EP2401468B1 - Bottom-surface connecting installation of the multi-riser hybrid tower type, comprising sliding buoyancy modules - Google Patents

Bottom-surface connecting installation of the multi-riser hybrid tower type, comprising sliding buoyancy modules Download PDF

Info

Publication number
EP2401468B1
EP2401468B1 EP10706303.4A EP10706303A EP2401468B1 EP 2401468 B1 EP2401468 B1 EP 2401468B1 EP 10706303 A EP10706303 A EP 10706303A EP 2401468 B1 EP2401468 B1 EP 2401468B1
Authority
EP
European Patent Office
Prior art keywords
buoyancy
tower
modules
risers
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10706303.4A
Other languages
German (de)
French (fr)
Other versions
EP2401468A1 (en
Inventor
François-Régis PIONETTI
Roberto Antonio Di Silvestro
Damien Szyszka
Fabrice Jancart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saipem SA
Original Assignee
Saipem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem SA filed Critical Saipem SA
Publication of EP2401468A1 publication Critical patent/EP2401468A1/en
Application granted granted Critical
Publication of EP2401468B1 publication Critical patent/EP2401468B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/012Risers with buoyancy elements

Definitions

  • the present invention relates to a bottom-to-surface connection installation between a plurality of submarine pipes resting at the bottom of the sea and a floating support surface, comprising a hybrid tower called multi-riser, consisting of a plurality of connected flexible pipes each with a rising rigid pipe, or riser vertical, whose lower end is connected to an underwater pipe resting on the seabed.
  • a hybrid tower called multi-riser, consisting of a plurality of connected flexible pipes each with a rising rigid pipe, or riser vertical, whose lower end is connected to an underwater pipe resting on the seabed.
  • the technical field of the invention is more particularly the field of the manufacture and installation of production risers for the underwater extraction of oil, gas or other soluble or fusible material or a suspension of mineral material from wellhead immersed to a floating support, for the development of production fields installed offshore at sea.
  • the main and immediate application of the invention being in the field of oil production.
  • the floating support generally comprises anchoring means to remain in position despite the effects of currents, winds and waves. It also generally comprises oil storage and processing means as well as means of unloading to removal tankers, the latter being present at regular intervals to carry out the removal of the production.
  • the common name of these floating supports is the Anglo-Saxon term “Floating Production Storage Offloading” (meaning “floating medium of storage, production and unloading") which one uses the abbreviated term "FPSO" in the whole of the following description.
  • Said connecting lines take, if appropriate, by their own weight in the form of a plunging chain curve, that is to say, descending widely below the upper end of the riser and then up to the support floating.
  • a multiple hybrid tower comprising an anchoring system with a vertical tendon consisting of either a cable or a metal bar, or a pipe stretched at its upper end by a float.
  • the lower end of the tendon is attached to a base resting at the bottom.
  • Said tendon comprises guiding means distributed over its entire length through which passes a plurality of said risers vertical.
  • Said base can be placed simply on the seabed and stay in place by its own weight, or remain anchored by means of batteries or any other device to keep it in place.
  • the lower end of the riser vertical is adapted to be connected to the end of a bend, movable cuff, between a high position and a low position, relative to said base, to which this cuff is suspended and associated with a means of return bringing it back up in the absence of the riser.
  • This mobility of the bent sleeve makes it possible to absorb the length variations of the riser under the effects of the temperature and the pressure of the fluid flowing through it.
  • a stop device integral with it, comes to rest on the support guide installed at the head of the float and thus maintains the entire riser in suspension.
  • connection with the submarine pipe resting on the seabed is generally effected by a pig-shaped or S-shaped pipe portion, said S being then produced in a plane either vertical or horizontal, the connection with said underwater pipe being generally carried out via an automatic connector.
  • the vertical tendon is connected at its lower end to the base by a flexible hinge-type laminated stopper marketed by TECHLAM France or the roto-latch ® type , available from OILSTATES USA, known to those skilled in the art .
  • This embodiment comprising a multiplicity of risers maintained by a central structure comprising guide means is advantageous when it is possible to pre-manufacture the entire tower on the ground, before towing it at sea and then once on site. , cabaner for its final establishment.
  • the various structural elements and buoyancy elements are regularly spaced along the entire length of the vertical tendon, which allows towing the tower at sea, which floats thanks to its buoyancy elements distributed over its entire length.
  • the dual function required of the syntactic foam ie buoyancy plus insulation, creates a problem of resistance over time, because if such foams hold correctly on the one hand at the pressure of bottom which is substantially 100 bar per 1000 m of water, and secondly at the desired maximum temperature, they are in fact sensitive to the combination of the maximum pressure associated with the maximum temperature, and very significant damage their thermal performance and buoyancy. Therefore, it is desired to dissociate the two functions, and it is preferred to use firstly a syntactic foam type buoyancy and a PiP type of insulation, as described in the prior patents in the name of the applicant, or gel type or phase change material type as described in the prior patents in the name of the applicant.
  • the syntactic buoyancy foam is thus used to ensure the buoyancy of the tower during its on-site towing and cabin hoisting, but it can not be fully taken into account in its operational vertical configuration and must be assisted by a float at the top. considerable volume located at the top of said tower, as explained below.
  • each of the buoyancy modules 220 ( figure 2 ) transfers to the central tendon 200 a vertical force 219 directed upwards through an element of guide and load transfer structure 212 integral with the tendon.
  • the total of the vertical tensile forces added to the various buoyancy modules 219 corresponds at least to the total weight of the total tower, so that the tower naturally floats flush with the surface of the water.
  • the central tendon is arranged vertically and the vertical traction forces 219 of each of the different modules are transferred by the tendon so that the traction exerted on the attachment point of a given buoyancy module on the tendon corresponds the buoyancy of the module concerned plus the modules above it.
  • WO 2004/051051 discloses a multi-riser hybrid tower-type bottom-surface connection installation, comprising buoyancy modules sliding along said risers and a central tendon, without a lower guide structure capable of holding said risers arranged around said tendon.
  • the object of the present invention is therefore to provide an improved multi-riser hybrid tower-type bottom-surface connection installation, in particular which does not require the use of floats at the top, nor of a foundation having to take back all the weight of the tower for the float at the top and the totality of the buoyancy exerted on the tower as regards the foundation of the tower on the one hand, and on the other hand, which does not require the implementation of vertical central tendon in front of also undergo compressive stresses likely to cause lateral buckling of said central tendon.
  • Vertical means that when the sea is calm and the installation is at rest, the connection hoses to the FPSO not being installed, the tendon and the risers are arranged vertically, it being understood that the swell, and the movements of the floating support and / or flexible ducts can cause the tower to travel in a vertex angle preferably limited to 10-15 °, in particular due to the implementation of a flexible articulation of rotary type. latch ® at the foot of the tendon, at its point of attachment to said base or anchor.
  • the float and the suction anchor according to the present invention must exert and respectively take up a voltage lower than that required in the prior art and in particular less than the total weight of the tower.
  • the tower is able to remain vertical in the absence of the tensioning float at the top, whereas in the prior art, said float must be permanently present to prevent compression of the central tendon.
  • This arrangement is particularly interesting for the installation phase and for the maintenance of the system,
  • the head float and the foundation must exert respectively take up a voltage well above the total weight of the tower.
  • a total buoyancy ⁇ F of 102 to 110% of all the buoyancy modules is necessary to maintain emerged approximately 2 to 10% of the volume of the tower when it is towed on the surface, so that the tower can be covered by the swell and be subjected to less mechanical stress including torsion and bending during towing on site.
  • T1 of the head float according to the prior art then represents at least about 110 to 150% of the total weight of the tower plus additional buoyancy provided for on-site towing ( ⁇ F-Pt).
  • the foundation must resume the traction exerted by the cumulative vertical thrust of all buoyancy elements ⁇ F acting directly on the central tendon, added the resulting tension T R wanted at the float of head. Since ⁇ F is greater than the weight of the tower for surface transport, the foundation must resume a tension of at least about 110 to 150% of the total weight of the tower.
  • the foundation is subjected only to the resultant force T R exerted at the level of the head float, namely 10 to 50% of the total weight of the tower, insofar as the total weight of the tower is taken directly by all modules buoyancy, the latter exerting a vertical thrust upward directly on the underside of said carrier structure.
  • said buoyancy and guide modules extend over a length of 2 to 20 m and are at least 50, preferably 50 to 500, buoyancy modules for a tower of at least 1000 m. height.
  • the various buoyancy modules extend over the entire height of the tower.
  • said plurality of buoyancy and guide modules disposed against each other covers not more than 75%, preferably less than 50% of the length of the tower between said carrier structure at the top and the structure lower guide solidarity of the tendon.
  • the various buoyancy and guidance modules are linked to each other by links able to prevent the first module from moving away from said carrier structure and that two consecutive modules deviate no more than a maximum distance preferably identical data between the different modules and, said links being of such length that the various modules are distributed substantially uniformly over the entire length of the tower between said carrier structure and lower structure, the first module being linked at the level of said carrier structure and the last module arriving at said lower structure, when said tower floats on the surface of the sea being towed by a ship, and said links do not prevent said modules from sliding upwards when said tower is caban and vertical positioning of operation in a so-called bottom-surface connection installation.
  • the different modules are not connected to each other and cover the entire length of the tower between said supporting structure and said lower guide structure.
  • each buoyancy and guide module comprises two flanges connected to each other by tie rods, and said cylindrical buoyancy elements locked and held in position between and by said two flanges, forming preferably a module having a circular cross-section, each flange having a central orifice and peripheral orifices, said peripheral orifices and said buoyancy elements preferably being of the same shape and arranged around said central orifice, preferably regularly and symmetrically distributed around said central orifice; , said orifices forming sleeves able to be traversed by said risers and a said tendon thus allowing sliding guidance of said modules.
  • the two flanges are spaced from each other in the longitudinal direction of the tendon and that said section transverse corresponds to a cross section perpendicular to said longitudinal direction of the tendon, and that said circular section of the module corresponds to a circular section of the flanges and all the buoyancy elements assembled against each other between the two flanges.
  • This embodiment makes it possible to contribute to a buoyancy load transfer of said buoyancy elements in their isostatic assembly, that is to say the most homogeneous over the entire cross section of the flanges and to facilitate the manufacture and installation of said elements of buoyancy.
  • each flange comprises a plurality of flange portions attached to each other, preferably at least as many flange portions as said peripheral orifices, each flange portion being adapted to lock and maintain the longitudinal end of a flange. said cylindrical buoyancy element.
  • This embodiment contributes to limiting the number of different parts to be molded, and to further facilitate the manufacture and installation of said flanges and buoyancy elements while maintaining the isostaticity of the charge transfer of said buoyancy elements on the flanges.
  • said modules comprise first intercalated elastic elements, preferably in the form of plates, between the longitudinal ends of said buoyancy elements and said flanges at least at said longitudinal end of the module and preferably also second elastic elements on the external faces of at least one of the two flanges, preferably in the form of plates, so as to improve the isostaticity of the distribution of buoyancy forces and their transfer between two consecutive modules.
  • the present invention also relates to a buoyancy and guide module of a tower according to the invention, as defined above.
  • the present invention also provides a method of towing at sea a tower and set up in an installation according to the invention, characterized in that said tower floats on the surface when it is towed by at least one surface vessel, said buoyancy and guide modules being distributed over its entire length, preferably regularly distributed and spaced from each other and after hoisting the tower said buoyancy and guide modules slide upwards to be plated underneath and against others, preferably on only a part of the height of the tower.
  • FIG. 1 there is shown a bottom-surface connection facility 1 connecting two underwater lines 2-1,2-2 resting on the bottom of the sea 12 to a floating support type FPSO 10 moored by anchor lines 10a.
  • the bottom-surface connection consists of a central vertical tendon 4 connected to a suction anchor-type foundation 11 via a hinge 5a allowing the deflections of the tower in an angle cone at the top preferably less than or equal to 5 °.
  • the tower comprises a plurality of pipes, for example four pipes 3-1, 3-2, as shown in the perspective views 6 and 7, preferably symmetrically distributed around the axis ZZ 'of the tower, the latter being coaxial with the central tendon 4.
  • lines 3-1,3-2 are each connected at the bottom to a subsea line 2-1,2-2 resting on the bottom of the sea by means of an angled junction sleeve 2a by means of automatic connectors 9a-9b, known to those skilled in the art.
  • These ducts 3-1, 3-2 are suspended at the top of the tower to a superior carrier structure 4a integral with the central vertical tendon 4 and each connected by a gooseneck 7-1, 7-2 at the end of a flexible pipe 6-1,6-2 connecting said goosenecks to an FPSO 10.
  • a float 8 connected via a chain 8a to the central tendon 4 exerts a complementary vertical tension on the tower.
  • buoyancy of the tower 3 is ensured by a plurality of buoyancy modules 20 cooperating in sliding with the central tendon 4.
  • These buoyancy modules 20 described hereinafter comprise guide elements 22 called flanges having orifices 23, 23. 1.23-4, for guiding said central tendon and ducts 3-1,3-2.
  • each of the buoyancy modules 20 slides freely on the one hand around the central tendon 4 and on the other hand, around each of the ducts 3-1,3-2 suspended from the support structure 4a located at the top of the tower. And, as a result, the entirety of the buoyancy thrust IF of all the buoyancy modules 20 is directly transmitted to the upper carrier structure 4a, the latter supporting on the other hand the entire weight P of the tower .
  • the float 8 at the top must be limited to exerting an additional upward tension equal to about 10 to 20% of the total weight of the tower so as to exert a vertical return force when the flexible connecting lines 6- 1.6-2 with the FPSO are in place, which exert horizontal recall efforts when the sea is rough.
  • the buoyancy modules 20 are schematically represented on the Figures 1 to 3 and on the figure 5 , and in more detail on Figures 6 to 9 .
  • FIG. 6 On the figure 6 is shown in perspective a section of the tower 1 in vertical position, cut above a buoyancy module 20.
  • the lines 3- 1.3-2 type PiP pipe in pipe
  • the lines 3- 1.3-2 type PiP comprising an outer pipe 3a and including a production line 3b slightly off-center, so as to leave room for a water injection pipe or pipe injection of gas 3c, as well as two water injection lines 3-3,3-4.
  • FIG. 7 there is shown in perspective a section of the tower in the manufacturing position, showing two contiguous buoyancy modules 20 n , 20 n + 1 , the module 20 n + 1 not being completely assembled, two buoyancy elements in the form of block of syntactic foam 21 being ready to be inserted before the blocking locking flanges 22 are joined by ties 24 to constrain the buoyancy elements between two flanges 22, thus ensuring the overall rigidity of said buoyancy module 20.
  • a flange 22 of buoyancy module respectively in external view ( figure 8 ), ie seen from the interface side with the buoyancy module adjacent, and in internal view ( figure 9 ), that is to say viewed from the interface side with the buoyancy elements 21 syntactic foam.
  • the flange is preferably made of plastic, for example polyethylene, polypropylene or any other resistant thermoplastic material, charged or not.
  • the flange 22 is in fact preferably composed of several independent parts 22-1 to 22-4, identical, assembled together by simple bolting.
  • the flanges 22 comprise sheaths 23-1 to 23-4 generally not having the same diameter, the diameter of each of the sheaths 23-1 to 23-4 is adjusted so that it is slightly greater than the diameter of the corresponding pipe and can thus let it slide freely. This provides a clearance of 5 to 15 mm, so an inner diameter of the upper sheath 10 to 30mm to the outer diameter of said pipe 3a concerned. Similarly, the central sheath 23 corresponding to the central tendon 4 will have the same increase in diameter relative to the outer diameter of said tendon.
  • buoyancy elements 21 all of the same cylindrical shape, are inserted into complementary shapes 22a of the internal face of the flanges 22, as shown in FIG. figure 9 , and are preferably evenly distributed around the periphery of the module 20.
  • two adjacent buoyancy elements 21 are shown between two adjacent ducts installed side by side. But, we could have installed a single element 21 of double section.
  • the manufacture of large syntactic foam elements being very delicate, it is preferred to reduce the transverse thickness of the various elements and thus to adopt the configuration shown in the drawings. figures 7 and 9 .
  • each module 8 blocks of syntactic foam 21 of the same cylindrical shape are thus introduced whose cross-sectional shape fills the spaces 22a delimited by the parts of cylindrical walls 23c-23d of the sleeves 23-1 to 23-4 and elements of separation 23a-23b.
  • the buoyancy elements 21 have in cross section a circular outer circumference 21a likewise radius as the radius of the circumference of the flanges 22.
  • buoyancy elements are 8 in number, they form angular portions having a flat side face 21b in contact with the lateral separation elements 23a on the inner surface of the flanges 22 , also having a flat surface abutting on the other separating element 23b on the inner face of the flange 22 and finally having an opposite side face of circular portion 21c in cross section bearing against the cylindrical walls of the sleeves 23c-23d.
  • each block would have two opposite side surfaces having the same shape of circular portion in cross section, circular portion section bearing against each two lines 3-1,3-2 side by side between which the block of syntactic foam 21 is introduced.
  • the thickness 23c of the wall of the sheath 23-3,23-4 is greater than the thickness 23d of the wall of the sheath 23-1,23-2, such that the outer rays R of the walls of the two sheaths are identical and correspond to the internal diameter of the circular portion 21c of the buoyancy elements 21 applied against the walls of the sleeves, as shown on the figure 7 .
  • the buoyancy elements are locked between two flanges 22 by tie rods 24 connecting the two flanges 22 and providing prestressing of the buoyancy elements 21 between two flanges 22, and by strapping elements 26.
  • All the buoyancy elements of the same module 20 have an identical length so that once the module 20 assembled, the two outer faces of the flanges 22 of said module are parallel to each other.
  • a rubber plate 25a advantageously inserted between each of the buoyancy elements 21 and its housing 22a in the flange 22, a rubber plate 25a, of preferably of high stiffness neoprene, for example Shore hardness between A50 and A95 and 3 to 15 mm thick, so as to improve the isostaticity of the distribution of buoyancy forces and their transfer to the upper module.
  • neoprene plates 25b preferably of identical characteristics to the plates 25a, are placed outside the flanges, said plates 25b being inserted between two adjacent buoyancy modules 20.
  • FIG. 3A On the figure 3A the towing and hoisting of a tower 3, the buoyancy of which is evenly distributed along the tower 3 for its towing, is shown, the modules 20 being pre-assembled 20a, here 3 by 3 and interconnected at 31 by cables 30, a cable 30 being secured to one end of the upper support structure 4a and at the bottom of a fixed floating element on the lower structure 5.
  • the buoyancy modules 20 grouped by 3 can not move axially beyond a constant distance given by the cables 30 between the different groups of buoyancy modules 20. This ensures a buoyancy distributed over the entire length of the tower 30 when it is towed on the surface by at least one vessel 10-1, 10-2 using cables 15-1 connected to the upper structure 4a.
  • This configuration is interesting for very deep, because it allows to use syntactic foam of lower quality, because the deepest elements are at a depth H2 and not at the depth
  • This configuration further illustrates the difference of the device according to the invention with respect to the device of the prior art, described inter alia in FIG. WO-2006-136960 wherein each of the buoyancy modules is rigidly connected to the central tendon.
  • the buoyancy modules 20 due to their sliding along the tendons 4 and 3-1,3-4 conduits transfer all of their IF buoyancy to the upper structure 4a.
  • no compression force is transmitted to the central tendon 4 by the upper structure 4a, the latter supporting the entirety of the total weight of the pipes in suspension.
  • TR resultant traction
  • T1 TR - ( ⁇ F -Pt)], ie [(10 to 50% x Pt) - (2 to 10% x Pt)].
  • the foundation 11 must take a resultant traction T R which is also exerted on the float at the top 8, namely 10 to 50% x Pt (total weight of the tower).
  • the buoyancy modules 40 are integral with a central tendon 4 at cleats 41.
  • the buoyancy elements 40 transmit their buoyancy F directly to the central tendon 4 by means of the cleats 41 integral with the central tendon.
  • the buoyancy elements 40 provide a total IF buoyancy of 102 to 110% x Pt (total weight of the tower) to allow its towing on the surface.
  • the buoyancy modules 40 do not contribute any more to the buoyancy of the tower.
  • the central tendon 4, at the upper latch 41 is subjected to upward traction equal to F.
  • This upward traction F is transmitted to the level of the cleat located just in underneath: - the central tendon is then subjected to an upward pulling force equal to 2F, which is thus transmitted step by step to the last stop and to the foundation 11 which are then subjected to traction equal to ⁇ F to the top.
  • Pt weight of the tower
  • the upper portion of the tendon 4 located just below the upper structure 4-1 is subjected to a resultant compressive force substantially equal to Pt - F. And thus, the vertex 8-1 must bring an equal buoyancy T1 at T R + (Pt - F).
  • the foundation 11a must take up all the tractions which are exerted on the vertical tendon 4, along its height, namely the resulting tension T R is equal to 50% x Pt at the top of the tower, added total float F (IF), (TR + IF).
  • the foundation 11a must therefore recover from 112 to 160% x Pt, while according to the present invention, the float 8 at the top provides a clean buoyancy T1 [(T R - ( ⁇ F - Pt)] is (8 to 58% x Pt) and that the foundation 11 must take only the resulting tension T R at float 8, namely 10 to 50% of Pt.
  • the float at the top 8 according to the invention must therefore provide a much lower buoyancy than according to the prior art and the foundation 11 according to the present invention must also take a tensioning force much less than that of the prior art.
  • the total weight of the tower is deduced from the buoyancy provided by any fixed fixed buoyancy elements integrated in certain elements of the structure of the tower, namely the weight of the upper structure 4a, that of the lines 3-1,3-4 suspended to the upper carrier structure 4a including the weight of the gooseneck devices 7-1,7-2, the lower bends 3a and the automatic connectors 9a-9b, and that of the flexible foot joint 5a and said lower structure 5, but deduction made of the possible buoyancy provided by the integrated fixed buoyancy elements such as, where appropriate, at the level of said goosenecks, said upper structures 4a and lower 5, said automatic connectors 9a-9b and said flexible joint 5a.
  • the tower is able to remain vertical in the absence of the vertex tensioning float 8, as shown in FIGS. figures 2 and 3A , whereas in the prior art, said float must be permanently present to prevent compression of the central tendon.
  • This arrangement is particularly interesting for the installation phase and for the maintenance of the system, because in the event of an incident on said head float 8, as shown in FIG. figure 2 Simply bleed the vertical lines and flexible lines, disconnect the hoses from the FPSO and keep them sub-surface thanks to a small buoy connected to a dead body, so as to reduce considerably the horizontal force, so the angle ⁇ of the tower. Due to the additional buoyancy of the tower alone, the latter remains substantially vertical, and it is then possible to disconnect said head float to repair, for example, a buoyancy compartment that would show a leak, so a loss of buoyancy.

