen des Anspruchs 1, wobei bei der Durchführung des nämlichen Verfahrens die Melder außen zunächst mit elektrochromatischem oder photoelektrochromatischem Material beschichtet werden müssen. Während des Betriebes des Melders werden Schalter geöffnet oder geschlossen und /oder eine Spannung an das elektrochromatische Material angelegt. Daraufhin färbt sich das elektrochromatische Material und der Melder nimmt eine andere Farbe an. Dies kann zum Beispiel in Räumen sinnvoll sein, die für Lichtbildvorträge abgedunkelt werden und in denen dann Reflexe an hellen Meldern störend wirken. Ebenso ist es denkbar, dass über die Farbänderung ein bestehender Alarm oder eine Störung des Melders angezeigt werden.
- In einer bevorzugten Ausführungsform umfasst ein erfindungsgemäßer Streulichtbrandmelder ein Gehäuse und ein Streulichtmessvolumen in einer Messkammer mit einem Labyrinth, in der mindestens ein Messlichtsender und ein Streulichtmessempfänger angebracht sind, wobei der Empfänger, im Streulichtmessvolumen an Rauch oder anderen Aerosolen gestreutes Licht des Messlichtsenders, empfängt. Das Meldergehäuse und/oder die Messkammer sind wenigstens teilweise aus einem Material gefertigt, dessen optische Eigenschaften schaltbar sind. Da es als Haupteffekt der Erfindung angesehen wird, gezielt Licht von außerhalb des Melders in die Messkammer einfallen zu lassen, befindet sich das schaltbare Material nicht zwischen dem Messlichtsender oder dem Streulichtmessempfänger und dem Messvolumen um dort die Funktion einer schaltbaren Blende zu erfüllen. Als optische Eigenschaften können vorzugsweise die Transparenzeigenschaften dieses Materials von durchsichtig oder transluzent (lichtdurchlässig) zu opak (lichtundurchlässig) verändert werden. Dies ermöglicht, dass einerseits Licht von außerhalb des Melders gezielt in die Messkammer gelassen und dort detektiert werden kann. Andererseits kann von außerhalb des Melders kommendes Fremdlicht gezielt am Eindringen in die Messkammer gehindert werden, so dass eine Streulichtrauchmessung in gewohnter Weise ungestört durchgeführt werden kann.
- In einer besonders bevorzugten Ausführungsform, wird als optisch schaltbares Material elektrochromatisches oder photoelektrochromatisches Material verwendet. Elektrochromatisches Material ändert seine optischen Eigenschaften bzgl. Farbe, Transparenz, Transluzenz oder Opazität, wenn eine elektrische Spannung an das Material angelegt wird. Dabei genügt es, wenn die Spannung nur während der Zustandsänderung anliegt und für die erneute Änderung mit vertauschter Polarität erneut angelegt wird. Dies stellt gegenüber Flüssigkristallen, welche jedoch auch erfindungsgemäß verwendet werden können, einen zusätzlichen Vorteil dar. Bei Flüssigkristallen muss eine Spannung mindestens während der gesamten Dauer eines Zustandes anliegen. Bei photoelektrochromatischem Material werden Ladungsträger, die für die Zustandsänderung nötig sind und bei elektrochromatischem Material von der angelegten Spannung geliefert werden, durch eine interne Solarzelle geliefert. Dadurch muss bei photoelektrochromatischem Material nur noch ein Schalter geöffnet beziehungsweise geschlossen werden, um von einem Zustand in den anderen umzuschalten. Elektrochromatisches Material kann hergestellt werden, in dem ein transparentes Trägermaterial wie Glas mit einer Substanz beschichtet wird, die ihre optischen Eigenschaften, insbesondere die Farbe und Transparenz nach dem Anlegen oder Umpolen einer Spannung ändern. Zu Substanzen mit derartigen Eigenschaften zählen zum Beispiel Wolframoxid, Molybdänoxid, Titandioxid, Nikeldioxid, Iridiumdioxid, Rhodiumdioxid, Polyaniline, Polypyrrol und Preußischblau. Bevorzugt werden diese Substanzen zwischen zwei transparente Elektroden eingebettet, über welche die nötige Spannung angelegt werden kann.
- In einer weiteren bevorzugten Ausführungsform der Erfindung ist im Gehäuse und/oder der Messkammer insbesondere dem Messkammergehäuse mindestens ein Fenster vorgesehen, welches in seinen optischen Eigenschaften bzgl. Farbe, Transparenz, Transluzenz oder Opazität schaltbar ist.
- In einer Weiterentwicklung dieser bevorzugten Ausführungsform ist vorgesehen, dass in der Messkammer und dem Gehäuse jeweils mindestens ein Fenster angebracht ist. Diese beiden Fenster sind so gegeneinander angeordnet, dass im transparenten Zustand beider Fenster Licht von außerhalb des Melders auf einen Empfänger im Inneren der Messkammer fällt. Dabei ist es erfindungsgemäß vorgesehen, dass mindestens eines der Fenster als ein, in den genannten optischen Eigenschaften, schaltbares Fenster ausgebildet ist.
- In einer weiteren Ausgestaltung dieser bevorzugten Ausführungsform ist in der Messkammer mindestens ein schaltbares Fenster so angebracht, dass im lichtdurchlässigen Zustand dieses Fensters Licht durch die Raucheintrittsöffnungen des Gehäuses auf einen Empfänger in der Messkammer fällt.
