EP2403663B2 - Method and cooling device for cooling the rollers of a roll stand - Google Patents

Method and cooling device for cooling the rollers of a roll stand Download PDF

Info

Publication number
EP2403663B2
EP2403663B2 EP10706548.4A EP10706548A EP2403663B2 EP 2403663 B2 EP2403663 B2 EP 2403663B2 EP 10706548 A EP10706548 A EP 10706548A EP 2403663 B2 EP2403663 B2 EP 2403663B2
Authority
EP
European Patent Office
Prior art keywords
cooling
pressure
roll
low
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10706548.4A
Other languages
German (de)
French (fr)
Other versions
EP2403663B1 (en
EP2403663A1 (en
Inventor
Jürgen Seidel
Matthias Kipping
Rolf Franz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42270463&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2403663(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP2403663A1 publication Critical patent/EP2403663A1/en
Publication of EP2403663B1 publication Critical patent/EP2403663B1/en
Application granted granted Critical
Publication of EP2403663B2 publication Critical patent/EP2403663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally

Definitions

  • the invention relates to a method and a cooling device for cooling the rolls, in particular the work rolls of a roll stand, see e.g. JP-A 63303609 .
  • the rolls involved in the rolling process are heated.
  • the rollers are cooled.
  • Most rolling mills nowadays use cooling systems that spray a cooling liquid onto the roll surface with the aid of nozzles (preferably flat jet nozzles).
  • spray cooling is referred to as spray cooling.
  • the selected pressure level is between 6 bar and 12 bar and in exceptional cases 20 bar.
  • the work roll cooling should keep the roll free of dirt, oxide and scale particles.
  • the cooling effect increases as the amount of coolant increases and the coolant pressure increases.
  • the disadvantage of the system is that a large amount of energy is required and the maintenance of the pumps is more complex at higher pressures.
  • Another option for cooling the work rolls is low pressure cooling.
  • a cooling device with highly turbulent cooling in the low-pressure range is known, in which a roller is cooled with the aid of nozzles or bores which are arranged on a concave-shaped cooling beam.
  • the cooling bar and with the help of side plates that are attached to the front of the cooling bar a uniformly designed water cushion with a turbulent and undirected flow is formed.
  • the cooling device only works satisfactorily and reproducibly if the diameter range of the roller, which results from the grinding, is matched to the curvature of the cooling device. Since the sanding area of a roller that is customary today is approx.
  • Low-pressure cooling in the form of flow cooling is used in the DE 36 16 070 C2 described, with the cooling liquid in a directed manner in a defined, relatively narrow gap between the work roll surface and a cooling shell and is guided past the roller surface with external pressure.
  • the pressure level is lower and depends on the gap width and flow velocity. Higher cooling effects are achieved here through higher flow velocities. Due to the lower pressure level, the system has no cleaning effect on the roll surface.
  • the disadvantage of this device is that a separate cooling block is required for each roller, since this is mounted on the roller chocks. A large number of these cooling blocks is therefore required for a conventional hot rolling mill.
  • the adjustment of the gap width to different work roll diameters as well as the following of the cooling block of the respective work roll position has also proven to be disadvantageous or very complex, since the gap has to be set manually and outside the roll stand.
  • the JP 07-232203 discloses a method and a device for cooling the rolls of a roll stand with low-pressure cooling, in which the rolls are acted upon with a low-pressure cooling liquid, the rolls also being subjected to high-pressure cooling at the same time as the low-pressure cooling, the rolls being subjected to high-pressure cooling directly a coolant under high pressure can be sprayed.
  • the object of the invention is to provide a method and a cooling device with which the rolls of a roll stand are optimally cooled in order to protect them from thermomechanical fatigue and wear, with energetic aspects such as minimizing the The required coolant flow and the coolant pressure as well as any construction and manufacturing costs must be taken into account.
  • the set object is achieved with the features of claim 1 and in terms of the device with the features of claim 11.
  • the cooling liquid can be taken from an elevated tank, for example 7-12 m high, or generated directly by low-pressure pumps.
  • the required pressure range for the coolant of the Low pressure roller cooling is dependent on the thermal load on the rollers and is between z. B. 0.5 to less than 5 bar.
  • a spray cooling, coolant curtain, gap cooling or flow cooling, highly turbulent cooling ( Figure 2 ) or a combination of the various low-pressure systems can be used.
  • a single-row or double-row spray nozzle bar can be used for high-pressure roller cooling, which simultaneously fulfills the task of cleaning the roller surface or removing scale.
  • the small amount of cooling liquid of approx. 20% of the total amount of cooling liquid is sufficient for this task, with a pressure range between 5 and 50 bar, preferably 12 bar, being required for the cooling liquid.
  • the pressure range used for the cooling liquid for high-pressure roll cooling depends on the rolling parameters, thickness reduction, specific surface pressure in the roll gap, rolling speed, strip temperatures, roll material and rolled material.
  • the drive power for the pumps is reduced by approx. 1.1 MW.
  • the pressure level can be increased accordingly.
  • the roller surface can be observed by a camera in order to deduce the change in pressure level.
  • the pressure level can be individually adjusted in steps (for example by switching pumps on or off) or steplessly.
  • the combined low-pressure and high-pressure cooling is provided for the front stands of a hot strip mill, for example. Pure low-pressure cooling can then also be used in the rear frames.
  • the high-pressure chilled beam works over almost the entire length of the bale or in the width direction and can be designed with a local cooling effect. If only a simple low-pressure shell cooling is used in an application, then a combination with the cooling is in accordance with the Japanese patent application JP 07290120 conceivable and intended. With the help of a motor, two spray nozzle bar sections are moved axially or in the width direction and the work roll is cooled differently locally.
  • a hydraulically moved single or multi-part articulated rocker arm with spray bars or rotatable nozzle units attached to it can be implemented to direct the coolant jets onto the desired areas of the work roll (within or next to the belt area) to have a positive influence on the belt profile and flatness.
  • short segment shell parts with a width of 150 mm can be axially adjustable in the width direction and only act locally (e.g. symmetrically at two points on the work roll) for a segment of the low-pressure shell cooling be.
  • the task of the low-pressure work roll cooling system used in accordance with the invention is to cool optimally and efficiently, the cooling effect (heat transfer from the roll to the cooling liquid) being high despite the low cooling liquid pressure. This causes a lower roller temperature or can be used to reduce the amount of coolant.
  • Flow cooling is preferably used as efficient low-pressure roller cooling, in which the cooling liquid is conducted past the roller surface in a relatively narrow gap between the work roller and an arcuate cooling shell.
  • the cooling device consists essentially of movable cooling shell segments that are connected to one another in an articulated manner.
  • three, but usually two cooling shell segments are used.
  • only one cooling shell segment can be used.
  • the individual cooling shell segments preferably have joints or joint halves on their sides or at their ends.
  • On the middle cooling shell segment there is at least one pivot point which accommodates at least one, preferably two cylinders (hydraulic or pneumatic cylinders).
  • the cylinders have their second stop on the other links of the adjacent cooling shell segments.
  • the cylinders can be arranged in the center of the cooling beam or on both sides at the edges.
  • adjustment with cylinders adjustment with, for example, hydraulic motors or electric motors is conceivable.
  • the console or the cooling beam support with mounting holes is located on the middle cooling shell segment.
  • the cooling beam support it is possible to move the central cooling shell segment and thus all components connected to it, with horizontal, vertical and rotating movement being possible.
  • the position adjustment is carried out with a multi-link articulated gear, which is operated pneumatically, hydraulically or electromechanically.
  • An advantageous adjustment of the central cooling beam support in the horizontal direction is also possible via, for example, a longitudinal or elongated hole guide and pneumatic or hydraulic cylinder.
  • the cooling device according to the invention adapts to the respective roll diameter and roll positions thanks to the existing joint mechanisms, since the adjustment systems of the cooling beams are connected to the thickness control and follow the vertical movement of the work rolls, for example when changing the thickness.
  • the cooling shells are automatically swiveled back a little.
  • the cooling device forms, with the aid of a sealing function, a space from which only a small amount of cooling liquid reaches the environment. Sealing takes place by placing the shell at the top and bottom of the work roll, which can be pressed on with a predetermined pressure, and / or by applying dynamic pressure to the edge of the cooling shells. This arrangement makes it possible to form an almost closed cooling circuit.
  • the gap widths between the cooling shell and the work roll are set specifically and reproducibly during operation, regardless of the roll diameter, between 2 and 40 mm, for example to 5 mm.
  • the gap between the work roll and the cooling shell can - seen tangentially - be approximately the same or the shell is adjusted to narrow towards the outlet.
  • the section-by-section flow cooling is divided into sections.
  • the cooling liquid flows from a, for example, funnel-shaped rectangular slot into the individual areas of the cooling shell against the roller and is deflected to both sides (up or down) or mainly to one side, the cooling shell forcing a flow along the roller.
  • the cooling liquid efficiently absorbs the heat from the roller.
  • the heated coolant then flows back to the rear, making space for new, cold coolant.
  • the cooling bars are designed in such a way that the cooling liquid flowing backwards (away from the roller) can flow away well, primarily with a gradient.
  • the coolant flowing back on the upper side is also deflected to the side by means of deflection plates in order to reduce the pool effect above the scraper.
  • the individual cooling areas are separated from one another by a mutual shield, so that the cooling liquids of the adjacent cooling beams hardly interfere with one another.
  • the coherent flow cooling can be operated on the countercurrent or co-current principle. Due to the long distance between the inlet and outlet side, the cooling shell needs to be sealed on the side.
  • an operating mode can also be carried out in which the cooling liquid is supplied to the upper and lower cooling beam piping. The process then takes place specifically to the sides. With this principle, the cooling liquid flowing tangentially to the roller absorbs the heat and is then deflected to the side. The warm cooling liquid thus heats the roller areas next to the strip running area and there leads to the desired positive influence on the thermal crowns. This system is particularly effective when zone cooling is carried out in which the areas next to the belt are not directly cooled.
  • zone cooling In the case of zone cooling, only certain areas in the length of the roller in the coolant supply channel of the cooling beam are released for the flow or narrow cooling shells with differently set gap widths are arranged next to one another and spaced apart. Due to the different gap widths result for the narrow ones Cooling shells a corresponding different specific cooling liquid flow and thus a different cooling of the work roll for each cooling shell. To separate the different coolant flows, a barrier coolant or a gap seal is inserted between the narrow cooling shells, depending on the design.
  • a spray cooling system according to the prior art is shown, in which a cooling liquid 7 is sprayed onto the roll surface of the work rolls 1, 2 by means of nozzles 27. Due to the relatively large distance between nozzle and roller, a higher coolant pressure range (e.g. 6 ... 15 bar) is selected. Wipers 17 arranged on the inlet and outlet sides ensure that as little cooling liquid as possible can come into contact with the rolling stock 4.
  • the Figure 2 shows another known possibility for cooling the work rolls 1, 2. This is a highly turbulent cooling in the low pressure range. With the aid of nozzles 27 arranged on the inlet side and through the bores made on the outlet side in the concavely curved, connected cooling shell 11, water is raised the roll surface of the work rolls 1, 2 is sprayed and a water cushion with a turbulent and undirected flow is formed in front of the work roll. The exchange of water happens relatively slowly in this construction, which has a negative impact on the cooling efficiency.
  • a coherent flow cooling according to the invention with a coherent cooling shell 11 is in the Figure 3 shown.
  • the cooling device 10 according to the invention here essentially consists of articulated cooling shell segments 13 which surround the work roll 1, 2 at a distance, forming a gap 30 in a larger angular range.
  • the hinge axis of the articulated connection is preferably parallel to the longitudinal axis of the roller.
  • the cooling liquid 7 flows in countercurrent to the direction of rotation of the roller 5 into the gap 30, in order then to flow out again through the outlet opening 24 and the discharge pipe 26. If the discharge pipe 26 or the outlet opening 24 is closed or not implemented in a special case, a coolant drain can be generated transversely to the roller in a targeted manner. Lateral seals are then only partially present here.
  • the segment lengths of the cooling shell segments 13 forming the gap 30 should be approximately the same, so that when the diameter of the work roll 1 changes, the cooling shell segments 13 can optimally follow the change in curvature of the roll jacket surface 6.
  • the individual cooling shell segments 13 have joints or joint halves at their ends which, when connected to one another, form a corresponding number of joint pivot points 22 and pivot points 21 which are connected to one another by cylinders 20, for example hydraulic or pneumatic cylinders.
  • On the middle cooling shell segment 13 is the cooling beam support 16 with a pivot point 23 through which it is possible to move the cooling shell segments 13 and all components connected to it in the illustrated (horizontal, vertical and rotating) adjustment directions 45 of the cooling beam support with a to move multi-link linkage, not shown here.
  • a stripping device 17 arranged below the cooling shell 11 ensures that as little cooling liquid 7 as possible reaches the rolling stock 4.
  • the entire cooling shell 11 can be positioned.
  • temperature sensors 38 in the middle of the roll or across the width
  • the roll temperature is measured continuously in order to regulate the size of the gap 30 accordingly in order to maintain the desired cooling effect.
  • FIG. 4 An alternative flow guidance of the cooling liquid 7 within the gap 30 formed by the cooling shell segments 13 of the cooling shell 11 and the roller jacket surface 6 compared to that in FIG Figure 3 described flow is in the cooling device 10 of the Figure 4 shown.
  • the supply pipes 25 for the cooling liquid 7 to be used with low pressure LP are arranged here on the upper and lower cooling shell segment 13, so that here the partial quantities of cooling liquid are fed through the gap 30 in countercurrent and cocurrent, based on the direction of rotation of the rollers 5.
  • the directions of flow are indicated by arrows 43.
  • the upper and lower edges of the cooling shell 11 are designed with a contact surface 46, for example a hard tissue plate, which is guided in a sealing manner against the roller jacket surface 6.
  • each work roll 1, 2 is also cooled on the inlet side. Since the achievable cooling is not in the foreground here, z. B. Spray cooling with low pressure LP using nozzles 27.
  • FIG Figure 5 A cooling device 10 with a sectional low-pressure flow cooling is shown in FIG Figure 5 .
  • the cooling shells 11 are composed of cooling shell segments 13, but coherently form a uniform, self-moving cooling shell 11
  • the cooling shell segments 13 of the now radially divided cooling shell 12 are also spatially separated from one another and form separate flow cooling areas s1, s2, s3.
  • LP low pressure
  • the cooling liquid flows here via a funnel-shaped output slot 44 in the middle area of a cooling shell segment 13 from an outlet opening 24 against the work roll 1, 2 and is deflected up and down on both sides.
  • mechanical side seals can be arranged.
  • Each cooling shell segment 13 forces a flow in accordance with the drawn arrows 43 along the roller jacket surface 6 and then backwards.
  • the cooling shell segments 13 are designed in such a way that the cooling liquid flowing backwards (away from the roller) can flow away well with a gradient.
  • the cooling liquid flowing back on the upper side is additionally directed to the side in order to reduce the pool effect above the scraper 17.
  • the outlet openings 24 of the cooling shell segments 13 can be provided with an exchangeable mouthpiece (e.g. rectangular nozzle) so that, if necessary, the cross-section and the shape can be easily adapted to changed conditions.
  • high-pressure (HP) nozzles are arranged between the scrapers 17 and the cooling shells 12, by means of which the low-pressure / high-pressure cooling combined according to the invention is implemented.
  • the high-pressure spray bar can be arranged separately on the cooling bar support 16 or attached to a cooling shell segment so that it can be adjusted with it.
  • a completely exchangeable cooling shell plate 47 is attached to the cooling beam of the cooling device 10. Since the mouthpieces of the nozzle openings of the outlet openings 24 can also be exchanged here, the possibility of changing the entire cooling bowl with mouthpiece or also separately is possible.
  • the cooling shells of a flow cooling area can also be divided into two parts, so that the outlet opening 24 can be easily adjusted by relative displacement and subsequent fixing of the two halves. Furthermore, slightly different shell thicknesses or gap widths per cooling beam can be set and the amount of cooling liquid that flows up and down can be influenced.
  • the spacer plates 49 are arranged only in the cooling bar edge area to the Not to disturb coolant flow in the middle.
  • Optional spacer plates 49 that extend over the length of the chilled beam are also conceivable. These can be used to adjust the distance or to influence the direction of flow of the coolant.
  • These spacer plates can also be attached to the central cooling shell segment 13 (not shown). With a generated coolant flow to the side, the edge areas of the work roll (next to the strip) are specifically heated from the center by the heated coolant.
  • a rigid cooling system is required as a special case, i. H. provided with immovable cooling shells (without cylinder between the shells and without springs 8).
  • the use of rigid spacer rods instead of movable cylinders 20 is then also advantageously possible.
  • the gaps between the roller and the cooling shell then vary somewhat, but the system with the sectional flow cooling is still effective and the system is simpler to manufacture.
  • Only the cooling beam support has to be positioned in front of the roll, depending on the work roll diameter and the work roll position, so that the gaps, that is to say the outlet openings, are arranged relatively close in front of the roll.
  • the construction can be carried out the same for several stands and the adaptation to the different stand diameter ranges of a rolling train is done only by means of the length-adjustable rods.
  • a low-pressure flow cooling system with integrated roll gap lubrication 19 and roll gap cooling 18 is also arranged on the inlet side.
  • the Fig. 8 discloses how different high and low pressure systems can be combined with one another.
  • the flow of the cooling liquid 7 can be divided under a cooling shell or, as is shown here by way of example on the inlet side and outlet side, a larger amount of coolant can preferably be directed in one direction. To increase the heat transfer, a flow against the direction of rotation is advantageous.
  • the area in which the roll gap lubrication 19 is arranged is kept largely dry by the generated flow direction of the work roll cooling and / or by cooling shells 50 or cooling shells 51 provided with an elastic plastic surface with elastic plastic or hard tissue panels, for which a slight contact pressure is applied by the cooling beam support mechanism is generated over the plates on the roller.
  • the panels themselves are continuous across the width and have an elastic effect due to their structural design (not shown).
  • the area of the roll surface (seen in the direction of rotation) before the application of the Roll gap lubricant is optionally designed with a compressed air jet (not shown) in order to blow the roll surface dry in a defined manner.
  • the cooling device 10 of the Figure 9 It is also possible to design the three cooling bars with exchangeable cooling shells 47 in which many offset holes 52 are drilled, from which individual jets of coolant spray against the rollers 1, 2 from a short distance. Flow cooling in sections can also be established in this way.
  • the holes are offset in the width direction so that the most uniform possible cooling effect is created across the width.
  • the cross-sectional size and spacing of the holes 52 can be designed differently over the width of the barrel so that a coolant crown can also be generated with this system.
  • the holes 52 can be aligned perpendicular to the rollers 1, 2 or also enable the cooling liquid to be sprayed obliquely against the rollers 1, 2.
  • cooling shells are designed in such a way that the coolant outlet opening is made simultaneously through a rectangular slot 24 or 44 combined with holes 52 in the plate in order to increase turbulence in the flow gap.
  • the funnel-shaped outlet opening shaped in the direction of flow can, if required, be designed with baffles in order to direct the coolant in a targeted manner inwards, outwards or straight ahead, so that ultimately a closed and even jet of cooling liquid emerges over the length of the cooling beam.
  • a funnel-shaped design of the cooling liquid supply channel on the broad sides of the cooling beam is also possible in order to reduce the amount of cooling liquid flowing under the shell transversely to the side (beam edges).
  • FIGS Figures 11a to 11c Details for an exemplary embodiment of the gap setting in the feed channel 55 are shown in FIGS Figures 11a to 11c in side view and in the Figure 12 shown in the corresponding top view.
  • the elongated exit cross section 58 of the cooling bar is divided into individual width sections 59.
  • the flow opening b and thus the volume flow of the cooling liquid can be set individually.
  • the width section 59 can be made, for example, 50-500 mm wide.
  • the zone cooling can be controlled in pairs symmetrically to the center of the stand (gap setting). All cooling beams of a scaffolding can be provided with zone-wise control of the cooling cross-sections and the zones can be connected accordingly, or the individual beams of a scaffolding can be controlled separately.
  • FIG Figure 11 An air or fluid pressure operated system is provided. Depending on the pressure level of the system or the measured volume flow, the flow opening b can be set from open to partially open or closed. Instead of section-wise arranged stretchable plastic tabs 60 can be used for segment-wise To influence the cross section of the outlet opening, rotatable or displaceable flaps or tappets, eccentric adjustments or other mechanical actuators can also be used.
  • a pressure chamber 56 is arranged laterally on the feed channel 55 as a closure member, the expandable plastic tube 60 of which forms part of the feed channel 55.
  • the air chamber 56 In the initial state of the Figure 11a the air chamber 56 is in the unpressurized state, so that, as in FIG Figure 12 shown on the width section 59a, the flow opening b is fully open.
  • the pressure chamber 56 was partially filled with compressed air or a liquid via a pressure line 57, as a result of which the plastic hose 60 was partially pressed into the feed channel 55 and the flow opening b is now partially closed, as in FIG Figure 12 is shown at width portion 59b.
  • a completely closed flow opening b shows Figure 12 at width section 59c.
  • the pressure chamber 56 is completely filled and thus the feed channel 55 is blocked in this area.
  • the thermal expansion of the roller and thus the strip profile and flatness can be positively influenced.
  • Closing the cooling zones next to the belt with simultaneous adjustment (reduction) of the water flow rate can advantageously contribute to a further reduction in energy.
  • FIG. 13 Another working principle of zone cooling is in Figure 13 shown.
  • narrow cooling shells 14 are arranged next to one another in the length of the roller, the gaps 31, 32, 33 of which can be set with different gap widths W1, W2, W3.
  • a different specific cooling liquid flow 41 per unit of time can be generated over the length of the roller.
  • a barrier coolant generating a dynamic pressure can be introduced into the gap 34 existing between the cooling shells 14.
  • a cooling shell can also be implemented without an adjusting device such that the gap between the cooling shell and the roller is of any size over the length of the roller.
  • a material can advantageously be used as the material for the cooling shells 13, 14 which may rest against the roller without damaging it and which is elastic.
  • This can be, for example, a sand-free cast iron, lubricious plastic, self-lubricating metals, aluminum or hard fabric.
  • a fluid jet 28 for example air or coolant, is targeted into the via a pipe 25 and a nozzle 27 Blown opening of the gap 30.
  • the fluid jet 28 thus generates a dynamic pressure which prevents the cooling liquid 7 from escaping from the gap 30.
  • a locally acting axially adjustable work roll spray cooling which can be designed as high pressure but also as low pressure cooling, show Figures 15a and 15b .
  • This cooling represents an additional cooling and can be operated in combination with the low-pressure shell cooling (not shown).
  • the local positioning of the spray nozzles or application of the cooling liquid 7 is preferably carried out as a function of the profile and flatness control or regulation.
  • the spray nozzle bar sections 40 ′ are moved on a guide rod 63.
  • the two spray nozzle bar sections 40 ' are positioned symmetrically to the roll center with the aid of a hydraulic cylinder 61, articulated rods 62 and nozzle bar support 64.
  • two hydraulic cylinders 61 are also conceivable, which position both sides 65 individually.
  • the spray nozzle bar sections 40 ' are fed individually on the right and left via the respective feed line 25.
  • a similar arrangement of locally acting work roll cooling is provided Figure 15b
  • a hydraulic cylinder 61 is used here to move articulated rods and articulated rockers 62 with spray nozzle bar sections 40 'attached to them over a pivot point 66 on a circular path 64, thus directing the cooling jet 7 to different positions within or next to the strip area on the work roll 1.
  • the two spray nozzle bar sections 40 ' can each be moved with a coupling gear (4-joint arch) if movement on a circular path 64 is to be avoided.
  • the use of electric or hydraulic stepper motors at the positions of the pivot points 66 for direct movement of the nozzle units on the spray nozzle bar sections 40 'via a rod on the circular path 64 is also possible.
  • the low-pressure cooling system can also be used alone, i.e. not in combination with the high-pressure cooling system.
  • Fig. 16 shows spiral springs 8 as an elastic connection between the adjacent cooling shell segments 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