Description

La présente invention concerne une installation de liaison fond-surface entre une pluralité de conduites sous-marines reposant au fond de la mer et un support flottant en surface, comprenant une tour hybride dite multi-riser, constituée d'une pluralité de conduites flexibles reliées chacune à une conduite rigide montante, ou riser vertical, dont l'extrémité inférieure est reliée à une conduite sous-marine reposant sur le fond de la mer.The present invention relates to a bottom-to-surface connection installation between a plurality of submarine pipes resting at the bottom of the sea and a floating support surface, comprising a hybrid tower called multi-riser, consisting of a plurality of connected flexible pipes each with a rising rigid pipe, or riser vertical, whose lower end is connected to an underwater pipe resting on the seabed.

Le secteur technique de l'invention est plus particulièrement le domaine de la fabrication et de l'installation de colonnes montantes (« riser ») de production pour l'extraction sous-marine de pétrole, de gaz ou autre matériau soluble ou fusible ou d'une suspension de matière minérale à partir de tête de puits immergé jusqu'à un support flottant, pour le développement de champs de production installés en pleine mer au large des côtes. L'application principale et immédiate de l'invention étant dans le domaine de la production pétrolière.The technical field of the invention is more particularly the field of the manufacture and installation of production risers for the underwater extraction of oil, gas or other soluble or fusible material or a suspension of mineral material from wellhead immersed to a floating support, for the development of production fields installed offshore at sea. The main and immediate application of the invention being in the field of oil production.

Le support flottant comporte en général des moyens d'ancrage pour rester en position malgré les effets des courants, des vents et de la houle. Il comporte aussi en général des moyens de stockage et de traitement du pétrole ainsi que des moyens de déchargement vers des pétroliers enleveurs, ces derniers se présentant à intervalle régulier pour effectuer l'enlèvement de la production. L'appellation courante de ces supports flottants est le terme anglo-saxon "Floating Production Storage Offloading" (signifiant "moyen flottant de stockage, de production et de déchargement") dont on utilise le terme abrégé "FPSO" dans l'ensemble de la description suivante.The floating support generally comprises anchoring means to remain in position despite the effects of currents, winds and waves. It also generally comprises oil storage and processing means as well as means of unloading to removal tankers, the latter being present at regular intervals to carry out the removal of the production. The common name of these floating supports is the Anglo-Saxon term "Floating Production Storage Offloading" (meaning "floating medium of storage, production and unloading") which one uses the abbreviated term "FPSO" in the whole of the following description.

On connaît des dispositifs de liaisons fond-surface d'une conduite sous-marine reposant au fond de la mer, et un support flottant en surface, du type tour hybride multi- riser comprenant :

  1. 1) une tour comprenant :
    1. a) un tendon vertical solidaire à son extrémité supérieure d'une structure porteuse suspendue à un flotteur dénommé flotteur au sommet immergé en sub-surface, de préférence par l'intermédiaire d'une chaine ou câble, ledit tendon étant solidaire à son extrémité inférieure à une structure inférieure de guidage et à une embase reposant au fond de la mer ou une ancre fondation de préférence du type ancre à succion enfoncée au fond de la mer, de préférence par l'intermédiaire d'une articulation flexible, et
    2. b) une pluralité de conduite rigide verticale dénommé riser dont l'extrémité supérieure est solidaire de ladite structure porteuse, l'extrémité inférieure de chaque dite conduite rigide ou riser étant reliée à une dite conduite sous-marine reposant au fond de la mer, de préférence par l'intermédiaire de connecteurs automatique entre lesdites extrémités inférieures des riser et extrémités des conduites sous-marine, et de préférence par l'intermédiaire de manchettes coudées et/ou de conduites de jonction,
    3. c) une pluralité de moyens de guidage desdits risers, lesdits moyens de guidage ainsi que ladite structure inférieure de guidage étant aptes à maintenir lesdits risers disposés autour dudit tendon, de préférence régulièrement et symétriquement répartis autour dudit tendon, et
    4. d) des éléments de flottabilité coopérant avec ledit tendon, répartis le long dudit tendon, de préférence des éléments de flottabilité résistants à la pression hydrostatique sous-marine, de préférence encore des éléments de flottabilité en mousse syntactique, et
  2. 2) une pluralité de conduites de liaison de préférence des conduites de liaison flexible entre les extrémités supérieures desdits risers et le support flottant, de préférence encore desdites conduites flexibles en forme de chaînettes plongeantes, lesdites conduites flexibles étant reliées à l'extrémité supérieure desdits risers par l'intermédiaire de dispositifs de type col de cygne.
Background-to-surface bonding devices of an underwater pipe resting at the bottom of the sea are known, and a surface floating support of the hybrid tower type comprising:
  1. 1) a tower comprising:
    1. a) a vertical tendon secured at its upper end to a supporting structure suspended from a float called a sub-surface submerged top float, preferably via a chain or cable, said tendon being secured at its lower end; a lower guide structure and a base resting at the bottom of the sea or a foundation anchor preferably of the suction anchor type driven to the bottom of the sea, preferably via a flexible joint, and
    2. b) a plurality of rigid vertical pipe called riser whose upper end is integral with said supporting structure, the lower end of each said rigid pipe or riser being connected to a said underwater pipe resting at the bottom of the sea, preferably via automatic connectors between said lower ends of the riser and the ends of the underwater pipes, and preferably via bent sleeves and / or connecting pipes,
    3. c) a plurality of means for guiding said risers, said guide means and said lower guide structure being able to maintain said risers arranged around said tendon, preferably regularly and symmetrically distributed around said tendon, and
    4. d) buoyancy elements cooperating with said tendon, distributed along said tendon, preferably buoyancy elements resistant to the underwater hydrostatic pressure, more preferably syntactic foam buoyancy elements, and
  2. 2) a plurality of connection conduits preferably flexible connection lines between the upper ends of said risers and the floating support, preferably said flexible pipes in the form of plunging chains, said flexible pipes being connected to the upper end of said risers via gooseneck devices.

Lesdites conduites de liaison prennent, le cas échéant, de par leur propre poids la forme d'une courbe en chaînette plongeante, c'est-à-dire descendant largement en dessous de l'extrémité supérieure du riser pour remonter ensuite jusqu'au support flottant.Said connecting lines take, if appropriate, by their own weight in the form of a plunging chain curve, that is to say, descending widely below the upper end of the riser and then up to the support floating.

