EP2403982B1 - Matière polymère fluorée hydrophile et son procédé de fabrication - Google Patents

Matière polymère fluorée hydrophile et son procédé de fabrication Download PDF

Info

Publication number
EP2403982B1
EP2403982B1 EP10749090.6A EP10749090A EP2403982B1 EP 2403982 B1 EP2403982 B1 EP 2403982B1 EP 10749090 A EP10749090 A EP 10749090A EP 2403982 B1 EP2403982 B1 EP 2403982B1
Authority
EP
European Patent Office
Prior art keywords
fluoropolymer
fiber
fibers
length
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10749090.6A
Other languages
German (de)
English (en)
Other versions
EP2403982A2 (fr
EP2403982A4 (fr
Inventor
J. Michael Donckers
Artgur Russell Nelson
Chester Darryl Moon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fluorofibers America Inc
Original Assignee
Toray Fluorofibers America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/396,776 external-priority patent/US8132748B2/en
Priority claimed from US12/396,749 external-priority patent/US8003208B2/en
Priority claimed from US12/396,808 external-priority patent/US8132747B2/en
Application filed by Toray Fluorofibers America Inc filed Critical Toray Fluorofibers America Inc
Publication of EP2403982A2 publication Critical patent/EP2403982A2/fr
Publication of EP2403982A4 publication Critical patent/EP2403982A4/fr
Application granted granted Critical
Publication of EP2403982B1 publication Critical patent/EP2403982B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/12Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons

Definitions

  • the present invention relates to a hydrophilic fluoropolymer material. More particularly, the invention relates to a fluoropolymer fiber floc or staple having a modified surface morphology giving rise to increased hydrophilicity.
  • Fluoropolymers have properties such as extremely low coefficient of friction, wear and chemical resistance, dielectric strength, temperature resistance and various combinations of these properties that make fluoropolymers useful in numerous and diverse industries.
  • fluoropolymers are used for lining vessels and piping.
  • the biomedical industry has found fluoropolymers to be biocompatible and so have used them in the human body in the form of both implantable parts and devices with which to perform diagnostic and therapeutic procedures.
  • fluoropolymers have replaced asbestos and other high temperature materials.
  • Wire jacketing is one such example. Automotive and aircraft bearings, seals, push-pull cables, belts and fuel lines, among other components, are now commonly made with a virgin or filled fluoropolymer component.
  • fluoropolymers In order to take advantage of the properties of fluoropolymers, fluoropolymers often must be modified by decreasing their lubricity in order to be bonded to another material. That is because the chemical composition and resulting surface chemistry of fluoropolymers render them hydrophobic and therefore notoriously difficult to wet. Hydrophobic materials have little or no tendency to adsorb water and water tends to "bead” on their surfaces in discrete droplets. Hydrophobic materials possess low surface tension values and lack active groups in their surface chemistry for formation of "hydrogen-bonds" with water. In the natural state, fluoropolymers exhibit these hydrophobic characteristics, which requires surface modification to render it hydrophilic. The applications mentioned above all require the fluoropolymer to be modified.
  • fluoropolymer films and sheets are often etched on one side to enable bonding it to the inside of steel tanks and piping; the outside diameter of small diameter, thin wall fluoropolymer tubing is etched to bond to an over-extrusion resulting in a fluoropolymer-lined guide catheter for medical use; fluoropolymer jacketed high-temperature wire is etched to allow the printing of a color stripe or other legend such as the gauge of the wire and/or the name of the manufacturer; fluoropolymer based printed circuit boards require etching to permit the metallization of throughholes creating conductive vertical paths between both sides of a double sided circuit board or connecting several circuits in a multilayer configuration.
  • the first commercially viable processes were chemical in nature and involved the reaction between sodium and the fluorine of the polymer. In time, some of the chemistry was changed to make the process less potentially explosive and hazardous, but the essential ingredient - sodium - remains the most reliable, readily available chemical 'abrasive' for members of the fluoropolymer family.
  • US2006/0051574 describes an existing fiber having increased filament separation and a method for making such a fiber.
  • the present invention is directed to a fluoropolymer fiber according to claim 1.
  • the tears may be formed by mechanically processing the material.
  • One process may include placing a fluoropolymer material into an air stream and introducing mechanical energy into the material by colliding the material against itself.
  • Another process may include cooling the fluoropolymer material, making the material brittle and then mechanically grinding it. It is believed that in most instances the tears are formed between the individual fluoropolymer particles that make up the material.
  • the surface modifications brought about by these processes may increase the surface area and roughness of the fluoropolymer materials. As a result, the lubricity of the material is decreased and the hydrophilicity is increased. This allows the fluoropolymer material to form long-lasting, homogenous slurries in aqueous solutions. It is believed that these modifications will allow the materials to be more easily mixed with resins and thermoplastics and molded into parts.
  • the fluoropolymer material of the present invention is preferably prepared from a fluoropolymer fiber, such as continuous fluoropolymer filament yarn, which is made into floc or staple and processed in jet mill or a cryogenic grinder. In each process, the physical appearance of the fluoropolymer fibers is modified in a manner that improves the hydrophilicity of the material. This occurs by forming deformations in the fluoropolymer fibers that are visible using scanning electron microscopy at magnifications as low as X120.
  • the deformations act to increase and roughen the surface area of the fibers by tearing the typically smooth exterior body and ends of the individual floc fibers and providing the fibers with split ends, slits along the bodies of the fibers, outwardly extending, fibril-like members, and exposed interior fiber portions.
  • fluoropolymer fiber a fiber prepared from polymers such as polytetrafluoroethylene (“PTFE”), and polymers generally known as fluorinated olefinic polymers, for example, copolymers of tetrafluoroethylene and hexafluoropropene, copolymers of tetrafluoroethylene and perfluoroalkyl-vinyl esters such as perfluoropropyl-vinyl ether and perfluoroethyl-vinyl ether, fluorinated olefinic terpolymers including those of the above-listed monomers and other tetrafluoroethylene based copolymers.