- In einem besonderen Fall kann dies so ausgestaltet sein, dass mindestens ein Element des optischen Labyrinths der Messkammer als schaltbares Fenster ausgeführt ist. Dadurch kann Licht von außerhalb des Melders durch mindestens eine Raucheintrittsöffnung des Gehäuses, die als Fenster im Gehäuse dient, in die Messkammer eindringen und dort detektiert werden.
- Besonders vorteilhaft ist es, wenn hierbei im Außenbereich des Melders mindestens eine Hilfslichtquelle angebracht ist, die in den Melder hinein strahlt. Diese Hilfslichtquelle kann zum Beispiel auch moduliert werden, um zwischen dem Licht der Hilfslichtquelle und den fremden Lichtanteilen zu unterscheiden.
- Zusätzlich kann die Hilfslichtquelle als ringförmiger Lichtleiter um das Gehäuse geführt sein. Dies ermöglicht, dass das Licht aussendende Bauteil kostengünstig im Inneren des Melders in SMD -Technik auf einer Leiterplatte montiert werden kann und dennoch Licht von außerhalb des Melders durch alle Raucheintrittsöffnungen in den Melder hinein gestrahlt werden kann.
- In einer weiteren bevorzugten Ausführungsform umfasst ein erfindungsgemäßer Streulichtbrandmelder eine Einheit zum Erkennen von Verschmutzungen der Raucheintrittsöffnungen, umfassend mindestens eine Hilfslichtquelle, die außerhalb des Melders angebracht ist und einen ringförmig im Inneren des Melders verlegten Lichtleiter, der von außen einfallendes Licht sammelt und auf einen Empfänger im Inneren des Melders leitet.
- Dabei ist es von besonderem Vorteil, wenn auch die Hilfslichtquelle als ringförmiger Lichtleiter um das Gehäuse geführt ist. Dabei liegt es auch im Sinne der Erfindung, wenn der Lichtleiter selbst elektrochromatische Eigenschaften aufweist.
- Weiterhin betrifft die Erfindung ein Verfahren zum Betreiben eines oben beschriebenen Melders. In diesem Verfahren werden alle schaltbaren Fenster im Gehäuse und/oder in der Messkammer opak geschaltet. Dies bewirkt, dass kein Licht von außerhalb des Melders in die Messkammer eindringen kann. Der Melder entspricht nun einem gewöhnlichen Streulichtrauchmelder mit Messkammer. In diesem Zustand wird eine Streulichtmessung durchgeführt, in welcher der Lichtsender in der Messkammer eingeschaltet wird und das am Empfänger ankommende Licht in elektrische Signale gewandelt wird, die auf bekannte Art und Weise ausgewertet werden, um Rauch zu erkennen. Anschließend werden in Abhängigkeit einer zu wählenden Messaufgabe mindestens ein Fenster im Gehäuse und/oder der Messkammer in einen lichtdurchlässigen Zustand geschaltet und das in die Messkammer einfallende Licht erfasst. Nach einer oder mehreren Messungen einer Lichtmenge, die in die Messkammer eingedrungen ist, werden die zuvor lichtdurchlässig geschalteten Fenster wieder lichtundurchlässig geschaltet, um wieder eine Streulichtrauchmessung durchzuführen.
- Dabei dient eine der auswählbaren Messaufgaben der Erkennung von Feuer und/oder von Flammen. Hierfür kann das in die Messkammer einfallende Licht zum Beispiel bezüglich Intensität und Flackerfrequenz hin ausgewertet werden.
- Eine weitere Messaufgabe ist die Bestimmung des Helligkeitszustandes außerhalb des Melders, wofür die Intensität des in die Messkammer einfallenden Lichtes erfasst und ausgewertet wird.
- Zusätzlich kann aus der Helligkeit des in die Messkammer einfallenden Lichtes Tag- Nacht- Bestimmung abgeleitet werden, welche dazu genutzt werden kann, fällige Störungsmeldungen nachts beziehungsweise bei Dunkelheit zu unterdrücken um eventuell schlafende Personen nicht unnötig zu stören. Außerdem wird die Helligkeitsmessung für eine unten beschriebene Verschmutzungsmessung verwendet.
- Eine weitere Messaufgabe ist darin zusehen, dass das in die Messkammer einfallende Licht auf darin enthaltene Informationen beziehungsweise Befehle hin untersucht wird, welche von einem Sender, zum Beispiel einer Fernbedienung gesendet wurden. Die enthaltenen Informationen werden ausgewertet beziehungsweise Befehle für den betreffenden Melder ausgeführt. Dadurch kann der in der Messkammer vorhandene Empfänger auch als Kommunikationsempfänger dienen.
