EP2398670A1 - Systeme et procede de gestion de recharge d'une batterie - Google Patents

Systeme et procede de gestion de recharge d'une batterie

Info

Publication number
EP2398670A1
EP2398670A1 EP10708316A EP10708316A EP2398670A1 EP 2398670 A1 EP2398670 A1 EP 2398670A1 EP 10708316 A EP10708316 A EP 10708316A EP 10708316 A EP10708316 A EP 10708316A EP 2398670 A1 EP2398670 A1 EP 2398670A1
Authority
EP
European Patent Office
Prior art keywords
battery
charge
charging
time
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10708316A
Other languages
German (de)
English (en)
Inventor
Denis Porcellato
Eric Breton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP2398670A1 publication Critical patent/EP2398670A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/32Constructional details of charging stations by charging in short intervals along the itinerary, e.g. during short stops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charging management system of an electric power storage battery power supply of an electric or hybrid power train of a vehicle.
  • the invention also relates to an associated recharge management method.
  • the present invention is intended in particular to increase the life of a battery while reducing the manufacturing cost of such a battery by avoiding its oversizing compared to the specifications for which the vehicle was designed.
  • ESS electrochemical storage sources
  • aging due to its use and calendar aging that corresponds to the intrinsic aging of the battery.
  • the aging of a battery is expressed by the gradual loss of performance in terms of energy and available power. Therefore, the battery must be oversized at the beginning of life so that it can always meet the specifications in terms of energy and end-of-life power.
  • the battery is an expensive component that must be dimensioned to the fair according to the specifications of the vehicle, to minimize the impact of its cost.
  • Batteries that are physicochemical components are particularly sensitive to state of charge and temperature.
  • state of charge and temperature The lower the storage or use temperature, the better the service life.
  • state of charge at which the battery is stored or used the better the service life.
  • Table 1 above illustrates life expectancy data calendar expressed in years for a Lithium battery according to the state of charge compared to its capacity of load for three temperatures 25 ° C, 45 C and 60 ° C.
  • the present invention therefore aims at providing a device and a battery management method for overcoming the technical disadvantages described above, to improve the life of a battery according to the different profiles of the vehicle, while allowing to size at most just the battery, depending on the specifications of the vehicle, to minimize the impact of its manufacturing cost.
  • the principle of the invention is to fully charge the electrochemical storage source but by programming its load so that it reaches the high load states just before its use so that it remains in the lowest charge states as long as possible in storage mode.
  • the invention therefore relates to a charging management system of an electric power storage battery power supply of an electric or hybrid power train of a vehicle. According to the invention, it comprises:
  • an electronic management computer for the battery for charging the battery this computer being connected in parallel with the battery and with means for charging the battery,
  • this electronic battery management calculator comprising means for receiving information transmitted from the data interface via the vehicle supervisor and the intelligent service box BSI, information processing means for determining a duration of immobilisation of the vehicle from this information and a duration of full charge of the battery from the initial state of charge of the battery and means for programming charging instructions of the battery according to the duration of immobilization with respect to the charging time for the battery to reach the highest state of charge just before use so that it remains in a low or low state of charge for as long as possible in storage.
  • the management system makes it possible to ensure that the battery in storage mode remains in a state of charge that is as low as possible for as long as possible, so that the system of the invention makes it possible to program the charge of the battery at a sufficient or full charge level for the use of the vehicle only before use, without automatically recharging the battery 100% immediately after use and leaving the battery in storage mode in a high state of charge, which would damage the battery and greatly reduces its service life.
  • the data interface comprises means for displaying data concerning, among other things, the state of charge of the battery before charging and at the end of charging, and means of data acquisition.
  • these data input means comprise a keypad, a remote control, or a voice recognition system.
  • the electronic management computer of the battery comprises an internal memory in which is recorded an abacus giving the charging time as a function of the initial state of charge of the battery.
  • said recharging means are constituted by a charging station and an onboard charger on board the vehicle.
  • the system includes a clock, this clock being integrated in the electronic management computer of the battery or in the supervisor.
  • the invention also relates to a method of managing the state of charge of a battery implementing the charging system as defined above. According to the invention, it comprises the following steps when the driver wishes to program the charging instructions of the battery in storage mode before the next use of the vehicle:
  • the state of charge of the battery is measured so as to know its remaining capacity
  • this information is transmitted by the vehicle supervisor to the electronic management computer of the battery which determines the duration of immobilization of the vehicle and the complete charging time of the battery;
  • the computer schedules battery charging instructions so that it reaches the highest state of charge just prior to its use; the instant t f so that it remains in a low state of charge or as low as possible in storage.
  • the management method comprises an additional step in which:
  • the temperature T m is measured within the battery
  • the electronic management computer of the battery recalculates the immobilization time of the vehicle which is the difference between the immobilization time of the vehicle calculated from the information returned by the driver and the time required for the temperature in the battery reaches the level allowing charging without damaging the battery.
  • the charging instructions consist in completely delaying the charge of the battery in the time of charging. so that it starts only at a time ti subsequent to t 0 and ends at the instant t f , the difference between the two instants t f -ti corresponding to the charge duration of the battery determined by the computer.
  • the charging instructions consist in defining at least four phases of charging the battery so that it starts charging at time t 0 corresponding to the initial moment of the immobilization phase of the vehicle and then reaches in state of charge level increments the highest state of charge (100 %) just before the instant t f corresponding to the use of the vehicle.
  • the instructions comprise four charging phases which are defined as follows:
  • phase 1 the load starts at t 0 , when the user has entered the date and time in the interface and ends when the state of charge of the battery reaches a predefined SOC1 state of charge ;
  • phase 2 the battery is kept idle at SOC1 for a duration t 2 -ti,
  • phase 3 the charge starts at t 2 and ends when the battery voltage reaches a value Uc at time t 3 ,
  • this phase 4 reaches a predetermined duration ⁇ t, ⁇ t being defined so that the charge ends at time t 4 , t 4 may be less than or equal to the instant t f indicated by the driver.