Die Erfindung betrifft Verfahren und eine Kühlvorrichtung zum Kühlen der Walzen, insbesondere der Arbeitswalzen eines Walzgerüstes, siehe z.B. JP - A 63303609 .The invention relates to a method and a cooling device for cooling the rolls, in particular the work rolls of a roll stand, see e.g. JP-A 63303609 .

Beim Walzen von Metallen werden die am Walzprozess beteiligten Walzen, die Arbeitswalzen, erwärmt. Um sie vor Beschädigungen zu schützen und um eine möglichst lange Standzeit zu erlangen, werden die Walzen gekühlt. In den meisten Walzwerken werden heutzutage Kühlsysteme verwendet, die mit Hilfe von Düsen (vorzugsweise Flachstrahldüsen) eine Kühlflüssigkeit auf die Walzenoberfläche sprühen. Eine solche Kühlung wird als Sprühkühlung bezeichnet. Das gewählte Druckniveau liegt je nach Walzanlage zwischen 6 bar und 12 bar und in Ausnahmefällen bei 20 bar. Neben der Aufgabe, die Arbeitswalzen möglichst intensiv zu kühlen, um deren thermische Belastung und geometrische Ausdehnung zu begrenzen, soll die Arbeitswalzenkühlung die Walze von Schmutz, Oxid- und Zunderpartikeln frei halten. Die Kühlwirkung steigt mit höherer Kühlmittelmenge und zunehmendem Kühlmitteldruck. Nachteil des Systems ist, dass dabei eine hohe Energiemenge benötigt wird und bei höherem Druck die Wartung der Pumpen aufwändiger ist.When rolling metals, the rolls involved in the rolling process, the work rolls, are heated. To protect them from damage and to achieve the longest possible service life, the rollers are cooled. Most rolling mills nowadays use cooling systems that spray a cooling liquid onto the roll surface with the aid of nozzles (preferably flat jet nozzles). Such cooling is referred to as spray cooling. Depending on the rolling mill, the selected pressure level is between 6 bar and 12 bar and in exceptional cases 20 bar. In addition to the task of cooling the work rolls as intensively as possible in order to limit their thermal load and geometric expansion, the work roll cooling should keep the roll free of dirt, oxide and scale particles. The cooling effect increases as the amount of coolant increases and the coolant pressure increases. The disadvantage of the system is that a large amount of energy is required and the maintenance of the pumps is more complex at higher pressures.

Eine andere Möglichkeit zur Kühlung der Arbeitswalzen ist die Niederdruckkühlung. Aus der WO 2008/104037 A1 ist eine Kühlvorrichtung mit hochturbulenter Kühlung im Niederdruckbereich bekannt, bei der mit Hilfe von Düsen bzw. Bohrungen, die auf einem konkav geformten Kühlbalken angeordnet sind, eine Walze gekühlt wird. Durch die Anordnung des Kühlbalkens sowie mit Hilfe von Seitenplatten, die am Kühlbalken stirnseitig angebracht sind, wird ein gleichmäßig ausgebildetes Wasserkissen mit einer turbulenten und ungerichteten Strömung gebildet. Die Kühlvorrichtung arbeitet jedoch nur dann zufriedenstellend und reproduzierbar, wenn der Durchmesserbereich der Walze, der sich durch den Abschliff ergibt, auf die Krümmung der Kühlvorrichtung abgestimmt ist. Da der heute übliche Abschliffbereich einer Walze ca. 10 % des maximalen Walzendurchmessers beträgt, sind mehrere Kühlvorrichtungen für unterschiedliche Walzendurchmesser notwendig, was eine ausgefeilte Walzenlogistik erforderlich macht. Es ist als Nachteil festzuhalten, dass keine Einstellung der Krümmung der Kühlvorrichtung zum veränderten Walzendurchmesser für jedes Gerüst und nach jedem Arbeitswalzenwechsel möglich ist und sich somit der Abstand der Düsen bzw. Bohrungen zur Walzenoberfläche und damit die Kühlwirkung während des Walzprozesses von Walzenwechsel zu Walzenwechsel verändert.Another option for cooling the work rolls is low pressure cooling. From the WO 2008/104037 A1 a cooling device with highly turbulent cooling in the low-pressure range is known, in which a roller is cooled with the aid of nozzles or bores which are arranged on a concave-shaped cooling beam. By arranging the cooling bar and with the help of side plates that are attached to the front of the cooling bar, a uniformly designed water cushion with a turbulent and undirected flow is formed. However, the cooling device only works satisfactorily and reproducibly if the diameter range of the roller, which results from the grinding, is matched to the curvature of the cooling device. Since the sanding area of a roller that is customary today is approx. 10% of the maximum roller diameter, several cooling devices are necessary for different roller diameters, which makes sophisticated roller logistics necessary. It should be noted as a disadvantage that it is not possible to adjust the curvature of the cooling device to the changed roll diameter for each stand and after each work roll change and thus the distance between the nozzles or bores and the roll surface and thus the cooling effect during the rolling process changes from roll change to roll change.

Eine Niederdruckkühlung in Form einer Strömungskühlung wird in der DE 36 16 070 C2 beschrieben, wobei in einem definierten relativ engen Spalt zwischen der Arbeitswalzenoberfläche und einer Kühlschale die Kühlflüssigkeit in gerichteter Art und Weise und mit äußerem Druck an der Walzenoberfläche vorbeigeführt wird. Das Druckniveau ist geringer und hängt von Spaltbreite und Strömungsgeschwindigkeit ab. Höhere Kühlwirkungen werden hier durch höhere Strömungsgeschwindigkeiten erzielt. Infolge des niedrigeren Druckniveaus hat das System keine reinigende Wirkung auf die Walzenoberfläche. Nachteilig an dieser Vorrichtung ist, dass für jede Walze ein eigener Kühlblock nötig ist, da dieser an den Walzeneinbaustücken montiert ist. Für ein konventionelles Warmwalzwerk ist daher eine hohe Anzahl dieser Kühlblöcke erforderlich. Die Anpassung der Spaltbreite an verschiedene Arbeitswalzendurchmesser sowie das Folgen des Kühlblocks der jeweiligen Arbeitswalzenposition hat sich ebenfalls als nachteilig bzw. sehr aufwändig erwiesen, da das Einstellen des Spaltes manuell und außerhalb des Walzgerüstes erfolgen muss.Low-pressure cooling in the form of flow cooling is used in the DE 36 16 070 C2 described, with the cooling liquid in a directed manner in a defined, relatively narrow gap between the work roll surface and a cooling shell and is guided past the roller surface with external pressure. The pressure level is lower and depends on the gap width and flow velocity. Higher cooling effects are achieved here through higher flow velocities. Due to the lower pressure level, the system has no cleaning effect on the roll surface. The disadvantage of this device is that a separate cooling block is required for each roller, since this is mounted on the roller chocks. A large number of these cooling blocks is therefore required for a conventional hot rolling mill. The adjustment of the gap width to different work roll diameters as well as the following of the cooling block of the respective work roll position has also proven to be disadvantageous or very complex, since the gap has to be set manually and outside the roll stand.

Die JP 07-232203 offenbart ein Verfahren und eine Vorrichtung zum Kühlen der Walzen eines Walzgerüstes mit einer Niederdruckkühlung, bei welcher die Walzen mit einer niedrigem Druck stehenden Kühlflüssigkeit beaufschlagt werden, wobei die Walzen zeitgleich zu der Niederdruckkühlung auch einer Hochdruckkühlung unterzogen werden, wobei die Walzen bei der Hochdruckkühlung direkt mit einer unter hohem Druck stehenden Kühlflüssigkeit besprüht werden.The JP 07-232203 discloses a method and a device for cooling the rolls of a roll stand with low-pressure cooling, in which the rolls are acted upon with a low-pressure cooling liquid, the rolls also being subjected to high-pressure cooling at the same time as the low-pressure cooling, the rolls being subjected to high-pressure cooling directly a coolant under high pressure can be sprayed.

Ausgehend vom geschilderten Stand der Technik ist es Aufgabe der Erfindung, ein Verfahren und eine Kühlvorrichtung anzugeben, mit dem bzw. der die Walzen eines Walzgerüstes optimal gekühlt werden, um sie vor thermomechanischer Ermüdung und vor Verschleiß zu schützen, wobei energetische Gesichtspunkte wie die Minimierung des benötigten Kühlflüssigkeitsstroms und des Kühlflüssigkeitsdrucks sowie anfallende Konstruktions- und Fertigungskosten zu berücksichtigen sind.Based on the described prior art, the object of the invention is to provide a method and a cooling device with which the rolls of a roll stand are optimally cooled in order to protect them from thermomechanical fatigue and wear, with energetic aspects such as minimizing the The required coolant flow and the coolant pressure as well as any construction and manufacturing costs must be taken into account.

Die gestellte Aufgabe wird verfahrensmäßig mit den Merkmalen des Anspruchs 1 sowie vorrichtungsmäßig mit den Merkmalen des Anspruchs 11 gelöst.In terms of the method, the set object is achieved with the features of claim 1 and in terms of the device with the features of claim 11.