  • the preferred fluoropolymer fiber is PTFE fiber.
  • split it is meant a tear that extends along a length of a fluoropolymer material and out through an end of the fiber.
  • a spilt can appear as a crack through an end of the fiber or result in the formation of separated or partially separated fiber strands, each strand having a free end and an attached end.
  • the end of a fiber may include a single split thereby giving rise to a pair of strands, which may or may not have the same thickness.
  • the end of a fiber may include many splits thereby giving rise to many strands. In this instance, the end of the fiber can have a frayed appearance depending on the number and lengths of the splits.
  • a split typically does not result in the removal of material or a substantial amount of material from the fiber. However, in some instances, a split can extend along a length of a fiber and result in the complete removal of a sliver-like portion of the fiber, or along the entire length of the fiber thus removing a side of the fiber.
  • slit it is meant a tear that extends partially along a length of a fluoropolymer fiber but does not extend through one of the opposing ends of the fiber. Slits often appear as an elongated, continuous openings that extend into an interior of the fiber to a particular depth. Like a split, a slit typically does not result in the removal of material or a substantial amount of material from the fiber.
  • grain it is meant a longitudinal arrangement or pattern of fibril-like members. Often, a tear in the fluoropolymer fiber will expose an interior surface of the fiber. These interior surfaces can exhibit a grain running longitudinally along the axis of the fiber. The grain gives the exposed interior surface of the fiber the appearance of ridges extending lengthwise along the exposed interior surface.
  • fibril-like members it is meant the elongated pieces that make up the grain of a fluoropolymer fiber.
  • the fibril-like members are not visible along a length of the exterior surface of the fibers. However, they are visible on the interior surfaces of the fluoropolymer fibers when the interior surfaces are exposed, for example, by a tear.
  • the fluoropolymer fiber is torn, exposing the interior surfaces of the fibers, a portion of the fibril-like members appear to become partially dislodged from the fibers and extend outwardly therefrom.
  • These fibril-like members have attached ends and free ends which extend outwardly from exposed interior surfaces of the fluoropolymer fiber.
  • the fluoropolymer fiber of the present invention can be spun by a variety of means, depending on the exact fluoropolymer composition desired.
  • the fibers can be spun by dispersion spinning; that is, a dispersion of insoluble fluoropolymer particles is mixed with a solution of a soluble matrix polymer and this mixture is then coagulated into filaments by extruding the mixture into a coagulation solution in which the matrix polymer becomes insoluble.
  • the insoluble matrix material may later be sintered and removed by oxidative processes if desired.
  • One method which is commonly used to spin PTFE and related polymers includes spinning the polymer from a mixture of an aqueous dispersion of the polymer particles and viscose, where cellulose xanthate is the soluble form of the matrix polymer, as taught for example in U.S. Pat. Nos. 3,655,853 ; 3,114,672 and 2,772,444 .
  • the use of viscose suffers from some serious disadvantages.
  • the fluoropolymer fiber of the present invention is prepared using a more environmentally friendly method than those methods utilizing viscose.
  • One such method is described in U.S. Pat. Nos. 5,820,984 ; 5,762,846 , and 5,723,081 , which patents are incorporated herein in their entireties by reference.
  • this method employs a cellulosic ether polymer such as methylcellulose, hydroxyethylcellulose, methylhydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, ethylcellulose or carboxymethylcellulose as the soluble matrix polymer, in place of viscose.
  • a cellulosic ether polymer such as methylcellulose, hydroxyethylcellulose, methylhydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, ethylcellulose or carboxymethylcellulose
  • filament may also be spun directly from a melt.
  • Fibers may also be produced by mixing fine powdered fluoropolymer with an extrusion aid, forming this mixture into a billet and extruding the mixture through a die to produce fibers which may have either expanded or un-expanded structures.
  • the preferred method of making the fluoropolymer fiber is by dispersion spinning where the matrix polymer is a cellulosic ether poly
  • the fluoropolymer fiber can be made into floc or staple using any number of means known in the art.
  • the fluoropolymer fiber is cut into floc or staple by a guillotine cutter, which is characterized by a to-and-fro movement of a cutting blade.
  • the fluoropolymer fibers preferably have lengths ranging between 127 microns and 115,000 microns.