  • FIG. 2 represents a current and voltage profile of a battery charge as a function of time in the case of conventional battery charging management
  • Figure 3.A shows the profile of the state of charge of a battery and the profile of the corresponding charging current as a function of time. of a charged battery according to a first embodiment of the invention
  • Figure 3B illustrating the profile of the voltage and the current profile as a function of time corresponding to the charging phase of the battery
  • - Figure 4A shows the profile of the state of charge of a battery and the profile of the corresponding charging current as a function of the time of a charged battery according to a second embodiment of the invention
  • FIG. 4B illustrating the profile of the voltage and the profile of the current depending on the time corresponding to the charging phase of the battery.
  • FIG. 1 schematically show the architecture of a charging management system of a battery according to the invention.
  • the battery 5 is connected here to an electric motor 8.
  • An inverter 9 is arranged between the battery 5 and the electric motor 8 to ensure the transfer of energy between the two elements.
  • the battery is connected on the one hand to a fast charging station 7 such as the EDF electricity network, on the other hand to an on-board charger 6 in the vehicle.
  • This battery can be used in an electric or hybrid power train of a motor vehicle.
  • This management system also includes a data interface
  • This data interface 1 which can be for example a screen disposed at the level of the passenger compartment, accessible by the driver.
  • This data interface 1 is provided with a keypad or a remote control (not shown), or a voice recognition system (not shown), allowing the driver to enter the date and time of the next use of the vehicle or the period of immobilisation of the vehicle.
  • the system further comprises an electronic management computer battery 4 for charging the battery 5.
  • This computer 4 is interconnected between the data interface 1 and the battery.
  • This calculator is connected to a charging means such as a fast charging station 7 or an on-board charger 6.
  • This electronic charge management computer of the battery 4 comprises means for receiving the information transmitted from the data interface 1 via an intelligent servocontrol housing denoted BSI 2 and a vehicle supervisor 3, information processing means for determining a period of immobilization of the vehicle based on the information entered by the driver and a full charging time of the battery according to the initial state of charge of the battery and means for programming charging instructions of the battery 5 to reach the highest state of charge just prior to use so that it remains in a low or low state of charge for as long as possible in storage.
  • BSI 2 intelligent servocontrol housing denoted BSI 2 and a vehicle supervisor 3
  • information processing means for determining a period of immobilization of the vehicle based on the information entered by the driver and a full charging time of the battery according to the initial state of charge of the battery and means for programming charging instructions of the battery 5 to reach the highest state of charge just prior to use so that it remains in a low or low state of charge for as long as possible in storage.
  • This battery 5 is connected either to a fast charging terminal 7 or to the network via an on-board charger 6
  • the various technical means constituting the electronic management computer of the battery 4 are not shown in FIG.
  • the electronic management computer of the battery is associated with means for measuring the voltage, current and temperature of the battery.
  • the information such as the state of charge of the battery, the temperature thereof detected during the commissioning of this battery are also transmitted to the computer and stored in a data storage means, such as a memory internal to the calculator.
  • This information can also be displayed continuously on the interface, they can also be displayed at the request of the driver.
  • the calculator 4 determines the time that separates the moment of the next use from the moment when the information concerning the date and the time is entered at the interface by the driver.
  • Information such as the initial state of charge of the battery, the capacity of the battery, the current levels available by the on-board charger or the fast charging station which are stored in the internal memory of the computer then allow the battery of evaluate the full charging time of the battery.
  • the computer of the electronic management of the battery 4 can determine the state of health of the battery at any moment of its lifetime in order to know the real capacity drums.
  • An alternative solution is to enter into the computer 4 charts showing the charging time according to the initial state of charge of the battery depending on whether the battery is recharged by the on-board charger or by the fast charging station.
  • Another even simpler solution is to enter a preset value increasing the charging time regardless whether the load is through the charger or the fast charging station, or two predefined values increasing the charging time, one for charging with on-board charger, the other for a charge with the fast terminal.
  • the electronic management computer of the battery 4 can also receive the information concerning the temperatures measured within the battery to the computer.
  • a first operating situation where the temperatures measured within the battery do not oppose an immediate recharge, in this case the load can start immediately.
  • a second situation can be envisaged in which the level of temperatures measured within the battery is higher than the tolerated level and therefore opposes an immediate recharge.
  • the electronic management computer of the battery 4 as soon as the temperatures measured within the battery have reached levels allowing charging, recalculates the remaining downtime which is the difference between the calculated downtime from the information entered by the driver and the time required for the temperature level within the battery to reach T C harge- The calculator then estimates if the remaining immobilization time thus updated is greater than the duration of the load complete. If so, the electronic management computer of the battery 4 then makes the decision to completely defer the load or certain phases of the load and determines the time parameters of the modified load profile.
  • the computer 4 then schedules charging instructions of the battery so that it reaches the highest state of charge just before its use which corresponds to the instant t f so that it remains in a low state of charge or as low as possible in storage, when the vehicle is not in use.
  • the principle of this program is to modify the charging time profile of the conventional battery, to adapt it according to the driver's need for use.
  • These instructions are then sent by the computer as commands to the recharging means 6, 7 to control them.
  • Figure 2 illustrates an example of IU load time profile of a lithium battery, without charging strategy to optimize the calendar life. More precisely, FIG. 2 represents a first curve of the intensity of the charging current I (t) and a second curve of voltage U (t) between two times t 0 and t f .
  • the initial moment t 0 corresponds to the instant when the battery is connected to the network via the on-board charger 6 or to a fast charging terminal by the driver.
  • There is a first constant current charging phase 11 which starts immediately at t 0 until the instant t 2 , corresponding to a voltage value Uc, followed by a second phase at constant voltage Uc during which the current decreases to an intensity of If.
  • a first constant current charging phase 11 which starts immediately at t 0 until the instant t 2 , corresponding to a voltage value Uc, followed by a second phase at constant voltage Uc during which the current decreases to an intensity of If.
  • Figures 3.A and 3B illustrate the charging time profile of a battery according to a first embodiment of the invention.
  • Phase 1 the battery is kept at rest at its rest voltage U less than Uc, the charge state level SOC being equal to 0% here in this load example for a duration ti-1 0 ,
  • Phase 2 starts at instant t1 where it is charged at constant current 11 and ends when the voltage of the battery reaches the value Uc,
  • phase 3 constant voltage Uc ends at t f , corresponding to the moment entered by the driver, the charging time being equal to the difference between t f and ti.