Plus particulièrement, dans WO 00/49267 de la demanderesse, on a décrit une tour hybride multiple comportant un système d'ancrage avec un tendon vertical constitué soit d'un câble, soit d'une barre métallique, soit encore d'une conduite tendue à son extrémité supérieure par un flotteur. L'extrémité inférieure du tendon est fixée à une embase reposant au fond. Ledit tendon comporte des moyens de guidage répartis sur toute sa longueur à travers lesquels passe une pluralité de dits risers verticaux. Ladite embase peut être posée simplement sur le fond de la mer et rester en place par son propre poids, ou rester ancrée au moyen de piles ou tout autre dispositif propre à la maintenir en place. Dans WO 00/49267 , l'extrémité inférieure du riser vertical est apte à être connectée à l'extrémité d'une manchette coudée, mobile, entre une position haute et une position basse, par rapport à ladite embase, à laquelle cette manchette est suspendue et associée à un moyen de rappel la ramenant en position haute en l'absence du riser. Cette mobilité de la manchette coudée permet d'absorber les variations de longueur du riser sous les effets de la température et de la pression du fluide le parcourant. En tête du riser vertical, un dispositif de butée, solidaire de celui-ci, vient s'appuyer sur le guide support installé en tête du flotteur et maintient ainsi la totalité du riser en suspension.More particularly, in WO 00/49267 of the applicant, there is described a multiple hybrid tower comprising an anchoring system with a vertical tendon consisting of either a cable or a metal bar, or a pipe stretched at its upper end by a float. The lower end of the tendon is attached to a base resting at the bottom. Said tendon comprises guiding means distributed over its entire length through which passes a plurality of said risers vertical. Said base can be placed simply on the seabed and stay in place by its own weight, or remain anchored by means of batteries or any other device to keep it in place. In WO 00/49267 , the lower end of the riser vertical is adapted to be connected to the end of a bend, movable cuff, between a high position and a low position, relative to said base, to which this cuff is suspended and associated with a means of return bringing it back up in the absence of the riser. This mobility of the bent sleeve makes it possible to absorb the length variations of the riser under the effects of the temperature and the pressure of the fluid flowing through it. At the top of the vertical riser, a stop device, integral with it, comes to rest on the support guide installed at the head of the float and thus maintains the entire riser in suspension.

La liaison avec la conduite sous-marine reposant sur le fond de la mer est en général effectuée par une portion de conduite en forme de queue de cochon ou en forme de S, ledit S étant alors réalisé dans un plan soit vertical soit horizontal, la liaison avec ladite conduite sous-marine étant en général réalisée par l'intermédiaire d'un connecteur automatique.The connection with the submarine pipe resting on the seabed is generally effected by a pig-shaped or S-shaped pipe portion, said S being then produced in a plane either vertical or horizontal, the connection with said underwater pipe being generally carried out via an automatic connector.

Le tendon vertical est relié à son extrémité inférieure à l'embase par une articulation flexible de type à butée lamifiée commercialisée par la Société TECHLAM France ou du type roto-latch®, disponible chez OILSTATES USA, connu de l'homme de l'art.The vertical tendon is connected at its lower end to the base by a flexible hinge-type laminated stopper marketed by TECHLAM France or the roto-latch ® type , available from OILSTATES USA, known to those skilled in the art .

Ce mode de réalisation comprenant une multiplicité de risers maintenus par une structure centrale comportant des moyens de guidage est intéressant lorsque l'on peut pré-fabriquer à terre l'intégralité de la tour, avant de la remorquer en mer, puis une fois sur site, la cabaner en vue de sa mise en place définitive.This embodiment comprising a multiplicity of risers maintained by a central structure comprising guide means is advantageous when it is possible to pre-manufacture the entire tower on the ground, before towing it at sea and then once on site. , cabaner for its final establishment.

De plus, le pétrole brut cheminant sur de très grandes distances, plusieurs kilomètres, on doit leur fournir un niveau d'isolation extrême et très coûteux pour, d'une part minimiser l'augmentation de viscosité qui conduirait à une réduction de la production horaire des puits, et d'autre part d'éviter le blocage du flot par dépôt de paraffine, ou formation d'hydrates de gaz dès lors que la température descend aux alentours de 30-40°C. Ces derniers phénomènes sont d'autant plus critiques, particulièrement en Afrique de l'Ouest, que la température du fond de la mer est de l'ordre de 4°C et que les pétroles bruts sont de type paraffiniques. Il est donc souhaitable que les liaisons fond-surface soient soigneusement isolées sur toute leur longueur.In addition, since crude oil travels a great distance over several kilometers, it must be provided with an extreme and very costly level of insulation in order, on the one hand, to minimize the increase in viscosity which would lead to a reduction in hourly production. wells, and secondly to avoid the blockage of the flow by deposition of paraffin, or formation of gas hydrates when the temperature drops to around 30-40 ° C. These last phenomena are all the more critical, especially in West Africa, that the temperature of the seabed is of the order of 4 ° C and that the crude oils are of the paraffinic type. It is therefore desirable that the bottom-surface bonds are carefully insulated over their entire length.

On connaît le développement du champ de Girassol réalisé en 1997-1999 au large des côtes angolaises par la demanderesse, dans lequel on a recherché à isoler les conduites de pétrole brut avec une mousse syntactique jouant aussi le rôle de flottabilité. Pour ce faire, la technique utilisée est similaire à celle décrite dans WO-2006-136960 et WO-2008-056185 qui est considéré comme l'état de la technique le plus proche, et qui consiste à suspendre les extrémités supérieures de conduites à une structure supérieure porteuse et à solidariser une pluralité de modules de flottabilité ou d'isolation-flottabilité, au tendon central, par l'intermédiaire d'une pluralité d'éléments de structure solidaires du tendon et jouant aussi le rôle de guidage des diverses conduites verticales, leur permettant ainsi de s'allonger librement vers le bas lorsqu'elles sont pressurisées ou/et soumise à une température élevée (pétrole brut en provenance des puits).The development of the Girassol field carried out in 1997-1999 off the Angolan coast by the plaintiff is known, in which it was sought to isolate the crude oil pipes with a syntactic foam also playing the role of buoyancy. To do this, the technique used is similar to that described in WO-2006-136960 and WO-2008-056185 which is considered to be the closest state of the art, and which consists in suspending the upper ends of pipes to a higher bearing structure and in securing a plurality of buoyancy or buoyancy-buoyancy modules, at the central tendon, by means of a plurality of structural elements integral with the tendon and also acting as guiding of the various vertical ducts, thus allowing them to lie freely downwards when they are pressurized or / and subjected to a high temperature (crude oil from wells).

Les différents éléments de structure et éléments de flottabilité sont régulièrement espacés sur toute la longueur du tendon vertical, ce qui permet de remorquer la tour en mer, laquelle flotte grâce à ses éléments de flottabilité ainsi répartis sur toute sa longueur.The various structural elements and buoyancy elements are regularly spaced along the entire length of the vertical tendon, which allows towing the tower at sea, which floats thanks to its buoyancy elements distributed over its entire length.

Dans le cas du projet Girassol, la double fonction demandée à la mousse syntactique, c'est-à-dire flottabilité plus isolation crée un problème de tenue dans le temps, car si de telles mousses tiennent correctement d'une part à la pression de fond qui est sensiblement de 100 bars par tranche de 1000 m d'eau, et d'autre part à la température maximale souhaitée, elles sont en fait sensibles à la combinaison de la pression maximale associée à la température maximale, et des dégradations très importantes de leurs performances thermiques et de flottabilité. De ce fait, on recherche à dissocier les deux fonctions, et l'on préfère utiliser d'une part une flottabilité de type mousse syntactique et une isolation de type PiP, telle que décrite dans les brevets antérieurs au nom de la demanderesse, ou encore de type gel ou de type matériau à changement de phase tel que décrit dans les brevets antérieurs au nom de la demanderesse. La mousse syntactique de flottabilité sert ainsi à assurer la flottabilité de la tour lors de son remorquage sur site et lors de son cabanage, mais elle ne peut pas être prise en compte intégralement dans sa configuration verticale opérationnelle et doit être assistée par un flotteur au sommet de volume considérable situé au sommet de ladite tour, comme expliqué ci-après.In the case of the Girassol project, the dual function required of the syntactic foam, ie buoyancy plus insulation, creates a problem of resistance over time, because if such foams hold correctly on the one hand at the pressure of bottom which is substantially 100 bar per 1000 m of water, and secondly at the desired maximum temperature, they are in fact sensitive to the combination of the maximum pressure associated with the maximum temperature, and very significant damage their thermal performance and buoyancy. Therefore, it is desired to dissociate the two functions, and it is preferred to use firstly a syntactic foam type buoyancy and a PiP type of insulation, as described in the prior patents in the name of the applicant, or gel type or phase change material type as described in the prior patents in the name of the applicant. The syntactic buoyancy foam is thus used to ensure the buoyancy of the tower during its on-site towing and cabin hoisting, but it can not be fully taken into account in its operational vertical configuration and must be assisted by a float at the top. considerable volume located at the top of said tower, as explained below.

En effet, comme détaillé dans WO-2006-136960 , chacun des modules de flottabilité 220 (figure 2) transfère au tendon central 200 une force verticale 219 dirigée vers le haut par le biais d'un élément de structure de guidage et de transfert de charge 212 solidaire du tendon. Ainsi, en phase de remorquage, le total des forces de traction verticales additionnées des différents modules de flottabilité 219 correspond au moins au poids total déjaugé P de la tour complète pour que la tour flotte naturellement en affleurant à la surface de l'eau. Après cabanage, le tendon central est disposé verticalement et les forces de traction verticales 219 de chacun des différents modules sont transférées par le tendon de sorte que la traction exercée sur le point d'attache d'un module de flottabilité donné sur le tendon, correspond à la flottabilité du module concerné additionné de celle des modules qui lui sont situés au-dessus. Au total, l'extrémité inférieure du tendon subit une traction égale à la somme des tractions individuelles F de chacun des modules. Il en résulte que la fondation à la base du tendon doit reprendre une tension correspondant à n X F, si « n » modules de flottabilité sont solidaires du tendon, exerçant chacun une flottabilité F.Indeed, as detailed in WO-2006-136960 , each of the buoyancy modules 220 ( figure 2 ) transfers to the central tendon 200 a vertical force 219 directed upwards through an element of guide and load transfer structure 212 integral with the tendon. Thus, in the towing phase, the total of the vertical tensile forces added to the various buoyancy modules 219 corresponds at least to the total weight of the total tower, so that the tower naturally floats flush with the surface of the water. After cabanage, the central tendon is arranged vertically and the vertical traction forces 219 of each of the different modules are transferred by the tendon so that the traction exerted on the attachment point of a given buoyancy module on the tendon corresponds the buoyancy of the module concerned plus the modules above it. In total, the lower end of the tendon is pulled equal to the sum of the individual pulls F of each of the modules. As a result, the foundation at the base of the tendon must take up a tension corresponding to n XF, if "n" buoyancy modules are integral with the tendon, each exerting a float F.

Inversement, la structure porteuse supérieure de la tour est soumise à une force de compression 218 correspondant au poids propre de la tour, comprenant le poids de la structure porteuse supérieure et le poids de l'ensemble des conduites en suspension porté par ladite structure. Il est donc nécessaire de mettre en oeuvre au sommet de la tour un flotteur 8-1 exerçant une traction sur la structure porteuse T1 = Pt-F, « Pt » étant le poids total de la tour et « F » étant la traction exercée par le seul dernier module supérieur pour la structure porteuse supérieure de la tour.Conversely, the upper bearing structure of the tower is subjected to a compressive force 218 corresponding to the weight of the tower, comprising the weight of the upper bearing structure and the weight of all the suspended pipes carried by said structure. It is therefore necessary to implement at the top of the tower a float 8-1 exerting traction on the carrier structure T1 = Pt-F, "Pt" being the total weight of the tower and "F" being the tension exerted by the only last upper module for the upper supporting structure of the tower.

Il en résulte qu'en pratique, le mode de réalisation décrit dans WO 2006/13696 requiert la mise en oeuvre de fondations et de flotteurs au sommet d'importance considérable qui rendent le procédé très coûteux.As a result, in practice, the embodiment described in WO 2006/13696 requires the implementation of foundations and floats at the summit of considerable importance that make the process very expensive.

Enfin, les niveaux de contrainte de compression sont tels qu'il en résultera un flambage latéral du tendon central sur la quasi-totalité de la hauteur dudit tendon central, quelque soient les caractéristiques mécaniques dudit tendon.Finally, the compression stress levels are such that a lateral buckling of the central tendon will result on almost the entire height of said central tendon, whatever the mechanical characteristics of said tendon.

WO 2004/051051 décrit une installation de liaison fond-surface de type tour hybride multi-risers, comprenant des modules de flottabilité coulissant le long desdits risers et d'un tendon central, dépourvu de structure inférieure de guidage apte à maintenir lesdits risers disposés autour dudit tendon. WO 2004/051051 discloses a multi-riser hybrid tower-type bottom-surface connection installation, comprising buoyancy modules sliding along said risers and a central tendon, without a lower guide structure capable of holding said risers arranged around said tendon.

Le but de la présente invention est donc fournir une installation de liaison fond-surface de type tour hybride multi-riser amélioré, en particulier qui ne requiert pas la mise en oeuvre de flotteurs au sommet, ni de fondation devant reprendre respectivement tout le poids de la tour pour le flotteur au sommet et la totalité de la flottabilité exercée sur la tour en ce qui concerne la fondation de la tour d'une part, et d'autre part, qui ne requiert pas la mise en oeuvre de tendon central vertical devant également subir des contraintes de compression risquant d'entraîner un flambage latéral dudit tendon central.The object of the present invention is therefore to provide an improved multi-riser hybrid tower-type bottom-surface connection installation, in particular which does not require the use of floats at the top, nor of a foundation having to take back all the weight of the tower for the float at the top and the totality of the buoyancy exerted on the tower as regards the foundation of the tower on the one hand, and on the other hand, which does not require the implementation of vertical central tendon in front of also undergo compressive stresses likely to cause lateral buckling of said central tendon.