  • the process for modifying the physical appearance of the fluoropolymer materials by forming deformations in the fibers is achieved by introducing mechanical energy into the fluoropolymer fibers to such a degree that the ends of the fibers are split, slits are formed in the bodies of the fibers, a grain of the fiber is exposed, and fibril-like members are extended outwardly from exposed interior surface portions of the fibers.
  • the processes do not substantially decrease the length of the individual fibers.
  • One suitable process includes entraining the fibers in an air stream, directing the entrained fibers through an orifice and colliding the pieces into one another. This process is preferably carried out using a jet mill and jet milling processes, examples of which are described in U.S. Pat. Nos. 7,258,290 ; 6,196,482 , 4,526,324 ; and 4,198,004 .
  • Another suitable process includes cooling the fluoropolymer fibers to a cryogenic temperature of about -268°C or less, depending on the low temperature embrittlement properties of the particular fibers, and then grinding the fibers. This process is preferably carried out using a cryogrinder and cryogrinding processes, examples of which are described in U.S. Pat. Nos. 4,273,294 ; 3,771,729 ; and 2,919,862 .
  • Jet mills and cryogrinders are conventionally used to pulverize materials into fine particles or powder.
  • jet milling is a process that uses high pressure air to micronize friable, heat-sensitive materials into ultra-fine powders. Powder sizes vary depending on the material and application, but typically ranges from 75 to as fine as 1 micron can be prepared. Often materials are jet milled when they need to be finer than 45 microns.
  • Cryogenic grinding is a process that uses liquid nitrogen to freeze the materials being size-reduced and one of a variety of grinding mechanisms to ground them to a powder distribution depending on the application. Particle sizes of 0.1 micron can be obtained.
  • jet or cryogenic milling can be carried out on the fluoropolymers materials of the present invention without the materials being pulverized or size-reduced. More particularly, it has been found that the materials can be processed with a jet mill or a cryogenic grinding mill without substantially affecting the lengths of fibers, while at the same time forming splits in the ends of the fibers, forming slits in the bodies of the fibers, forming outwardly extending, fibril-like members and exposing the interior surfaces of the materials. Also, unexpectedly, these modifications have been found to render the processed fluoropolymer materials hydrophilic thus converting a hydrophobic material into a hydrophilic material, or in the alternative, increasing or improving the hydrophilicity of the materials.
  • Example 1 the virgin floc was cut into lengths of approximately 200 to 250 microns. As displayed in FIGS. 1 through 4 , the virgin floc fibers had smooth, nearly featureless exterior surfaces along the lengths thereof. The ends of the floc fibers were substantially smooth and nearly featureless as well, with the exception of the PTFE floc fibers shown in FIG. 4 , which exhibited some uneven areas which are believed to have resulted from the cutting process.
  • the wettability of the 200 to 250 microns virgin PTFE fiber floc was tested.
  • 50 grams of the floc and 200 ml of deionized water were placed into a Waring blender and mixed for 30 seconds. Thereafter, the mixture was observed.
  • the PTFE floc fibers that were not adhered to the walls of the blender or floating on top of the water began to settle to the bottom of the blender. This resulted in the formation of three distinct mixture portions including a floc rich bottom portion, a water rich middle portion and a top portion composed of PTFE fiber floc floating on top of the middle portion.
  • the floc in the top portion appeared dry.
  • the wettability of the PTFE fiber floc was determined by placing 50 grams of the floc and 200 ml of deionized water into a Waring blender, mixing the water and fibers for 30 seconds and immediately thereafter siphoning a portion of the mixture into a syringe.
  • the PTFE floc fibers quickly settled into three portions including a floc rich bottom portion, a water rich middle portion and a top portion composed of floc fibers floating on top of the middle portion.
  • Example 2 the virgin floc was cut into lengths of approximately 6350 microns. As displayed in FIG. 5 , the virgin floc fibers had smooth, nearly featureless exterior surfaces along the lengths thereof. These figures further show that floc fibers tended to clump together.
  • the wettability of the 6350 microns virgin PTFE fiber floc was tested. Fifty grams of the floc and 200 ml of deionized water were placed into a Waring blender and mixed for 30 seconds. Thereafter, the mixture was observed. Immediately, the PTFE floc fibers began to settle to the bottom of the container. This resulted in the formation of two distinct mixture portions including a floc rich bottom portion and a water rich top portion
  • Example 3 a portion of the 200 to 250 microns virgin PTFE fiber floc was processed by jet milling and examined. As shown in FIGS. 6 through 14 , jet mill processing of the fluoropolymer fiber floc modified the physical appearance of the fluoropolymer fibers. The modifications included surface deformations caused by tearing of the fibers. The tearing resulted in the formation of split fiber ends, slits along the bodies of the fibers, and formation of outwardly extending, fibril-like members and the exposure of interior surfaces of the fibers. The exposed interior surfaces of the fibers exhibited a grain that in certain instances, where a split resulted in the removal of an entire side of the fiber, extended the entire length of the fibers. The grain appeared to be formed by the fibril-like members.