  • the battery does not remain charged unnecessarily to 100%, it reaches its maximum state of charge only just before the use of the vehicle.
  • this load management mode does not allow the user to quickly have a minimum threshold state of charge allowing him immediate autonomy if he decides to use his vehicle before the time scheduled for load.
  • the computer programs the charging instructions so that the battery is charged in several phases.
  • the load starts at time tO, when the user has connected his vehicle and has entered the interface the date and time he wants to use his vehicle.
  • This is to allow the battery to quickly reach a state of charge SOC1 allowing a minimum available autonomy if the user needed the vehicle earlier than expected.
  • the level SOC1 can be a parameter predefined by the driver or by the computer.
  • the value 50% would be a good value, since it allows an appreciable autonomy value while reducing the effects of calendar aging according to Table 1.
  • the battery is idle at SOC1 and the charge resumes at t2 so that the charge ends at the time indicated by the user.
  • FIGS. 4A and 4B An example of charge time profiles obtained according to this second embodiment is illustrated in FIGS. 4A and 4B, there are four charging phases:
  • phase 1 the load starts at t 0 , when the user has entered the date and time in the interface and ends when the state of charge of the battery reaches a predefined SOC1 state of charge ;
  • phase 2 the battery is kept idle at SOC1 for a duration t 2 -ti,
  • phase 3 the charge starts at t 2 and ends when the battery voltage reaches a value Uc at time t 3 ,
  • this phase 4 reaches a prefixed duration ⁇ t, ⁇ t being defined so that the charge ends at the instant t 4 indicated by the driver.
  • this ⁇ t corresponds to t 4 -t 3 .
  • t 4 may be less than or equal to the instant t f indicated by the driver.
  • the charge ends a certain period before the date and time entered by the user, to ensure that the battery is indeed fully charged at the scheduled time of recovery of the vehicle.
  • This duration can for example be one hour.
  • a vehicle has a battery of 80 cells of nominal voltage
  • the battery temperature in run mode, parking mode and charge mode is 25 ° C.
  • the damage of the battery is compared in the case where the charging management system of the invention is used for damage when it has no charge management control.
  • Table 2 above illustrates, over a week, an example of the distribution of the hours spent at different battery charge states, assuming that the driver puts back in charge as soon as he arrives at his home:
  • the average damage coefficient calculated from the values in Table 3 by weighting the percentage of hours spent at each state of charge slice in Table 2 is 6.15.
  • Table 4 above shows, over one week, the distribution of the hours spent at the different states of charge of the battery:
  • the temperature is set at 25 ° C. It can be noticed that whatever the state of charge, the damage due to the temperature is the same for a battery (Table 5):
  • the battery in storage mode is no longer in a high charge state during the immobilization period of the vehicle.
  • the management of its refill is optimized so that it reaches the level of charge to 100% just before the use of the vehicle.
  • This type of charging management can significantly increase the battery life. Therefore it is no longer necessary to oversize the battery while allowing the vehicle to meet the specifications for which it was designed. This also reduces the cost of manufacturing the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

La présente invention concerne un système de gestion de recharge d'une batterie de stockage d'énergie électrique d'alimentation (5) d'une chaîne de traction électrique ou hybride d'un véhicule en phase d'immobilisation. Selon l'invention, il comprend : - une interface de données (1 ), - un calculateur de gestion électronique de la batterie (4), ce calculateur étant relié en parallèle à la batterie (5) et à des moyens de recharge de la batterie (6, 7), - un superviseur véhicule (3) reliant l'interface de données (1 ) au calculateur de gestion électronique de la batterie (4) par l'intermédiaire d'un boîtier de servitudes intelligent BSI (2), - ledit calculateur de gestion électronique de la batterie (4) comportant des moyens de réception d'informations émises à partir de l'interface de donnée (1 ) via le superviseur véhicule (3) et le boîtier de servitudes intelligent BSI (2), des moyens de traitement d'informations pour déterminer une durée d'immobilisation du véhicule à partir de ces informations et un durée de charge complète de la batterie à partir de l'état de charge initial de la batterie et des moyens pour programmer des consignes de charge de la batterie (6, 7) en fonction de la durée d'immobilisation par rapport à la durée de charge pour que la batterie atteigne l'état de charge le plus élevé juste avant son utilisation de sorte qu'elle reste dans un état de charge faible ou le plus bas le plus longtemps possible en stockage.

Description

SYSTEME ET PROCEDE DE GESTION DE RECHARGE D'UNE BATTERIE
La présente invention concerne un système de gestion de recharge d'une batterie de stockage d'énergie électrique d'alimentation d'une chaîne de traction électrique ou hybride d'un véhicule. L'invention concerne également un procédé de gestion de recharge associé.
La présente invention a notamment pour but d'augmenter la durée de vie d'une batterie tout en réduisant le coût de fabrication d'une telle batterie en évitant son surdimensionnement par rapport au cahier de charges pour lequel le véhicule a été conçu.
Un des objectifs actuels concernant les sources de stockage électrochimiques (SSE) est qu'elles puissent durer toute la durée de vie du véhicule, généralement entre 10 et 15 ans.
On distingue deux types de vieillissement : le vieillissement du fait de son utilisation et le vieillissement calendaire qui correspond au vieillissement intrinsèque de la batterie. Le vieillissement d'une batterie s'exprime par la perte progressive de performances en termes d'énergie et de puissance disponible. Par conséquent, la batterie doit être surdimensionnée en début de vie pour qu'elle puisse toujours répondre aux spécifications en termes d'énergie et de puissance en fin de vie. Or la batterie est un composant coûteux qui doit être dimensionné au plus juste en fonction du cahier des charges du véhicule, pour minimiser l'impact de son coût.
Les batteries qui sont des composants physico-chimiques sont particulièrement sensibles au niveau d'état de charge et à la température. Ainsi les deux principaux paramètres qui influencent la durée de vie calendaire et son vieillissement du fait de son utilisation sont l'état de charge et la température. Plus la température de stockage ou d'utilisation est basse, meilleure est la durée de vie. De même, plus l'état de charge à laquelle est stockée ou utilisée la batterie est bas, meilleur est la durée de vie. Le tableau 1 ci-dessus illustre les données concernant la durée de vie calendaire exprimée en année pour une batterie Lithium en fonction de l'état de charge par rapport à sa capacité de charge pour trois températures 25° C, 45 C et 60° C.