Grundsätzlich können alle Walzen eines Walzgerüstes mit der erfindungsgemäßen Kühlvorrichtung gekühlt werden; insbesondere findet die Erfindung jedoch Anwendung bei den Arbeitswalzen.In principle, all rolls of a roll stand can be cooled with the cooling device according to the invention; however, the invention has particular application to work rolls.

Zweckmäßigerweise werden ca. 20 % der gesamten Kühlflüssigkeitsmenge dem Hochdruckkühlsystem und ca. 80 % der gesamten Kühlflüssigkeitsmenge dem die Hauptkühlwirkung erzeugenden Niederdruckkühlsystem zugeführt. Die Kühlflüssigkeit kann einem beispielsweise 7-12 m hohen Hochbehälter entnommen oder von Niederdruckpumpen direkt erzeugt werden. Der erforderliche Druckbereich für die Kühlflüssigkeit der Niederdruckwalzenkühlung ist abhängig von der thermischen Belastung der Walzen und liegt zwischen z. B. 0,5 bis kleiner 5 bar. Als konstruktive Ausführungsform können eine Sprühkühlung, Kühlmittelvorhang, Spaltkühlung bzw. Strömungskühlung, hochturbulente Kühlung (Figur 2) oder eine Kombination der verschiedenen Niederdrucksysteme eingesetzt werden.Appropriately, about 20% of the total amount of coolant is fed to the high-pressure cooling system and about 80% of the total amount of coolant is fed to the low-pressure cooling system that produces the main cooling effect. The cooling liquid can be taken from an elevated tank, for example 7-12 m high, or generated directly by low-pressure pumps. The required pressure range for the coolant of the Low pressure roller cooling is dependent on the thermal load on the rollers and is between z. B. 0.5 to less than 5 bar. A spray cooling, coolant curtain, gap cooling or flow cooling, highly turbulent cooling ( Figure 2 ) or a combination of the various low-pressure systems can be used.

Für die Hochdruckwalzenkühlung, die gleichzeitig die Aufgabe einer Walzenoberflächenreinigung bzw. Entfernung von Zunder erfüllt, kann wie bei konventionellen Systemen ein einreihiger oder zweireihiger Sprüzdüsenbalken eingesetzt werden. Die geringe Kühlflüssigkeitsmenge von ca. 20 % der gesamten Kühlflüssigkeitsmenge reicht für diese Aufgabe aus, wobei ein Druckbereich für die Kühlflüssigkeit zwischen 5 - 50 bar, vorzugsweise 12 bar erforderlich ist. Der eingesetzte Druckbereich für die Kühlflüssigkeit der Hochdruckwalzenkühlung ist abhängig von den Walzparametern Dickenabnahme, spezifische Flächenpressung im Walzspalt, Walzgeschwindigkeit, Bandtemperaturen, Walzenwerkstoff und gewalztem Material.As with conventional systems, a single-row or double-row spray nozzle bar can be used for high-pressure roller cooling, which simultaneously fulfills the task of cleaning the roller surface or removing scale. The small amount of cooling liquid of approx. 20% of the total amount of cooling liquid is sufficient for this task, with a pressure range between 5 and 50 bar, preferably 12 bar, being required for the cooling liquid. The pressure range used for the cooling liquid for high-pressure roll cooling depends on the rolling parameters, thickness reduction, specific surface pressure in the roll gap, rolling speed, strip temperatures, roll material and rolled material.

Aus Umweltgesichtspunkten ist eine Verminderung der Gesamtenergie, die die Pumpen verbrauchen, bei gleichzeitiger Erfüllung aller Systemaufgaben im Sinne der "Green-Plant-Technology" von Vorteil. Vergleicht man die aufgewendete Pumpenenergie der konventionellen Walzenkühlung mit höherem Druck mit dem vorgeschlagenen kombinierten Niederdruck-Hochdruck-Kühlsystem, so ergeben sich folgende Unterschiede:

  • Energiebedarf der Pumpe (ohne Berücksichtigung des Pumpenwirkungsgrades) am Beispiel für eine 2m-Warmbandstraße mit 5000 m3/h Gesamt-Walzenkühlmittelstrom (Pumpenleistung = Volumenstrom * Druckerhöhung (Hinweis: 36 ist ein Umrechnungsfaktor)
From an environmental point of view, a reduction in the total energy that the pumps consume while at the same time fulfilling all system tasks in the sense of "Green Plant Technology" is advantageous. If you compare the pump energy used for conventional roller cooling at higher pressure with the proposed combined low-pressure / high-pressure cooling system, the following differences emerge:
  • Energy requirement of the pump (without considering the pump efficiency) using the example of a 2m hot strip mill with 5000 m 3 / h total roll coolant flow (pump output = volume flow * pressure increase (note: 36 is a conversion factor)

Konventionelle Walzenkühlung:

  • Druckniveau z. B. 12 bar
  • Pumpenleistung = 5000 m3/h * 12 bar/36
  • Pumpenleistung = 1667 KW
Conventional roller cooling:
  • Pressure level z. B. 12 bar
  • Pump output = 5000 m 3 / h * 12 bar / 36
  • Pump power = 1667 KW

Kombinierte Niederdruck-Hochdruck-Kühlung:

  • Druckniveau z. B. 12 bar
  • Hochdruckkühlmittelmenge 1000 m3/h und
  • Druckniveau z. B. 2 bar
  • Niederdruckkühlmittelmenge 4000 m3/h
  • Pumpenleistung = 1000 m3/h * 12 bar/36 + 4000 m3/h * 2 bar/36
  • Pumpenleistung = 333 KW + 222 KW = 555 KW
Combined low-pressure and high-pressure cooling:
  • Pressure level z. B. 12 bar
  • High pressure coolant quantity 1000 m 3 / h and
  • Pressure level z. B. 2 bar
  • Low pressure coolant quantity 4000 m 3 / h
  • Pump output = 1000 m 3 / h * 12 bar / 36 + 4000 m 3 / h * 2 bar / 36
  • Pump power = 333 KW + 222 KW = 555 KW

Mit der kombinierten Niederdruck-Hochdruck-Kühlung wird eine wesentlich geringere Energiemenge benötigt. Für obiges Beispiel ergibt sich demnach eine Verminderung der Antriebsleistung für die Pumpen von ca. 1,1 MW.With the combined low-pressure and high-pressure cooling, a significantly lower amount of energy is required. For the above example, the drive power for the pumps is reduced by approx. 1.1 MW.

Bei erhöhtem Schmutz oder Zunderpartikeln sowie bei beispielsweiser rauer Walzenoberfläche oder bei einem Brandrissmuster kann das Druckniveau entsprechend erhöht werden. Durch eine Kamera kann die Walzenoberfläche beobachtet werden, um daraus die Druckniveauveränderung abzuleiten. Weiterhin kann zur Beeinflussung der Oxidschichtdicke auf der Walze das Druckniveau in Stufen (durch beispielsweise Zu- oder Wegschalten von Pumpen) oder stufenlos individuell angepasst werden.In the case of increased dirt or scale particles and, for example, a rough roll surface or a fire crack pattern, the pressure level can be increased accordingly. The roller surface can be observed by a camera in order to deduce the change in pressure level. Furthermore, to influence the oxide layer thickness on the roller, the pressure level can be individually adjusted in steps (for example by switching pumps on or off) or steplessly.

Die kombinierte Niederdruck-Hochdruck-Kühlung wird beispielsweise für die vorderen Gerüste einer Warmbandstraße vorgesehen. In den hinteren Gerüsten kann dann auch eine reine Niederdruckkühlung zum Einsatz kommen.The combined low-pressure and high-pressure cooling is provided for the front stands of a hot strip mill, for example. Pure low-pressure cooling can then also be used in the rear frames.

Der Hochdruck-Kühlbalken wirkt über nahezu der gesamten Ballenlänge oder im Breitenrichtung beweglich und mit einer örtlichen Kühlwirkung ausgeführt sein. Werden in einem Einsatzfall nur eine einfache Niederdruckschalenkühlung verwendet, so ist eine Kombination mit der Kühlung entsprechend der japanischen Patentanmeldung JP 07290120 denkbar und vorgesehen. Hier werden mit Hilfe eines Motors zwei Spritzdüsenbalkenabschnitte axial bzw. in Breitenrichtung bewegt und die Arbeitswalze lokal unterschiedlich gekühlt. Statt eines Elektro- oder Hydromotors mit Gewindestange oder entsprechend zwei Motoren für separate Verstellung auf linker und rechter Seite sind bevorzugt alternativ auch eine hydraulisch bewegte ein- oder mehrgliedrige Gelenkschwinge mit darauf befestigten Spritzbalken oder drehbare Düseneinheiten ausführbar, um die Kühlmittelstrahlen auf die gewünschten Bereiche der Arbeitswalze (innerhalb oder neben dem Bandbereich) zu lenken, um das Bandprofil und die Planheit positiv zu beeinflussen.The high-pressure chilled beam works over almost the entire length of the bale or in the width direction and can be designed with a local cooling effect. If only a simple low-pressure shell cooling is used in an application, then a combination with the cooling is in accordance with the Japanese patent application JP 07290120 conceivable and intended. With the help of a motor, two spray nozzle bar sections are moved axially or in the width direction and the work roll is cooled differently locally. Instead of an electric or hydraulic motor with a threaded rod or two motors for separate adjustment on the left and right side, a hydraulically moved single or multi-part articulated rocker arm with spray bars or rotatable nozzle units attached to it can be implemented to direct the coolant jets onto the desired areas of the work roll (within or next to the belt area) to have a positive influence on the belt profile and flatness.

Analog zu der Ausführungsform mit den in Breitenrichtung verfahrbaren Spritzbalkenabschnitten, können beispielsweise für ein Segment der Niederdruck-Schalenkühlung kurze Segmentschalenteile mit einer Breite von beispielsweise 150 mm axial in Breitenrichtung verstellbar und nur lokal (z. B. symmetrisch an zwei Stellen der Arbeitswalze) wirkend ausgeführt sein.Analogous to the embodiment with the spray bar sections that can be moved in the width direction, short segment shell parts with a width of 150 mm, for example, can be axially adjustable in the width direction and only act locally (e.g. symmetrically at two points on the work roll) for a segment of the low-pressure shell cooling be.

Die erfindungsgemäß verwendete Niederdruck-Arbeitswalzenkühlung hat die Aufgabe, optimal und effizient zu kühlen, wobei trotz niedrigem Kühlflüssigkeitsdruck die Kühlwirkung (Wärmeübergang von der Walze zur Kühlflüssigkeit) hoch sein soll. Dies bewirkt eine niedrigere Walzentemperatur oder kann zur Verminderung der Kühlflüssigkeitsmenge genutzt werden. Als effiziente Niederdruckwalzenkühlung wird vorzugsweise eine Strömungskühlung eingesetzt, bei der die Kühlflüssigkeit in einem relativ engen Spalt zwischen der Arbeitswalze und einer bogenförmig ausgebildeten Kühlschale an der Walzenoberfläche vorbei geleitet wird.The task of the low-pressure work roll cooling system used in accordance with the invention is to cool optimally and efficiently, the cooling effect (heat transfer from the roll to the cooling liquid) being high despite the low cooling liquid pressure. this causes a lower roller temperature or can be used to reduce the amount of coolant. Flow cooling is preferably used as efficient low-pressure roller cooling, in which the cooling liquid is conducted past the roller surface in a relatively narrow gap between the work roller and an arcuate cooling shell.

Erfindungsgemäß besteht die Kühlvorrichtung im Wesentlichen aus gelenkig miteinander verbundenen beweglichen Kühlschalensegmenten. Vorzugsweise kommen drei, in der Regel aber zwei Kühlschalensegmente zum Einsatz. In Sonderfällen kann aber auch nur ein Kühlschalensegment verwendet werden. Die einzelnen Kühlschalensegmente besitzen vorzugsweise seitlich bzw. an deren Enden Gelenke oder Gelenkhälften. Auf dem mittleren Kühlschalensegment ist mindestens ein Drehpunkt vorhanden, der mindestens einen, vorzugsweise zwei Zylinder (Hydraulik- oder Pneumatikzylinder) aufnimmt. Die Zylinder haben ihren zweiten Haltepunkt an den anderen Gliedern der benachbarten Kühlschalensegmente. Die Zylinder können in Kühlbalkenmitte oder beidseitig an den Kanten angeordnet sein. Statt der Schalenverstellung mit Zylindern ist eine Verstellung mit zum Beispiel Hydraulikmotoren oder Elektromotoren denkbar. Auf dem mittleren Kühlschalensegment befindet sich die Konsole bzw. der Kühlbalkenträger mit Befestigungsbohrungen. Über den Kühlbalkenträger ist es möglich, das mittlere Kühlschalensegment und somit alle Bauteile, die mit diesem verbunden sind, zu bewegen, wobei eine horizontale, vertikale und drehende Bewegung möglich ist. Die Positionsverstellung wird mit einem mehrgliedrigen Gelenkgetriebe durchgeführt, welches pneumatisch, hydraulisch oder elektromechanisch betätigt wird. Auch ist eine vorteilhafte Anstellung des mittleren Kühlbalkenträgers in horizontaler Richtung über beispielsweise eine Längsoder Langlochführung und Pneumatik- oder Hydraulikzylinders möglich.According to the invention, the cooling device consists essentially of movable cooling shell segments that are connected to one another in an articulated manner. Preferably three, but usually two cooling shell segments are used. In special cases, however, only one cooling shell segment can be used. The individual cooling shell segments preferably have joints or joint halves on their sides or at their ends. On the middle cooling shell segment there is at least one pivot point which accommodates at least one, preferably two cylinders (hydraulic or pneumatic cylinders). The cylinders have their second stop on the other links of the adjacent cooling shell segments. The cylinders can be arranged in the center of the cooling beam or on both sides at the edges. Instead of the shell adjustment with cylinders, adjustment with, for example, hydraulic motors or electric motors is conceivable. The console or the cooling beam support with mounting holes is located on the middle cooling shell segment. Using the cooling beam support, it is possible to move the central cooling shell segment and thus all components connected to it, with horizontal, vertical and rotating movement being possible. The position adjustment is carried out with a multi-link articulated gear, which is operated pneumatically, hydraulically or electromechanically. An advantageous adjustment of the central cooling beam support in the horizontal direction is also possible via, for example, a longitudinal or elongated hole guide and pneumatic or hydraulic cylinder.

Die Zylinder besitzen Wegmesssysteme und Druckmessgeber. Die Position der Zylinder und damit die Spalteinstellung bzw. Abstandsbestimmung zwischen Kühlschalensegment und Walze sowie die Überwachung der eingestellten Positionen lässt sich auf folgende unterschiedliche Weise ermitteln und durchführen, wobei auch eine Kombination der angeführten Methoden möglich ist:

  • Kalibrieren der Kühlschalen
    Zum Einstellen der Positionen der Kühlschalensegmente werden die Kühlbalkenträgeranstellung und die Kühlschalensegmente mit den zugeordneten Zylindern und Gelenkgetrieben mit definiertem Druck gegen die Walze angedrückt. In dieser Position werden die Weggeber auf Null gesetzt. Ausgehend hiervon und mit Kenntnis der geometrischen Zusammenhänge kann danach ein definierter Spalt zwischen Kühlschalensegment und Walze eingestellt werden. Der Kalibrierprozess des Kühlsystems kann während der Gerüstkalibrierprozedur durchgeführt werden.
  • Berechnen der Positionen
    Da die geometrischen Zusammenhänge (Walzendurchmesser, Walzenpositionen in vertikaler Richtung, Zylinderpositionen, Abstände der Gelenke und Drehpunkte, Position des mehrgliedrigen Gelenkgetriebes etc.) bekannt sind, kann in guter Näherung die Schalenposition bzw. mittlere Spaltbreite errechnet werden. Jede relative Änderung der Walzenposition (bei z. B. Banddickenänderung) während des Walzprozesses ist so umrechenbar.
  • Einsatz von Sensoren
    Durch Einsatz von Abstandssensoren kann der Spalt direkt gemessen und die Zylinder und Gelenkgetriebe entsprechend mit einem Regelsystem eingestellt werden.
The cylinders have position measuring systems and pressure sensors. The position of the cylinder and thus the gap setting or determination of the distance between the cooling shell segment and the roller as well as the monitoring of the set positions can be determined and carried out in the following different ways, whereby a combination of the methods listed is also possible:
  • Calibrating the cooling shells
    To adjust the positions of the cooling shell segments, the cooling beam support adjustment and the cooling shell segments with the associated cylinders and articulated gears are pressed against the roller with a defined pressure. In this position, the position sensors are set to zero. Based on this and with knowledge of the geometric relationships, a defined gap can then be created between the cooling shell segment and the roller. The cooling system calibration process can be performed during the framework calibration procedure.
  • Calculate the positions
    Since the geometrical relationships (roller diameter, roller positions in the vertical direction, cylinder positions, distances between the joints and pivot points, position of the multi-link joint gear, etc.) are known, the shell position or mean gap width can be calculated to a good approximation. Any relative change in the roll position (e.g. in the event of a change in strip thickness) during the rolling process can thus be converted.
  • Use of sensors
    By using distance sensors, the gap can be measured directly and the cylinders and articulated gears can be adjusted accordingly with a control system.