- Eine bevorzugte Messaufgabe ist darin zu sehen, dass die in die Messkammer einfallende Lichtmenge für die Erkennung von Verschmutzungen der Raucheintrittsöffnungen und/oder des Insektengitters des Melders ausgewertet wird. Dies erfolgt vorzugsweise dadurch, dass ein erstes und/oder zweites Fenster in der Messkammer und/oder im Gehäuse lichtdurchlässig geschaltet werden, eine erste Lichtmessung durchgeführt wird, das erste und/oder zweite Fenster wieder lichtundurchlässig geschaltet werden, ein drittes Fenster lichtdurchlässig geschaltet wird und eine zweite Lichtmessung durchgeführt wird. Der Verschmutzungsgrad wird dann anhand der Messwerte der ersten und zweiten Lichtmessung beurteilt. Für die Beurteilung wird aus den Messwerten der ersten und zweiten Lichtmessung ein Dämpfungswert bestimmt. Wenn bei der ersten Messung eine ausreichende Helligkeit erkannt wird, wird der Verschmutzungsgrad anhand des Dämpfungswertes und andernfalls anhand des Messwertes der zweiten Messung bestimmt. Eine Verschmutzung wird dann erkannt, wenn der Dämpfungswert oder der zweite Messwert einen vorbestimmten Referenzwert über- beziehungsweise unterschreitet.
- Dabei ist es von Vorteil, wenn während der zweiten Lichtmessung eine Lichtquelle aktiviert wird, die außerhalb des Melders liegt oder außen am Melder angebracht ist. Dies ermöglicht es, eine definierte Lichtstärke in den Melder hinein zu senden, wodurch der Vergleich mit dem Referenzwert erheblich vereinfacht wird. Besonders vorteilhaft ist es, wenn mindestens eine Hilfslichtquelle ringförmig um die Raucheintrittsöffnungen angeordnet ist.
- In einer anderen vorteilhaften Abwandlung des Verfahrens, wird bei der zweiten Lichtmessung das durch die Raucheintrittsöffnungen und/oder das Insektengitter hindurch getretene Licht von einem, auf der Innenseite des Insektengitters ringförmig angebrachten Lichtleiter gesammelt und auf einen Verschmutzungsmessempfänger geleitet. Aus der ersten und der zweiten Lichtmessung wird dann der Dämpfungswert bestimmt, der zur Verschmutzungserkennung verwendet wird. Nur dann, wenn kein brauchbarer Helligkeitswert zur Verfügung steht, ist die Verwendung der Hilfslichtquelle nötig.
- Die Erfindung wird nachstehend anhand von Ausführungsbeispielen in der Zeichnung näher erläutert. Es zeigen dabei in teilweise stark schematisierter Darstellung die
- Fig. 1
- einen Schnitt durch einen ersten erfindungsgemäßen Rauchmelder mit schaltbaren Fenstern im Gehäuse und der Messkammer;
- Fig. 2
- einen zweiten, demjenigen in
Fig.1 ähnlichen Melder, der jedoch mit einem zusätzlich Licht sammelnden Lichtleiter auf der Innenseite des Insektengitters versehn ist; - Fig. 3
- einen Schnitt durch eine Messkammer mit einem schaltbaren Labyrinthelement;
- Fig. 4
- einen Schnitt durch einen Melder mit mehreren schaltbaren Labyrinthelementen und Hilfslichtquellen;
- Fig. 5
- einen Rauchmelder mit einer ringförmigen Hilfslichtquelle und einem ringförmigen Lichtsammler.
- Die
Fig. 1 zeigt in stark vereinfachter Form einen Streulichtrauchmelder (1) mit einem Gehäuse (2) und einer Messkammer (3). In der Messkammer (3) befindet sich ein Messlichtsender (4), der Licht in die Messkammer (3) aussendet und ein Streulichtmessempfänger (5), der Licht empfängt, das vom Messlichtsender (4) ausgestrahlt und in einem Streulichtmessvolumen (19) an Rauch oder anderen Aerosolen gestreut wurde. Oberhalb des Streulichtmessempfängers (5) befindet sich in der Messkammer (3) bzw. dem Messkammergehäuse (3) ein erstes Fenster (6) Oberhalb des ersten Fensters (6) ist im Gehäuse (2) des Melders (1) ein zweites Fenster (7) angebracht. Zwischen dem ersten und zweiten Fenster (6/7) ist hier eine Linse (8) eingefügt. Die Linse (8) kann aber auch ein Teil des ersten und/oder zweiten Fensters (6/7) sein. Erfindungsgemäß ist mindestens eines der Fenster (6/7) aus elektrochromatischem Material gefertigt, wie zum Beispiel mit transparenten Elektroden und Wolframoxid beschichtetes Glas oder transparenter Kunststoff. Über eine nicht dargestellte Leitung kann eine Spannung an das erste und/oder zweite Fenster (6/7) angelegt werden. Dadurch werden diese transparent oder zumindest transluzent und Licht kann durch beide Fenster (6/7) in die Messkammer (3) eindringen und vom Streulichtmessempfänger (5) detektiert werden. Dadurch kann der Streulichtmessempfänger(5) weitere Aufgaben erledigen und zum Beispiel als Kommunikationsempfänger, Flammensensor oder Helligkeitssensor benutzt werden. Die vom Streulichtmessempfänger (5) gelieferten Signale werden dann, wie auch bei der Streulichtmessung, in bekannter Weise von einer nicht dargestellten Auswerteschaltung ausgewertet. In der Auswerteschaltung werden die Signale je nach Messaufgabe auf Intensität, Flackerfrequenz oder aufmodulierte Informationen hin untersucht. Wenn der Streulichtmessempfänger (5) als Flammensensor eingesetzt wird, ist es sinnvoll, die Linse (8) als Fischaugenlinse direkt in das zweite Fenster (7) einzubauen, damit ein möglichst großer Bereich überwacht werden kann. Dabei liegt es im Sinne der Erfindung, dass auch die Linse (8) aus elektrochromatischem Material hergestellt ist. - Durch erneutes Anlegen einer Spannung mit umgekehrter Polarität, an das erste und/oder das zweite Fenster (6/7), wird das elektrochromatische Material wieder lichtundurchlässig. Dadurch ist die Messkammer (3) wieder vor dem Eindringen von Fremdlicht geschützt und eine Streulichtrauchmessung kann in bekannter Weise durchgeführt werden.