  • the majority of the fibril-like members remained fully coupled to the fiber surfaces after tearing thus providing the exposed interior surfaces with a number of longitudinally extending ridges.
  • the ridges gave the exposed interior surfaces a rough appearance in contrast to the smooth exterior surfaces of the fibers.
  • the fibril-like members became partially detached from the fibers and extended outwardly from the fiber surfaces.
  • These fiber surfaces primarily included the exposed interior surfaces but also included areas along the edges formed between the exterior surfaces and exposed interior surfaces of the fibers.
  • An example of an exposed interior surface is well depicted in FIGS. 6 , 7 and 12 . It is believed that the fibril-like members constitute individual or small groupings of elongated or drawn PTFE particles.
  • the partially detached fibril-like members were often bent or curved and had lengths in excess of 100 microns.
  • the slits appeared to form between groupings of the fibril-like members and individual fibril-like members.
  • the observed members had lengths that were less than 20 microns and as long as 80 microns.
  • the depth of the of the slits was difficult to determine, but it was found that some of the slits extended through the entire thickness or width of the PTFE fibers.
  • a plurality of slits formed within a single fiber are well depicted in FIG. 8 .
  • FIGS. 10 through 13 depict various splits through the ends of the PTFE fibers.
  • a typical frayed fiber end is shown in FIG. 10 , the fiber being frayed at both ends.
  • the frayed portions are exhibited as individual strands having free ends and ends attached to the fiber.
  • the fiber in FIG. 10 also appears to have had an entire side of the fiber split off from the fiber thus exposing an interior surface of the fiber that extends the length of the fiber. This occurrence is also depicted in FIGS. 6 and 7 .
  • FIG. 11 provides an example of a split that does not result in a strand having a free end but rather appears as a crack that extends through the end of the fiber.
  • the splits ranged in lengths from less than 1 micron to the entire length of the fibers. In those instances where substantial fraying was observed, the fiber ends included splits in the range of 50 to 75 microns.
  • the wettability of the jet milled, 200 to 250 microns PTFE fiber floc was tested.
  • 50 grams of the processed floc and 200 ml of deionized water were placed into a Waring blender and mixed for 30 seconds. Thereafter, the mixture was observed.
  • the mixture appeared as a homogenous, aqueous dispersion of the fluoropolymer floc. No floc was observed settling at the bottom of the container, and none of the floc was observed floating on top of the mixture.
  • the mixture maintained a homogenous state for several days even as the amount of water in the container decreased by evaporation. Eventually, enough water evaporated from the container that the wetted fluoropolymer floc took on the consistency of dough.
  • the wettability of the jet milled PTFE fiber floc was determined by placing 50 grams of the processed floc and 200 ml of deionized water into a Waring blender, mixing the water and fibers for 30 seconds and immediately thereafter siphoning a portion of the mixture into a syringe.
  • the mixture appeared as a homogenous, aqueous dispersion of fluoropolymer floc. No floc was observed settling at the bottom of the syringe, and none of the floc was observed floating on top of the mixture.
  • the homogenous slurry flowed easily into and out of syringe on multiple occasions exhibiting excellent flow characteristics
  • Example 4 a portion of the 6350 microns virgin PTFE fiber floc was processed by cryogenic grinding and examined. As shown in FIGS. 15 through 20 , cryogenic milling of the fluoropolymer fiber floc modified the physical appearance of the fluoropolymer fibers much like jet milling. Thus, the cryogenic milled fibers included split fiber ends, slits along the bodies of the fibers, formation of outwardly extending, fibril-like members and exposure of interior surfaces of the fibers. No substantial differences in the surface morphology of the fibers milled by the cryogenic grinding process and the jet milling processing were observed.
  • the wettability of the cryogenic milled, 6350 microns PTFE fiber floc was tested. Fifty grams of the processed floc and 200 ml of deionized water were placed into a Waring blender and mixed for 30 seconds. Thereafter, the mixture was observed. The mixture appeared as a homogenous, aqueous dispersion of the fluoropolymer floc. No floc was observed settling at the bottom of the container, and none of the floc was observed floating on top of the mixture. For reasons unknown, the cryogenic milled floc dispersed throughout the aqueous medium and provided the mixture with a sponge-like consistency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Materials For Medical Uses (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Claims (35)