Pour ce faire, la présente invention fournit une tour hybride multi-riser comprenant :

  1. 1) une tour comprenant :
    1. a) un tendon vertical solidaire à son extrémité supérieure d'une structure porteuse apte à être suspendue à un flotteur dénommé flotteur au sommet immergé en subsurface, de préférence par l'intermédiaire d'une chaine ou câble, ledit tendon étant solidaire à son extrémité inférieure à une structure inférieure de guidage et étant apte à être fixé à une embase reposant au fond de la mer ou une ancre fondation de préférence du type ancre à succion enfoncée au fond de la mer, de préférence par l'intermédiaire d'une articulation flexible,
    2. b) une pluralité de conduite rigide verticale dénommé riser dont l'extrémité supérieure est solidaire de ladite structure porteuse, l'extrémité inférieure de chaque dite conduite rigide ou riser étant apte à être reliée à une conduite sous-marine reposant au fond de la mer, de préférence par l'intermédiaire de connecteurs automatiques entre lesdites extrémités inférieures des riser et extrémités des conduites sous-marine, et de préférence par l'intermédiaire de manchettes coudées et/ou de conduites de jonction,
    3. c) une pluralité de moyens de guidage desdits risers, lesdits moyens de guidage ainsi que ladite structure inférieure de guidage étant aptes à maintenir lesdits risers disposés autour dudit tendon, de préférence régulièrement et symétriquement répartis autour dudit tendon, et
    4. d) des éléments de flottabilité coopérant avec ledit tendon, répartis le long dudit tendon, de préférence des éléments de flottabilité résistants à la pression hydrostatique sous-marine, de préférence encore des éléments de flottabilité en mousse syntactique,
caractérisée en ce que ladite tour comprend une pluralité de modules de flottabilité et de guidage constituant une pluralité de structures indépendantes aptes à coulisser le long dudit tendon et le long desdits risers, ladite structure supportant lesdits éléments de flottabilité et guidant lesdits risers en position de préférence régulièrement et symétriquement répartis autour dudit tendon.To do this, the present invention provides a hybrid multi-riser tower comprising:
  1. 1) a tower comprising:
    1. a) a vertical tendon secured at its upper end to a bearing structure capable of being suspended from a float called a subsurface submerged float, preferably via a chain or cable, said tendon being integral at its end; lower than a lower guide structure and being adapted to be fixed to a base resting at the bottom of the sea or a foundation anchor preferably of the suction anchor type driven to the bottom of the sea, preferably via a joint flexible,
    2. b) a plurality of rigid vertical pipe called riser whose upper end is integral with said support structure, the lower end of each said rigid pipe or riser being adapted to be connected to a subsea pipe resting at the bottom of the sea preferably via automatic connectors between said lower ends of the risers and ends of the underwater pipes, and preferably via bent sleeves and / or connecting pipes,
    3. c) a plurality of means for guiding said risers, said guide means as well as said lower guide structure being able to maintain said risers arranged around said tendon, preferably regularly and symmetrically distributed around said tendon, and
    4. d) buoyancy elements cooperating with said tendon, distributed along said tendon, preferably buoyancy elements resistant to the underwater hydrostatic pressure, more preferably syntactic foam buoyancy elements,
characterized in that said tower comprises a plurality of buoyancy and guiding modules constituting a plurality of independent structures able to slide along said tendon and along said risers, said structure supporting said buoyancy elements and guiding said risers in position preferably regularly and symmetrically distributed around said tendon.

On entend par « vertical » que lorsque la mer est calme et que l'installation est au repos, les flexibles de liaison vers le FPSO n'étant pas installés, le tendon et les risers sont disposés verticalement, étant entendu que la houle, et les mouvements du support flottant et/ou des conduites flexibles peuvent provoquer des débattement de la tour dans un angle au sommet de préférence limité à 10-15°, en particulier du fait de la mise en oeuvre d'une articulation flexible de type roto-latch® au pied du tendon, au niveau de son point de fixation à ladite embase ou ancre."Vertical" means that when the sea is calm and the installation is at rest, the connection hoses to the FPSO not being installed, the tendon and the risers are arranged vertically, it being understood that the swell, and the movements of the floating support and / or flexible ducts can cause the tower to travel in a vertex angle preferably limited to 10-15 °, in particular due to the implementation of a flexible articulation of rotary type. latch ® at the foot of the tendon, at its point of attachment to said base or anchor.

Lesdits modules et donc lesdits éléments de flottabilité coulissent le long du tendon en dessous de ladite structure porteuse et sont retenus à l'extrémité supérieure desdits risers et tendon par ladite structure porteuse. Ainsi le tendon est en tension sensiblement uniforme, en négligeant le différentiel de tension dû à son propre poids, sur toute sa hauteur, dans la mesure où la tension créée par la somme des flottabilités des différents modules est transférée au sommet du tendon par l'intermédiaire de ladite structure porteuse contre laquelle vient bien buter le module de flottabilité supérieure, les autres modules étant plaqués les uns dessous et contre les autres.Said modules and therefore said buoyancy elements slide along the tendon below said carrier structure and are retained at the upper end of said risers and tendon by said carrier structure. Thus the tendon is in a substantially uniform tension, neglecting the tension differential due to its own weight, over its entire height, insofar as the tension created by the sum of the buoyancy of the different modules is transferred to the vertex of the tendon by the intermediate of said support structure against which just abuts the upper buoyancy module, the other modules being plated under and against the others.

Il en résulte que le flotteur et l'ancre de succion selon la présente invention doivent exercer et respectivement reprendre une tension inférieure à celle requise dans l'art antérieur et notamment inférieure au poids total de la tour.As a result, the float and the suction anchor according to the present invention must exert and respectively take up a voltage lower than that required in the prior art and in particular less than the total weight of the tower.

Dans la présente invention, la tour est capable de rester verticale en l'absence du flotteur de tensionnement au sommet, alors que dans l'art antérieur, ledit flotteur doit être présent en permanence pour éviter toute mise en compression du tendon central. Cette disposition est particulièrement intéressante pour la phase d'installation et pour la maintenance du système,In the present invention, the tower is able to remain vertical in the absence of the tensioning float at the top, whereas in the prior art, said float must be permanently present to prevent compression of the central tendon. This arrangement is particularly interesting for the installation phase and for the maintenance of the system,

Dans l'art antérieur, le flotteur de tête et la fondation doivent exercer, respectivement reprendre une tension bien supérieure au poids total de la tour.In the prior art, the head float and the foundation must exert respectively take up a voltage well above the total weight of the tower.

En effet, si l'on considère que les conduites flexibles en configuration de chaînettes exercent sur le sommet de la tour une tension horizontale proportionnelle à leur masse linéaire, cette tension horizontale a tendance à faire pencher la tour dans un cône de demi-angle au sommet α. Pour limiter cet angle α et contenir la tour dans un cône de demi-angle au sommet α de 5 à 15°, de préférence de 3 à 5°, on devrait exercer une tension verticale résultante vers le haut au niveau du flotteur de tête TR correspondant en pratique à 10 à 50% du poids total de la tour Pt, selon le poids propre desdites conduites flexibles et selon la raideur voulue du système. Ainsi pour des mers peu agitées et des conduites flexibles relativement légères autorisant des excursions de la structure supérieure avec un angle au sommet de la tour par rapport à la verticale dans un cône d'angle au sommet de 5 à 8°, une tension résultante TR de 10% du poids de la tour sera suffisante, tandis que pour des conduites flexibles relativement lourdes et des excusions au sommet réduites avec un angle au sommet du cône d'excursion inférieur à 5°, la tension résultante TR pourra s'élever jusqu'à 50% du poids total de la tour.Indeed, if we consider that the flexible pipes in the configuration of chains exert on the top of the tower a horizontal tension proportional to their linear mass, this horizontal tension tends to tip the tower in a cone half-angle to summit α. To limit this angle α and to contain the tower in a cone of half-angle at the top α of 5 to 15 °, preferably of 3 to 5 °, a resultant vertical tension should be exerted at the level of the head float T R corresponding in practice to 10 to 50% of the total weight of the tower Pt, according to the weight of said flexible pipes and according to the desired stiffness of the system. Thus for lightly agitated seas and relatively light flexible pipes allowing excursions of the upper structure with an angle at the top of the tower with respect to the vertical in an angle cone at the top of 5 to 8 °, a resulting tension TR 10% of the weight of the tower will be sufficient, whereas for relatively heavy flexible pipes and reduced top expansions with an apex angle of the excursion cone less than 5 °, the resulting tension T R may rise to at 50% of the total weight of the tower.

Par ailleurs, une flottabilité totale ΣF de 102 à 110% de l'ensemble des modules de flottabilité est nécessaire pour maintenir émergée environ 2 à respectivement 10% du volume de la tour lorsque celle-ci est remorquée en surface, de façon à ce que la tour puisse être recouverte par la houle et être soumise à moins de contraintes mécaniques notamment de torsion et de flexion lors du remorquage sur site. Ainsi, selon l'invention, la force de traction ou flottabilité additionnelle T1 apportée par le flotteur au sommet devra-t-elle correspondre à la tension résultante voulue TR augmentée du différentiel entre la flottabilité cumulée ΣF et le poids de la tour Pt [T1 = TR + (ΣF-Pt)].Furthermore, a total buoyancy ΣF of 102 to 110% of all the buoyancy modules is necessary to maintain emerged approximately 2 to 10% of the volume of the tower when it is towed on the surface, so that the tower can be covered by the swell and be subjected to less mechanical stress including torsion and bending during towing on site. Thus, according to the invention, the additional traction force or buoyancy T1 brought by the float at the summit must it correspond to the desired resultant tension T R increased by the differential between the cumulative buoyancy ΣF and the weight of the tower Pt [ T1 = TR + (ΣF-Pt)].

En revanche, dans l'art antérieur selon WO 2006/136960 , le flotteur de tête doit exercer une flottabilité propre beaucoup plus élevée (T1 = TR + Pt) correspondant à ladite tension résultante TR de 10 à 50% du poids de la tour additionnée de la contrainte de compression qui s'exerce sur le tendon central au niveau de la structure supérieure au sommet de la tour, ce qui correspond à reprendre au moins l'intégralité du poids propre de la tour Pt. La flottabilité propre T1 du flotteur de tête selon l'art antérieur représente alors au moins environ 110 à 150% du poids total de la tour additionné du surcroît de flottabilité prévu pour le remorquage sur site (ΣF-Pt).In contrast, in the prior art according to WO 2006/136960 , the head float must have a much higher inherent buoyancy (T1 = T R + Pt) corresponding to said resultant tension T R of 10 to 50% of the weight of the tower plus the compressive stress exerted on the central tendon at the level of the upper structure at the top of the tower, which corresponds to taking up at least the entirety of the self weight of the tower Pt. The own float T1 of the head float according to the prior art then represents at least about 110 to 150% of the total weight of the tower plus additional buoyancy provided for on-site towing (ΣF-Pt).

De même, dans l'art antérieur la fondation doit reprendre la traction exercée par la poussée verticale cumulée de l'ensemble des éléments de flottabilité ΣF s'exerçant directement sur le tendon central, additionnée de la tension résultante TR voulue au niveau du flotteur de tête. Dans la mesure où ΣF est supérieur au poids de la tour pour assurer le transport en surface, la fondation doit reprendre une tension représentant environ au moins 110 à 150% du poids total de la tour.Similarly, in the prior art the foundation must resume the traction exerted by the cumulative vertical thrust of all buoyancy elements ΣF acting directly on the central tendon, added the resulting tension T R wanted at the float of head. Since ΣF is greater than the weight of the tower for surface transport, the foundation must resume a tension of at least about 110 to 150% of the total weight of the tower.

En revanche, selon la présente invention, la fondation n'est soumise qu'à la force résultante TR s'exerçant au niveau du flotteur de tête, à savoir 10 à 50% du poids total de la tour, dans la mesure où le poids total de la tour est repris directement par l'ensemble des modules de flottabilité, ces derniers exerçant une poussée verticale vers le haut directement sur la sous-face de ladite structure porteuse.On the other hand, according to the present invention, the foundation is subjected only to the resultant force T R exerted at the level of the head float, namely 10 to 50% of the total weight of the tower, insofar as the total weight of the tower is taken directly by all modules buoyancy, the latter exerting a vertical thrust upward directly on the underside of said carrier structure.

Plus particulièrement donc, l'ensemble des modules de flottabilité apportent une flottabilité cumulée ΣF représentant une force de traction d'intensité supérieure au poids total de la tour Pt, de préférence de 102 à 110% du poids total de la tour, et ledit flotteur au sommet apporte une flottabilité propre T1 telle que [T1 = TR - (ΣF - Pt)], et ladite fondation doit reprendre au moins la traction résultante TR au sommet de la tour, TR représentant la tension résultante verticale vers le haut au niveau du flotteur au sommet égale à 5 à 50% du poids total de la tour Pt, de préférence de 10% à 20% du poids total de la tour.More particularly, therefore, all of the buoyancy modules provide a cumulative buoyancy ΣF representing a traction force of intensity greater than the total weight of the tower Pt, preferably from 102 to 110% of the total weight of the tower, and said float at the top provides a clean buoyancy T1 such that [T1 = T R - (ΣF - Pt)], and said foundation must take at least the resulting traction T R at the top of the tower, T R representing the resulting vertical tension upwards at the level of the top float equal to 5 to 50% of the total weight of the tower Pt, preferably from 10% to 20% of the total weight of the tower.

Plus particulièrement, lesdits modules de flottabilité et de guidage s'étendent sur une longueur de 2 à 20 m et sont au nombre d'au moins 50, de préférence 50 à 500 modules de flottabilité pour une tour d'au moins 1 000 m de hauteur.More particularly, said buoyancy and guide modules extend over a length of 2 to 20 m and are at least 50, preferably 50 to 500, buoyancy modules for a tower of at least 1000 m. height.

Dans un premier mode de réalisation, les différents modules de flottabilité s'étendent sur toute la hauteur de la tour.In a first embodiment, the various buoyancy modules extend over the entire height of the tower.

Dans un mode de réalisation préféré, ladite pluralité de modules de flottabilité et de guidage disposés les uns contre les autres couvrent pas plus de 75%, de préférence moins de 50% de la longueur de la tour entre ladite structure porteuse au sommet et la structure inférieure de guidage solidaire du tendon.In a preferred embodiment, said plurality of buoyancy and guide modules disposed against each other covers not more than 75%, preferably less than 50% of the length of the tower between said carrier structure at the top and the structure lower guide solidarity of the tendon.

Pour ce faire, il suffira le cas échéant de sur-dimensionner le diamètre de l'ensemble des éléments de flottabilité en section transversale de façon à pouvoir réduire la dimension desdits éléments de flottabilité dans la direction longitudinale.To do this, it will suffice if necessary to oversize the diameter of all the buoyancy elements in cross section so as to reduce the size of said buoyancy elements in the longitudinal direction.

Ainsi, il est possible de mettre en oeuvre des éléments de flottabilité moins coûteux qui ne résisteraient pas à une pression hydrostatique à une profondeur d'eau en dessous de la profondeur à laquelle arrive le dernier module ou module inférieur.Thus, it is possible to implement less expensive buoyancy elements that would not withstand hydrostatic pressure at a water depth below the depth at which the last module or lower module arrives.