- Der in
Fig. 1 dargestellte Melder verfügt zusätzlich über eine Hilfslichtquelle (9a), die außerhalb des Gehäuses angebracht ist. Licht, das von dieser Hilfslichtquelle (9a) ausgestrahlt wird, dringt durch die Raucheintrittsöffnungen (10) ins Gehäuse (2) des Melders(1) und durch ein Insektengitter (11) hindurch. Damit das von der Hilfslichtquelle (9a) ausgestrahlte Licht, zur Verschmutzungserkennung der Raucheintrittsöffnungen und des Insektengitters (11), vom Streulichtmessempfänger (5) detektiert werden kann, ist mindestens ein Labyrinthelement (12) vorgesehen, das aus elektrochromatischem Material gefertigt ist. Durch Anlegen einer Spannung an das Labyrinthelement wird dieses lichtdurchlässig und das von der Hilfslichtquelle (9a) ausgestrahlte Licht kann durch die Raucheintrittsöffnungen (10) im Gehäuse (2), das Insektengitter (11) und das Labyrinthelement (12) auf den Streulichtmessempfänger (5) fallen und dort detektiert werden. In einer nicht dargestellten Auswerteschaltung wird das Maß der Dämpfung dieses Lichtes zur Bewertung der Verschmutzung von Raucheintrittsöffnungen (10) und Insektengitter (11) herangezogen. - Alternativ zur Hilfslichtquelle (9a) außerhalb des Gehäuses (2) kann auch eine Hilfslichtquelle (9b) innerhalb des Gehäuses (2) direkt auf der Leiterplatte (14) montiert sein. Damit dennoch das Licht dieser Hilfslichtquelle (9b) außerhalb des Gehäuses (2) abgestrahlt werden kann, ist ein Lichtleiter (13) vorgesehen, der das von der Hilfslichtquelle (9b) ausgestrahlte Licht nach außen führt. Dabei ist der Lichtleiter (13) so gestaltet, dass das Licht durch die Raucheintrittsöffnungen (10) ins Innere des Melders (1) abgestrahlt wird.
- In
Fig. 2 ist, ebenfalls stark vereinfacht, ein Melder (1) mit einer anderen Vorrichtung zur Erkennung von Verschmutzungen der Raucheintrittsöffnungen (10) und des Insektengitters (11) gezeigt. Diese Ausführungsform verfügt, ebenso wie inFig. 1 gezeigt, über eine Hilfslichtquelle (9b) und einen Lichtleiter (13), der das von der Hilfslichtquelle ausgestrahlte Licht aufnimmt und außerhalb des Meldergehäuses (2) in Richtung der Raucheintrittsöffnungen abstrahlt. Vorzugsweise ist der Lichtleiter (13), wie inFig. 5 zu sehen ist, außerhalb des Gehäuses (2) ringförmig um die Raucheintrittsöffnungen (10) geführt. Auf der Innenseite des Insektengitters (11) befindet sich ein zweiter, vorzugsweise ringförmig ausgeführter Lichtleiter, der Licht, welches durch das Insektengitter (11) fällt, sammelt und auf einen Verschmutzungsmessempfänger (15) leitet. In einer nicht dargestellten Auswerteschaltung wird die Dämpfung des vom Hilfslichtsender (9b) ausgesandten und vom Verschmutzungsmessempfänger (15) gemessenen Lichtes als Maß für den Verschmutzungsgrad der Raucheintrittsöffnungen (10) und des Insektengitters (11) ausgewertet. - Die
Fig. 3 zeigt schematisch eine Messkammer (3) eines Streulichtrauchmelders (1) mit einem Messlichtsender (4), einem Streulichtmessempfänger (5), einem Streulichtmessvolumen (19) und einem Labyrinth (17), das aus mehreren näherungsweise L-förmigen lichtundurchlässigen Labyrinthelementen (18) und einem Labyrinthelement (12) besteht, welches in seinen optischen Eigenschaften schaltbar ist und vorzugsweise aus elektrochromatischem Material gefertigt ist. Gegenüber von dem Streulichtmessempfänger (5) ist außerhalb der Messkammer (3) eine Hilfslichtquelle (9a) angebracht, die zur Verschmutzungserkennung des Insektengitters (11) und der hier nicht dargestellten Raucheintrittsöffnungen (10) eingesetzt wird. - Ein in
Fig. 4 gezeigter Melder (1) unterscheidet sich von dem inFig. 3 gezeigten dadurch, dass zusätzlich ein Teil des Gehäuses (2) gezeigt ist, auf dem mehrere Hilfslichtquellen (9a) entlang des Umfangs angebracht sind. Jede dieser Hilfslichtquellen (9a) ist ein, in seinen optischen Eigenschaften schaltbares Labyrinthelement (12) zugeordnet. Der Streulichtmessempfänger (5) ist hier in der Mitte der Messkammer (3) angebracht und kann von jeder der Hilfslichtquellen (9a) gleichermaßen Licht empfangen. - In