  1. Fibre polymère fluorée présentant une hydrophilicité améliorée et une déformation de surface configurée pour procurer l'hydrophilicité améliorée, caractérisée en ce que la déformation de surface est une fente ayant une profondeur qui est supérieure à 10% d'une largeur moyenne de la fibre polymère fluorée, et en ce que la fente est une déchirure qui s'étend partiellement le long d'une fibre polymère fluorée, mais qui ne s'étend pas à travers une des extrémités opposées de la fibre.
  2. Fibre polymère fluorée selon la revendication 1, caractérisée en ce que la fibre présente également une déformation de surface qui est une fente ou une multiplicité de fentes qui forment de préférence une multiplicité de brins, qui peuvent donner à une extrémité de la fibre polymère fluorée un aspect effiloché.
  3. Fibre polymère fluorée selon la revendication 2, caractérisée en ce que la fente présente une longueur qui est comprise entre 1% et 100% de la longueur de la fibre polymère fluorée, et la déformation de surface peut être une déchirure qui présente une profondeur qui est comprise entre 5% et 90% de la longueur de la fibre polymère fluorée et la déformation de surface est de préférence une déchirure présentant une longueur qui est comprise entre 10% et 80% de la longueur de la fibre polymère fluorée.
  4. Fibre polymère fluorée selon la revendication 1, 2 ou 3, caractérisée en ce que la déformation de surface s'étend le long d'un grain de la fibre polymère fluorée et/ou la déformation de surface s'étend sensiblement en direction longitudinale le long d'une surface extérieure de la fibre polymère fluorée.
  5. Fibre polymère fluorée selon l'une quelconque des revendications précédentes, caractérisée en ce que la déformation de surface comprend une surface intérieure exposée de la fibre polymère fluorée et en option la surface intérieure exposée comprend un élément de type fibrille s'étendant vers l'extérieur à partir de celle-ci et en option l'élément de type fibrille est courbé.
  6. Fibre polymère fluorée selon l'une quelconque des revendications précédentes, caractérisée en ce que l'hydrophilicité améliorée est résistante à la lumière UV et/ou résistante à l'humidité et/ou résistante à la température.
  7. Fibre polymère fluorée selon l'une quelconque des revendications précédentes, caractérisée en ce que la fibre polymère fluorée est une fibre de polytétrafluoroéthylène d'une longueur comprise entre environ 127 microns et environ 1115.000 microns.
  8. Fibre polymère fluorée selon l'une quelconque des revendications précédentes, caractérisée en ce que la seconde déformation de surface est une déchirure présentant une profondeur qui est supérieure à 0,5 microns ou supérieure à 2,5 microns.
  9. Fibre polymère fluorée selon l'une quelconque des revendications précédentes, caractérisée en ce que la seconde déformation de surface est une fente présentant une profondeur qui est supérieure à 10% d'une largeur moyenne de la fibre polymère fluorée ou supérieure à 25% d'une largeur moyenne de la fibre polymère fluorée.
  10. Fibre polymère fluorée selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend un corps allongé présentant une première extrémité et une seconde extrémité, et une fente s'étendant à travers la première extrémité du corps allongé.
  11. Fibre polymère fluorée selon la revendication 10, caractérisée en ce que la fente comprend une première partie allongée qui est en partie enlevée d'une surface du corps allongé, la première partie allongée présentant une première extrémité couplée au corps allongé et une seconde extrémité libre et en option la fente comprend une seconde partie comportant une surface intérieure exposée du corps allongé et en option la surface intérieure exposée est plus rugueuse qu'une surface extérieure de la fibre polymère fluorée et comporte une multiplicité d'éléments incurvés de type fibrille s'étendant vers l'extérieur.
  12. Fibre polymère fluorée selon la revendication 10 ou 11, caractérisée en ce que la fente s'étend à travers la seconde extrémité.
  13. Fibre polymère fluorée selon la revendication 10, 11 ou 12, caractérisée en ce que la fente a une longueur qui est comprise entre 2% et 75% de la longueur de la fibre polymère fluorée, et la fente a de préférence une longueur qui est comprise entre 15% et 60% de la longueur de la fibre polymère fluorée.
  14. Fibre polymère fluorée selon l'une quelconque des revendications précédentes, caractérisée en ce que la fente présente une profondeur qui est supérieure à 0,75 microns, de préférence supérieure à 2,0 microns.
  15. Fibre polymère fluorée selon l'une quelconque des revendications précédentes, caractérisée en ce que la fibre polymère fluorée est une fibre de polytétrafluoroéthylène.
  16. Fibre polymère fluorée selon l'une quelconque des revendications précédentes, caractérisée en ce que la fibre polymère fluorée est une fibre de flocage ou une fibre coupée.
  17. Fibre polymère fluorée selon l'une quelconque des revendications 10 à 16, caractérisée en ce que la fibre présente une extrémité fendue, une surface intérieure exposée de la fibre polymère fluorée et une multiplicité d'éléments de type fibrille s'étendant vers l'extérieur à partir de la surface intérieure exposée.
  18. Fibre polymère fluorée selon la revendication 17, caractérisée en ce que la fente a une profondeur d'au moins 0,8 microns.
  19. Fibre polymère fluorée selon la revendication 17 ou 18, caractérisée en ce que la fente a une longueur qui est comprise entre 10% et 100% de la longueur de la fibre polymère fluorée et/ou l'extrémité de la fente apparaît effilochée.
  20. Fibre polymère fluorée selon l'une quelconque des revendications 17 à 19, caractérisée en ce que la fibre de flocage polymère fluorée est une fibre polymère fluorée expansée ou une fibre de flocage de polytétrafluoroéthylène ou une fibre coupée de polytétrafluoroéthylène.