Tableau 1
II ressort de ce tableau que la durée de vie calendaire est passée de 17,7 ans à 25°C avec un état de charge à 50% à seulement 2,6 ans à 25°C avec un état de charge à 100%. Le paramètre du vieillissement calendaire est donc un paramètre qu'il ne faut pas négliger. En effet le véhicule est en mode parking 95% de son temps. Par conséquent, pour améliorer la durée de vie calendaire de la source de stockage, il est nécessaire d'optimiser la gestion de l'état de charge lorsque la batterie est en mode stockage. Dans l'état de la technique, pour les véhicules automobiles dont la motorisation fait appel complètement ou en partie à une source de stockage d'énergie électrique, il n'existe pas de gestion de l'état de charge de cette source de manière à optimiser son fonctionnement en fonction du besoin d'utilisation du véhicule. En particulier il n'existe pas de gestion de l'état de charge de la batterie lorsque le véhicule est en mode parking, en phase de non utilisation. Généralement, lorsque la batterie est branchée au réseau ou à une borne de charge rapide, cette source est chargée à pleine charge, c'est-à-dire à 100% lorsque le temps de charge est suffisant immédiatement, même si le véhicule n'est pas utilisé tout de suite dès la fin de charge. Une telle utilisation de la batterie, conformément aux données illustrées dans le tableau 1 , fait dégrader rapidement les performances de la source de stockage. Selon le tableau 1 , quelque soit la température de stockage, la durée de vie calendaire est divisée par un facteur de l'ordre de 7, si l'état de charge de stockage passe de 50% à 100%.
La présente invention vise donc à proposer un dispositif et un procédé de gestion de batterie permettant de palier les inconvénients techniques décrites ci-dessus, améliorer la durée de vie d'une batterie en fonction des différents profils du véhicule, tout en permettant ainsi de dimensionner au plus juste la batterie, en fonction du cahier des charges du véhicule, pour minimiser l'impact de son coût de fabrication. Pour cela, le principe de l'invention consiste à charger pleinement la source de stockage électrochimique mais en programmant sa charge pour qu'elle atteigne les états de charge élevées juste avant son utilisation afin qu'elle reste dans les états de charge les plus bas le plus longtemps possible en mode stockage. On entend par "batterie ou source de stockage en mode stockage" lorsque le véhicule est en mode parking. De cette façon, on améliore la durée de vie de la batterie.
Bien entendu, il est également nécessaire de garantir une température de stockage ou d'utilisation la plus basse possible en ayant un système de ventilation ou de climatisation efficace. A cet effet, l'invention concerne donc un système de gestion de recharge d'une batterie de stockage d'énergie électrique d'alimentation d'une chaîne de traction électrique ou hybride d'un véhicule. Selon l'invention, il comprend :
- une interface de données, - un calculateur de gestion électronique de la batterie destinée à la mise en charge de la batterie, ce calculateur étant relié en parallèle à la batterie et à des moyens de recharge de la batterie,
- un superviseur véhicule reliant l'interface de données au calculateur de gestion électronique de la batterie, par l'intermédiaire d'un Boîtier de Servitudes Intelligent (BSI),
- ce calculateur de gestion électronique de la batterie comportant des moyens de réception d'informations émises à partir de l'interface de donnée via le superviseur véhicule et le boîtier de servitudes intelligent BSI, des moyens de traitement d'informations pour déterminer une durée d'immobilisation du véhicule à partir de ces informations et un durée de charge complète de la batterie à partir de l'état de charge initial de la batterie et des moyens pour programmer des consignes de charge de la batterie en fonction de la durée d'immobilisation par rapport à la durée de charge pour que la batterie atteigne l'état de charge le plus élevé juste avant son utilisation de sorte qu'elle reste dans un état de charge faible ou le plus bas le plus longtemps possible en stockage.
Ainsi le système de gestion selon l'invention permet d'assurer que la batterie en mode de stockage reste dans un état de charge le plus bas possible le plus longtemps possible, de ce fait le système de l'invention permet de programmer la charge de la batterie à un niveau de charge suffisant ou plein pour l'utilisation du véhicule uniquement avant son utilisation, sans recharger automatiquement la batterie à 100% immédiatement après utilisation et laisser la batterie en mode de stockage dans un état de charge élevé, ce qui endommagerait la batterie et diminue fortement sa durée de vie.
Selon une forme de réalisation de l'invention, l'interface de données comporte des moyens d'affichage de données concernant entre autres l'état de charge de la batterie avant la charge et en fin de charge et des moyens de saisie de données. De manière générale, ces moyens de saisie de données comprennent un clavier numérique, une télécommande, ou un système à reconnaissance vocale.
Selon une forme de réalisation de l'invention, le calculateur de gestion électronique de la batterie comporte une mémoire interne dans laquelle est enregistré un abaque donnant la durée de charge en fonction de l'état initial de charge de la batterie.
Selon une forme de réalisation, lesdits moyens de recharge sont constitués par une borne de recharge et par un chargeur embarqué à bord du véhicule. En outre, le système comporte une horloge, cette horloge étant intégrée dans le calculateur de gestion électronique de la batterie ou dans le superviseur.
L'invention concerne également un procédé de gestion de l'état de charge d'une batterie mettant en œuvre le système de recharge tel que défini ci-dessus. Selon l'invention, il comporte les étapes suivantes lorsque le conducteur souhaite programmer les consignes de charge de la batterie en mode stockage avant la prochaine utilisation du véhicule:
- on mesure l'état de charge de la batterie pour connaître sa capacité restante,
- on rentre la date et l'heure de la prochaine utilisation correspondant à l'instant tf,
- ces informations sont transmises par le superviseur véhicule au calculateur de gestion électronique de la batterie qui détermine la durée d'immobilisation du véhicule et la durée de charge complète de la batterie ;
- en fonction de la durée d'immobilisation du véhicule par rapport à la durée de la charge complète, le calculateur programme des consignes de charge de la batterie pour qu'elle atteigne l'état de charge le plus élevé juste avant son utilisation, à l'instant tf de sorte qu'elle reste dans un état de charge faible ou le plus bas le plus longtemps possible en stockage.