Fig. 5 sind gegenüber der Darstellung inFig. 4 die außen liegenden Hilfslichtquellen (9a) durch mindestens eine innerhalb des Meldergehäuses (2) liegende Hilfslichtquelle (9b) ersetzt, deren Licht durch einen ersten Lichtleiter (13) nach außen geleitet und von diesem durch die Raucheintrittsöffnungen (10) ins Innere des Melders (1) gestrahlt wird. Der erste Lichtleiter (13) umgibt die Raucheintrittsöffnungen (10) ringförmig, wodurch der Verschmutzungszustand der Raucheintrittsöffnungen (10) und des Insektengitters (11) über den vollen Umfang der Messkammer (3) gemessen werden kann. Auf der Innenseite des Insektengitters (11) ist ein zweiter Lichtleiter (16) ringförmig angeordnet, der Licht, welches in den Melder (1) eindringt sammelt, und auf einen Verschmutzungsmessempfänger (15) leitet. Außerdem enthält das Labyrinth (17) mehrere schaltbare Labyrinthelemente (12), die über separate, nicht gezeigte Spannungsleitungen auch einzeln geschaltet werden können. Dadurch können gezielt einzelne Raucheintrittsöffnungen (10) oder Segmente auf Verschmutzung hin untersucht werden. - Im Verfahren zum Betreiben der zuvor beschriebenen Melder wird zunächst eine erste Spannung an alle Teile aus elektrochromatischem Material (6, 7, 8, 12) der Messkammer (3) und des Gehäuses (2) angelegt, die so gepolt ist, dass die genannten Teile lichtundurchlässig werden. In dem so erreichten Zustand verhält sich der Melder (1) wie ein gewöhnlicher Streulichtrauchmelder mit Messkammer und es wird eine Rauchmessung auf bekannte Art und Weise durchgeführt. Anschließend wird an das erste Fenster (6) und, falls das zweite Fenster (7) und die Linse (8) ebenfalls aus elektrochromatischem Material gefertigt sind, auch an dieses eine zweite elektrische Spannung mit umgekehrter Polarität zur ersten Spannung angelegt. Dadurch werden beide Fenster (6, 7) und die Linse (8) lichtdurchlässig und es kann Licht aus einem Beobachtungsbereich außerhalb des Melders (1) durch das Messkammergehäuse (3) in die Messkammer (3) eindringen und auf den Streulichtmessempfänger (5) fallen. Der Streulichtmessempfänger (5) wandelt das auf ihn fallende Licht in elektrische Signale um, die von einer Auswerteschaltung untersucht werden. Um Flammen zu erkennen, wird das Signal wie in bekannten Flammenmeldern zum Beispiel auf Intensität und Flackerfrequenz hin untersucht. Zusätzlich kann die Intensität des einfallenden Lichtes auch genutzt werden, um die Helligkeit des Überwachungsraumes zu messen. Die Helligkeitsinformation kann nun entweder melderintern genutzt werden, um zum Beispiel Störungsmeldungen nur ab einer gewissen Helligkeit abzugeben, weil damit gerechnet werden kann, dass in dunklen Räumen entweder niemand anwesend ist und die Störungsmeldung ohnehin nicht wahrgenommen werden kann, oder anwesende Personen schlafen wollen, welche nicht unnötig gestört werden sollten. Sobald eine bestimmte Mindesthelligkeit erkannt wird, werden die Störungsmeldungen zum Beispiel für eine schwache Batterie eines Rauchwarnmelders wieder abgegeben. Die Helligkeitsinformation könnte aber auch über eine Schnittstelle an ein Gebäudemanagementsystem weitergegeben werden, welches zum Beispiel automatisch Rollläden schließt wenn zu viel Sonnenlicht in den Raum fällt.
- Schließlich können die Signale auf enthaltene Informationen wie Befehle für den Melder selbst, untersucht werden. So können zum Beispiel Befehle über eine Fernbedienung an den Melder gesendet werden, welche den Melder (1) einen Selbsttest durchführen oder einen anstehenden Alarm stumm schalten lassen.