  21. Procédé pour augmenter l'hydrophilicité de fibres polymères fluorées, caractérisé en ce qu'il comprend la modification mécanique des fibres polymères fluorées afin de créer une déformation de surface configurée de façon à procurer l'hydrophilicité améliorée, en ce que la déformation de surface est une fente présentant une profondeur qui est supérieure à 10% d'une largeur moyenne de la fibre polymère fluorée, et en ce que la fente est une déchirure qui s'étend en partie le long de la longueur de la fibre polymère fluorée, mais qui ne s'étend pas à travers une des extrémités opposées de la fibre.
  22. Procédé selon la revendication 21, caractérisé en ce que la modification mécanique est effectuée en heurtant les fibres polymères fluorées entre elles et en option la modification mécanique est effectuée en entraînant les fibres polymères fluorées à l'intérieur d'un jet d'air et en option la modification mécanique est effectuée au moyen d'un broyeur à jets.
  23. Procédé selon la revendication 21 ou 22, caractérisé en ce que la modification mécanique comprend la déchirure des fibres polymères fluorées et peut comprendre l'enlèvement partiel de parties de surface extérieures des fibres polymères fluorées et en option les parties de surface extérieures restent couplées par une de leurs extrémités aux fibres polymères fluorées d'où elles sont en partie enlevées.
  24. Procédé selon la revendication 21 ou 22, caractérisé en ce que la modification mécanique comprend le refendage des fibres polymères fluorées en brins et/ou la réalisation d'une surface exposée rugueuse sur une partie des fibres polymères fluorées.
  25. Procédé selon l'une quelconque des revendications 21 à 24, caractérisé en ce que la modification mécanique est effectuée en frappant les fibres polymères fluorées avec un jet d'air.
  26. Procédé selon l'une quelconque des revendications 21 à 25, caractérisé en ce que les fibres polymères fluorées sont des fibres de flocage, des fibres coupées ou des combinaisons de celles-ci.
  27. Procédé selon l'une quelconque des revendications 21 à 26, caractérisé en ce que la modification mécanique comprend la formation d'une fente dans une extrémité d'au moins une des fibres polymères fluorées, la fente présentant une longueur qui est comprise entre 5% et 100% de la longueur de ladite au moins une fibre polymère fluorée, ou en option la modification mécanique comprend la formation d'une fente dans une extrémité d'au moins une des fibres polymères fluorées, la fente présentant une longueur qui est comprise entre 10% et 90% de la longueur de ladite au moins une fibre polymère fluorée, ou en option la modification mécanique comprend la formation d'une fente dans une extrémité d'au moins une des fibres polymères fluorées, la fente présentant une longueur qui est comprise entre environ 20% et environ 50% de la longueur de ladite au moins une fibre polymère fluorée.
  28. Procédé selon l'une quelconque des revendications 21 à 27, caractérisé en ce que la modification mécanique comprend la formation d'une déchirure dans au moins une des fibres polymères fluorées, la déchirure présentant une profondeur qui est supérieure à 1,0 micron, de préférence supérieure à 5,0 microns.
  29. Procédé selon l'une quelconque des revendications 21 à 28, caractérisé en ce que la modification mécanique comprend la formation d'une multiplicité d'éléments de type fibrille qui s'étendent vers l'extérieur à partir d'une surface intérieure exposée d'au moins une des fibres polymères fluorées et/ou la modification mécanique ne raccourcit pas sensiblement une longueur totale d'une majorité des fibres polymères fluorées.
  30. Procédé selon l'une quelconque des revendications 21 à 29, caractérisé en ce que le traitement comprend la formation d'au moins une déchirure à l'intérieur d'une surface de la fibre polymère fluorée, et ladite au moins une déchirure s'étend sensiblement en direction longitudinale le long de la surface de la fibre polymère fluorée et en option la formation de ladite au moins une déchirure comprend l'exposition d'une multiplicité de particules polymères fluorées sous-jacentes sensiblement alignées.
  31. Procédé selon l'une quelconque des revendications 21 à 29, caractérisé en ce que le traitement comprend de refendage d'une extrémité de la fibre polymère fluorée en une multiplicité de brins et en option le traitement comprend le refendage d'une extrémité de la fibre polymère fluorée le long d'un grain de celle-ci en une multiplicité de brins.
  32. Procédé selon l'une quelconque des revendications 21 à 31, caractérisé en ce que le traitement comprend la conversion d'une partie de surface lisse de la fibre polymère fluorée en une partie de surface rugueuse et en option la partie de surface rugueuse s'étend en direction longitudinale le long de la fibre polymère fluorée.
  33. Procédé selon l'une quelconque des revendications 21 à 32, caractérisé en ce qu'on confère une hydrophilicité au matériau polymère fluoré en broyant mécaniquement le matériau polymère fluoré et en option le broyage mécanique comprend la projection d'un jet d'air dans le matériau polymère fluoré et en option le broyage mécanique comprend le passage du matériau polymère fluoré à travers un orifice d'un broyeur à jets avec au moins un jet d'air.
  34. Procédé selon la revendication 33, caractérisé en ce que le broyage mécanique comprend le refendage d'au moins une extrémité d'une partie du matériau polymère fluoré en brins séparés, et/ou en ce que le broyage mécanique comprend la réalisation d'une surface rugueuse exposée sur une partie du matériau polymère fluoré et en option la surface rugueuse exposée s'étend le long d'un axe longitudinal du matériau polymère fluoré.
  35. Procédé selon l'une quelconque des revendications 21 à 34, caractérisé en ce que le matériau polymère fluoré comprend des fibres de polytétrafluoroéthylène.
EP10749090.6A 2009-03-03 2010-02-10 Matière polymère fluorée hydrophile et son procédé de fabrication Active EP2403982B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/396,776 US8132748B2 (en) 2009-03-03 2009-03-03 Method of making hydrophilic fluoropolymer material
US12/396,749 US8003208B2 (en) 2009-03-03 2009-03-03 Hydrophilic fluoropolymer material
US12/396,808 US8132747B2 (en) 2009-03-03 2009-03-03 Method of making hydrophilic fluoropolymer material
PCT/US2010/023772 WO2010101701A2 (fr) 2009-03-03 2010-02-10 Matière polymère fluorée hydrophile et son procédé de fabrication