Avantageusement, les différents modules de flottabilité et de guidage sont liés les uns aux autres par des liens aptes à empêcher que le premier module ne s'écarte de ladite structure porteuse et que deux modules consécutifs ne s'écartent plus que d'une distance maximale donnée de préférence identique entre les différents modules et, lesdits liens étant de longueur telle que les différents modules se répartissent de manière sensiblement uniforme sur toute la longueur de la tour entre lesdites structure porteuse et structure inférieure, le premier module étant lié au niveau de ladite structure porteuse et le dernier module arrivant au niveau de ladite structure inférieure, lorsque ladite tour flotte à la surface de la mer étant remorquée par un navire, et lesdits liens n'empêchant pas lesdits modules de coulisser vers le haut lorsque ladite tour est cabanée et mise en position verticale d'opération dans une dite installation de liaison fond-surface.Advantageously, the various buoyancy and guidance modules are linked to each other by links able to prevent the first module from moving away from said carrier structure and that two consecutive modules deviate no more than a maximum distance preferably identical data between the different modules and, said links being of such length that the various modules are distributed substantially uniformly over the entire length of the tower between said carrier structure and lower structure, the first module being linked at the level of said carrier structure and the last module arriving at said lower structure, when said tower floats on the surface of the sea being towed by a ship, and said links do not prevent said modules from sliding upwards when said tower is caban and vertical positioning of operation in a so-called bottom-surface connection installation.

Dans un autre mode de réalisation les différents modules ne sont pas liés les uns aux autres et couvrent la totalité de la longueur de la tour entre ladite structure porteuse ladite structure inférieure de guidage.In another embodiment the different modules are not connected to each other and cover the entire length of the tower between said supporting structure and said lower guide structure.

Dans un mode de réalisation avantageux, chaque module de flottabilité et de guidage comprend deux flasques, liés l'un à l'autre par des tirants, et desdits éléments de flottabilité cylindriques bloqués et maintenus en position entre et par lesdits deux flasques , formant de préférence un module présentant une section transversale circulaire, chaque flasque comportant un orifice central et des orifices périphériques, lesdits orifices périphériques et lesdits éléments de flottabilité étant de préférence de même forme et disposés autour dudit orifice central de préférence régulièrement et symétriquement répartis autour dudit orifice central, lesdits orifices formant des fourreaux aptes à être traversés par desdits risers et un dit tendon permettant ainsi le guidage en coulissement desdits modules.In an advantageous embodiment, each buoyancy and guide module comprises two flanges connected to each other by tie rods, and said cylindrical buoyancy elements locked and held in position between and by said two flanges, forming preferably a module having a circular cross-section, each flange having a central orifice and peripheral orifices, said peripheral orifices and said buoyancy elements preferably being of the same shape and arranged around said central orifice, preferably regularly and symmetrically distributed around said central orifice; , said orifices forming sleeves able to be traversed by said risers and a said tendon thus allowing sliding guidance of said modules.

On comprend que les deux flasques sont espacés l'un de l'autre dans la direction longitudinale du tendon et que ladite section transversale correspond à une section transversale perpendiculaire à ladite direction longitudinale du tendon, et que ladite section circulaire du module correspond à une section circulaire des flasques et de l'ensemble des éléments de flottabilité assemblés les uns contre les autres entre les deux flasques.It is understood that the two flanges are spaced from each other in the longitudinal direction of the tendon and that said section transverse corresponds to a cross section perpendicular to said longitudinal direction of the tendon, and that said circular section of the module corresponds to a circular section of the flanges and all the buoyancy elements assembled against each other between the two flanges.

Ce mode réalisation permet de contribuer à un transfert de charge de flottabilité desdits éléments de flottabilité dans leur ensemble isostatique, c'est-à-dire le plus homogène sur toute la section transversale des flasques et de faciliter la fabrication et la pose desdits éléments de flottabilité.This embodiment makes it possible to contribute to a buoyancy load transfer of said buoyancy elements in their isostatic assembly, that is to say the most homogeneous over the entire cross section of the flanges and to facilitate the manufacture and installation of said elements of buoyancy.

De préférence, chaque flasque comprend une pluralité de parties de flasque fixées les unes aux autres, de préférence au moins autant de parties de flasques que de dits orifices périphériques, chaque partie de flasque étant apte à bloquer et maintenir l'extrémité longitudinale d'un dit élément de flottabilité cylindrique.Preferably, each flange comprises a plurality of flange portions attached to each other, preferably at least as many flange portions as said peripheral orifices, each flange portion being adapted to lock and maintain the longitudinal end of a flange. said cylindrical buoyancy element.

Ce mode réalisation contribue à limiter le nombre de pièces différentes devant être moulées, et à faciliter davantage encore la fabrication et la pose desdits flasques et éléments de flottabilité tout en conservant l'isostaticité du transfert de charge desdits éléments de flottabilité sur les flasques.This embodiment contributes to limiting the number of different parts to be molded, and to further facilitate the manufacture and installation of said flanges and buoyancy elements while maintaining the isostaticity of the charge transfer of said buoyancy elements on the flanges.

De préférence encore, lesdits modules comportent des premiers éléments élastiques intercalés, de préférence sous forme de plaques, entre les extrémités longitudinales desdits éléments de flottabilités et lesdits flasques au moins à une dite extrémité longitudinale du module et de préférence aussi des seconds éléments élastiques sur les faces externes d'au moins un des deux flasques, de préférence sous forme de plaques, de manière à améliorer l'isostaticité de la répartition des forces de flottabilité et de leur transfert entre deux modules consécutifs.More preferably, said modules comprise first intercalated elastic elements, preferably in the form of plates, between the longitudinal ends of said buoyancy elements and said flanges at least at said longitudinal end of the module and preferably also second elastic elements on the external faces of at least one of the two flanges, preferably in the form of plates, so as to improve the isostaticity of the distribution of buoyancy forces and their transfer between two consecutive modules.

La présente invention fournit également une installation de liaison fond-surface entre une pluralité de conduites sous-marines reposant au fond de la mer et un support flottant en surface, comportant :

  1. 1) une tour conforme à l'invention, et
  2. 2) une pluralité de conduites de liaison de préférence des conduites de liaison flexible entre les extrémités supérieures desdits risers et le support flottant, de préférence encore desdites conduites flexibles en forme de chaînettes plongeantes, lesdites conduites flexibles étant reliées à l'extrémité supérieure desdits risers par l'intermédiaire de dispositifs de type col de cygne.
The present invention also provides a bottom-to-surface bonding facility between a plurality of subsea pipes lying at the bottom of the sea and a surface floating support, comprising:
  1. 1) a tower according to the invention, and
  2. 2) a plurality of connecting pipes, preferably flexible connecting pipes between the upper ends of said risers and the floating support, more preferably said flexible pipes in the form of plunging chains, said flexible pipes being connected to the upper end of said risers; via gooseneck devices.

La présente invention a également pour objet un module de flottabilité et de guidage d'une tour selon l'invention, tel que défini ci-dessus.The present invention also relates to a buoyancy and guide module of a tower according to the invention, as defined above.

La présente invention fournit également un procédé de remorquage en mer d'une tour et mise en place dans une installation selon l'invention, caractérisé en ce que ladite de tour flotte en surface lorsqu'elle est remorquée par au moins un navire de surface, lesdits modules de flottabilité et de guidage étant répartis sur toute sa longueur, de préférence régulièrement répartis et espacés les uns des autres et après cabanage de la tour lesdits modules de flottabilité et de guidage coulissent vers le haut jusqu'à être plaqués les uns dessous et contre les autres, de préférence sur une partie seulement de la hauteur de la tour.The present invention also provides a method of towing at sea a tower and set up in an installation according to the invention, characterized in that said tower floats on the surface when it is towed by at least one surface vessel, said buoyancy and guide modules being distributed over its entire length, preferably regularly distributed and spaced from each other and after hoisting the tower said buoyancy and guide modules slide upwards to be plated underneath and against others, preferably on only a part of the height of the tower.

D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lumière de la description détaillée qui va suivre, faite de manière illustrative et non limitative, en référence aux dessins sur lesquels :

  • la figure 1 est une vue de côté d'une installation de liaison fond-surface 1 selon l'invention comportant un tendon central 4 et au moins deux conduites rigides verticales de type Riser 3-1,3-2 en suspension, l'ensemble étant maintenu en position sensiblement verticale par une flottabilité répartie sur toute la hauteur de la tour, ainsi que par un flotteur 8 solidaire du sommet de la tour, une pluralité de flexibles 6-1,6-2 reliant les extrémités supérieures desdits Risers en tête de ladite tour à un FPSO ancré en surface à proximité,
  • la figure 2 représente en vue de côté la tour en cours d'installation ou de maintenance, le flotteur de tête n'étant pas installé,
  • la figure 3 représente en vue de côté le remorquage de la tour sur site, ainsi que son cabanage et son raccordement à une pile de fondation 11 de type ancre à succion,
  • la figure 3A représente une variante de la tour de la figure 3, dans laquelle les modules de flottabilité sont sensiblement uniformément répartis le long de la tour pour le remorquage, mais espacés les uns des autres en position de remorquage, se rassemblent dans la partie haute de la tour, par simple coulissement le long du tendon central, lors du cabanage, sur une hauteur H2 d'environ 50% de la hauteur de la tour,
  • les figures 4A-4B représentent en vue de côté une tour selon l'art antérieur, sans flotteur (4A) et avec flotteur (4B),
  • les figures 5A et 5B représentent en vue de côté d'une tour selon l'invention, équipée de modules de flottabilité coulissant le long dudit tendon central vertical (figure 5A) et sans les modules (figure 5B),
  • la figure 6 représente une vue en perspective d'une coupe de la tour selon un plan perpendiculaire à son axe, ladite tour étant en position verticale,
  • la figure 7A représente une vue en perspective d'un module de flottabilité selon l'invention sans ses éléments de flottabilité,
  • la figure 7 représente une vue en perspective de deux modules de flottabilité identiques accolés l'un contre l'autre, avec des éléments de flottabilité en cours de pose dans l'un des modules,
  • la figure 8 représente une vue en perspective d'un flasque de guidage de conduites d'un module de flottabilité selon l'invention, vu de l'extérieur, c'est-à-dire vu du plan d'interface avec un module de flottabilité voisin,
  • la figure 9 représente une vue en perspective du flasque de guidage de la figure 8, vu de l'intérieur, c'est-à-dire du côté du plan d'interface avec les éléments de flottabilité en mousse syntactique maintenus par ledit flasque de guidage à chaque extrémité.
Other features and advantages of the present invention will become more apparent in the light of the detailed description which follows, given in an illustrative and nonlimiting manner, with reference to the drawings in which:
  • the figure 1 is a side view of a bottom-surface connection installation 1 according to the invention comprising a central tendon 4 and at least two rigid vertical lines of the Riser 3-1,3-2 type in suspension, the assembly being maintained in substantially vertical position by a buoyancy distributed over the entire height of the tower, and by a float 8 secured to the top of the tower, a plurality of flexible 6-1,6-2 connecting the upper ends of said risers head of said tower to an FPSO anchored to the surface nearby,
  • the figure 2 represents in side view the tower being installed or maintained, the head float not being installed,
  • the figure 3 represents in side view the towing of the tower on site, as well as its cabanage and its connection to a foundation pile 11 suction anchor type,
  • the figure 3A represents a variant of the tower of the figure 3 , wherein the buoyancy modules are substantially uniformly distributed along the tower for towing, but spaced apart from one another in the towing position, gather in the upper part of the tower, by simply sliding along the central tendon, during the cabanage, on a height H2 of approximately 50% of the height of the tower,
  • the Figures 4A-4B represent in side view a tower according to the prior art, without float (4A) and with float (4B),
  • the Figures 5A and 5B represent a side view of a tower according to the invention, equipped with buoyancy modules sliding along said vertical central tendon ( Figure 5A ) and without the modules ( Figure 5B )
  • the figure 6 represents a perspective view of a section of the tower in a plane perpendicular to its axis, said tower being in a vertical position,
  • the Figure 7A represents a perspective view of a buoyancy module according to the invention without its buoyancy elements,
  • the figure 7 represents a perspective view of two identical buoyancy modules placed side by side with buoyancy elements being installed in one of the modules,
  • the figure 8 represents a perspective view of a pipe guide flange of a buoyancy module according to the invention, seen from the outside, that is to say seen from the interface plane with a neighboring buoyancy module,
  • the figure 9 represents a perspective view of the flange of guiding the figure 8 seen from the inside, that is to say on the interface plane side with the syntactic foam buoyancy elements held by said guide flange at each end.

Dans la figure 1 on a représenté une installation de liaison fond-surface 1 reliant deux conduites sous-marines 2-1,2-2 reposant sur le fond de la mer 12 à un support flottant de type FPSO 10 amarré par des lignes d'ancre 10a. La liaison fond-surface est constituée d'un tendon vertical central 4 relié à une fondation 11 de type ancre à succion par l'intermédiaire d'une articulation 5a autorisant les débattements de la tour dans un cône d'angle au sommet alpha de préférence inférieur ou égal à 5°. La tour comporte une pluralité de conduites, par exemple quatre conduites 3-1,3-2, comme représenté sur les vues en perspective 6 et 7, réparties de préférence de manière symétrique autour de l'axe ZZ' de la tour, ce dernier étant coaxial avec le tendon central 4. Sur la figure 1, les conduites 3-1,3-2 sont chacune reliées en partie basse à une conduite sous-marine 2-1,2-2 reposant sur le fond de la mer par l'intermédiaire d'une manchette de jonction coudée 2a au moyen de connecteurs automatiques 9a-9b, connus de l'homme de l'art. Ces conduites 3-1,3-2 sont suspendues en tête de la tour à une structure supérieure porteuse 4a solidaire du tendon vertical central 4 et reliées chacune par un col de cygne 7-1,7-2 à l'extrémité d'une conduite flexible 6-1,6-2 reliant lesdits cols de cygne à un FPSO 10. Un flotteur 8 relié par l'intermédiaire d'une chaîne 8a au tendon central 4 exerce une tension verticale complémentaire sur la tour.In the figure 1 there is shown a bottom-surface connection facility 1 connecting two underwater lines 2-1,2-2 resting on the bottom of the sea 12 to a floating support type FPSO 10 moored by anchor lines 10a. The bottom-surface connection consists of a central vertical tendon 4 connected to a suction anchor-type foundation 11 via a hinge 5a allowing the deflections of the tower in an angle cone at the top preferably less than or equal to 5 °. The tower comprises a plurality of pipes, for example four pipes 3-1, 3-2, as shown in the perspective views 6 and 7, preferably symmetrically distributed around the axis ZZ 'of the tower, the latter being coaxial with the central tendon 4. On the figure 1 , lines 3-1,3-2 are each connected at the bottom to a subsea line 2-1,2-2 resting on the bottom of the sea by means of an angled junction sleeve 2a by means of automatic connectors 9a-9b, known to those skilled in the art. These ducts 3-1, 3-2 are suspended at the top of the tower to a superior carrier structure 4a integral with the central vertical tendon 4 and each connected by a gooseneck 7-1, 7-2 at the end of a flexible pipe 6-1,6-2 connecting said goosenecks to an FPSO 10. A float 8 connected via a chain 8a to the central tendon 4 exerts a complementary vertical tension on the tower.