Gegenüber einer Kühlvorrichtung nach dem Stand der Technik passt sich die erfindungsgemäße Kühlvorrichtung durch die vorhandenen Gelenkmechanismen dem jeweiligen Walzendurchmesser und den Walzenpositionen an, da die Anstellsysteme der Kühlbalken mit der Dickenregelung verbunden sind und der vertikalen Bewegung der Arbeitswalzen, beispielsweise bei einer Dickenumstellung, folgen. Beim Auffahren der Gerüste (beispielsweise bei einem Not-Auf) werden die Kühlschalen automatisch etwas zurück geschwenkt.Compared to a cooling device according to the prior art, the cooling device according to the invention adapts to the respective roll diameter and roll positions thanks to the existing joint mechanisms, since the adjustment systems of the cooling beams are connected to the thickness control and follow the vertical movement of the work rolls, for example when changing the thickness. When the scaffolding is opened (for example in the event of an emergency opening), the cooling shells are automatically swiveled back a little.

Die Kühlvorrichtung bildet in einer konstruktiven Ausführungsform mit Hilfe einer Abdichtfunktion einen Raum, aus dem nur wenig Kühlflüssigkeit in die Umgebung gelangt. Die Abdichtung erfolgt durch Anlage der Schale oben und unten an die Arbeitswalze, die mit einem vorbestimmten Druck angedrückt werden kann und/oder durch Aufbringen eines Staudrucks am Rande der Kühlschalen. Durch diese Anordnung wird es möglich, einen fast geschlossenen Kühlkreislauf auszubilden.In a constructive embodiment, the cooling device forms, with the aid of a sealing function, a space from which only a small amount of cooling liquid reaches the environment. Sealing takes place by placing the shell at the top and bottom of the work roll, which can be pressed on with a predetermined pressure, and / or by applying dynamic pressure to the edge of the cooling shells. This arrangement makes it possible to form an almost closed cooling circuit.

Durch eine Positionierung der Schalen kurz vor der Walze wird ein Spalt gebildet, durch den das Kühlmittel strömt. Die Spaltbreiten zwischen Kühlschale und Arbeitswalze werden während des Betriebs gezielt und reproduzierbar unabhängig vom Walzendurchmesser zwischen 2 und 40 mm, beispielsweise auf 5 mm, eingestellt. Der Spalt zwischen Arbeitswalze und Kühlschale kann -tangential gesehen- ca. gleich sein oder die Schale wird zum Auslauf hin verengend angestellt.Positioning the shells just in front of the roller creates a gap through which the coolant flows. The gap widths between the cooling shell and the work roll are set specifically and reproducibly during operation, regardless of the roll diameter, between 2 and 40 mm, for example to 5 mm. The gap between the work roll and the cooling shell can - seen tangentially - be approximately the same or the shell is adjusted to narrow towards the outlet.

Bei der Verwendung der erfindungsgemäß vorgesehenen Strömungskühlung sind zwei sich unterscheidende Kühlvarianten möglich, die abschnittsweise Strömungskühlung und die zusammenhängende Strömungskühlung.When using the flow cooling provided according to the invention, two different cooling variants are possible, the flow cooling in sections and the continuous flow cooling.

Die abschnittsweise Strömungskühlung ist in Abschnitte unterteilt. Die Kühlflüssigkeit strömt aus einem beispielsweise trichterförmigen Rechteckschlitz in die einzelnen Bereiche der Kühlschale gegen die Walze und wird nach beiden Seiten (nach oben bzw. unten) oder auch nur vornehmlich nach einer Seite umgelenkt, wobei die Kühlschale eine Strömung entlang der Walze erzwingt. Durch die Strömungsumlenkung und durch Strömung mit höherer Relativgeschwindigkeit entlang der Walze nimmt die Kühlflüssigkeit die Wärme der Walze effizient auf. Die erwärmte Kühlflüssigkeit strömt danach nach hinten zurück und macht so Platz für neue kalte Kühlflüssigkeit. Die Kühlbalken sind dabei so ausgeführt, dass die nach hinten (von der Walze weg) fließende Kühlflüssigkeit vornehmlich mit Gefälle gut abfließen kann. Durch Umlenkbleche wird das zurückfließende Kühlmittel auf der Oberseite zusätzlich zur Seite gelenkt, um den Pooleffekt über dem Abstreifer zu reduzieren. Die einzelnen Kühlbereiche sind durch eine gegenseitige Abschirmung voneinander getrennt, so dass sich die Kühlflüssigkeiten der benachbarten Kühlbalken kaum gegenseitig stören.The section-by-section flow cooling is divided into sections. The cooling liquid flows from a, for example, funnel-shaped rectangular slot into the individual areas of the cooling shell against the roller and is deflected to both sides (up or down) or mainly to one side, the cooling shell forcing a flow along the roller. As a result of the flow deflection and the flow at a higher relative speed along the roller, the cooling liquid efficiently absorbs the heat from the roller. The heated coolant then flows back to the rear, making space for new, cold coolant. The cooling bars are designed in such a way that the cooling liquid flowing backwards (away from the roller) can flow away well, primarily with a gradient. The coolant flowing back on the upper side is also deflected to the side by means of deflection plates in order to reduce the pool effect above the scraper. The individual cooling areas are separated from one another by a mutual shield, so that the cooling liquids of the adjacent cooling beams hardly interfere with one another.

Bei einer zusammenhängenden Strömungskühlung wird die Kühlflüssigkeit über einen größeren zusammenhängenden Winkelbereich der Walze geführt. Eine geringe anpassbare Spaltbreite und eine hohe Strömungsgeschwindigkeit sind gefordert, um einen guten Wärmeübergang zu erzeugen. Spaltbreite und Kühlflüssigkeitsmenge müssen deshalb aufeinander abgestimmt sein. Die zusammenhängende Strömungskühlung kann im Gegenstromprinzip oder Gleichstromprinzip betrieben werden. Durch den langen Weg zwischen Ein- und Austrittsseite ist eine seitliche Abdichtung der Kühlschale erforderlich. Alternativ zum Gegen- oder Gleichstromprinzip ist auch eine Betriebsweise durchführbar, bei der an der oberen und unteren Kühlbalkenrohrleitung die Kühlflüssigkeit zugeführt wird. Der Ablauf erfolgt dann gezielt zu den Seiten. Bei diesem Prinzip nimmt zunächst die tangential zur Walze strömende Kühlflüssigkeit die Wärme auf und wird anschließend zur Seite umgelenkt. Die warme Kühlflüssigkeit erwärmt so die Walzenbereiche neben dem Bandlaufbereich und führt dort zur gewünschten positiven Beeinflussung der thermischen Crowns. Besonders effektiv ist dieses System, wenn eine Zonenkühlung durchgeführt wird, bei der die Bereiche neben dem Band nicht direkt gekühlt werden.With continuous flow cooling, the cooling liquid is guided over a larger continuous angular range of the roller. A small, adjustable gap width and a high flow velocity are required in order to generate good heat transfer. The width of the gap and the amount of coolant must therefore be coordinated. The coherent flow cooling can be operated on the countercurrent or co-current principle. Due to the long distance between the inlet and outlet side, the cooling shell needs to be sealed on the side. As an alternative to the counter-current or co-current principle, an operating mode can also be carried out in which the cooling liquid is supplied to the upper and lower cooling beam piping. The process then takes place specifically to the sides. With this principle, the cooling liquid flowing tangentially to the roller absorbs the heat and is then deflected to the side. The warm cooling liquid thus heats the roller areas next to the strip running area and there leads to the desired positive influence on the thermal crowns. This system is particularly effective when zone cooling is carried out in which the areas next to the belt are not directly cooled.

Bei der Zonenkühlung sind in Walzenlänge im Kühlmittelzuführkanal des Kühlbalkens nur bestimmte Bereiche für den Durchfluss freigegeben oder schmale Kühlschalen mit unterschiedlich eingestellten Spaltweiten beabstandet nebeneinander angeordnet. Bedingt durch die unterschiedlichen Spaltweiten ergeben sich für die schmalen Kühlschalen ein entsprechender unterschiedlicher spezifischer Kühlflüssigkeitsdurchfluss und damit je Kühlschale eine unterschiedliche Kühlung der Arbeitswalze. Zur Abtrennung der unterschiedlichen Kühlflüssigkeitsdurchflüsse wird je nach Konstruktion zwischen den schmalen Kühlschalen eine Sperrkühlflüssigkeit oder eine Spaltdichtung eingebracht.In the case of zone cooling, only certain areas in the length of the roller in the coolant supply channel of the cooling beam are released for the flow or narrow cooling shells with differently set gap widths are arranged next to one another and spaced apart. Due to the different gap widths result for the narrow ones Cooling shells a corresponding different specific cooling liquid flow and thus a different cooling of the work roll for each cooling shell. To separate the different coolant flows, a barrier coolant or a gap seal is inserted between the narrow cooling shells, depending on the design.

Zur optimalen Steuerung der Kühleinrichtung wird ein Rechenmodell (Prozessmodell bzw. Level 1-Modell) verwendet, das folgende Aufgaben erfüllt:

  • Einstellung der Kühlmittelmenge und Druckniveau für den Niederdruckund ggf. für den Hochdruckteil abhängig von Banddickenabnahme, spezifische Flächenpressung im Walzspalt, Walzgeschwindigkeit, Bandtemperaturen, Walzenwerkstoff und gewalztes Material sowie der gemessenen und/oder der berechneten Walzentemperaturen und/oder beobachteten Walzenoberfläche und ebenfalls abhängig von der eingestellten Kühlmittel-Beaufschlagungsbreite,
  • Einstellung der Kühlmittelmenge über der Bandbreite durch Verstellung der Austrittsöffnungen des Zuführkanals (parabolisch, Kurve höherer Ordnung oder zonenweise) oder/und Verstellung der Spaltbreite zwischen Kühlschale und Arbeitswalze in Abhängigkeit der Bandbreite und/oder Einstellung der Position der in Breitenrichtung verstellbaren Spritzdüsenbalkenabschnitte und/oder gemessenem Profil- und Planheitszustand über der Bandbreite,
  • Austausch von Signalen mit der Dickenregelung (Gerüstanstellung),
  • Beschreibung der geometrischen Zusammenhänge der beweglichen Teile der Kühleinrichtung sowie Berücksichtigung der Anstellposition, Passlineposition und Arbeitswalzendurchmesser zwecks optimaler Positionsermittlung bzw. Berechnung der Positionsänderungen,
  • Festlegung der Anschwenkposition von Kühlbalkenträger sowie Kühlschalenanstellposition mit Hilfe der Zylinder unter ggf. Verwendung der Druck- und Weggebersignalen,
  • Steuerung der Kalibrierprozedur für die Kühlschalenpositionen.
A computer model (process model or level 1 model) that fulfills the following tasks is used for optimal control of the cooling device:
  • Setting of the coolant quantity and pressure level for the low pressure and, if applicable, for the high pressure part depending on the strip thickness decrease, specific surface pressure in the roll gap, rolling speed, strip temperatures, roll material and rolled material as well as the measured and / or calculated roll temperatures and / or observed roll surface and also dependent on the set Coolant application width,
  • Adjustment of the amount of coolant over the bandwidth by adjusting the outlet openings of the feed channel (parabolic, higher-order curve or zone-wise) and / or adjustment of the gap width between the cooling shell and work roll depending on the bandwidth and / or adjustment of the position of the spray nozzle bar sections adjustable in the width direction and / or measured Profile and flatness condition over the strip width,
  • Exchange of signals with the thickness control (stand adjustment),
  • Description of the geometrical relationships of the moving parts of the cooling device as well as consideration of the pitch position, pass line position and work roll diameter for the purpose of optimal position determination or calculation of position changes,
  • Determination of the swiveling position of the cooling beam support as well as the cooling shell positioning position with the aid of the cylinder, possibly using the pressure and displacement encoder signals,
  • Control of the calibration procedure for the cooling tray positions.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.Further advantageous refinements of the invention are the subject of the dependent claims.

Weitere Einzelheiten der Erfindung werden nachfolgend an in schematischen Zeichnungsfiguren dargestellten Ausführungsbeispielen näher erläutert.Further details of the invention are explained in more detail below using exemplary embodiments shown in schematic drawing figures.

Es zeigen:

  • Fig. 1 eine Sprühkühlung nach dem Stand der Technik,
  • Fig. 2 eine hochturbulente Strömungskühlvorrichtung nach dem Stand der Technik,
  • Fig. 3 eine erfindungsgemäße Kühlvorrichtung mit mehreren Kühlschalensegmenten, die gelenkig miteinander verbunden sind,
  • Fig. 4 die Kühlvorrichtung der Fig. 3 mit alternativer Kühlflüssigkeitsströmung,
  • Fig. 5 eine erfindungsgemäße Kühlvorrichtung mit radial geteilter Kühlschale
  • Fig. 6 die Kühlvorrichtung der Fig. 5 mit austauschbarer Kühlschale bzw. Kühlplatte,
  • Fig. 7 eine Kühlvorrichtung mit durch Federn angepresste Kühlschalensegmente,
  • Fig. 8 eine Kühlvorrichtung mit Walzspaltkühlung / Walzspaltschmierung und kombinierter Niederdruck-Hochdruckwalzenkühlung,
  • Fig. 9 eine Kühlvorrichtung mit in den Kühlschalen eingebrachte Löcher,
  • Fig. 10a-f Düsen- und Schalenausbildungen,
  • Fig. 11a-c eine Spaltbreitenverstellung,
  • Fig.12 eine Spaltbreitenverstellung,
  • Fig. 13 eine Zonenkühlung,
  • Fig. 14 eine Spaltabdichtung,
  • Fig. 15a, b eine örtlich wirkende axial verstellbare Walzenkühlung,
  • Fig. 16 Biegefedern als gelenkige / elastische Verbindung zwischen benachbarten Kühlschalensegmenten.
Show it:
  • Fig. 1 state-of-the-art spray cooling,
  • Fig. 2 a highly turbulent flow cooling device according to the state of the art,
  • Fig. 3 a cooling device according to the invention with several cooling shell segments that are articulated to one another,
  • Fig. 4 the cooling device of the Fig. 3 with alternative coolant flow,
  • Fig. 5 a cooling device according to the invention with a radially divided cooling shell
  • Fig. 6 the cooling device of the Fig. 5 with exchangeable cooling tray or cooling plate,
  • Fig. 7 a cooling device with cooling shell segments pressed on by springs,
  • Fig. 8 a cooling device with roll gap cooling / roll gap lubrication and combined low-pressure / high-pressure roll cooling,
  • Fig. 9 a cooling device with holes made in the cooling shells,
  • Figures 10a-f Nozzle and shell designs,
  • Figures 11a-c a gap width adjustment,
  • Fig.12 a gap width adjustment,
  • Fig. 13 a zone cooling,
  • Fig. 14 a gap seal,
  • Figures 15a, b a locally acting axially adjustable roller cooling system,
  • Fig. 16 Flexural springs as an articulated / elastic connection between adjacent cooling shell segments.

In der Figur 1 ist eine Sprühkühlung nach dem Stand der Technik dargestellt, bei der eine Kühlflüssigkeit 7 mittels Düsen 27 auf die Walzenoberfläche der Arbeitswalzen 1, 2 gesprüht wird. Durch den relativ großen Abstand zwischen Düse und Walze wird ein höherer Kühlmittel-Druckbereich (z. B. 6 ... 15 bar) gewählt. Ein- und auslaufseitig angeordnete Abstreifer 17 sorgen dafür, dass möglichst wenig Kühlflüssigkeit mit dem Walzgut 4 in Kontakt geraten kann.In the Figure 1 a spray cooling system according to the prior art is shown, in which a cooling liquid 7 is sprayed onto the roll surface of the work rolls 1, 2 by means of nozzles 27. Due to the relatively large distance between nozzle and roller, a higher coolant pressure range (e.g. 6 ... 15 bar) is selected. Wipers 17 arranged on the inlet and outlet sides ensure that as little cooling liquid as possible can come into contact with the rolling stock 4.