Publications (3)

Publication Number Publication Date
EP2403982A2 EP2403982A2 (fr) 2012-01-11
EP2403982A4 EP2403982A4 (fr) 2013-05-08
EP2403982B1 true EP2403982B1 (fr) 2014-10-29

Family

ID=42710162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10749090.6A Active EP2403982B1 (fr) 2009-03-03 2010-02-10 Matière polymère fluorée hydrophile et son procédé de fabrication

Country Status (4)

Country Link
EP (1) EP2403982B1 (fr)
CA (2) CA2754104C (fr)
MX (1) MX2011009216A (fr)
WO (1) WO2010101701A2 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4130356C2 (de) * 1991-09-12 1995-01-26 Bitterfeld Wolfen Chemie Fasermaterial aus PTFE und Verfahren zu seiner Herstellung
JPH0770920A (ja) * 1993-08-23 1995-03-14 Toray Ind Inc フロック加工用原糸およびその製造法およびフロック加工品
US20050100733A1 (en) * 2003-08-15 2005-05-12 Foss Manufacturing Co., Inc. Synthetic fibers modified with PTFE to improve performance
FR2860799B1 (fr) * 2003-10-08 2006-02-17 Rhodia Chimie Sa Compositions de revetements comprenant une dispersion aqueuse de polymere filmogene et une silicone polyether, leur procede de preparation et leurs utilisations
US8025960B2 (en) * 2004-02-02 2011-09-27 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US7346961B2 (en) 2004-09-08 2008-03-25 Toray Fluorofibers (America), Inc. Fiber having increased filament separation and method of making same

Also Published As

Publication number Publication date
CA2754104C (fr) 2014-07-08
WO2010101701A3 (fr) 2010-12-02
MX2011009216A (es) 2011-10-10
EP2403982A2 (fr) 2012-01-11
CA2848302C (fr) 2017-06-13
CA2754104A1 (fr) 2010-09-10
CA2848302A1 (fr) 2010-09-10
WO2010101701A2 (fr) 2010-09-10
EP2403982A4 (fr) 2013-05-08

Similar Documents

Publication Publication Date Title
Cengiz et al. The effect of salt on the roller electrospinning of polyurethane nanofibers
EP2190917B1 (fr) Suspension de cellulose et son procédé de préparation
US8459579B2 (en) Method of making hydrophilic fluoropolymer material
JP2013155461A (ja) ポリビニルアルコール系コンポジット繊維及びその製造方法
US8132747B2 (en) Method of making hydrophilic fluoropolymer material
EP3056532A1 (fr) Poudre de fragments d'au moins une nanofibre polymère
JP2019044087A (ja) セルロースナノファイバー分散液、及び、セルロースナノファイバー複合樹脂
Hulsey et al. Comparative study of polymer dissolution techniques for electrospinning
US8003208B2 (en) Hydrophilic fluoropolymer material
Gaitán et al. Morphological and mechanical characterization of electrospun polylactic acid and microcrystalline cellulose
EP2403982B1 (fr) Matière polymère fluorée hydrophile et son procédé de fabrication
EP3763862B1 (fr) Nontissé et filtre
Tao Effects of Molecular weight and Solution Concentration on Electrospinning of PVA
US11242630B2 (en) Wettable fluoropolymer fiber material
JP5565971B2 (ja) ポリ乳酸樹脂とポリエチレンテレフタレート樹脂からなるポリマーアロイおよびその製造方法
Dou et al. Preparation and characterization of electrospun polylactic acid micro/nanofibers under different solvent conditions
Sosiati et al. Characterization of the properties of electrospun blended hybrid poly (vinyl alcohol) _Aloe vera/chitosan nano-emulsion nanofibrous membranes
Malla et al. Correlation between Morphology, Mechanical Properties and Microdeformation Behavior of Electrospun Scaffolds Based on a Biobased Polymer Blend and Biogenic Nano-Hydroxyapatite
JP2008266806A (ja) ポリテトラフルオロエチレン繊維の製造方法
JP6997982B2 (ja) 繊維の製造方法、モノフィラメント、及びマルチフィラメント
Narejo et al. Fabrication and characterization of co-electrospun cellulose/poly (4-methyl-1-pentene) nanofibers with improved tensile properties
EP4023803A1 (fr) Article en fibres
JP2023019599A (ja) 複合繊維、その製造方法、および繊維製品
Cho et al. On use of cellulose nanowhisker to enhance the physical properties of electrospun biopolyurethane
JP2007077563A (ja) 超極細繊維からなる粉末およびその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110901

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20130408

RIC1 Information provided on ipc code assigned before grant

Ipc: D01F 6/58 20060101ALI20130402BHEP

Ipc: D02J 3/00 20060101AFI20130402BHEP

Ipc: D01F 6/12 20060101ALI20130402BHEP

17Q First examination report despatched

Effective date: 20140121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 693667

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010019834

Country of ref document: DE

Effective date: 20141204

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141029

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150302

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150130

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010019834

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20150730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 693667

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141029

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20220214

Year of fee payment: 13

Ref country code: GB

Payment date: 20220210

Year of fee payment: 13

Ref country code: DE

Payment date: 20220214

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220211

Year of fee payment: 13

Ref country code: FR

Payment date: 20220211

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010019834

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230210

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230210

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230210

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230210

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240126

Year of fee payment: 15