Comme représenté sur la figure 5, la flottabilité de la tour 3 est assurée par une pluralité de modules de flottabilité 20 coopérant en coulissement avec le tendon central 4. Ces modules de flottabilité 20 décrits ci-après comportent des éléments de guidage 22 dénommés flasques comportant des orifices 23,23-1,23-4, permettant le guidage dudit tendon central et des conduites 3-1,3-2.As shown on the figure 5 , the buoyancy of the tower 3 is ensured by a plurality of buoyancy modules 20 cooperating in sliding with the central tendon 4. These buoyancy modules 20 described hereinafter comprise guide elements 22 called flanges having orifices 23, 23. 1.23-4, for guiding said central tendon and ducts 3-1,3-2.

Chacun des modules de flottabilité 20 coulisse librement d'une part autour du tendon central 4 et d'autre part, autour de chacune des conduites 3-1,3-2 suspendues à la structure porteuse 4a située en tête de la tour. Et, de ce fait l'intégralité de la poussée d'Archimède IF de l'ensemble des modules de flottabilité 20 est directement transmise à la structure supérieure porteuse 4a, cette dernière supportant d'autre part l'intégralité du poids P de la tour. Il en résulte que le flotteur 8 au sommet doit se borner à exercer une tension additionnelle vers le haut égale à environ 10 à 20% du poids total de la tour de manière à exercer un effort de rappel vertical lorsque les conduites de liaison flexibles 6-1,6-2 avec le FPSO sont en place, lesquelles exercent des efforts de rappel horizontal lorsque la mer est agitée. Pour la clarté des explications, les modules de flottabilité 20 sont représentés de manière schématique sur les figures 1 à 3 et sur la figure 5, et de manière plus détaillée sur les figures 6 à 9.Each of the buoyancy modules 20 slides freely on the one hand around the central tendon 4 and on the other hand, around each of the ducts 3-1,3-2 suspended from the support structure 4a located at the top of the tower. And, as a result, the entirety of the buoyancy thrust IF of all the buoyancy modules 20 is directly transmitted to the upper carrier structure 4a, the latter supporting on the other hand the entire weight P of the tower . As a result, the float 8 at the top must be limited to exerting an additional upward tension equal to about 10 to 20% of the total weight of the tower so as to exert a vertical return force when the flexible connecting lines 6- 1.6-2 with the FPSO are in place, which exert horizontal recall efforts when the sea is rough. For clarity of explanation, the buoyancy modules 20 are schematically represented on the Figures 1 to 3 and on the figure 5 , and in more detail on Figures 6 to 9 .

Sur la figure 6 on a représenté en perspective une coupe de la tour 1 en position verticale, coupe réalisée au dessus d'un module de flottabilité 20. A l'axe du module de flottabilité 20 se trouve le tendon central 4 et en périphérie, les conduites 3-1,3-2 de type PiP (pipe in pipe) comprenant une conduite externe 3a et incluant une conduite interne de production 3b légèrement excentrée, de manière à laisser la place à une conduite d'injection d'eau ou conduite d'injection de gaz 3c, ainsi que deux conduites d'injection d'eau 3-3,3-4.On the figure 6 is shown in perspective a section of the tower 1 in vertical position, cut above a buoyancy module 20. To the axis of the buoyancy module 20 is the central tendon 4 and the periphery, the lines 3- 1.3-2 type PiP (pipe in pipe) comprising an outer pipe 3a and including a production line 3b slightly off-center, so as to leave room for a water injection pipe or pipe injection of gas 3c, as well as two water injection lines 3-3,3-4.

Sur la figure 7, on a représenté en perspective un tronçon de la tour en position de fabrication, montrant deux modules de flottabilité accolés 20n,20n+1, le module 20n+1 n'étant pas complètement assemblé, deux éléments de flottabilité sous forme de bloc de mousse syntactique 21 étant prêts à être insérés avant que les flasques de blocage de blocage 22 ne soient réunis par des tirants 24 pour contraindre les éléments de flottabilité entre deux flasques 22, assurant ainsi la rigidité d'ensemble dudit module de flottabilité 20.On the figure 7 , there is shown in perspective a section of the tower in the manufacturing position, showing two contiguous buoyancy modules 20 n , 20 n + 1 , the module 20 n + 1 not being completely assembled, two buoyancy elements in the form of block of syntactic foam 21 being ready to be inserted before the blocking locking flanges 22 are joined by ties 24 to constrain the buoyancy elements between two flanges 22, thus ensuring the overall rigidity of said buoyancy module 20.

Sur les figures 8 et 9, on a représenté en perspective un flasque 22 de module de flottabilité respectivement en vue externe (figure 8), c'est-à-dire vu du côté de l'interface avec le module de flottabilité adjacent, et en vue interne (figure 9), c'est-à-dire vu du côté de l'interface avec les éléments de flottabilité 21 en mousse syntactique. Le flasque est réalisé de préférence en matière plastique, par exemple en polyéthylène, en polypropylène ou tout autre matériau thermoplastique résistant, chargé ou non. Le flasque 22 est en fait constitué de préférence de plusieurs parties indépendantes 22-1 à 22-4, identiques, assemblées entre elles par simple boulonnage. Les flasques 22 comportent des fourreaux 23-1 à 23-4 n'ayant en général pas le même diamètre, on ajuste le diamètre de chacun des fourreaux 23-1 à 23-4, de manière à ce qu'il soit légèrement supérieur au diamètre de la conduite correspondante et puisse ainsi la laisser coulisser librement. On prévoit ainsi un jeu de 5 à 15 mm, donc un diamètre intérieur du fourreau supérieur de 10 à 30mm au diamètre extérieur de ladite conduite 3a concernée. De même, le fourreau central 23 correspondant au tendon central 4 présentera la même augmentation du diamètre par rapport au diamètre externe dudit tendon.On the Figures 8 and 9 , there is shown in perspective a flange 22 of buoyancy module respectively in external view ( figure 8 ), ie seen from the interface side with the buoyancy module adjacent, and in internal view ( figure 9 ), that is to say viewed from the interface side with the buoyancy elements 21 syntactic foam. The flange is preferably made of plastic, for example polyethylene, polypropylene or any other resistant thermoplastic material, charged or not. The flange 22 is in fact preferably composed of several independent parts 22-1 to 22-4, identical, assembled together by simple bolting. The flanges 22 comprise sheaths 23-1 to 23-4 generally not having the same diameter, the diameter of each of the sheaths 23-1 to 23-4 is adjusted so that it is slightly greater than the diameter of the corresponding pipe and can thus let it slide freely. This provides a clearance of 5 to 15 mm, so an inner diameter of the upper sheath 10 to 30mm to the outer diameter of said pipe 3a concerned. Similarly, the central sheath 23 corresponding to the central tendon 4 will have the same increase in diameter relative to the outer diameter of said tendon.

Les éléments de flottabilité 21, tous de même forme cylindrique, viennent s'insérer dans des formes complémentaires 22a de la face interne des flasques 22, comme représenté sur la figure 9, et sont de préférence uniformément répartis à la périphérie du module 20. Sur les figures 7 et 9, on a représenté entre deux conduites adjacentes deux éléments de flottabilité 21 installés côte à côte. Mais, on aurait pu installer un seul élément 21 de section double. La fabrication d'éléments en mousse syntactique de grandes dimensions étant très délicate, on préfère réduire l'épaisseur transversale des divers éléments et donc adopter la configuration représentée sur les figures 7 et 9.The buoyancy elements 21, all of the same cylindrical shape, are inserted into complementary shapes 22a of the internal face of the flanges 22, as shown in FIG. figure 9 , and are preferably evenly distributed around the periphery of the module 20. On the figures 7 and 9 two adjacent buoyancy elements 21 are shown between two adjacent ducts installed side by side. But, we could have installed a single element 21 of double section. The manufacture of large syntactic foam elements being very delicate, it is preferred to reduce the transverse thickness of the various elements and thus to adopt the configuration shown in the drawings. figures 7 and 9 .

Dans chaque module, on introduit ainsi 8 blocs de mousse syntactique 21 de même forme cylindrique dont la forme en section transversale remplit les espaces 22a délimités par les parties de parois cylindriques 23c-23d des fourreaux 23-1 à 23-4 et des éléments de séparation 23a-23b. Les éléments de flottabilité 21 présentent en section transversale une circonférence externe circulaire 21a de même rayon que le rayon de la circonférence des flasques 22. Du fait que ces éléments de flottabilité sont au nombre de 8, ils forment des portions angulaires présentant une face latérale plate 21b au contact des éléments de séparation latéraux 23a sur la surface interne des flasques 22, présentant également une surface plane venant buter sur l'autre élément de séparation 23b sur la face interne du flasque 22 et enfin présentant une face latérale opposée de portion circulaire 21c en section transversale venant en appui contre les parois cylindriques des fourreaux 23c-23d.In each module, 8 blocks of syntactic foam 21 of the same cylindrical shape are thus introduced whose cross-sectional shape fills the spaces 22a delimited by the parts of cylindrical walls 23c-23d of the sleeves 23-1 to 23-4 and elements of separation 23a-23b. The buoyancy elements 21 have in cross section a circular outer circumference 21a likewise radius as the radius of the circumference of the flanges 22. Because these buoyancy elements are 8 in number, they form angular portions having a flat side face 21b in contact with the lateral separation elements 23a on the inner surface of the flanges 22 , also having a flat surface abutting on the other separating element 23b on the inner face of the flange 22 and finally having an opposite side face of circular portion 21c in cross section bearing against the cylindrical walls of the sleeves 23c-23d.

Si on n'avait prévu d'introduire que quatre blocs de mousse syntactique entre les quatre conduites, on comprend que chaque bloc aurait deux surfaces latérales opposées présentant une même forme de portion circulaire en section transversale, section de portion circulaire venant en appui contre chacune des deux conduites 3-1,3-2 côte à côte entre lesquelles le bloc de mousse syntactique 21 est introduit.If it had been planned to introduce only four blocks of syntactic foam between the four pipes, it is understood that each block would have two opposite side surfaces having the same shape of circular portion in cross section, circular portion section bearing against each two lines 3-1,3-2 side by side between which the block of syntactic foam 21 is introduced.

Pour n'avoir qu'un seul type d'élément de flottabilité, c'est-à-dire des éléments de flottabilité 21 de même forme, l'épaisseur 23c de la paroi du fourreau 23-3,23-4 est supérieure à l'épaisseur 23d de la paroi du fourreau 23-1,23-2, de telle manière que les rayons externes R des parois des deux fourreaux soient identiques et correspondent au diamètre interne de la portion circulaire 21c des éléments de flottabilité 21 appliqués contre les parois des fourreaux, comme représenté sur la figure 7. Les éléments de flottabilité sont bloqués entre deux flasques 22 par des tirants 24 reliant les deux flasques 22 et assurant une précontrainte des éléments de flottabilité 21 entre deux flasques 22, et par des éléments de cerclage 26.To have only one type of buoyancy element, that is to say buoyancy elements 21 of the same shape, the thickness 23c of the wall of the sheath 23-3,23-4 is greater than the thickness 23d of the wall of the sheath 23-1,23-2, such that the outer rays R of the walls of the two sheaths are identical and correspond to the internal diameter of the circular portion 21c of the buoyancy elements 21 applied against the walls of the sleeves, as shown on the figure 7 . The buoyancy elements are locked between two flanges 22 by tie rods 24 connecting the two flanges 22 and providing prestressing of the buoyancy elements 21 between two flanges 22, and by strapping elements 26.

Tous les éléments de flottabilité d'un même module 20 ont une longueur identique de manière à ce qu'une fois le module 20 assemblé, les deux faces externes des flasques 22 dudit module soient parallèles entre elles. Pour pallier à des variations minimes de longueur, on insère avantageusement entre chacun des éléments de flottabilité 21 et son logement 22a dans le flasque 22, une plaque de caoutchouc 25a, de préférence de néoprène de forte raideur, par exemple de dureté Shore comprise entre A50 et A95 et de 3 à 15 mm d'épaisseur, de manière à améliorer l'isostaticité de la répartition des forces de flottabilité et de leur transfert vers le module supérieur. De la même manière et dans le même but, on dispose à l'extérieur des flasques, des plaques de néoprènes 25b, de préférence de caractéristiques identiques aux plaques 25a, lesdites plaques 25b étant insérées entre deux modules de flottabilité 20 adjacents.All the buoyancy elements of the same module 20 have an identical length so that once the module 20 assembled, the two outer faces of the flanges 22 of said module are parallel to each other. To compensate for minimal variations in length, advantageously inserted between each of the buoyancy elements 21 and its housing 22a in the flange 22, a rubber plate 25a, of preferably of high stiffness neoprene, for example Shore hardness between A50 and A95 and 3 to 15 mm thick, so as to improve the isostaticity of the distribution of buoyancy forces and their transfer to the upper module. In the same manner and for the same purpose, neoprene plates 25b, preferably of identical characteristics to the plates 25a, are placed outside the flanges, said plates 25b being inserted between two adjacent buoyancy modules 20.