Die Figur 2 zeigt eine andere bekannte Möglichkeit zur Kühlung der Arbeitswalzen 1, 2. Es handelt sich hierbei um eine hochturbulente Kühlung im Niederdruckbereich. Mit Hilfe von einlaufseitig angeordneten Düsen 27 und durch die auslaufseitig in der konkav gebogenen zusammenhängenden Kühlschale 11 eingebrachten Bohrungen wird Wasser auf die Walzenoberfläche der Arbeitswalzen 1, 2 gespritzt und ein Wasserkissen mit einer turbulenten und ungerichteten Strömung vor der Arbeitswalze gebildet. Der Austausch des Wassers geschieht bei dieser Konstruktion relativ langsam, was die Kühleffizienz negativ beeinflusst.The Figure 2 shows another known possibility for cooling the work rolls 1, 2. This is a highly turbulent cooling in the low pressure range. With the aid of nozzles 27 arranged on the inlet side and through the bores made on the outlet side in the concavely curved, connected cooling shell 11, water is raised the roll surface of the work rolls 1, 2 is sprayed and a water cushion with a turbulent and undirected flow is formed in front of the work roll. The exchange of water happens relatively slowly in this construction, which has a negative impact on the cooling efficiency.

Eine zusammenhängende Strömungskühlung nach der Erfindung mit einer zusammenhängenden Kühlschale 11 ist in der Figur 3 dargestellt. Die erfindungsgemäße Kühlvorrichtung 10 besteht hier im Wesentlichen aus gelenkig miteinander verbundenen Kühlschalensegmenten 13, die die Arbeitswalze 1, 2 mit Abstand unter Ausbildung eines Spaltes 30 in einem größeren Winkelbereich umschließen.A coherent flow cooling according to the invention with a coherent cooling shell 11 is in the Figure 3 shown. The cooling device 10 according to the invention here essentially consists of articulated cooling shell segments 13 which surround the work roll 1, 2 at a distance, forming a gap 30 in a larger angular range.

Durch die beansprucht gelenkige Verbindung zwischen den einzelnen Kühlsegmenten einer Kühlschale ist vorteilhafterweise eine optimale Anpassung der Kühlschale an die individuellen Durchmesser der Walzen und damit eine energetisch günstigere Kühlung der Walzen möglich. Die Gelenkachse der gelenkigen Verbindung liegt vorzugsweise parallel zur Längsachse der Walze.Due to the articulated connection claimed between the individual cooling segments of a cooling shell, an optimal adaptation of the cooling shell to the individual diameter of the rollers and thus an energetically more favorable cooling of the rollers is possible. The hinge axis of the articulated connection is preferably parallel to the longitudinal axis of the roller.

Über ein Zuführrohr 25 und der Eintrittsöffnung 29 strömt die Kühlflüssigkeit 7 im Gegenstrom zur Walzendrehrichtung 5 in den Spalt 30, um dann durch die Austrittsöffnung 24 und das Abführrohr 26 wieder auszuströmen. Wird das Abführrohr 26 oder die Austrittsöffnung 24 in einem Sonderfall verschlossen oder nicht ausgeführt, kann gezielt ein Kühlmittelablauf quer zur Walze erzeugt werden. Seitliche Abdichtungen sind dann hier nur teilweise vorhanden. Die den Spalt 30 bildenden Segmentlängen der Kühlschalensegmente 13 sollten annähernd gleich groß sein, so dass bei sich änderndem Durchmesser der Arbeitswalze 1 die Kühlschalensegmente 13 der Krümmungsänderung der Walzenmantelfläche 6 optimal folgen können. Die einzelnen Kühlschalensegmente 13 besitzen an ihren Enden Gelenke oder Gelenkhälften, die miteinander verbunden eine entsprechende Anzahl Gelenkdrehpunkte 22 bilden sowie Drehpunkte 21, die durch Zylinder 20, beispielsweise Hydraulik- oder Pneumatikzylinder, miteinander verbunden sind. Auf dem mittleren Kühlschalensegment 13 befindet sich der Kühlbalkenträger 16 mit einem Anlenkpunkt 23, durch den es möglich ist, das Kühlschalensegmente 13 und alle Bauteile, die mit diesem verbunden sind, in die dargestellten (horizontal, vertikal und drehend) Verstellrichtungen 45 des Kühlbalkenträgers mit einem hier nicht dargestellten mehrgliedrigen Gelenkgetriebe zu bewegen. Eine unterhalb der Kühlschale 11 angeordnete Abstreifvorrichtung 17 sorgt dafür, dass möglichst wenig Kühlflüssigkeit 7 auf das Walzgut 4 gelangt.Via a feed pipe 25 and the inlet opening 29, the cooling liquid 7 flows in countercurrent to the direction of rotation of the roller 5 into the gap 30, in order then to flow out again through the outlet opening 24 and the discharge pipe 26. If the discharge pipe 26 or the outlet opening 24 is closed or not implemented in a special case, a coolant drain can be generated transversely to the roller in a targeted manner. Lateral seals are then only partially present here. The segment lengths of the cooling shell segments 13 forming the gap 30 should be approximately the same, so that when the diameter of the work roll 1 changes, the cooling shell segments 13 can optimally follow the change in curvature of the roll jacket surface 6. The individual cooling shell segments 13 have joints or joint halves at their ends which, when connected to one another, form a corresponding number of joint pivot points 22 and pivot points 21 which are connected to one another by cylinders 20, for example hydraulic or pneumatic cylinders. On the middle cooling shell segment 13 is the cooling beam support 16 with a pivot point 23 through which it is possible to move the cooling shell segments 13 and all components connected to it in the illustrated (horizontal, vertical and rotating) adjustment directions 45 of the cooling beam support with a to move multi-link linkage, not shown here. A stripping device 17 arranged below the cooling shell 11 ensures that as little cooling liquid 7 as possible reaches the rolling stock 4.

Über Sensoren 37 zur Abstandsmessung, Druckmesser 36 in den Zylinderanschlussleitungen sowie an bzw. in den Zylindern 20 angeordnete Wegmesser 39 kann eine Positionierung der gesamten Kühlschale 11 durchgeführt werden. Mit Temperatursensoren 38 (in Walzenmitte oder über der Breite) wird kontinuierlich die Walzentemperatur gemessen, um zur Erhaltung der gewünschten Kühlwirkung die Größe des Spaltes 30 entsprechend zu regeln.Via sensors 37 for distance measurement, pressure gauges 36 in the cylinder connection lines and displacement gauges 39 arranged on or in the cylinders 20 the entire cooling shell 11 can be positioned. With temperature sensors 38 (in the middle of the roll or across the width), the roll temperature is measured continuously in order to regulate the size of the gap 30 accordingly in order to maintain the desired cooling effect.

Die nachfolgend beschriebenen Kühlvorrichtungen sind in ähnlicher Weise konstruktiv aufgebaut, weshalb die die Konstruktion betreffenden gleichwertigen Einzelheiten nicht mehr beschrieben werden, sondern fallweise nur die bereits vorstehend angeführten Bezugszeichen eingezeichnet sind.The cooling devices described below are constructed in a similar way, which is why the equivalent details relating to the construction are no longer described, but in some cases only the reference symbols already mentioned above are shown.

Eine alternative Strömungsführung der Kühlflüssigkeit 7 innerhalb des von den Kühlschalensegmente 13 der Kühlschale 11 und der Walzenmantelfläche 6 gebildeten Spaltes 30 gegenüber der in der Figur 3 beschriebenen Strömung ist in der Kühlvorrichtung 10 der Figur 4 dargestellt. Die Zuführrohre 25 für die mit Niederdruck ND zu verwendende Kühlflüssigkeit 7 sind hier jeweils am oberen und am unteren Kühlschalensegment 13 angeordnet, so dass hier die Kühlflüssigkeitsteilmengen im Gegenstrom und im Gleichstrom, bezogen auf die Walzendrehrichtung 5, durch den Spalt 30 geführt werden. Die Strömungsrichtungen sind durch Pfeile 43 gekennzeichnet. Zur Abdichtung des Spaltes 30 sind die oberen und unteren Ränder der Kühlschale 11 mit einer Anlagefläche 46, beispielsweise einer Hartgewebeplatte, ausgebildet, die dichtend gegen die Walzenmantelfläche 6 geführt ist. Da somit nur ein seitlicher Ablauf der Kühlflüssigkeit 7 aus dem Spalt 30 möglich ist (Abführrohre sind nicht vorhanden), ist der Spalt 30 gegenüber der Spaltweite der Fig. 3 vergrößert. Die Verstellung der einzelnen Kühlschalen erfolgt wie bei Figur 3 mittels Zylinder 20. Statt Zyünder können auch vereinfacht dort Schraubenfedern eingesetzt werden. Zusätzlich zu der auf der Auslaufseite durchgeführten Kühlung mit der dort angeordneten Kühlschale 11 wird jede Arbeitswalze 1, 2 auch auf der Einlaufseite gekühlt. Da hier die erzielbare Kühlung nicht im Vordergrund steht, reicht hier z. B. Sprühkühlung mit Niederdruck ND mittels Düsen 27.An alternative flow guidance of the cooling liquid 7 within the gap 30 formed by the cooling shell segments 13 of the cooling shell 11 and the roller jacket surface 6 compared to that in FIG Figure 3 described flow is in the cooling device 10 of the Figure 4 shown. The supply pipes 25 for the cooling liquid 7 to be used with low pressure LP are arranged here on the upper and lower cooling shell segment 13, so that here the partial quantities of cooling liquid are fed through the gap 30 in countercurrent and cocurrent, based on the direction of rotation of the rollers 5. The directions of flow are indicated by arrows 43. To seal the gap 30, the upper and lower edges of the cooling shell 11 are designed with a contact surface 46, for example a hard tissue plate, which is guided in a sealing manner against the roller jacket surface 6. Since only a lateral drainage of the cooling liquid 7 from the gap 30 is possible (discharge pipes are not present), the gap 30 is opposite to the gap width Fig. 3 enlarged. The adjustment of the individual cooling shells is carried out as in Figure 3 by means of cylinder 20. Instead of cylinders, helical springs can also be used there in a simplified manner. In addition to the cooling carried out on the outlet side with the cooling shell 11 arranged there, each work roll 1, 2 is also cooled on the inlet side. Since the achievable cooling is not in the foreground here, z. B. Spray cooling with low pressure LP using nozzles 27.

Eine Kühlvorrichtung 10 mit einer abschnittsweisen Niederdruck-Strömungskühlung zeigt die Figur 5. Im Gegensatz zu den Figuren 3 und 4, bei denen die Kühlschalen 11 zwar aus Kühlschalensegmenten 13 zusammengesetzt, aber zusammenhängend eine einheitliche in sich bewegliche Kühlschale 11 bilden, sind die Kühlschalensegmente 13 der nun radial geteilten Kühlschale 12 auch örtlich voneinander getrennt und bilden getrennte Strömungskühlbereiche s1, s2, s3. Aus Niederdruck (ND)-Zuführrohren 25 strömt hier die Kühlflüssigkeit über einen trichterförmigen Ausgabeschlitz 44 im mittleren Bereich eines Kühlschalensegmentes 13 aus einer Austrittöffnung 24 gegen die Arbeitswalze 1, 2 und wird nach beiden Seiten nach oben und unten umgelenkt. Um die quer (in Breitenrichtung) fließende Wassermenge zu begrenzen, können mechanische Seitenabdichtungen angeordnet sein. Jedes Kühlschalensegment 13 erzwingt eine Strömung entsprechend der eingezeichneten Pfeile 43 entlang der Walzenmantelfläche 6 und dann nach hinten zurück. Die Kühlschalensegmente 13 sind dabei so ausgeführt, dass die nach hinten (von der Walze weg) fließende Kühlflüssigkeit mit Gefälle gut abfließen kann. Durch (nicht dargestellte) Umlenkbleche wird die zurück fließende Kühlflüssigkeit auf der Oberseite zusätzlich zur Seite gelenkt, um den Pooleffekt über dem Abstreifer 17 zu reduzieren. Die Austrittsöffnungen 24 der Kühlschalensegmente 13 können mit einem austauschbaren Mundstück (z. B. Rechteckdüse) versehen werden, so dass bei Bedarf der Querschnitt und die Form leicht geänderten Bedingungen anzupassen ist. Zwischen den Abstreifern 17 und den Kühlschalen 12 sind bei diesem Ausführungsbeispiel Hochdruck(HD)-Düsen angeordnet, mittels derer die erfindungsgemäß kombinierte Niederdruck-Hochdruck-Kühlung realisiert wird. Der Hochdruckspritzbalken kann wie dargestellt separat am Kühlbalkenträger 16 angeordnet oder an einem Kühlschalensegment befestigt sein, so dass er mit diesem verstellbar ist.A cooling device 10 with a sectional low-pressure flow cooling is shown in FIG Figure 5 . In contrast to the Figures 3 and 4th , in which the cooling shells 11 are composed of cooling shell segments 13, but coherently form a uniform, self-moving cooling shell 11, the cooling shell segments 13 of the now radially divided cooling shell 12 are also spatially separated from one another and form separate flow cooling areas s1, s2, s3. From low pressure (LP) feed pipes 25 the cooling liquid flows here via a funnel-shaped output slot 44 in the middle area of a cooling shell segment 13 from an outlet opening 24 against the work roll 1, 2 and is deflected up and down on both sides. To the cross To limit the amount of water flowing (in the width direction), mechanical side seals can be arranged. Each cooling shell segment 13 forces a flow in accordance with the drawn arrows 43 along the roller jacket surface 6 and then backwards. The cooling shell segments 13 are designed in such a way that the cooling liquid flowing backwards (away from the roller) can flow away well with a gradient. By means of deflection plates (not shown), the cooling liquid flowing back on the upper side is additionally directed to the side in order to reduce the pool effect above the scraper 17. The outlet openings 24 of the cooling shell segments 13 can be provided with an exchangeable mouthpiece (e.g. rectangular nozzle) so that, if necessary, the cross-section and the shape can be easily adapted to changed conditions. In this exemplary embodiment, high-pressure (HP) nozzles are arranged between the scrapers 17 and the cooling shells 12, by means of which the low-pressure / high-pressure cooling combined according to the invention is implemented. As shown, the high-pressure spray bar can be arranged separately on the cooling bar support 16 or attached to a cooling shell segment so that it can be adjusted with it.

In der Figur 6 ist angedeutet, dass auf den Kühlbalken der Kühlvorrichtung 10 eine komplett austauschbare Kühlschalenplatte 47 befestigt ist. Da auch hier die Mundstücke der Düsenöffnungen der Austrittsöffnungen 24 ausgetauscht werden können, ist also die Wechselmöglichkeit der gesamten Kühlschale mit Mundstück oder auch separat möglich. Die Kühlschalen eines Strömungskühlbereiches können auch zweigeteilt sein, so dass durch relatives Verschieben und anschließendes Fixieren der beiden Hälften die Austrittsöffnung 24 leicht einstellbar ist. Weiterhin können leicht unterschiedliche Schalendicken bzw. Spaltbreiten pro Kühlbalken eingestellt und die Kühlflüssigkeitsmenge, die nach oben und unten fließen, beeinflusst werden.In the Figure 6 it is indicated that a completely exchangeable cooling shell plate 47 is attached to the cooling beam of the cooling device 10. Since the mouthpieces of the nozzle openings of the outlet openings 24 can also be exchanged here, the possibility of changing the entire cooling bowl with mouthpiece or also separately is possible. The cooling shells of a flow cooling area can also be divided into two parts, so that the outlet opening 24 can be easily adjusted by relative displacement and subsequent fixing of the two halves. Furthermore, slightly different shell thicknesses or gap widths per cooling beam can be set and the amount of cooling liquid that flows up and down can be influenced.