De manière avantageuse, le procédé de gestion comporte une étape supplémentaire dans laquelle :
- on mesure la température Tm au sein de la batterie
- on compare la valeur de cette température mesurée à une valeur de température TCharge permettant une recharge sans endommager la batterie préenregistrée dans la mémoire interne du calculateur,
- lorsque la valeur mesurée Tm est supérieure à la valeur préenregistrée TCharge, le calculateur de gestion électronique de la batterie recalcule la durée d'immobilisation du véhicule qui est la différence entre la durée d'immobilisation du véhicule calculée à partir des informations rentrées par le conducteur et le temps nécessaire pour que la température au sein de la batterie atteigne le niveau permettant la recharge sans endommager la batterie.
Selon un mode de mise en œuvre du procédé de l'invention, lorsque le calculateur détermine que la durée d'immobilisation est supérieure à la durée de la charge, les consignes de charge consistent à différer intégralement la charge de la batterie dans le temps de sorte qu'elle démarre uniquement à un instant ti postérieur à t0 et se termine à l'instant tf, la différence entre les deux instants tf-ti correspondant à la durée de charge de la batterie déterminée par le calculateur. Selon un autre mode de mise en œuvre du procédé de l'invention, lorsque le calculateur détermine que la durée d'immobilisation est supérieure à la durée de la charge, les consignes de charge consistent à définir au moins quatre phases de charge de la batterie de sorte qu'elle démarre la charge à l'instant t0 correspondant à l'instant initial de la phase d'immobilisation du véhicule et atteint ensuite par paliers de niveau d'état de charge l'état de charge le plus élevé (100%) juste avant l'instant tf correspondant à l'utilisation du véhicule.
De préférence, les consignes comprennent quatre phases de charge qui sont définies de la manière suivante :
- phase 1 : la charge démarre à t0, instant où l'utilisateur a rentré la date et l'heure dans l'interface et se termine lorsque l'état de charge de la batterie atteint un niveau d'état de charge SOC1 prédéfini ;
- phase 2 : la batterie est maintenue au repos à SOC1 pendant une durée t2-ti,
- phase 3 : la charge démarre à t2 et se termine lorsque la tension de la batterie atteint une valeur Uc à l'instant t3,
-phase 4 : la charge à tension constante Uc se termine dès que l'un des deux critères est atteint : - soit lorsque l'intensité qui décroît durant cette phase atteint le seuil de coupure If,
- soit lorsque la durée de cette phase 4 atteint une durée préfixée Δt, Δt étant défini de sorte que la charge se termine à l'instant t4, t4 pouvant être inférieur ou égal à l'instant tf indiqué par le conducteur.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention :
- Figurel représente schématiquement un système de gestion de recharge d'une batterie selon l'invention ;
- Figure 2 représente un profil en courant et en tension d'une charge la batterie en fonction du temps dans le cas d'une gestion classique de recharge d'une batterie ;
- Figure 3.A représente le profil de l'état de charge d'une batterie et le profil du courant de charge correspondant en fonction du temps d'une batterie chargé selon un premier mode de réalisation de l'invention, Figure 3B illustrant le profil de la tension et le profil du courant en fonction du temps correspondant à la phase de charge de la batterie, - Figure 4A représente le profil de l'état de charge d'une batterie et le profil du courant de charge correspondant en fonction du temps d'une batterie chargé selon un deuxième mode de réalisation de l'invention, Figure 4B illustrant le profil de la tension et le profil du courant en fonction du temps correspondant à la phase de charge de la batterie.
La Figure 1 montrent schématiquement l'architecture d'un système gestion de recharge d'une batterie selon l'invention. La batterie 5 est reliée ici à un moteur électrique 8. Un onduleur 9 est agencé entre la batterie 5 et le moteur électrique 8 pour assurer le transfert d'énergie entre les deux éléments. La batterie est connectée d'une part à une borne de recharge 7 rapide tel que le réseau électrique EDF, d'autre part à un chargeur embarqué 6 dans le véhicule. Cette batterie peut être utilisée dans une chaîne de traction électrique ou hybride d'un véhicule automobile. Ce système de gestion comporte également une interface de données
1 qui peut être par exemple un écran disposé au niveau de l'habitacle, accessible par le conducteur. Cette interface de donnée 1 est pourvue d'un clavier numérique ou d'une télécommande (non représentée), ou d'un système à reconnaissance vocale (non représenté), permettant au conducteur de rentrer la date et l'heure de la prochaine utilisation du véhicule ou la durée d'immobilisation du véhicule.
Pour gérer la recharge de cette batterie, le système comporte en outre un calculateur de gestion électronique de la batterie 4 destiné à la mise en charge de la batterie 5. Ce calculateur 4 est interconnecté entre l'interface de données 1 et la batterie. Ce calculateur est relié à un moyen de recharge tel qu'une borne de recharge rapide 7 ou un chargeur embarqué 6.
Ce calculateur de gestion électronique de recharge de la batterie 4 comporte des moyens de réception des informations émises à partir de l'interface de données 1 via un boîtier de servitudes intelligent noté BSI 2 et un superviseur véhicule 3, des moyens de traitement d'informations pour déterminer une durée d'immobilisation du véhicule à partir des informations saisies par le conducteur et une durée de charge complète de la batterie en fonction de l'état de charge initial de la batterie et des moyens pour programmer des consignes de charge de la batterie 5 pour qu'elle atteigne l'état de charge le plus élevé juste avant son utilisation de sorte qu'elle reste dans un état de charge faible ou le plus bas le plus longtemps possible en stockage.
Cette batterie 5 est connectée soit à une borne de recharge rapide 7 soit au réseau via un chargeur embarqué 6 Les différents moyens technique constituant le calculateur de gestion électronique de la batterie 4 ne sont pas représentés sur la Figure 1.