- Im Verfahren zum Messen der Verschmutzung der Raucheintrittsöffnungen (10) werden zunächst alle schaltbaren Fenster (6, 7) und Labyrinthelemente lichtundurchlässig geschaltet. Anschließend wird eine Messung mit dem Streulichtmessempfänger (5) oder einem separaten, nicht dargestellten Verschmutzungsmessempfänger in der Messkammer bei dunkler Messkammer durchgeführt und der Messwert als "Dunkelwert" gespeichert. Anschließend wird mindestens eines der Labyrinthelemente (12) lichtdurchlässig geschaltet. Danach wird erneut eine Messung am Streulichtmessempfänger (5) oder dem separaten, nicht dargestellten Verschmutzungsmessempfänger durchgeführt. Dieser zweite Messwert wird als "Transwert" ebenfalls gespeichert. Wenn nun zum Beispiel aus einer zuvor durchgeführten und weiter oben beschrieben Helligkeitsmessung die Helligkeit des Überwachungsraumes bekannt ist, kann direkt aus dem Helligkeitswert und dem "Transwert" die durch die Raucheintrittsöffnungen (10) und das Insektengitter (11) verursachte Lichtdämpfung bestimmt werden, wobei der Dunkelwert zur Korrektur beider Messwerte von diesen subtrahiert wird. Da ein verstopftes Insektengitter (11) oder sogar abgeklebte Raucheintrittsöffnungen (10) eine deutlich höhere Dämpfung als saubere Raucheintrittsöffnungen (10) und Insektengitter (11) aufweisen, dient der Wert der Lichtdämpfung als Maß für die Verschmutzung der Raucheintrittsöffnungen (10) und des Insektengitters (11). Die aktuell ermittelte Dämpfung wird mit einem gespeicherten Anfangswert verglichen. Wenn hierbei der Unterschied zwischen den beiden Werten ein vorbestimmtes Maß überschreitet, wird eine Störungsmeldung abgegeben und ein Verschmutzungsflag gesetzt.
- Wenn kein Helligkeitsmesswert zur Verfügung steht, weil diese Messung in der entsprechenden Modellvariante nicht vorgesehen ist oder die Raumhelligkeit für eine Dämpfungsmessung nicht ausreichend ist, wird eine Hilfslichtquelle (9a/9b) eingeschaltet und ein dritter Messwert als "Hilfstranswert" gespeichert. Da die Strahlungsintensität der Hilfslichtquelle (9a/9b) näherungsweise als konstant angenommen werden kann, kann hier die Differenz aus "Hilfstranswert" und "Transwert" als Maß für die Verschmutzung der Raucheintrittsöffnungen (10) und des Insektengitters (11) dienen. Wenn im Melder (1) eine Schaltung zur Fremdlichtunterdrückung vorgesehen ist, wie sie aus der Lichtschrankentechnik oder von Extinktionsbrandmeldern her bekannt sind oder bei Dunkelheit im Überwachungsbereich kann bereits der korrigierte "Hilfstranswert" als Maß für die Verschmutzung verwendet werden. In diesen Fällen wird nur der "Hilfstranswert" mit einer vordefinierten Schwelle verglichen und eine Störung erkannt, wenn diese überschritten wird.
- In einem abgewandelten Verfahren zum Messen der Verschmutzung der Raucheintrittsöffnungen (10) wird in den Melder (1) eindringendes Licht hinter dem Insektengitter (11) von einem ringförmigen Lichtleiter (13) gesammelt und auf einen Verschmutzungsmessempfänger (15) geleitet und dort gemessen. Auch diese Messwerte werden als "Transwert" gespeichert. Wenn auch hier die Helligkeit des Überwachungsraumes aus einer vorangegangenen oder noch folgenden, oben beschriebenen Helligkeitsmessung bekannt ist, kann, wie bereits oben erwähnt, aus dem Helligkeitswert und dem "Transwert" die Lichtdämpfung und daraus folgernd die Verschmutzung der Raucheintrittsöffnungen (10) und des Insektengitters (11) bestimmt werden. Fehlt jedoch der Helligkeitswert, kann - wiederum wie oben beschrieben - unter Zuhilfenahme der Hilfslichtquelle (9a/9b) auf die Verschmutzung der Raucheintrittsöffnungen (10) und des Insektengitters (11) geschlossen werden.
- In einem beispielhaften Verfahren zum Färben eines Melders, wird ein zunächst weißes Gehäuse (2) eines Melders (1) mit transparenten Elektroden beschichtet, zwischen denen Preußischblau aufgetragen wird. Danach wird eine erste Spannung an die Elektroden angelegt, durch die das Preußischblau reduziert und somit farblos wird. So erhält der Melder (1) zunächst seine Grundfarbe. Sobald eine andere Farbe gewünscht wird, wird eine zweite Spannung mit einer zur ersten Spannung entgegengesetzten Polarität angelegt. Dadurch wird das Preußischblau und somit der Melder (1) blau. Wenn andere Farbeffekte realisiert werden sollen, dann wird das Preußischblau durch eine andere elektrochromatische Substanz wie zum Beispiel Wolframoxid ersetzt.