Statt wie bei den bisherigen Ausführungsbeispielen der Figuren 3 bis 6 Zylinder zur Anstellung der Einzelschalen einzusetzen, ist in der Kühlvorrichtung 10 der Figur 7 eine alternative Lösung offenbart und dargestellt. Hier wird der Kühlbalkenträger 16 mit dem mittleren Kühlschalensegment 13 vor die Walze positioniert. Die beiden anderen Kühlschalensegmente 13 legen sich mit Hilfe eines in einem kleinen definierten Bereich drehbaren geraden oder gekrümmten Querbalkens 48 mit entsprechendem Federanpressdruck der Feder 8 an die Arbeitswalzen 1, 2 an. Alternativ können auch im Bereich der Zylinder (siehe Figuren 3 - 6) Schraubenfedern 8 mit entsprechenden Halterungen an den Enden angebracht sein. Der Spalt 30 wird dabei durch Abstandsplatten 49 zwischen der Kühlschale 13 und der Arbeitswalze 1, 2 bestimmt. Als Material für die Abstandsplatten eignet sich z. B. Hartgewebe, Aluminium, Gusseisen, selbst schmierende Metalle oder Kunststoff. Die Abstandsplatten 49 sind nur im Kühlbalkenkantenbereich angeordnet, um die Kühlmittelströmung in der Mitte nicht zu stören. Optional sind auch über die Kühlbalkenlänge durchgehende Abstandsplatten 49 denkbar. Diese können als Abstandseinstellung oder zur Beeinflussung der Strömungsrichtung des Kühlmittels dienen. Diese Abstandsplatten können auch auf dem mittleren Kühlschalensegment 13 (nicht dargestellt) angebracht sein. Durch einen erzeugten Kühlmittelstrom zur Seite hin werden die Randbereiche der Arbeitswalze (neben dem Band) durch das erwärmte Kühlmittel gezielt aus der Mitte erwärmt.Instead of the previous exemplary embodiments Figures 3 to 6 To use cylinder for adjusting the individual shells, is in the cooling device 10 of the Figure 7 an alternative solution is disclosed and illustrated. Here the cooling beam support 16 with the central cooling shell segment 13 is positioned in front of the roller. The two other cooling shell segments 13 rest against the work rolls 1, 2 with the aid of a straight or curved transverse bar 48 which can be rotated in a small defined area with the corresponding spring contact pressure of the spring 8. Alternatively, in the area of the cylinder (see Figures 3 - 6 ) Coil springs 8 with appropriate brackets at the ends. The gap 30 is determined by spacer plates 49 between the cooling shell 13 and the work roll 1, 2. The material for the spacer plates is such. B. hard fabric, aluminum, cast iron, self-lubricating metals or plastic. The spacer plates 49 are arranged only in the cooling bar edge area to the Not to disturb coolant flow in the middle. Optional spacer plates 49 that extend over the length of the chilled beam are also conceivable. These can be used to adjust the distance or to influence the direction of flow of the coolant. These spacer plates can also be attached to the central cooling shell segment 13 (not shown). With a generated coolant flow to the side, the edge areas of the work roll (next to the strip) are specifically heated from the center by the heated coolant.

Sind die Arbeitswalzen-Durchmesserbereiche, bei denen die Kühlung betrieben wird, klein oder pro Gerüst im gleichen Bereich, so ist als Sonderfall ein starres Kühlsystem, d. h. mit unbeweglichen Kühlschalen (ohne Zylinder zwischen den Schalen und ohne Federn 8) vorgesehen. Auch ist dann in vorteilhafter Weise ein Einsatz von starren Abstandsstangen statt beweglicher Zylinder 20 möglich. Die Spalte zwischen der Walze und der Kühlschale variieren dann etwas, jedoch ist das System mit der abschnittsweisen Strömungskühlung noch wirksam und das System einfacher in der Herstellung. Es muss lediglich der Kühlbalkenträger abhängig vom Arbeitswalzendurchmesser und der Arbeitswalzenposition vor die Walze positioniert werden, so dass die Spalte optimal, also die Austrittsöffnungen relativ dicht vor der Walze angeordnet sind. Die Konstruktion kann so für mehrere Gerüste gleich ausgeführt werden und die Anpassung an die verschiedenen Gerüst-Durchmesserbereiche einer Walzstraße erfolgt lediglich über die in der Länge verstellbaren Stangen.If the work roll diameter areas in which the cooling is operated are small or in the same area per stand, a rigid cooling system is required as a special case, i. H. provided with immovable cooling shells (without cylinder between the shells and without springs 8). The use of rigid spacer rods instead of movable cylinders 20 is then also advantageously possible. The gaps between the roller and the cooling shell then vary somewhat, but the system with the sectional flow cooling is still effective and the system is simpler to manufacture. Only the cooling beam support has to be positioned in front of the roll, depending on the work roll diameter and the work roll position, so that the gaps, that is to say the outlet openings, are arranged relatively close in front of the roll. The construction can be carried out the same for several stands and the adaptation to the different stand diameter ranges of a rolling train is done only by means of the length-adjustable rods.

In der Kühlvorrichtung 10 der Figur 8 ist zusätzlich zu der bisher beschriebenen kombinierten Niederdruck-Hochdruck-Kühlung auch eine Niederdruck-Strömungs-kühlung mit integrierter Walzspaltschmierung 19 und Walzspaltkühlung 18 auf der Einlaufseite angeordnet. Gleichzeitig wird in der Fig. 8 offenbart, wie verschiedene Hoch- und Niederdruck-Systeme miteinander kombinierbar sind. Die Strömung der Kühlflüssigkeit 7 kann sich unter einer Kühlschale teilen oder, wie hier beispielhaft einlaufseitig und auslaufseitig dargestellt ist, eine größere Kühlmittelmenge bevorzugt in eine Richtung gelenkt werden. Zwecks Vergrößerung des Wärmeübergangs ist eine Strömung gegen die Drehrichtung vorteilhaft.In the cooling device 10 of the Figure 8 In addition to the combined low-pressure / high-pressure cooling described so far, a low-pressure flow cooling system with integrated roll gap lubrication 19 and roll gap cooling 18 is also arranged on the inlet side. At the same time, the Fig. 8 discloses how different high and low pressure systems can be combined with one another. The flow of the cooling liquid 7 can be divided under a cooling shell or, as is shown here by way of example on the inlet side and outlet side, a larger amount of coolant can preferably be directed in one direction. To increase the heat transfer, a flow against the direction of rotation is advantageous.

Der Bereich, in dem die Walzspaltschmierung 19 angeordnet ist, wird durch die erzeugte Strömungsrichtung der Arbeitswalzenkühlung und/oder durch mit einer elastischen Kunststoffoberfläche versehene Kühlschalen 50 oder Kühlschalen 51 mit elastischer Kunststoff- oder Hartgewebeplatten weitgehend trocken gehalten, wozu vom Kühlbalkenträger-Mechanismus ein leichter Anpressdruck über die Platten auf die Walze erzeugt wird. Die Platten selbst sind über der Breite durchgehend ausgeführt und haben durch ihre konstruktive Gestaltung (nicht dargestellt) eine elastische Wirkung. Der Bereich der Walzenoberfläche (in Drehrichtung gesehen) vor der Applizierung des Walzspaltschmiermittels ist optional mit einer (nicht dargestellten) Druckluft-Bedüsung ausgeführt, um die Walzenoberfläche definiert trocken zu blasen.The area in which the roll gap lubrication 19 is arranged is kept largely dry by the generated flow direction of the work roll cooling and / or by cooling shells 50 or cooling shells 51 provided with an elastic plastic surface with elastic plastic or hard tissue panels, for which a slight contact pressure is applied by the cooling beam support mechanism is generated over the plates on the roller. The panels themselves are continuous across the width and have an elastic effect due to their structural design (not shown). The area of the roll surface (seen in the direction of rotation) before the application of the Roll gap lubricant is optionally designed with a compressed air jet (not shown) in order to blow the roll surface dry in a defined manner.

Statt des Einsatzes von beispielsweise drei Kühlbalken mit rechteckförmiger Düse ist es entsprechend der Kühlvorrichtung 10 der Figur 9 auch möglich, die drei Kühlbalken mit austauschbaren Kühlschalen 47 auszuführen, in die viele versetzt angeordnete Löcher 52 gebohrt sind, aus denen einzelne Kühlmittelstrahlen aus kurzer Entfernung gegen die Walzen 1, 2 spritzen. Auch so kann eine abschnittsweise Strömungskühlung aufgebaut werden. Die Löcher sind dabei so in Breitenrichtung versetzt angeordnet, dass eine möglichst gleichmäßige Kühlwirkung über der Breite entsteht. Die Querschnittsgröße und Abstände der Löcher 52 können über der Ballenbreite unterschiedlich ausgeführt sein, damit auch mit diesem System ein Kühlmittelcrown erzeugbar ist. Die Löcher 52 können dabei senkrecht gegen die Walzen 1, 2 ausgerichtet sein oder auch ein schräges Spritzen der Kühlflüssigkeit gegen die Walzen 1, 2 ermöglichen.Instead of using, for example, three cooling bars with a rectangular nozzle, it is according to the cooling device 10 of the Figure 9 It is also possible to design the three cooling bars with exchangeable cooling shells 47 in which many offset holes 52 are drilled, from which individual jets of coolant spray against the rollers 1, 2 from a short distance. Flow cooling in sections can also be established in this way. The holes are offset in the width direction so that the most uniform possible cooling effect is created across the width. The cross-sectional size and spacing of the holes 52 can be designed differently over the width of the barrel so that a coolant crown can also be generated with this system. The holes 52 can be aligned perpendicular to the rollers 1, 2 or also enable the cooling liquid to be sprayed obliquely against the rollers 1, 2.

In einer nicht dargestellten speziellen Variante ist vorgesehen, die Kühlschalen so zu gestalten, dass die Kühlmittelaustrittsöffnung durch einen Rechteckschlitz 24 bzw. 44 kombiniert mit Löchern 52 in der Platte gleichzeitig ausgeführt sind, um Turbulenzen im Fließspalt zu erhöhen.In a special variant, not shown, it is provided that the cooling shells are designed in such a way that the coolant outlet opening is made simultaneously through a rectangular slot 24 or 44 combined with holes 52 in the plate in order to increase turbulence in the flow gap.

Weitere Details zur Düsen- und Schalengestaltung sind den Figuren 10a bis 10f zu entnehmen, wobei die Anordnung der Düse in Schalenmitte oder alternativ in symmetrischer Anordnung mit einseitig beispielsweise oben verkürzt ausgeführter Schale erfolgt. Durch Änderung des Anstellungswinkels der Düse oder unterschiedlicher Kühlschalendicken oben/unten (nicht dargestellt) lässt sich die Verteilung des Kühlflüssigkeitsstroms nach oben und unten ebenfalls beeinflussen. Auch sind verschiedene Düsenformen (Strahl fokussierend oder "zerstäubend") angedeutet. Die Kühlschale kann zusätzlich auf der den Walzen zugewandten Seite glatt oder mit Rillen bzw. Stegen 9 versehen sein, um den Kühleffekt durch verursachende Turbolenzen positiv zu beeinflussen. Im Einzelnen sind dargestellt:

  • Fig. 10a eine symmetrische Anordnung des unteren Teils des Kühlbalkens 54 auf der Kühlschale 11, 12 mit austauschbarer Düse 27,
  • Fig. 10b Kühlflüssigkeitsaustritt aus der Düse 27 mit Winkel α schräg zur Walze,
  • Fig. 10c Düse 27 mit alternativer Querschnittsform sowie mögliche Ausführungsformen der Stege bzw. Rillen 9,
  • Fig. 10d asymmetrisch zur Düse 27 verkürzte bzw. verlängerte Kühlschale 11, 12.
Further details on the nozzle and shell design can be found in the Figures 10a to 10f can be seen, the arrangement of the nozzle in the middle of the shell or alternatively in a symmetrical arrangement with a shell that is shortened on one side, for example at the top. By changing the angle of incidence of the nozzle or different cooling shell thicknesses above / below (not shown), the distribution of the cooling liquid flow upwards and downwards can also be influenced. Different nozzle shapes (focusing or "atomizing" jet) are also indicated. The cooling shell can additionally be smooth or provided with grooves or webs 9 on the side facing the rollers in order to positively influence the cooling effect by causing turbulence. The following are shown in detail:
  • Figure 10a a symmetrical arrangement of the lower part of the cooling bar 54 on the cooling shell 11, 12 with exchangeable nozzle 27,
  • Figure 10b Cooling liquid exit from the nozzle 27 at an angle α obliquely to the roller,
  • Figure 10c Nozzle 27 with an alternative cross-sectional shape and possible embodiments of the webs or grooves 9,
  • Fig. 10d Cooling shell 11, 12 that is shortened or lengthened asymmetrically to the nozzle 27.

Die trichterförmige in Strömungsrichtung geformte Austrittsöffnung kann bei Bedarf mit Leitblechen ausgeführt sein, um das Kühlmittel gezielt nach innen, außen oder geradeaus zu lenken, so dass letztlich ein geschlossener und gleichmäßiger Kühlflüssigkeitsstrahl über der Kühlbalkenlänge austritt. Auch eine trichterförmige Ausbildung des Kühlflüssigkeitszuführkanals an den Kühlbalken-Breitseiten ist möglich, um die unter der Schale quer zur Seite (Balkenkanten) fließende Kühl-flüssigkeitsmenge zu reduzieren.The funnel-shaped outlet opening shaped in the direction of flow can, if required, be designed with baffles in order to direct the coolant in a targeted manner inwards, outwards or straight ahead, so that ultimately a closed and even jet of cooling liquid emerges over the length of the cooling beam. A funnel-shaped design of the cooling liquid supply channel on the broad sides of the cooling beam is also possible in order to reduce the amount of cooling liquid flowing under the shell transversely to the side (beam edges).

Weiterhin ist es möglich, die Kühlschale abschnittsweise über der Kühlbalkenlänge mit einer Spaltbreitenverstellung im Kühlflüssigkeitszuführkanal auszubilden und somit die Kühlmittelverteilung sowie die Kühlwirkung über die Walzenlänge zu beeinflussen. Um vereinfacht eine parabolische Veränderung der Spaltbreite der Austrittsöffnung über der Breite durchführen zu können, sind entsprechend dem Beispiel der Figuren 10e (Seitenansicht) und 10f (Draufsicht) mit einem Verstellmechanismus (nicht dargestellt) verbiegbare Federbleche 53 innerhalb des trichterförmigen Zuführkanals 55 angeordnet. In der Normalposition liegen hier die Federbleche an den Seitenflächen der Austrittsöffnung an. Wird auf einer Seite die Mitte angestellt, so reduziert sich dort der Spalt. Die Kanten werden dabei in einer Langlochführung festgehalten. Bei Anstellung des Federblechs an den beiden Kanten verringert sich alternativ die Spaltbreite dort.Furthermore, it is possible to design the cooling shell in sections over the length of the cooling beam with a gap width adjustment in the cooling liquid supply channel and thus to influence the coolant distribution and the cooling effect over the length of the roller. In order to be able to carry out a parabolic change in the gap width of the outlet opening over the width in a simplified manner, according to the example of FIG Figures 10e (Side view) and 10f (top view) with an adjusting mechanism (not shown) bendable spring plates 53 are arranged within the funnel-shaped feed channel 55. In the normal position, the spring steel sheets are in contact with the side surfaces of the outlet opening. If the middle is adjusted on one side, the gap is reduced there. The edges are held in place in a slot guide. Alternatively, if the spring plate is positioned at the two edges, the gap width is reduced there.

Die Ausführungsform nach Figur 10e und Figur 10f stellt nur das Prinzip dar. Es sind auch andere Konstruktionen mit gleicher Wirkung möglich.The embodiment according to Figure 10e and Figure 10f represents only the principle. Other constructions with the same effect are also possible.

Details für ein exemplarisches Ausführungsbeispiel der Spalteinstellung im Zuführkanal 55 sind in den Figuren 11a bis 11c in Seitenansicht und in der Figur 12 in der entsprechenden Draufsicht dargestellt. Hier ist der längliche Austrittsquerschnitt 58 des Kühlbalkens in einzelne Breitenabschnitte 59 aufgeteilt. Für jeden Breitenabschnitt 59 kann die Strömungsöffnung b und damit der Volumenstrom der Kühlflüssigkeit individuell eingestellt werden. Der Breitenabschnitt 59 kann beispielsweise 50 - 500 mm breit ausgeführt sein. Alternativ ist eine paarweise, symmetrisch zur Gerüstmitte angeordnete Ansteuerung der Zonenkühlung (Spalteinstellung) möglich. Es können alle Kühlbalken eines Gerüstes mit einer zonenweisen Ansteuerung der Kühlquerschnitte versehen und die Zonen entsprechend verbunden sein oder die einzelne Balken eines Gerüstes werden separat angesteuert. Als Verschließmechanismus des Austrittsquerschnittes ist für das Ausführungsbeispiel in Figur 11 ein mit Luftdruck oder Flüssigkeitsdruck betriebenes System vorgesehen. Abhängig vom Druckniveau des Systems oder vom gemessenen Volumenstrom kann die Strömungsöffnung b von offen bis zu teilweise geöffnet oder geschlossen eingestellt werden. Statt abschnittsweise angeordneten dehnbaren Kunststofflaschen 60 können zum segmentweisen Beeinflussen des Querschnitts der Austrittsöffnung auch drehoder verschiebbare Klappen bzw. Stößel, Exzenter-Anstellungen oder andere mechanische Stellglieder eingesetzt werden.Details for an exemplary embodiment of the gap setting in the feed channel 55 are shown in FIGS Figures 11a to 11c in side view and in the Figure 12 shown in the corresponding top view. Here the elongated exit cross section 58 of the cooling bar is divided into individual width sections 59. For each width section 59, the flow opening b and thus the volume flow of the cooling liquid can be set individually. The width section 59 can be made, for example, 50-500 mm wide. Alternatively, the zone cooling can be controlled in pairs symmetrically to the center of the stand (gap setting). All cooling beams of a scaffolding can be provided with zone-wise control of the cooling cross-sections and the zones can be connected accordingly, or the individual beams of a scaffolding can be controlled separately. The closing mechanism for the outlet cross-section is shown in FIG Figure 11 an air or fluid pressure operated system is provided. Depending on the pressure level of the system or the measured volume flow, the flow opening b can be set from open to partially open or closed. Instead of section-wise arranged stretchable plastic tabs 60 can be used for segment-wise To influence the cross section of the outlet opening, rotatable or displaceable flaps or tappets, eccentric adjustments or other mechanical actuators can also be used.