Le calculateur de gestion électronique de la batterie est associé à des moyens de mesure de la tension, de courant et de température de la batterie. De cette façon, les informations telles que l'état de charge de la batterie, la température de celle-ci relevée lors de la mise en service de cette batterie sont également transmises au calculateur et stockées dans un moyen de stockage de données, telle qu'une mémoire interne au calculateur. Ces informations peuvent être également affichées de manière continue sur l'interface, elles peuvent être également affichées à la demande du conducteur.
Lorsque le conducteur rentre la durée d'immobilisation ou la date et l'heure de la prochaine utilisation du véhicule afin de programmer les consignes de recharge de la batterie, cette information est transmise par l'intermédiaire du BSI 2 et du superviseur véhicule 3 vers le calculateur 4. Le calculateur 4 détermine la durée qui sépare le moment de la prochaine utilisation du moment où est rentrée l'information concernant la date et l'heure à l'interface par le conducteur. Les informations telles que l'état de charge initial de la batterie, la capacité de la batterie, les niveaux de courants disponibles par le chargeur embarqué ou la borne de recharge rapide qui sont stockées dans la mémoire interne du calculateur permettent alors à la batterie d'évaluer la durée de charge complète de la batterie.
Pour affiner l'estimation de la durée de charge, il est possible de demander au calculateur de la gestion électronique de la batterie 4 de déterminer l'état de santé de la batterie à tout moment de sa durée de vie afin de connaître la capacité réelle de la batterie. Une solution alternative consiste à renter dans le calculateur 4 des abaques donnant la durée de charge en fonction de l'état de charge initial de la batterie selon que la batterie est rechargée par le chargeur embarqué ou par la borne de recharge rapide. Une autre solution encore plus simple consiste à rentrer une valeur prédéfinie majorant la durée de charge indifféremment selon que la charge se fasse par le chargeur ou par la borne de recharge rapide, ou deux valeurs prédéfinies majorant la durée de charge, une pour une recharge avec chargeur embarqué, l'autre pour une charge avec la borne rapide. De manière avantageuse, le calculateur de gestion de électronique de la batterie 4 peut également recevoir l'information concernant les températures mesurées au sein de la batterie au calculateur. Il est alors possible d'envisager une étape de stabilisation de la température au sein de la batterie avant de la recharger. Pour cela, on prédéfini un niveau de température permettant une recharge sans endommager la batterie. La valeur de cette température TCharge est préenregistrée dans la mémoire interne du calculateur 4. Dans ce cas, en tenant compte du paramètre de la température, on peut considérer deux situations de fonctionnement.
Une première situation de fonctionnement où les températures mesurées au sein de la batterie ne s'opposent pas à une recharge immédiate, dans ce cas la charge peut démarrer tout de suite.
On peut envisager une deuxième situation où le niveau des températures mesurées au sein de la batterie est supérieur au niveau toléré et s'oppose donc à une recharge immédiate. Dans ce cas, le calculateur de gestion électronique de la batterie 4, dès que les températures mesurées au sein de la batterie auront atteint des niveaux permettant la recharge, recalcule la durée d'immobilisation restante qui est la différence entre la durée d'immobilisation calculée à partir des informations rentrées par le conducteur et le temps nécessaire pour que le niveau de la température au sein de la batterie atteigne TCharge- Le calculateur estime alors si la durée restante d'immobilisation ainsi réactualisée est supérieure à la durée de la charge complète. Si oui, le calculateur de gestion électronique de la batterie 4 prend alors la décision de différer intégralement la charge ou certaines phases de la charge et détermine les paramètres temporels du profil de charge modifié. Le calculateur 4 programme alors des consignes de charge de la batterie pour qu'elle atteigne l'état de charge le plus élevé juste avant son utilisation qui correspond à l'instant tf de sorte qu'elle reste dans un état de charge faible ou le plus bas le plus longtemps possible en stockage, lorsque le véhicule n'est pas utilisé. Le principe de ce programme consiste à modifier le profil temporel de charge de la batterie conventionnel, de l'adapter en fonction du besoin d'utilisation du conducteur. Ces consignes sont ensuite envoyées par le calculateur sous forme de commandes vers les moyens de recharge 6, 7 pour les piloter. La figure 2 illustre un exemple de profil temporel de charge IU d'une batterie lithium, sans stratégie de recharge pour optimiser la durée de vie calendaire. Plus précisément, la Figure 2 représente une première courbe de l'intensité du courant de charge l(t) et une deuxième courbe de tension U(t) entre deux instants t0 et tf. L'instant initial t0 correspond à l'instant où la batterie est connectée au réseau via le chargeur embarqué 6 ou à une borne de charge rapide par le conducteur. On distingue une première phase de charge à courant constant 11 qui démarre immédiatement à t0 jusqu'à l'instant t2, correspondant à une valeur de tension Uc, suivie d'une deuxième phase à tension constante Uc au cours de laquelle le courant décroît jusqu'à atteindre une intensité If. Généralement il existe deux critères de fin de charge : soit lorsque l'intensité qui décroît durant cette deuxième phase atteint la valeur If prédéfinie soit lorsque la durée de cette deuxième phase à tension constante Uc atteint la durée fixée préalablement Δt correspondant à tf - 12. La durée II ressort clairement de ce profil temporel de charge que la charge n'est pas différée mais démarre dès que le véhicule est connecté au réseau ou à la borne de recharge rapide et la batterie est ensuite chargée en continue. De ce fait, la batterie reste chargée à 100% bien avant la prochaine utilisation et va rester dans cet état pendant toute la durée d'immobilisation du véhicule. Une telle utilisation de la batterie, conformément aux données illustrées dans le tableau 1 , fait dégrader rapidement les performances de la batterie et réduire sa durée de vie.
Les Figures 3.A et 3B illustrent le profil temporel de charge d'une batterie selon un premier mode de réalisation de l'invention. Le calculateur programme des consignes de charge de sorte de différer intégralement dans le temps la charge de sorte qu'elle démarre uniquement à l'instant ti et se termine à tf correspondant à la date et à l'heure programmées par le conducteur. Cet instant ti est déterminé en connaissant la durée de la charge et la durée d'immobilisation totale du véhicule. On suppose ici que la batterie est complètement déchargée et qu'elle se trouve à un état de charge SOC = 0% avant la mise en charge.