Claims (1)
- Verfahren zum Färben eines Melders, gekennzeichnet durch folgende Verfahrensschritte: Beschichten des Meldergehäuses (2) mit elektrochromatischem oder photoelektrochromatischem Material und Schließen beziehungsweise Öffnen eines Schalters und /oder Anlegen einer Spannung an das elektrochromatische Material.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007039401A DE102007039401B4 (de) | 2007-08-21 | 2007-08-21 | Rauchmelder mit Verschmutzungsüberwachung |
EP08014521A EP2028631B1 (de) | 2007-08-21 | 2008-08-14 | Rauchmelder mit Verschmutzungsüberwachung |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08014521.2 Division | 2008-08-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2405412A1 true EP2405412A1 (de) | 2012-01-11 |
Family
ID=40083594
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11008070.2A Active EP2407949B1 (de) | 2007-08-21 | 2008-08-14 | Ringförmige Hilfslichtquelle |
EP11008071A Withdrawn EP2405412A1 (de) | 2007-08-21 | 2008-08-14 | Verfahren zum Färben eines Melders |
EP08014521A Not-in-force EP2028631B1 (de) | 2007-08-21 | 2008-08-14 | Rauchmelder mit Verschmutzungsüberwachung |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11008070.2A Active EP2407949B1 (de) | 2007-08-21 | 2008-08-14 | Ringförmige Hilfslichtquelle |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08014521A Not-in-force EP2028631B1 (de) | 2007-08-21 | 2008-08-14 | Rauchmelder mit Verschmutzungsüberwachung |
Country Status (3)
Country | Link |
---|---|
EP (3) | EP2407949B1 (de) |
AT (1) | ATE531018T1 (de) |
DE (1) | DE102007039401B4 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020111144A1 (de) | 2020-04-23 | 2021-10-28 | Agilent Technologies, Inc. - A Delaware Corporation - | Analysegerät mit Gehäuseabschnitt mit zumindest abschnittsweise steuerbaren optischen Transmissionseigenschaften |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5135140B2 (ja) | 2008-09-19 | 2013-01-30 | ニッタン株式会社 | 炎感知器 |
DE102009047533A1 (de) * | 2009-12-04 | 2011-06-09 | Atral- Secal Gmbh | Rauchmelder mit Infrarot-Abdecküberwachung |
EP2423895B1 (de) | 2010-08-26 | 2017-03-08 | Siemens Schweiz AG | Streulicht-Brandmelder mit Mitteln zur Unterdrückung einer akustischen Warnung im Falle einer niedrigen Batteriespannung |
DE202011050908U1 (de) | 2011-08-04 | 2011-10-11 | Atral- Secal Gmbh | Vorrichtung zum Erkennen von Bränden |
DE102011088850B3 (de) * | 2011-12-16 | 2013-04-04 | Robert Bosch Gmbh | Vorrichtung zur Detektion von Rauch und Verfahren zum Prüfen der Funktionsfähigkeit einer Vorrichtung zur Detektion von Rauch |
DE102012223822A1 (de) * | 2012-12-19 | 2014-06-26 | Schneider Electric Industries Sas | Rauchmelder |
US9679468B2 (en) | 2014-04-21 | 2017-06-13 | Tyco Fire & Security Gmbh | Device and apparatus for self-testing smoke detector baffle system |
DE102015110393A1 (de) * | 2015-06-29 | 2016-12-29 | Atral-Secal Gmbh | Rauchmelder mit Infrarot-Lichtring-Abdecküberwachung |
DE102015221795A1 (de) | 2015-11-06 | 2017-05-11 | Robert Bosch Gmbh | Gerät mit Batterieanschluss |
DE102016121369B4 (de) * | 2016-11-08 | 2018-12-13 | Tq-Systems Gmbh | Rauchmesszelle |
DE102017217280A1 (de) * | 2017-09-28 | 2019-03-28 | Robert Bosch Gmbh | Messeinrichtung zur Partikelmessung |
CN110675591B (zh) * | 2019-09-14 | 2021-04-30 | 杭州拓深科技有限公司 | 一种抗干扰光电烟雾检测方法及检测模块 |
DE102020206453A1 (de) * | 2020-05-25 | 2021-11-25 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Verschmutzungserkennung eines Brandmelders, Brandmelder, Computerprogramm und maschinenlesbares Speichermedium |
DE102021210728A1 (de) | 2021-09-27 | 2023-03-30 | Robert Bosch Gesellschaft mit beschränkter Haftung | Partikelmessvorrichtung |
US20240346900A1 (en) * | 2023-04-16 | 2024-10-17 | Carrier Corporation | Self-testing smoke detector having an electrochromic film |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02227800A (ja) | 1989-02-28 | 1990-09-10 | Hochiki Corp | 光電式煙感知器 |
EP0503167B1 (de) | 1991-03-12 | 1995-06-14 | Matsushita Electric Works, Ltd. | Rauchmelder und Verfahren zum Testen eines solchen Melders |
DE10110231A1 (de) | 2001-03-02 | 2002-09-26 | Bosch Gmbh Robert | Optische Blende |
WO2004026012A1 (de) * | 2002-09-05 | 2004-03-25 | Siemens Aktiengesellschaft | Multifunktionelles gehäuse |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH565421A5 (de) * | 1974-05-10 | 1975-08-15 | Cerberus Ag | |
SE461560B (sv) * | 1988-02-24 | 1990-02-26 | Carl Goesta Ardesjoe | Anordning foer oevervakning av objekt, saasom kokplattor och elektriska spisar, med avseende paa oeverhettning |
DE19808872A1 (de) * | 1998-03-03 | 1999-09-09 | Bosch Gmbh Robert | Melder |