Im Ausführungsbeispiel der Figuren 11a bis 11c ist seitlich am Zuführkanal 55 als Verschlussorgan eine Druckkammer 56 angeordnet, deren dehnbarer Kunststoffschlauch 60 einen Teil des Zuführkanals 55 bildet. Im Ausgangszustand der Figur 11a ist die Luftkammer 56 im drucklosen Zustand, so dass, wie in der Figur 12 am Breitenabschnitt 59a dargestellt, die Strömungsöffnung b voll geöffnet ist. In der Figur 11b wurde über eine Druckleitung 57 die Druckkammer 56 mit Druckluft oder einer Flüssigkeit teilweise gefüllt, wodurch der Kunststoffschlauch 60 teilweise in den Zuführkanal 55 hineingedrückt wurde und die Strömungsöffnung b nun teilweise geschlossen ist, wie in Figur 12 am Breitenabschnitt 59b dargestellt ist. Eine völlig geschlossene Strömungsöffnung b zeigt die Figur 12 am Breitenabschnitt 59c. Hier wurde entsprechend der Figur 11c die Druckkammer 56 vollständig gefüllt und damit der Zuführkanal 55 in diesem Bereich abgesperrt. Durch Verschließen der Zonen kann die thermische Ausdehnung der Walze und damit das Bandprofil und die Bandplanheit positiv beeinflusst werden. Ein Verschließen der Kühlzonen neben dem Band bei gleichzeitiger Anpassung (Reduktion) der Wasserfördermenge kann zur weiteren Energieverminderung vorteilhaft beitragen.In the embodiment of Figures 11a to 11c A pressure chamber 56 is arranged laterally on the feed channel 55 as a closure member, the expandable plastic tube 60 of which forms part of the feed channel 55. In the initial state of the Figure 11a the air chamber 56 is in the unpressurized state, so that, as in FIG Figure 12 shown on the width section 59a, the flow opening b is fully open. In the Figure 11b the pressure chamber 56 was partially filled with compressed air or a liquid via a pressure line 57, as a result of which the plastic hose 60 was partially pressed into the feed channel 55 and the flow opening b is now partially closed, as in FIG Figure 12 is shown at width portion 59b. A completely closed flow opening b shows Figure 12 at width section 59c. According to the Figure 11c the pressure chamber 56 is completely filled and thus the feed channel 55 is blocked in this area. By closing the zones, the thermal expansion of the roller and thus the strip profile and flatness can be positively influenced. Closing the cooling zones next to the belt with simultaneous adjustment (reduction) of the water flow rate can advantageously contribute to a further reduction in energy.

Ein anderes Wirkprinzip der Zonenkühlung ist in Figur 13 dargestellt. Hierbei sind in Walzenlänge schmale Kühlschalen 14 nebeneinander angeordnet, deren Spalten 31, 32, 33 mit unterschiedlichen Spaltweiten W1, W2, W3 eingestellt werden können. Durch unterschiedliche Spaltweiten und einer unterschiedlichen Beaufschlagung der Spalten 31, 32, 33 mit Druck und Volumenstrom der Kühlflüssigkeit kann so ein unterschiedlicher spezifischer Kühlflüssigkeitsdurchfluss 41 pro Zeiteinheit über der Walzenlänge erzeugt werden. Zum Trennen der einzelnen Zonen mit unterschiedlichem Kühlflüssigkeitsdurchfluss 41 pro Zeiteinheit kann in den zwischen den Kühlschalen 14 bestehenden Spalt 34 eine einen Staudruck erzeugende Sperrkühlflüssigkeit eingebracht sein. Vereinfacht lässt sich auch eine Kühlschale ohne Verstelleinrichtung der Art ausführen, dass der Spalt zwischen Kühlschale und Walze über der Walzenlänge beliebig unterschiedlich groß ist.Another working principle of zone cooling is in Figure 13 shown. Here, narrow cooling shells 14 are arranged next to one another in the length of the roller, the gaps 31, 32, 33 of which can be set with different gap widths W1, W2, W3. By different gap widths and a different application of pressure and volume flow of the cooling liquid to the gaps 31, 32, 33, a different specific cooling liquid flow 41 per unit of time can be generated over the length of the roller. In order to separate the individual zones with different coolant flow rates 41 per unit of time, a barrier coolant generating a dynamic pressure can be introduced into the gap 34 existing between the cooling shells 14. In a simplified manner, a cooling shell can also be implemented without an adjusting device such that the gap between the cooling shell and the roller is of any size over the length of the roller.

Als Material für die Kühlschalen 13,14 kann mit Vorteil ein Werkstoff eingesetzt werden, welcher an der Walze anliegen darf ohne sie zu beschädigen und elastisch ist. Dies können beispielsweise ein sandfreies Gusseisen, gleitfähiger Kunststoff, selbst schmierende Metalle, Aluminium oder Hartgewebe sein.A material can advantageously be used as the material for the cooling shells 13, 14 which may rest against the roller without damaging it and which is elastic. This can be, for example, a sand-free cast iron, lubricious plastic, self-lubricating metals, aluminum or hard fabric.

In der Figur 14 ist eine Möglichkeit zum Abdichten des zwischen der Arbeitswalze 1 und der Kühlschale 14 gebildeten Spaltes 30 an seinen Rändern dargestellt. Über ein Rohr 25 und eine Düse 27 wird ein Fluidstrahl 28, beispielsweise Luft oder Kühlmittel, gezielt in die Öffnung des Spaltes 30 eingeblasen. Der Fluidstrahl 28 erzeugt so einen Staudruck, der das Austreten der Kühlflüssigkeit 7 aus dem Spalt 30 verhindert.In the Figure 14 a way of sealing the gap 30 formed between the work roll 1 and the cooling shell 14 is shown at its edges. A fluid jet 28, for example air or coolant, is targeted into the via a pipe 25 and a nozzle 27 Blown opening of the gap 30. The fluid jet 28 thus generates a dynamic pressure which prevents the cooling liquid 7 from escaping from the gap 30.

Eine örtlich wirkende axial verstellbare Arbeitswalzen-Sprühkühlung, die als Hochdruck- aber auch als Niederdruckkühlung ausgeführt werden kann, zeigen Figur 15a und 15b. Diese Kühlung stellt eine Zusatzkühlung dar und kann in Kombination mit der nicht dargestellten Niederdruck-Schalenkühlung betrieben werden. Die örtliche Positionierung der Sprühdüsen bzw. Applizierung der Kühlflüssigkeit 7 erfolgt vorzugsweise in Abhängigkeit der Profil- und Planheitssteuerung oder -regelung. In Figur 15a werden hierzu die Spritzdüsenbalkenabschnitte 40' auf einer Führungsstange 63 bewegt. Die Positionierung der beiden Spritzdüsenbalkenabschnitte 40' erfolgt hier symmetrisch zur Walzenmitte mit Hilfe eines Hydraulikzylinders 61, Gelenkstangen 62 und Düsenbalkenträger 64. Alternativ sind auch zwei Hydraulikzylinder 61 denkbar, die beide Seiten 65 individuell positionieren. Die Speisung der Spritzdüsenbalkenabschnitte 40' erfolgt rechts und links individuell über die jeweilige Zuführleitung 25. Eine ähnliche Anordnung einer örtlich wirkenden Arbeitwalzenkühlung stellt Figur 15b dar. Mit einem Hydraulikzylinder 61 werden hier Gelenkstangen und Gelenkschwingen 62 mit darauf befestigten Spritzdüsenbalkenabschnitte 40' über einen Drehpunkt 66 auf einer Kreisbahn 64 bewegt und so der Kühlstrahl 7 auf unterschiedliche Positionen innerhalb oder neben dem Bandbereich auf die Arbeitswalze 1 gelenkt. Als nicht dargestellte Alternativen zur angelenkten Gelenkschwinge können die beiden Spritzdüsenbalkenabschnitte 40' jeweils mit einem Koppelgetriebe (4-Gelenk-Bogen) bewegt werden, wenn eine Bewegung auf einer Kreisbahn 64 vermieden werden soll. Auch der Einsatz von Elektro- oder Hydro-Schrittmotoren an den Positionen der Drehpunkte 66 zur direkten Bewegung der Düseneinheiten auf den Spritzdüsenbalkenabschnitte 40' über eine Stange auf der Kreisbahn 64 sind möglich.A locally acting axially adjustable work roll spray cooling, which can be designed as high pressure but also as low pressure cooling, show Figures 15a and 15b . This cooling represents an additional cooling and can be operated in combination with the low-pressure shell cooling (not shown). The local positioning of the spray nozzles or application of the cooling liquid 7 is preferably carried out as a function of the profile and flatness control or regulation. In Figure 15a For this purpose, the spray nozzle bar sections 40 ′ are moved on a guide rod 63. The two spray nozzle bar sections 40 'are positioned symmetrically to the roll center with the aid of a hydraulic cylinder 61, articulated rods 62 and nozzle bar support 64. Alternatively, two hydraulic cylinders 61 are also conceivable, which position both sides 65 individually. The spray nozzle bar sections 40 'are fed individually on the right and left via the respective feed line 25. A similar arrangement of locally acting work roll cooling is provided Figure 15b A hydraulic cylinder 61 is used here to move articulated rods and articulated rockers 62 with spray nozzle bar sections 40 'attached to them over a pivot point 66 on a circular path 64, thus directing the cooling jet 7 to different positions within or next to the strip area on the work roll 1. As an alternative to the articulated swing arm, not shown, the two spray nozzle bar sections 40 'can each be moved with a coupling gear (4-joint arch) if movement on a circular path 64 is to be avoided. The use of electric or hydraulic stepper motors at the positions of the pivot points 66 for direct movement of the nozzle units on the spray nozzle bar sections 40 'via a rod on the circular path 64 is also possible.

Das Niederdruck-Kühlsystem ist auch alleine, d.h. nicht in Kombination mit dem Hochdruck-Kühlsystem verwendbar.The low-pressure cooling system can also be used alone, i.e. not in combination with the high-pressure cooling system.

Fig. 16 zeigt Biegefedern 8 als elastische Verbindung zwischen den benachbarten Kühlschalensegmenten 13. Fig. 16 shows spiral springs 8 as an elastic connection between the adjacent cooling shell segments 13.

BezugszeichenlisteList of reference symbols

  • 1, 2 Arbeitswalze1, 2 work roll
  • 3 Walzenbreite3 roller width
  • 4 Walzgut4 rolling stock
  • 5 Walzendrehrichtung5 Direction of roll rotation
  • 6 Walzenmantelfläche6 roller surface
  • 7 Kühlflüssigkeit7 coolant
  • 8 Feder8 spring
  • 9 Rillen bzw. Stege9 grooves or ridges
  • 10 Kühlvorrichtung10 cooling device
  • 11 zusammenhängende Kühlschale11 connected cooling bowl
  • 12 radial geteilte Kühlschale12 radially divided cooling shells
  • 13 Kühlschalensegmente13 cooling shell segments
  • 14 schmale Kühlschalen14 narrow cooling trays
  • 15 Anlenkpunkt der Kühlschale15 Articulation point of the cooling shell
  • 16 Kühlbalkenträger16 cooling beam supports
  • 17 Abstreifer17 scrapers
  • 18 Walzspaltkühlung18 Roll gap cooling
  • 19 Walzspaltschmierung19 Roll gap lubrication
  • 20 Zylinder20 cylinders
  • 21 Drehpunkt der Zylinder21 pivot point of the cylinder
  • 22 Gelenkdrehpunkt der Kühlschalensegmente22 Joint pivot point of the cooling shell segments
  • 23 Anlenkpunkt des Kühlbalkenträgers23 Articulation point of the cooling beam support
  • 24 Austrittsöffnung24 outlet opening
  • 25 Zuführrohr25 feed tube
  • 26 Abführrohr26 discharge pipe
  • 27 Düse27 nozzle
  • 28 Fluidstrahl28 fluid jet
  • 29 Eintrittsöffnung29 Entrance opening
  • 30 Spalt zwischen Walzenmantelfläche und Kühlschale30 Gap between roller surface and cooling shell
  • 31 Spalt mit Spaltweite W131 gap with gap width W1
  • 32 Spalt mit Spaltweite W232 gap with gap width W2
  • 33 Spalt mit Spaltweite W333 Gap with gap width W3
  • 34 Spalt zwischen den schmalen Kühlschalen34 Gap between the narrow cooling shells
  • 36 Druckmesser36 pressure gauges
  • 37 Sensor zur Abstandsmessung37 Sensor for distance measurement
  • 38 Temperatursensor38 temperature sensor
  • 39 Wegmesser39 odometer
  • 40 Spritzdüsenbalken für Hochdruckkühlung40 spray nozzle bars for high pressure cooling
  • 40' Spritzdüsenbalkenabschnitt40 'spray nozzle bar section
  • 41 spezifischer Kühlflüssigkeitsdurchfluss pro Zeiteinheit41 specific coolant flow rate per unit of time
  • 42 Sperrkühlflüssigkeit zur Trennung der Kühlschalenstreifen42 Sealing coolant for separating the cooling shell strips
  • 43 Strömungsrichtung der Kühlflüssigkeit43 Direction of flow of the coolant
  • 44 trichterförmiger Ausgabeschlitz44 funnel-shaped dispensing slot
  • 45 mögliche Verstellrichtungen des Kühlbalkenträgers45 possible directions of adjustment of the cooling beam support
  • 46 Anlagefläche46 contact surface
  • 47 austauschbare Kühlplatte47 replaceable cooling plate
  • 48 Querbalken48 crossbars
  • 49 Abstandsplatte49 spacer plate
  • 50 Kühlschale mit elastischer Kunststoffoberfläche50 cooling bowl with elastic plastic surface
  • 51 Kühlschale mit elastischer Kunststoffplatte51 Cooling bowl with elastic plastic plate
  • 52 Kühlschale mit Löchern52 cooling bowl with holes
  • 53 Federblech53 spring plate
  • 54 unterer Teil des Kühlbalkens54 lower part of the cooling beam
  • 55 trichterförmiger Zuführkanal55 funnel-shaped feed channel
  • 56 Druckkammer56 pressure chamber
  • 57 Druckleitung57 Pressure line
  • 58 Austrittsquerschnitt58 outlet cross-section
  • 59 Breitenabschnitt des Austrittsquerschnitts59 Width section of the outlet cross-section
  • 60 dehnbarer Kunststoffschlauch60 stretchable plastic tubing
  • 61 Zylinder61 cylinders
  • 62 Gelenkstangen62 articulated rods
  • 63 Führungsstange63 guide rod
  • 64 Bewegungsbahn64 trajectory
  • 65 beweglicher Düsenbalkenträger65 movable nozzle beam support
  • 66 Drehpunkt66 pivot point
  • b Strömungsöffnungb flow opening
  • ND Kühlflüssigkeitszulauf NiederdruckkühlungLP coolant supply low pressure cooling
  • HD Kühlflüssigkeitszulauf HochdruckkühlungHP coolant supply high pressure cooling
  • s1-s3 Kühlbereich der Kühlschalensegmentes1-s3 cooling area of the cooling shell segments

Claims (19)