On distingue sur ces figures 3A et 3B trois phases :
- Phase 1 : la batterie est maintenue au repos à sa tension de repos U inférieur à Uc, le niveau d'état de charge SOC étant égal à 0% ici dans cet exemple de charge pendant une durée ti - 10,
- Phase 2 : la phase 2 démarre à l'instant t1 où on charge à courant constant 11 et se termine lorsque la tension de la batterie atteint la valeur Uc,
- Phase 3 : la phase 3 à tension constante Uc se termine à tf, correspondant à l'instant rentré par le conducteur, la durée de charge étant égal à la différence entre tf et ti .
Ainsi en mettant en oeuvre le système de gestion de l'invention, la batterie ne reste pas chargée inutilement à 100%, elle atteint son niveau d'état de charge maximal seulement juste avant l'utilisation du véhicule. Toutefois, ce mode de gestion de charge ne permet pas à l'utilisateur de disposer rapidement d'un seuil minimal d'état de charge lui permettant une autonomie dans l'immédiat s'il décide d'utiliser son véhicule avant la durée programmée pour la charge.
Pour palier cet inconvénient, on préconise un deuxième mode de réalisation de l'invention illustré sur les Figures 4A et 4B. Dans ce deuxième mode de réalisation, le calculateur programme les consignes de charge de sorte que la batterie est chargée en plusieurs phases. Contrairement au mode de réalisation décrit précédemment, ici la charge démarre à l'instant tO, instant où l'utilisateur a connecté son véhicule et a rentré dans l'interface la date et l'heure à laquelle il souhaite utiliser son véhicule. Ceci a pour objectif de permettre à la batterie d'atteindre rapidement un état de charge SOC1 permettant une autonomie disponible minimale si l'utilisateur avait besoin du véhicule plus tôt que prévu. Le niveau SOC1 peut être un paramètre prédéfini par le conducteur ou par le calculateur. La valeur 50% serait une bonne valeur, puisqu'elle permet une valeur d'autonomie appréciable tout en réduisant les effets du vieillissement calendaire d'après le tableau 1. Ensuite la batterie est maintenue au repos à SOC1 et la charge reprend à t2 de manière à ce que la charge se termine à l'heure indiquée par l'utilisateur.
Un exemple de profils temporels de charge obtenus selon ce deuxième mode de réalisation est illustré sur les Figures 4A et 4B, on distingue 4 phases de charge :
- phase 1 : la charge démarre à t0, instant où l'utilisateur a rentré la date et l'heure dans l'interface et se termine lorsque l'état de charge de la batterie atteint un niveau d'état de charge SOC1 prédéfini ;
- phase 2 : la batterie est maintenue au repos à SOC1 pendant une durée t2-ti,
- phase 3 : la charge démarre à t2 et se termine lorsque la tension de la batterie atteint une valeur Uc à l'instant t3,
-phase 4 : la charge à tension constante Uc se termine dès que l'un des deux critères est atteint : - soit lorsque l'intensité qui décroît durant cette phase atteint le seuil de coupure lf,
- soit lorsque la durée de cette phase 4 atteint une durée préfixée Δt, Δt étant défini de sorte que la charge se termine à l'instant t4 indiqué par le conducteur. Sur les Figures 4A et 4B, ce Δt correspond à t4-t3. Ainsi t4 peut être inférieur ou égal à l'instant tf indiqué par le conducteur.
On peut prévoir également que la charge se termine à une certaine durée avant la date et l'heure rentrées par l'utilisateur, afin de s'assurer que la batterie est effectivement complètement chargée à l'instant programmé de la reprise du véhicule. Cette durée peut par exemple être une heure.
Un exemple d'application du système et du procédé de gestion de la recharge d'une batterie selon l'invention est décrit ci-dessus :
Un véhicule comporte une batterie de 80 cellules lithium de tension nominale
3,5V et de capacité de 80Ah (énergie totale 22kWh).
On fait l'hypothèse que ce véhicule a une consommation moyenne de
150Wh/km. L'autonomie de ce véhicule est de 150km.
On fait l'hypothèse également que la température de la batterie en mode de roulage, en mode parking et en mode de charge est de 25°C. Dans cet exemple, on compare l'endommagement de la batterie dans le cas où on utilise le système de gestion de recharge de l'invention à l'endommagement lorsqu'il n'a pas de contrôle de gestion de la recharge.
1 ) Coefficient d'endommagement de la batterie lorsqu'il n'a pas de contrôle de gestion de la recharge :
Le tableau 2 ci-dessus illustre sur une semaine un exemple de distribution des heures passées aux différents états de charge de la batterie en supposant que le conducteur remet en charge dès qu'il arrive le soir à son domicile :
Tableau 2
Les coefficients d'endommagement à 25°C en prenant le coefficient égal à 1 correspondant à une durée de vie de 17,7 ans sont résumés dans le tableau 3.
Tableau 3
Le coefficient d'endommagennent moyen calculé à partir des valeurs du tableau 3 en pondérant du pourcentage des heures passées à chaque tranche de l'état de charge du tableau 2 est égal à 6,15.
Ainsi cette distribution des heures de la semaine en fonction de l'état de charge en absence du système de gestion de recharge de la batterie diminue la durée de vie d'un facteur 6,15, soit 2,8 ans.
2) Coefficient d'endommagement de la batterie en mettant en œuyre le premier mode de réalisation du procédé de gestion de recharge :
Dans cet exemple, on suppose que le conducteur a choisi d'utiliser le premier mode de réalisation du procédé de gestion de recharge consistant à différer dans le temps intégralement la recharge.
Le tableau 4 ci-dessus représente sur une semaine la distribution des heures passées aux différents états de charge de la batterie :
Tableau 4
Le coefficient d'endommagement moyen calculé à partir des valeurs du tableau 4 en pondérant du pourcentage des heures passées à chaque tranche de l'état de charge est égal à 4,90 : 0,12*6,8 + 0,39*5,5 + 0,41 *4,1 + 0,08*3,2 = 4,90 (le coefficient 1 correspondant à une durée de vie de 17,7ans).
Ainsi le gain apporté en utilisant le système de gestion de recharge de la batterie appropriée par rapport au mode de recharge conventionnel dans lequel la batterie est chargée automatiquement à 100% après utilisation sur la durée de vie de la batterie est de 6,15/4,90 = 1 ,25 soit 25% de gain en durée de vie.