JP2001014570A (ja) * | 1999-04-28 | 2001-01-19 | Nittan Co Ltd | 火災感知器 |
AU3952899A (en) * | 1999-05-19 | 2000-12-12 | Rokonet Electronics Ltd. | Self adjusting smoke detector |
ES2306026T3 (es) * | 2005-11-04 | 2008-11-01 | Siemens Aktiengesellschaft | Aseguramiento frente a la manipulacion de un avisador de incendios. |
-
2007
- 2007-08-21 DE DE102007039401A patent/DE102007039401B4/de not_active Expired - Fee Related
-
2008
- 2008-08-14 EP EP11008070.2A patent/EP2407949B1/de active Active
- 2008-08-14 EP EP11008071A patent/EP2405412A1/de not_active Withdrawn
- 2008-08-14 AT AT08014521T patent/ATE531018T1/de active
- 2008-08-14 EP EP08014521A patent/EP2028631B1/de not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02227800A (ja) | 1989-02-28 | 1990-09-10 | Hochiki Corp | 光電式煙感知器 |
EP0503167B1 (de) | 1991-03-12 | 1995-06-14 | Matsushita Electric Works, Ltd. | Rauchmelder und Verfahren zum Testen eines solchen Melders |
DE10110231A1 (de) | 2001-03-02 | 2002-09-26 | Bosch Gmbh Robert | Optische Blende |
WO2004026012A1 (de) * | 2002-09-05 | 2004-03-25 | Siemens Aktiengesellschaft | Multifunktionelles gehäuse |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020111144A1 (de) | 2020-04-23 | 2021-10-28 | Agilent Technologies, Inc. - A Delaware Corporation - | Analysegerät mit Gehäuseabschnitt mit zumindest abschnittsweise steuerbaren optischen Transmissionseigenschaften |
DE102020111144B4 (de) | 2020-04-23 | 2022-02-10 | Agilent Technologies, Inc. - A Delaware Corporation - | Analysegerät mit Gehäuseabschnitt mit zumindest abschnittsweise steuerbaren optischen Transmissionseigenschaften |
Also Published As
Publication number | Publication date |
---|---|
ATE531018T1 (de) | 2011-11-15 |
EP2028631B1 (de) | 2011-10-26 |
DE102007039401A1 (de) | 2009-02-26 |
EP2407949A1 (de) | 2012-01-18 |
EP2028631A3 (de) | 2009-11-18 |
DE102007039401B4 (de) | 2012-07-12 |
EP2407949B1 (de) | 2013-05-22 |
EP2028631A2 (de) | 2009-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2028631B1 (de) | Rauchmelder mit Verschmutzungsüberwachung | |
DE102006023048C5 (de) | Brandwarnmelder und Verfahren zur Überprüfung dessen Funktionsfähigkeit | |
EP0636266B1 (de) | Vorrichtung zur funktionsprüfung von rauchmeldern | |
DE3831654C2 (de) | ||
EP1550093B1 (de) | Rauchmelder | |
EP3073458A1 (de) | Brandmelder mit einer streulichtanordnung im bereich einer raucheintrittsöffnung zur verschmutzungsüberwachung | |
DE60010411T2 (de) | Rauchalarmvorrichtung | |
DE102008001391A1 (de) | Brandmeldervorrichtung sowie Verfahren zur Branddetektion | |
EP1870866B1 (de) | Rauchwarnmelder | |
EP1061489B1 (de) | Intrusionsmelder mit einer Einrichtung zur Sabotageüberwachung | |
EP1062647A1 (de) | Brandmelder | |
DE102013002859A1 (de) | Vorrichtung zur Detektion von Rauch in einem Raum und Verfahren zum Überprüfen der Funktionsfähigkeit einer derartigen Vorrichtung | |
CH701902B1 (de) | Verfahren zur Verfolgung der Farbhomogenität der Garnoberfläche und Vorrichtung zu dessen Durchführung. | |
DE102016208357A1 (de) | Brandmelder, insbesondere offener Streulichtrauchmelder, mit einer Photodiode zur Erfassung von Umgebungslicht, um davon abhängig den optischen Signalpfad bei der Streulicht-Brandanalyse zu beschleunigen | |
DE10353837A1 (de) | Prüfeinrichtung für Brandmelder | |
WO1999053278A1 (de) | Sensorvorrichtung und verfahren zum betreiben einer sensorvorrichtung | |
DE102011088850B3 (de) | Vorrichtung zur Detektion von Rauch und Verfahren zum Prüfen der Funktionsfähigkeit einer Vorrichtung zur Detektion von Rauch | |
EP0660282B1 (de) | Brandmeldesystem zur Früherkennung von Bränden | |
EP3474249A2 (de) | Messeinrichtung zur partikelmessung | |
DE102016208359B3 (de) | Brandmelder, insbesondere geschlossener Streulichtrauchmelder, mit einer separaten Photodiode zur Erfassung von Umgebungslicht, um davon abhängig die Ausgabe eines möglichen Brandalarms zu beschleunigen | |
EP0880118B1 (de) | Optischer Rauchmelder | |
EP1381005A1 (de) | Ereignismelder mit einer Kamera | |
DE102016208358B3 (de) | Brandmelder, insbesondere thermischer Melder, mit einer Photodiode zur Erfassung von Umgebungslicht, um davon abhängig die Ausgabe eines möglichen Brandalarms zu beschleunigen | |
DE102013208533A1 (de) | Brandmelder | |
DE102008006146B4 (de) | Sichttrübungsmessung in einem Überwachungsbereich |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AC | Divisional application: reference to earlier application |
Ref document number: 2028631 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MITREITER, MANFRED Inventor name: VOEHRINGER, ANSGAR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120712 |