  1. Method of cooling the rolls (1, 2) of a roll stand with low-pressure cooling, in which the rolls are acted on by a cooling liquid standing under low pressure, characterised in that the rolls are also subjected to a high-pressure cooling simultaneously with the low-pressure cooling, wherein the rolls during the high-pressure cooling are directly sprayed with a cooling liquid standing under high pressure; and for the high-pressure cooling a single-row or multi-row spray nozzle bar (40, 40') with nozzles for high-pressure cooling of the rolls is used, which acts over almost the entire roll width or is configured to be movable in width direction and with a local cooling action.
  2. Method according to claim 1, characterised in that approximately 20% of the entire cooling liquid quantity of the high-pressure cooling and approximately 80% of the entire cooling liquid quantity of the low-pressure cooling producing the main cooling effect are supplied.
  3. Method according to one of the preceding claims, characterised in that for preference a pressure range for the cooling liquid (7) between 0.5 to < 5 bars for the low-pressure roll cooling and a pressure range for the cooling liquid (7) between 5 - 50 bars, preferably 12 bars, for the high-pressure roll cooling are set with the help of a process model in dependence on the rolling parameters of thickness reduction, specific area pressure in the rolling gap, rolling speed, strip temperature, roll material and rolled material.
  4. Method according to any one of the preceding claims, characterised in that the low-pressure cooling is formed as a low-pressure spray cooling, as a low-pressure cooling curtain or as low-pressure flow cooling, as low-pressure cooling of high turbulence or in the form of a combination of the said forms of cooling, wherein in the case of low-pressure flow cooling the cooling liquid flows in a gap (30, 31, 32, 33) between the roll surface and at least one cooling shell segment opposite a partial region of the roll surface.
  5. Method according to claim 4, characterised in that adaptation of the position of the cooling shell segment (13) to the respective roll diameter and/or roll positions is undertaken for producing a reproducible cooling effect.
  6. Method according to one of the preceding claims 4 and 5, characterised in that by way of the cooling shells (13) predominantly a coolant flow (43) tangentially along the roll surface (1, 2) is produced or, with the help of spacer plates or spacer strips (49) sealed in tangential direction, a coolant flow or coolant outflow preferably to the side is optionally performed in order to heat the roll region at the edges by warm cooling liquid (7) apart from the strip region in the middle.
  7. Method according to claim 6, characterised in that in the case of a coolant outflow conducted preferably parallel to the roll axis the coolant feed near the strip region is blocked by the features of the zonal cooling, for example the cooling shell spacing from the roll (1, 2) or from the coolant feed channel (55).
  8. Method according to any one of the preceding claims, characterised in that the cooling intensity of the low-pressure cooling, particularly in the case of the low-pressure cooling curtain or the flow cooling, is set to be different over the roll length.
  9. Method according to any one of the preceding claims, characterised in that the nozzle spray bars, which are optionally movable in width direction, of the high-pressure cooling system are utilised for zonal cooling and are constructed axially, with the help of electric or hydraulic motors with threaded rods or by hydraulically moved single-element or multi-element articulated transmissions (62) with a spray nozzle bar section (40') attached thereto or rotatable nozzle units, in order to guide the cooling liquid (7) with a directed jet onto the desired region of the roll (1, 2).
  10. Method according to any one of the preceding claims, characterised in that a computer model, for example a process model or Level 1 model, is used, which fulfils the following tasks:
    setting of the coolant quantity and pressure level for the low-pressure and high-pressure part in dependence on strip thickness reduction, specific area pressure in the rolling gap, rolling speed, strip temperatures, roll material and rolled material as well as the measured and/or calculated roll temperatures and/or observed roll surface and equally in dependence on the set width of coolant action,
    setting of the coolant quantity over the strip width by adjustment of the outlet openings of the feed channel (parabolic, other curves or zonally) and/or adjustment of the gap width between cooling shell and roll in dependence on the strip width and/or setting of the position of the spray nozzle bar sections, which are adjustable in width direction, and/or measured profile state and planarity state over the strip width,
    exchange of signals with the thickness regulating means,
    description of the geometric correlationships of the movable parts of the cooling device as well as consideration of the adjustment position, pass-line position and roll diameter for the purpose of optimal positional determination or calculation of the position changes, and
    determination of the pivot position of cooling bar carriers as well as cooling shell adjustment position with the help of the cylinders optionally with use of pressure and travel transmitter signals.
  11. Cooling device (10) for cooling the rolls (1, 2) of a roll stand with a low-pressure cooling system, in which the rolls are acted on by a liquid standing under low pressure, characterised in that in addition to the low-pressure cooling system a high-pressure cooling system is also provided, which is equipped with spray pipes and nozzles for direct spraying of the rolls with the cooling liquid, which is disposed under high pressure, simultaneously with the low-pressure cooling by the low-pressure cooling system and comprises a single-row or multi-row spray nozzle bar (40, 40') with the nozzles for high-pressure cooling of the rolls, and which acts over almost the entire roll width or is configured to be movable in width direction and with a local cooling action.
  12. Cooling device according to claim 11, characterised in that the low-pressure cooling system is constructed for producing a low-pressure spray cooling, a low-pressure cooling curtain or a low-pressure flow cooling or a low-pressure cooling with high turbulence or a combination of the said types of cooling.
  13. Cooling device according to claim 12, characterised in that the low-pressure cooling system for producing the low-pressure flow cooling comprises at least one cooling shell (11) with at least one, preferably curved cooling shell segment (13, 52), which together with the surface of the roll (1, 2) to be cooled forms a gap (20), which is fillable with the flowing cooling liquid (7) and which is preferably settable with respect to its gap width in the form of the spacing between the roll surface the cooling shell.
  14. Cooling device according to any one of claims 11 to 13, characterised in that in the case of the combined low-pressure/high-pressure cooling system the spray nozzle bars (40, 40') of the high-pressure cooling system are arranged above and/or below and/or within the low-pressure cooling system to be fixed in location or to be movable in width direction.
  15. Cooling device according to any one of claims 11 to 14, characterised in that two or more of the cooling shell segments are movably connected together.
  16. Cooling device according to any one of claims 11 to 15, characterised in that the movable connection between the cooling shell segments is executed in the form of a universal joint and/or a spring and/or a resilient connection and/or a multi-element articulated transmission arrangement.
  17. Cooling device (10) according to one of more of claims 14 to 16, characterised in that at least one of the cooling shell segments (13, 52), for example the middle one, is positionable by the cooling bar carrier (16) in front of the roll (1, 2) and the other cooling shell segments (13, 52) spaced by spacer plates (49) can be urged by way of springs (8) towards the roll (1, 2).
  18. Cooling device (10) according to one or more of claims 11 to 17, characterised in that a space, from which a small amount of cooling liquid (7) passes into the environment, is formed between the cooling shells (11, 12) or the cooling shell segments (13) and the roll surfaces (1, 2) with the help of a sealing function or a sealing means by a predetermined pressure towards the rolls (1, 2).
  19. Cooling device (10) according to any one of claims 11 to 18, characterised in that the high-pressure cooling system is arranged on the stand outlet side.
EP10706548.4A 2009-03-03 2010-03-02 Method and cooling device for cooling the rollers of a roll stand Active EP2403663B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102009011111 2009-03-03
DE102009011110 2009-03-03
DE102009014125 2009-03-24
DE102009036696 2009-08-07
DE102009053074A DE102009053074A1 (en) 2009-03-03 2009-11-13 Method and cooling device for cooling the rolls of a roll stand
PCT/EP2010/001274 WO2010099924A1 (en) 2009-03-03 2010-03-02 Method and cooling device for cooling the rollers of a roll stand

Publications (3)

Publication Number Publication Date
EP2403663A1 EP2403663A1 (en) 2012-01-11
EP2403663B1 EP2403663B1 (en) 2014-04-30
EP2403663B2 true EP2403663B2 (en) 2021-03-10

Family

ID=42270463

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10706548.4A Active EP2403663B2 (en) 2009-03-03 2010-03-02 Method and cooling device for cooling the rollers of a roll stand

Country Status (7)

Country Link
US (1) US20120031159A1 (en)
EP (1) EP2403663B2 (en)
CN (1) CN102421541B (en)
DE (2) DE102009053073A1 (en)
RU (1) RU2483817C1 (en)
TW (2) TW201036721A (en)
WO (2) WO2010099924A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011104735A1 (en) * 2011-06-16 2012-12-20 Sms Siemag Ag Method and device for cooling a work roll
DE102011112519A1 (en) 2011-09-07 2013-03-07 Gottfried Wilhelm Leibniz Universität Hannover Device for applying a medium to an object and method for detecting deviations of a spray field
DE102012202340A1 (en) 2011-12-23 2013-06-27 Sms Siemag Ag Method and device for cooling rolls
DE102012201157B4 (en) * 2012-01-26 2017-06-01 Achenbach Buschhütten GmbH & Co. KG Method and device for relative positioning of a nozzle beam of a roll stand inlet fitting
DE102012216570A1 (en) 2012-05-11 2013-11-14 Sms Siemag Ag Device for cooling rolls
EP2676744A1 (en) * 2012-06-22 2013-12-25 Siemens VAI Metals Technologies GmbH Device for sprinkling a rolling plant and method for extracting/inserting said system from/in said rolling cage
KR101653515B1 (en) * 2013-03-15 2016-09-01 노벨리스 인크. Manufacturing methods and apparatus for targeted cooling in hot metal rolling
CN103481198B (en) * 2013-09-03 2015-12-02 中冶南方工程技术有限公司 Based on rolling cooling device and the cooling means thereof of grinder roll management system
EP2881186A1 (en) * 2013-12-09 2015-06-10 Linde Aktiengesellschaft Method and apparatus to isolate the cold in cryogenic equipment
DE102014224318A1 (en) * 2014-11-27 2016-06-02 Sms Group Gmbh Apparatus and method for cooling a roll
JP6249007B2 (en) * 2015-02-19 2017-12-20 Jfeスチール株式会社 Rolling oil injection device in perforated rolling
DE102015210680A1 (en) 2015-06-11 2016-12-15 Sms Group Gmbh Method and device for controlling a parameter of a rolling stock
DE102015219053A1 (en) * 2015-10-01 2017-04-06 Achenbach Buschhütten GmbH & Co. KG Method and device for cooling a roll arranged in a roll stand
DE102016223131A1 (en) * 2016-09-06 2018-03-08 Sms Group Gmbh Apparatus and method for applying a liquid medium to a roll and / or to a rolling stock and / or for removing the liquid medium
EP3308868B1 (en) 2016-10-17 2022-12-07 Primetals Technologies Austria GmbH Cooling of a roll of a roll stand
CN107470363B (en) * 2017-06-28 2020-06-12 柳州钢铁股份有限公司 Positioning method and positioning device of rolling mill anti-winding guide plate capable of realizing automatic positioning
BE1025125B1 (en) * 2017-09-04 2018-10-31 Centre de Recherches Métallurgiques asbl-Centrum voor Research in de Metallurgie vzw CONTACTLESS TUMBLER AND INDUSTRIAL INSTALLATION COMPRISING SUCH A TUMBLER
BR112020001891A2 (en) 2018-06-13 2020-08-04 Novelis Inc. systems and methods for cooling a roll in metal processing
RU2730826C1 (en) 2018-06-13 2020-08-26 Новелис Инк. Devices and methods for retention of viscous materials in rolling production
RU2761304C1 (en) * 2018-06-13 2021-12-07 Новелис Инк. Systems and methods for removing viscous materials during processing of metal products
EP3599036B1 (en) 2018-07-26 2022-06-15 Primetals Technologies Austria GmbH Mill stand with hybrid cooling device
KR20210104710A (en) 2018-12-19 2021-08-25 타타 스틸 이즈무이덴 베.뷔. Cooling device for hot rolling mill
DE102020204309A1 (en) * 2020-04-02 2021-10-07 Sms Group Gmbh Method and device for cooling a roller
CN114571702B (en) * 2022-03-17 2024-03-26 广东易聚源塑业科技有限公司 Plastic masterbatch processing and preparing system
CN114522982B (en) * 2022-04-02 2023-02-24 燕山大学 Sectional cooling device for fine adjustment of transverse roll gap of hot rolled strip
WO2023242613A1 (en) * 2022-06-13 2023-12-21 Arcelormittal Device and method for cooling rolls used for rolling in a highly turbulent environment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU651862A1 (en) * 1977-05-23 1979-03-15 Всесоюзный Научно-Исследовательский И Проектный Институт По Очистке Технологических Газов, Сточных Вод И Использованию Вторичных Энергоресурсов Предприятий Черной Металлургии Rolling-mill roll and rolled stock cooling method
SU749472A1 (en) * 1978-04-12 1980-07-25 Днепропетровский Металлургический Институт Apparatus for cooling rolls
DE3425129A1 (en) * 1984-07-07 1986-01-16 Brown, Boveri & Cie Ag, 6800 Mannheim Method for roll cooling in a cold rolling mill
KR930000465B1 (en) 1985-05-17 1993-01-21 가부시기가이샤 히다찌세이사꾸쇼 Method and apparatus for cooling rolling mill rolls
GB8514598D0 (en) * 1985-06-10 1985-07-10 Davy Mckee Poole Lubrication of rolling mills
JPH0757368B2 (en) * 1987-06-03 1995-06-21 株式会社日立製作所 Roll cooling device for rolling mill
CH675974A5 (en) * 1987-10-23 1990-11-30 Lauener Eng Ag
US5212975A (en) * 1991-05-13 1993-05-25 International Rolling Mill Consultants, Inc. Method and apparatus for cooling rolling mill rolls and flat rolled products
JPH07284820A (en) * 1994-04-14 1995-10-31 Hitachi Ltd Device and method for cooling roll for rolling mill
JPH07290120A (en) 1994-04-28 1995-11-07 Kawasaki Steel Corp Cooling device for roll
DE10206244A1 (en) * 2002-02-15 2003-08-28 Sms Demag Ag Device for keeping cold strip dry in the outlet of strip rolling plants
DE102004025058A1 (en) * 2004-05-18 2005-12-08 Sms Demag Ag Method and device for cooling and / or lubrication of rolls and / or rolling stock
RU2287384C1 (en) * 2005-03-09 2006-11-20 Открытое акционерное общество "Северсталь" Bar rolling stand rolls cooling method
BE1017462A3 (en) 2007-02-09 2008-10-07 Ct Rech Metallurgiques Asbl DEVICE AND METHOD FOR COOLING ROLLING CYLINDERS IN HIGHLY TURBULENT.

Also Published As

Publication number Publication date
EP2403663B1 (en) 2014-04-30
CN102421541B (en) 2014-10-29
WO2010099924A1 (en) 2010-09-10
CN102421541A (en) 2012-04-18
EP2403663A1 (en) 2012-01-11
DE102009053074A1 (en) 2010-09-09
TW201036722A (en) 2010-10-16
US20120031159A1 (en) 2012-02-09
RU2011139995A (en) 2013-04-10
RU2483817C1 (en) 2013-06-10
WO2010099925A1 (en) 2010-09-10
DE102009053073A1 (en) 2010-09-09
TW201036721A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
EP2403663B2 (en) Method and cooling device for cooling the rollers of a roll stand
EP2882542B1 (en) Method for cleaning and/or descaling a slab or a preliminary strip by means of a descaling device, and descaling device
EP3308868B1 (en) Cooling of a roll of a roll stand
DE10043281B4 (en) Roller cooling and / or lubricating device for cold strip rolling mills, especially fine strip and foil rolling mills
EP2846941B1 (en) Device for cooling rolls
EP2934778B1 (en) Device for cooling rolled stock
DE68912671T2 (en) Double-strip continuous casting machine with guide and cooling for the casting product for high-speed casting of products with a liquid core.
DE3616070A1 (en) ROLLER COOLING DEVICE AND METHOD
WO2009089843A1 (en) Continuous casting system particularly for long steel products, and a method for continuous casting
WO2006056423A1 (en) Continuous casting device and method
EP1347851B8 (en) Casting roller with variable profile for casting metal strip in a casting roller plant
EP0998993B1 (en) Method and device for cooling rolling stock at rolling-temperature, in particular hot wide strip
DE102011010857A1 (en) Producing thin metal strips on casting-rolling plant, comprises providing mold locating at casting space, applying mold wall pores penetrating cooling water to mold, and elevating cooling water subjected to metal melt of gas
EP1897636B1 (en) Continuous casting machine and method
CN2633447Y (en) Adjustable width water curtain type working roller cooler
EP3453466B1 (en) Rolling mill for rolling a metallic product and method for operating a rolling mill
DE19960593C2 (en) Device for cooling a cast metal strand
DE102007005778A1 (en) Continuous casting plant and method for operating a continuous casting plant
DE2024108C3 (en) Guide device for incompletely continuously cooled cast rods made of metal, in particular made of steel
AT503980B1 (en) BENDING ROLLER OF A PAPER / CARTON MACHINE OR EQUIPMENT MACHINE
DE102017219464A1 (en) Continuous casting plant with single roll adjustment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 664738

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010006793

Country of ref document: DE

Effective date: 20140612

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502010006793

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ARCELORMITTAL FRANCE

Effective date: 20150128

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502010006793

Country of ref document: DE

Effective date: 20150128

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SMS GROUP GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010006793

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010006793

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AG, 40237 DUESSELDORF, DE

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20210310

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502010006793

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240321

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 15