Sur la figure 3A on a représenté le remorquage et le cabanage d'une tour 3, dont la flottabilité est uniformément répartie le long de la tour 3 pour son remorquage, les modules 20 étant pré-assemblés 20a, ici 3 par 3 et reliés entre eux en 31 par des câbles 30, un câble 30 étant solidaire à une extrémité de la structure supérieure de support 4a et en pied d'un élément flottant fixe sur la structure inférieure 5. Ainsi, pendant tout le remorquage, les modules de flottabilité 20 groupés par 3 ne peuvent pas se déplacer axialement au-delà d'une distance d constante donnée par les câbles 30 entre les différents groupes de modules de flottabilité 20. Ceci assure une flottabilité répartie sur toute la longueur de la tour 30 lorsque celle-ci est remorquée en surface par au moins un navire 10-1,10-2 à l'aide de câbles 15-1 reliés à la structure supérieure 4a. Ensuite, après avoir déconnecté le câble 30 de la structure inférieure 5, lorsqu'on procède au cabanage selon un procédé connu à partir du native 10-2 et d'un câble 15-2 relié à l'extrémité inférieure 5a du tendon 4, laquelle est lestée d'un poids 16, en dévirant le câble 15-2 à partir du navire 10-2. Dès que l'inclinaison de la tour 3 est suffisante, les modules 20, par groupe de 3, auront tendance à glisser le long du tendon central vers le haut et venir en contact les uns contre les autres et se regrouper ainsi vers le sommet de la tour en sous-face de la structure porteuse 4a, les câbles 30 adoptant une forme détendue, lâche. Cette configuration est intéressante pour les très grandes profondeurs, car elle permet d'utiliser une mousse syntactique de moindre qualité, car les éléments les plus profonds se trouvent à une profondeur H2 et non pas à la profondeur H1 du fond de la mer. Cette configuration illustre de plus la différence du dispositif selon l'invention par rapport au dispositif de l'art antérieur, décrit entre autres dans WO-2006-136960 dans lequel chacun des modules de flottabilité est rigidement lié au tendon central.On the figure 3A the towing and hoisting of a tower 3, the buoyancy of which is evenly distributed along the tower 3 for its towing, is shown, the modules 20 being pre-assembled 20a, here 3 by 3 and interconnected at 31 by cables 30, a cable 30 being secured to one end of the upper support structure 4a and at the bottom of a fixed floating element on the lower structure 5. Thus, throughout the towing, the buoyancy modules 20 grouped by 3 can not move axially beyond a constant distance given by the cables 30 between the different groups of buoyancy modules 20. This ensures a buoyancy distributed over the entire length of the tower 30 when it is towed on the surface by at least one vessel 10-1, 10-2 using cables 15-1 connected to the upper structure 4a. Then, after having disconnected the cable 30 from the lower structure 5, when the cabin is made according to a known method from the native 10-2 and a cable 15-2 connected to the lower end 5a of the tendon 4, which is weighted with a weight 16, by unscrewing the cable 15-2 from the ship 10-2. As soon as the inclination of the tower 3 is sufficient, the modules 20, in groups of 3, tend to slide along the central tendon upwards and come into contact with each other and thus gather towards the top of the tower on the underside of the carrier structure 4a, the cables 30 adopting a relaxed shape, loose. This configuration is interesting for very deep, because it allows to use syntactic foam of lower quality, because the deepest elements are at a depth H2 and not at the depth This configuration further illustrates the difference of the device according to the invention with respect to the device of the prior art, described inter alia in FIG. WO-2006-136960 wherein each of the buoyancy modules is rigidly connected to the central tendon.

Comme représenté sur la figure 5A selon l'invention, les modules de flottabilité 20, du fait de leur coulissement le long des tendons 4 et conduites 3-1,3-4 transfèrent la totalité de leur flottabilité IF à la structure supérieure 4a. D'autre part, aucune force de compression n'est transmise au tendon central 4 par la structure supérieure 4a, cette dernière supportant l'intégralité du poids total des conduites en suspension. Ainsi, selon la présente invention, la structure supérieure 4a est soumise à une traction résultante (TR = ΣF - Pt) correspondant à la somme des flottabilités des différents modules 20 diminuée du poids total Pt de la tour. En pratique, pour permettre un remorquage de la tour dans des conditions satisfaisantes, il est nécessaire de prévoir que la somme des flottabilités IF représente 102 à 110% du poids total de la tour selon les états de mer.As shown on the Figure 5A according to the invention, the buoyancy modules 20, due to their sliding along the tendons 4 and 3-1,3-4 conduits transfer all of their IF buoyancy to the upper structure 4a. On the other hand, no compression force is transmitted to the central tendon 4 by the upper structure 4a, the latter supporting the entirety of the total weight of the pipes in suspension. Thus, according to the present invention, the upper structure 4a is subjected to a resultant traction (TR = ΣF - Pt) corresponding to the sum of the floats of the various modules 20 less the total weight Pt of the tower. In practice, to allow towing of the tower under satisfactory conditions, it is necessary to provide that the sum of the IF buoyancy represents 102 to 110% of the total weight of the tower according to the sea states.

Par ailleurs, il est nécessaire de prévoir un flotteur 8-1 au sommet de manière à ce que la traction résultante TR exercée au sommet de la structure 4a au sommet de la tour 3 corresponde à au moins 10%, en général de 10 à 50% du poids total de la tour Pt, de manière à compenser le poids des conduites flexibles 6-1,6-2 qui lui seront reliées et les forces de rappel horizontales causées par les conduites flexibles en cas de débattement en inclinaison de la tour 3 d'un angle α.Furthermore, it is necessary to provide an 8-1 float at the top so that the resulting traction T R exerted at the top of the structure 4a at the top of the tower 3 corresponds to at least 10%, generally from 10 to 50% of the total weight of the tower Pt, so as to compensate for the weight of the flexible pipes 6-1,6-2 which will be connected to it and the horizontal restoring forces caused by the flexible pipes in case of deflection in inclination of the tower 3 of an angle α.

Selon la raideur que l'on veut donner au système, on prévoira une résultante de traction apportée par le flotteur pouvant aller jusqu'à 50% du poids total de la tour pour un système à forte raideur, c'est-à-dire avec des conduites flexibles très lourdes et un angle au sommet inférieur à 5° et une résultante de traction verticale représentant environ 10% du poids de la tour pour des conduites flexibles relativement légères et des angles au sommet de l'inclinaison de la tour importants de 5 à 8° par rapport à la verticale.Depending on the stiffness that we want to give to the system, we will provide a resultant traction brought by the float of up to 50% of the total weight of the tower for a system with high stiffness, that is to say with very heavy flexible pipes and an apex angle of less than 5 ° and a vertical tensile result of about 10% of the weight of the tower for relatively light flexible pipes and major corners of the tower inclination of 5 at 8 ° to the vertical.

Le flotteur au sommet doit donc apporter une flottabilité propre T1 égale à [T1=TR - (ΣF -Pt)], soit [(10 à 50% x Pt) - (2 à 10% x Pt)].The float at the summit must therefore bring a specific buoyancy T1 equal to [T1 = TR - (ΣF -Pt)], ie [(10 to 50% x Pt) - (2 to 10% x Pt)].

Enfin, selon la présente invention, la fondation 11 doit reprendre une traction résultante TR qui s'exerce également sur le flotteur au sommet 8, à savoir de 10 à 50% x Pt (poids total de la tour).Finally, according to the present invention, the foundation 11 must take a resultant traction T R which is also exerted on the float at the top 8, namely 10 to 50% x Pt (total weight of the tower).

L'art antérieur est représenté en vue de côté sur les figures 4A et 4B. Dans l'art antérieur, les modules de flottabilité 40 sont solidaires d'un tendon central 4 au niveau de taquets 41. Sur la figure 4A, les éléments de flottabilité 40 transmettent leur flottabilité F directement au tendon central 4 par l'intermédiaire des taquets 41 solidaires du tendon central. Dans cette configuration, les éléments de flottabilité 40 apportent une flottabilité totale IF de 102 à 110% x Pt (poids total de la tour) pour permettre son remorquage en surface.The prior art is shown in side view on the Figures 4A and 4B . In the prior art, the buoyancy modules 40 are integral with a central tendon 4 at cleats 41. Figure 4A , the buoyancy elements 40 transmit their buoyancy F directly to the central tendon 4 by means of the cleats 41 integral with the central tendon. In this configuration, the buoyancy elements 40 provide a total IF buoyancy of 102 to 110% x Pt (total weight of the tower) to allow its towing on the surface.

En revanche, en position d'opération verticale, les modules de flottabilité 40 ne contribuent quasiment plus à la flottabilité de la tour.On the other hand, in the vertical operating position, the buoyancy modules 40 do not contribute any more to the buoyancy of the tower.

Ainsi, sans prendre en considération le poids de la tour, le tendon central 4, au niveau du taquet supérieur 41 est soumis à une traction vers le haut égale à F. Cette traction vers le haut F est transmise au niveau du taquet situé juste en dessous : - le tendon central est alors soumis à une traction résultante vers le haut égale à 2F, laquelle se répercute ainsi de proche en proche jusqu'au dernier taquet et jusqu'à la fondation 11 qui sont alors soumis à une traction égale à ΣF vers le haut. Si maintenant, l'on considère le poids propre des conduites 3-1,3-2,3-3,3-4 et de la structure 4a, il s'exerce alors au niveau de la structure porteuse supérieure 4-1 une force de compression dirigée vers le bas égale à Pt (poids de la tour). Ainsi, la partie supérieure du tendon 4 située juste en dessous de la structure supérieure 4-1 est soumise à une force de compression résultante sensiblement égale à Pt - F. Et ainsi, le flotteur au sommet 8-1 doit apporter une flottabilité T1 égale à TR + (Pt - F).Thus, without taking into account the weight of the tower, the central tendon 4, at the upper latch 41 is subjected to upward traction equal to F. This upward traction F is transmitted to the level of the cleat located just in underneath: - the central tendon is then subjected to an upward pulling force equal to 2F, which is thus transmitted step by step to the last stop and to the foundation 11 which are then subjected to traction equal to ΣF to the top. If now we consider the self-weight of the pipes 3-1,3-2,3-3,3-4 and the structure 4a, it is then exerted at the level of the upper bearing structure 4-1 a force downward compression ratio equal to Pt (weight of the tower). Thus, the upper portion of the tendon 4 located just below the upper structure 4-1 is subjected to a resultant compressive force substantially equal to Pt - F. And thus, the vertex 8-1 must bring an equal buoyancy T1 at T R + (Pt - F).

En pratique, pour une tour d'environ 1 000 mètres et en mettant en oeuvre des modules de flottabilité de 2 à 10 m de long, le nombre de modules peut aller de 100 à 400. On peut donc par approximation négliger F et considérer que la flottabilité T1 apportée le flotteur au sommet 8-1 est (TR + Pt) et doit représenter environ 110 à 150% du poids total de la tour.In practice, for a tower of about 1,000 meters and putting 2 to 10 m long buoyancy modules, the number of modules can range from 100 to 400. We can therefore, by approximation, neglect F and consider that the buoyancy T1 brings the float to the vertex 8-1 is (T R + Pt) and must represent about 110 to 150% of the total weight of the tower.

En outre, la fondation 11a doit reprendre la totalité des tractions qui s'exercent sur le tendon vertical 4, le long de sa hauteur, à savoir la tension résultante TR est égale 10 à 50% x Pt au sommet de la tour, additionnée au total des flottabilités F (IF), (TR + IF). La fondation 11a doit donc reprendre de 112 à 160% x Pt, alors que selon la présente invention, le flotteur 8 au sommet apporte une flottabilité propre T1 [(TR - (ΣF - Pt)] soit de (8 à 58% x Pt) et que la fondation 11 doit reprendre seulement la tension résultante TR au niveau du flotteur 8, à savoir 10 à 50% de Pt.In addition, the foundation 11a must take up all the tractions which are exerted on the vertical tendon 4, along its height, namely the resulting tension T R is equal to 50% x Pt at the top of the tower, added total float F (IF), (TR + IF). The foundation 11a must therefore recover from 112 to 160% x Pt, while according to the present invention, the float 8 at the top provides a clean buoyancy T1 [(T R - (ΣF - Pt)] is (8 to 58% x Pt) and that the foundation 11 must take only the resulting tension T R at float 8, namely 10 to 50% of Pt.

Le flotteur au sommet 8 selon l'invention doit donc apporter une flottabilité beaucoup moindre que selon l'art antérieur et la fondation 11 selon la présente invention doit également reprendre une force de tensionnement beaucoup moindre que celle de l'art antérieur.The float at the top 8 according to the invention must therefore provide a much lower buoyancy than according to the prior art and the foundation 11 according to the present invention must also take a tensioning force much less than that of the prior art.

Ainsi, pour Pt = 1000 T, avec 204 modules de flottabilité exerçant une traction unitaire de F = 5 Tonnes, ΣF = 1020 T et avec une tension verticale au sommet R = 20% du poids de la tour, soit 200 T, la fondation 11a de l'art antérieur est soumise à la force globale (ΣF + TR), soit 1200 T et le flotteur 8-1 de tête doit présenter une flottabilité d'environ 1200 T également.Thus, for Pt = 1000 T, with 204 buoyancy modules exerting a unit traction of F = 5 Tonnes, ΣF = 1020 T and with a vertical tension at the top R = 20% of the weight of the tower, ie 200 T, the foundation 11a of the prior art is subjected to the global force (ΣF + T R ), ie 1200 T and the head float 8-1 must have a buoyancy of about 1200 T also.

En revanche selon l'invention, la flottabilité propre du flotteur en tête est de [T1 = TR - (ΣF - Pt)], soit d'environ 180 T et la fondation 11 n'est soumise sensiblement qu'à la seule force de tensionnement de rappel TR de 200 T, soit des forces de flottabilité de flotteurs T1 et de reprise de tensionnement par la fondation (TR) environ 6 fois moindre que dans l'art antérieur.On the other hand, according to the invention, the buoyancy of the float at the head is [T1 = TR - (ΣF - Pt)], ie about 180 T, and the foundation 11 is subjected substantially only to the sole force of restoring tension T R of 200 T, that is, float buoyancy forces T1 and tension take-up by the foundation (T R ) approximately 6 times less than in the prior art.

Dans la description de la présente invention, on entend par poids total de la tour déduction faite de la flottabilité apportée par des éléments de flottabilité fixes éventuels intégrés à certains éléments de la structure de la tour, à savoir le poids de la structure supérieure 4a, celui des conduites 3-1,3-4 suspendues à la structure supérieure porteuse 4a incluant le poids des dispositifs du type col de cygne 7-1,7-2 , celui des manchettes coudées inférieures 3a et des connecteurs automatiques 9a-9b, ainsi que celui de l'articulation flexible de pied 5a et ladite structure inférieure 5, mais déduction faite de la flottabilité éventuelle apportée par les éléments de flottabilité fixes intégrés tel que le cas échéant, au niveau desdits cols de cygne, desdites structures supérieure 4a et inférieure 5, desdits connecteurs automatiques 9a-9b et de ladite articulation flexible 5a.In the description of the present invention, the total weight of the tower is deduced from the buoyancy provided by any fixed fixed buoyancy elements integrated in certain elements of the structure of the tower, namely the weight of the upper structure 4a, that of the lines 3-1,3-4 suspended to the upper carrier structure 4a including the weight of the gooseneck devices 7-1,7-2, the lower bends 3a and the automatic connectors 9a-9b, and that of the flexible foot joint 5a and said lower structure 5, but deduction made of the possible buoyancy provided by the integrated fixed buoyancy elements such as, where appropriate, at the level of said goosenecks, said upper structures 4a and lower 5, said automatic connectors 9a-9b and said flexible joint 5a.

Dans la présente invention, la tour est capable de rester verticale en l'absence du flotteur de tensionnement au sommet 8, comme représenté sur les figures 2 et 3A, alors que dans l'art antérieur, ledit flotteur doit être présent en permanence pour éviter toute mise en compression du tendon central. Cette disposition est particulièrement intéressante pour la phase d'installation et pour la maintenance du système, car en cas d'incident sur ledit flotteur de tête 8, comme représenté sur la figure 2, il suffit de purger les conduites verticales et les conduites flexibles, de déconnecter les flexibles du FPSO et de les maintenir en sub-surface grâce à une petite bouée reliée à un corps mort, de manière à réduire considérablement l'effort horizontal, donc l'angle α de la tour. De par le surcroit de flottabilité de la tour seule, cette dernière reste sensiblement verticale, et il est alors possible de déconnecter ledit flotteur de tête pour réparer, par exemple, un compartiment de flottabilité qui présenterait une fuite, donc une perte de flottabilité.In the present invention, the tower is able to remain vertical in the absence of the vertex tensioning float 8, as shown in FIGS. figures 2 and 3A , whereas in the prior art, said float must be permanently present to prevent compression of the central tendon. This arrangement is particularly interesting for the installation phase and for the maintenance of the system, because in the event of an incident on said head float 8, as shown in FIG. figure 2 Simply bleed the vertical lines and flexible lines, disconnect the hoses from the FPSO and keep them sub-surface thanks to a small buoy connected to a dead body, so as to reduce considerably the horizontal force, so the angle α of the tower. Due to the additional buoyancy of the tower alone, the latter remains substantially vertical, and it is then possible to disconnect said head float to repair, for example, a buoyancy compartment that would show a leak, so a loss of buoyancy.

Claims (10)

  1. A tower of the multi-riser hybrid type, the tower comprising:
    a) a vertical tension leg (4) secured at its top end to a carrier structure (4a) suitable for being suspended from a float, referred to as a "top" float (8), that is immersed in the subsurface, suspension preferably being via a chain or cable (8a), said tension leg being secured at its bottom end to a bottom guide structure (5) and being suitable for being fastened to a base member resting on the sea bed or to a foundation anchor that is preferably of the suction anchor type (11) embedded in the sea bottom, the bottom end connection preferably being via a flexible joint (5a);
    b) a plurality of rigid vertical pipes (3-1, 3-2) known as risers, the top end of each pipe or riser being secured to said carrier structure (4a), the bottom end of each said rigid pipe or riser being suitable for being connected to an undersea pipe (2-1, 2-2) resting on the sea bottom, the connection preferably being via automatic connectors between said bottom ends of the risers and the ends of the undersea pipes (2-1, 2-2), and preferably via bent sleeves (2a) and/or junction pipes (2bc);
    c) a plurality of guide means (22) for guiding said risers, said guide means and said bottom guide structure (5) being suitable for maintaining said risers arranged around said tension leg, preferably being distributed regularly and symmetrically around said tension leg; and
    d) buoyancy elements (21) co-operating with said tension leg, the buoyancy elements being distributed along said tension leg, and preferably being constituted by buoyancy elements that withstand undersea hydrostatic pressure, and more preferably being syntactic foam buoyancy elements; and
    e) said tower (3) comprises a plurality of buoyancy and guide modules (20, 20-1, 20-n) constituting a plurality of independent structures suitable for sliding along said risers, said structure (20) supporting said buoyancy elements (21) and guiding said risers in a preferably regularly and symmetrically distributed position around said tension leg,
    characterized in that said independent structures constituting said buoyancy and guide modules (20, 20-1, 20-n) are suitable for sliding along said tension leg.
  2. A tower according to claim 1, characterized in that, together, the buoyancy modules (20) provide accumulated buoyancy (ΣF) representing a traction force of magnitude greater than the total weight of the tower (Pt), preferably 102% to 110% of the total weight of the tower, and said top float (8) provides its own buoyancy (T1) such that T1 = TR - (ΣF - Pt), and said foundation (11) needs to accommodate at least the resultant traction (TR) at the top of the tower, TR representing the upward vertical resultant tension at the top float (8) equal to 5% to 50% of the total weight of the tower (Pt), preferably 10% to 20% of the total weight of the tower.
  3. A tower according to claim 1 or claim 2, characterized in that said buoyancy and guide modules (20, 20-1, 20-n) extend over a length lying in the range 2 m to 20 m and are at lest 50 in number, there preferably being 50 to 500 buoyancy modules for a tower having a height of at least 1000 m.
  4. A tower according to any one of claims 1 to 3, characterized in that said plurality of buoyancy and guide modules disposed one against another occupy no more than 75%, and preferably less than 50% of the length of the tower between said top carrier structure (4a) and the bottom guide structure (5) secured to the tension leg.
  5. A tower according to any one of claims 1 to 4, characterized in that the various buoyancy and guide modules (20, 20-1, 20-n) are connected to one another by links (30) suitable for preventing the first module (20-1) from moving away from said carrier structure (4a) and such that two consecutive modules (20-n, 20-n+1) do not move apart by more than a given maximum distance (d), which distance is preferably identical between the various modules, and said links (30) being of a length such that the various modules are distributed in substantially uniform manner over the entire length of the tower between said carrier structure (4a) and said bottom structure (5), the first module being linked to said carrier structure and the last module being located at said bottom structure (5) while said tower (3) is floating on the surface of the sea (13) when being towed by a ship (10-1, 10-2), with said links not preventing said modules from sliding upwards when said tower is up-ended and put into a vertical operating position in a said bottom-to-surface connection installation.
  6. A bottom-to-surface connection installation (1) between a plurality of undersea pipes (2-2, 2-2) resting on the sea bottom (12) and a floating support (10) on the surface (13), the installation comprising:
    1) a tower in accordance with any one of claims 1 to 5; and
    2) a plurality of connection pipes, preferably a plurality of flexible connection pipes (6-1, 6-2) between the top ends of said risers and the floating support (10), more preferably said flexible pipes being in the form of dipping catenaries, said flexible pipes (6-1, 6-2) being connected to the top end of said risers via swan-neck type devices (7-1, 7-2).
  7. A method of towing at sea a tower according to any one of claims 1 to 5, and a method of putting it into place in an installation according to claim 6, the method being characterized in that said tower floats on the surface while it is being towed by at least one surface ship (10-1, 10-2), said buoyancy and guide modules (20) being distributed along the entire length in preferably regularly distributed manner while spaced apart from one another, and after the tower has been up-ended, said buoyancy and guide modules slide upwards so as to be pressed one against another and preferably over only a fraction of the height of the tower.
  8. A buoyancy and guide module (20) for a tower according to any one of claims 1 to 5, the module comprising two end plates (22) connected together by ties (24) together with said section-member buoyancy elements (21) that are blocked and held in position between and by said two end plates, preferably forming a module presenting a circular cross-section, each end plate having a central orifice and peripheral orifice (23-1, 23-4), said peripheral orifices (23-1, 23-4) and said buoyancy elements (21) being of the same shapes and arranged around said central orifice (23) in preferably regular and symmetrically-distributed manner about said central orifice (23), said orifices (23, 23-1, 23-4) forming bushings suitable for passing said risers and a said tension leg, thereby enabling said modules to be guided in sliding.
  9. A buoyancy and guide module (20) according to claim 8, characterized in that each end plate comprises a plurality of end plate parts (22-1, 22-4) that are fixed to one another, preferably at least as many end plate parts as there are said peripheral orifices (23-1, 23-4), each end plate part being suitable for blocking and holding the longitudinal end of a said section-member buoyancy element (21).
  10. A buoyancy and guide module (20) according to claim 8 or claim 9, characterized in that it includes first resilient elements (25a) that are interposed preferably in the form of pads between the longitudinal ends of said buoyancy elements and said end plates at at least one of said longitudinal ends of the module and preferably also second resilient elements (25b) preferably in the form of pads on the outside face of at least one of the two end plates, so as to ensure that the buoyancy forces are distributed in more isostatic manner and are better transferred between pairs of consecutive modules.
EP10706303.4A 2009-02-26 2010-01-14 Bottom-surface connecting installation of the multi-riser hybrid tower type, comprising sliding buoyancy modules Active EP2401468B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0951218A FR2942497B1 (en) 2009-02-26 2009-02-26 MULTI-RISER HYBRID TILT-TYPE FLAT-SURFACE LINK INSTALLATION COMPRISING SLIDING FLOATING MODULES
PCT/FR2010/050057 WO2010097528A1 (en) 2009-02-26 2010-01-14 Bottom-surface connecting installation of the multi-riser hybrid tower type, comprising sliding buoyancy modules

Publications (2)

Publication Number Publication Date
EP2401468A1 EP2401468A1 (en) 2012-01-04
EP2401468B1 true EP2401468B1 (en) 2015-03-04

Family

ID=41100645

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10706303.4A Active EP2401468B1 (en) 2009-02-26 2010-01-14 Bottom-surface connecting installation of the multi-riser hybrid tower type, comprising sliding buoyancy modules

Country Status (4)

Country Link
EP (1) EP2401468B1 (en)
ES (1) ES2637445T3 (en)
FR (1) FR2942497B1 (en)
WO (1) WO2010097528A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2952671B1 (en) * 2009-11-17 2011-12-09 Saipem Sa INSTALLATION OF FUND-SURFACE CONNECTIONS DISPOSED IN EVENTAIL
FR2973473B1 (en) 2011-03-29 2014-06-13 Saipem Sa THERMAL INSULATION AND / OR RIGID FLOATABILITY MATERIAL FOR UNDERWATER DRIVING
US8657013B2 (en) * 2011-08-19 2014-02-25 Cameron International Corporation Riser system
FR2988424B1 (en) 2012-03-21 2014-04-25 Saipem Sa INSTALLATION OF MULTI-RISERS HYBRID TILT TYPE FOUNDATION SURFACE CONNECTIONS COMPRISING POSITIVE FLOATABLE FLEXIBLE DUCTS
WO2014130388A1 (en) 2013-02-20 2014-08-28 Emory University Methods of sequencing nucleic acids in mixtures and compositions related thereto
US9562399B2 (en) 2014-04-30 2017-02-07 Seahourse Equipment Corp. Bundled, articulated riser system for FPSO vessel
BR102018076868A2 (en) * 2018-12-21 2020-07-07 Odebrecht Óleo E Gás S.A. guide system on a hybrid lift tower, and hybrid lift tower
FR3106644B1 (en) 2020-01-24 2022-04-15 Matthieu Hoarau Pipe for supplying a hydrothermal energy production unit.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES491645A0 (en) * 1980-05-20 1981-05-16 Fayren Jose Marco INSTALLATION FOR THE PERFORATION AND EXPLOITATION OF MARINE OIL DEPOSITS LOCATED IN DEEP WATERS
FR2768457B1 (en) * 1997-09-12 2000-05-05 Stolt Comex Seaway DEVICE FOR UNDERWATER TRANSPORT OF PETROLEUM PRODUCTS WITH A COLUMN
FR2790054B1 (en) 1999-02-19 2001-05-25 Bouygues Offshore METHOD AND DEVICE FOR LOW-SURFACE LINKAGE BY SUBMARINE PIPELINE INSTALLED WITH LARGE DEPTH
WO2002053869A1 (en) * 2001-01-08 2002-07-11 Stolt Offshore S.A. Marine riser tower
US6896062B2 (en) * 2002-01-31 2005-05-24 Technip Offshore, Inc. Riser buoyancy system
GB0227851D0 (en) * 2002-11-29 2003-01-08 Stolt Offshore Sa Subsea structure and methods of construction and installation thereof
EP2345822B1 (en) 2004-08-02 2019-01-09 NTN Corporation Rolling bearing for rocker arm and rocker arm
GB0512471D0 (en) * 2005-06-18 2005-07-27 Stolt Offshore Sa Hybrid riser tower and methods of installation thereof
US20070044972A1 (en) * 2005-09-01 2007-03-01 Roveri Francisco E Self-supported riser system and method of installing same
GB0704670D0 (en) * 2006-11-08 2007-04-18 Acergy France Sa Hybrid tower and methods of installing same

Also Published As

Publication number Publication date
ES2637445T3 (en) 2017-10-13
FR2942497B1 (en) 2013-04-26
FR2942497A1 (en) 2010-08-27
EP2401468A1 (en) 2012-01-04
WO2010097528A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
EP2401468B1 (en) Bottom-surface connecting installation of the multi-riser hybrid tower type, comprising sliding buoyancy modules
EP2286056B1 (en) Bed-to-surface connector installation of a rigide tube with a flexible duct having positive flotation
EP1395731B1 (en) Underwater pipeline connection joined to a riser
EP1073823B1 (en) Method and device for linking surface to the seabed for a submarine pipeline installed at great depth
EP1501999B1 (en) Seafloor/surface connecting installation for a submarine pipeline which is connected to a riser by means of at least one elbow pipe element that is supported by a base
EP1899219B1 (en) Device for transfer of fluids between two floating supports
EP2844820B1 (en) Installation comprising seabed-to-surface connections of the multi-riser hybrid tower type, including positive-buoyancy flexible pipes
EP1917416B1 (en) Installation comprising at least two seafloor-surface connectors for at least two submarine pipelines resting on the seafloor
EP2785952B1 (en) Flexible multiple seabed-to-surface connections facility on at least two levels
EP2268887B1 (en) Inertia transition pipe element in particular for fixing a rigid submarine pipe
EP2571753B1 (en) Seabed-to-surface linking equipment including a flexible pipe guiding structure
FR2951800A1 (en) Pipe e.g. suspended type pipe, for pumping e.g. sea water, to produce ocean thermal energy, has maintaining frames located between consecutive tubular segments, and maintaining cables placed parallel to main axis and passing through frames
EP3265642B1 (en) Facility comprising at least two bottom-surface links comprising vertical risers connected by bars
WO2013093294A1 (en) Fluid transfer apparatus between a wellhead in the bed of a body of water and a surface structure
OA17101A (en) Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles à flottabilité positive.
WO2011048578A1 (en) Underwater pipe applied to the exploitation of ocean thermal energy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DI SILVESTRO, ROBERTO ANTONIO

Inventor name: JANCART, FABRICE

Inventor name: SZYSZKA, DAMIEN

Inventor name: PIONETTI, FRANCOIS-REGIS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140715

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 714079

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010022797

Country of ref document: DE

Effective date: 20150416

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 714079

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150604

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150605

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150706

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150704

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010022797

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

26N No opposition filed

Effective date: 20151207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010022797

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160802

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230120

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230123

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231229

Year of fee payment: 15