Dans l'exemple ci-dessus, la température est fixée à 25°C. Or on peut remarquer que quelque soit l'état de charge, l'endommagement dû à la température est le même pour une batterie (Tableau 5) :
Tableau 5
Le passage de 25°C à 45°C cause un endommagement de 2,8 et le passage de 25°C à 600C un endommagement voisin de 5,8 quelque soit le niveau d'état de charge.
Par conséquent on peut en déduire que quelque soit la température, de la batterie, le gain apporté ou le rapport entre l'endommagement sans stratégie de gestion de recharge et l'endommagement en appliquant le système de gestion de recharge de l'invention restera le même.
Ainsi grâce au système de gestion de recharge de la batterie selon l'invention, la batterie en mode stockage n'est plus dans un état de charge élevée pendant la durée d'immobilisation du véhicule. La gestion de sa recharge est optimisée de sorte qu'elle atteigne le niveau de charge à 100% uniquement juste avant l'utilisation du véhicule. Ce type de gestion de recharge permet d'augmenter considérablement la durée de vie de la batterie. Par conséquent il n'est plus nécessaire de surdimensionner la batterie tout en permettant au véhicule de répondre au cahier des charges pour lequel elle a été conçue. Ceci permet également de réduire le coût de fabrication de la batterie.

Claims

REVENDICATIONS
1. Système de gestion de recharge d'une batterie de stockage d'énergie électrique d'alimentation (5) d'une chaîne de traction électrique ou hybride d'un véhicule, caractérisé en ce qu'il comprend :
- une interface de données (1 ),
- un calculateur de gestion électronique de la batterie (4), ce calculateur étant relié en parallèle à la batterie (5) et à des moyens de recharge de la batterie (6, 7), - un superviseur véhicule (3) reliant l'interface de données (1 ) au calculateur de gestion électronique de la batterie (4) par l'intermédiaire d'un boîtier de servitudes intelligent BSI (2),
- ledit calculateur de gestion électronique de la batterie (4) comportant des moyens de réception d'informations émises à partir de l'interface de donnée (1 ) via le superviseur véhicule (3) et le boîtier de servitudes intelligent BSI (2), des moyens de traitement d'informations pour déterminer une durée d'immobilisation du véhicule à partir de ces informations et une durée de charge complète de la batterie à partir de l'état de charge initial de la batterie et des moyens pour programmer des consignes de charge de la batterie (6, 7) en fonction de la durée d'immobilisation par rapport à la durée de charge pour que la batterie atteigne l'état de charge le plus élevé juste avant son utilisation de sorte qu'elle reste dans un état de charge faible ou le plus bas le plus longtemps possible en stockage.
2. Système selon la revendication 1 , caractérisé en ce que l'interface de données (1 ) comporte des moyens d'affichage de données, ces données concernant entre autres l'état de charge de la batterie avant la charge et en fin de charge et des moyens de saisie de données.
3. Système selon la revendication 2, caractérisé en ce que les moyens de saisie de données comprennent un clavier numérique ou une télécommande, ou un système à reconnaissance vocale.
4. Système selon l'une des revendications 1 à 3, caractérisé en ce que le calculateur comporte une mémoire interne dans laquelle est enregistré un abaque donnant la durée de charge en fonction de l'état initial de charge de la batterie.
5. Système selon l'une des revendications 1 à 4, caractérisé en ce que lesdits moyens de recharge sont constitués par une borne de recharge (7) et/ou par un chargeur embarqué (6) destiné à relier la batterie (5) à un réseau.
6. Système selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte une horloge, cette horloge étant intégrée dans le calculateur de gestion électronique de la batterie (4) ou dans le superviseur véhicule (3).
7. Procédé de gestion de l'état de charge d'une batterie (5) mettant en œuvre le système de recharge défini selon l'une des revendications 1 à 6, caractérisé en ce qu'il comporte les étapes suivantes lorsque le conducteur souhaite programmer les consignes de charge de la batterie en mode stockage avant la prochaine utilisation du véhicule:
- on mesure l'état de charge de la batterie pour connaître sa capacité restante, - on rentre la date et l'heure de la prochaine utilisation correspondant à l'instant tf,
- l'ensemble de ces informations sont transmises par le superviseur véhicule (3) au calculateur de gestion électronique de la batterie (4) qui détermine la durée d'immobilisation du véhicule et la durée de charge complète de la batterie ;
- en fonction de la durée d'immobilisation du véhicule par rapport à la durée de la charge complète, le calculateur (4) programme des consignes de charge de la batterie pour qu'elle atteigne l'état de charge le plus élevé juste avant son utilisation, à l'instant tf de sorte qu'elle reste dans un état de charge faible ou le plus bas le plus longtemps possible en stockage.
8. Procédé de gestion selon la revendication 7, caractérisé en ce qu'il comporte une étape supplémentaire dans laquelle :
- on mesure la température Tm au sein de la batterie (5) - on compare la valeur de cette température mesurée à une valeur de température TCharge permettant une recharge sans endommager la batterie préenregistrée dans la mémoire interne du calculateur (4),
- lorsque la valeur mesurée Tm est supérieure à la valeur préenregistrée TCharge, le calculateur de gestion électronique de la batterie (4) recalcule la durée d'immobilisation du véhicule qui est la différence entre la durée d'immobilisation du véhicule calculée à partir des informations rentrées par le conducteur et le temps nécessaire pour que la température au sein de la batterie atteigne le niveau permettant la recharge sans endommager la batterie.
9. Procédé de gestion selon la revendication 7 ou 8, caractérisé en ce que lorsque le calculateur détermine que la durée d'immobilisation du véhicule est supérieure à la durée de la charge complète, les consignes de charge consistent à différer intégralement la charge de la batterie dans le temps de sorte qu'elle démarre uniquement à l'instant ti et se termine à la date et à l'heure rentrées par l'utilisateur tf, la différence entre les deux instants tf-ti correspondant à la durée de charge de la batterie déterminée par le calculateur.
10. Procédé de gestion selon la revendication 7, caractérisé en ce que lorsque la durée d'immobilisation du véhicule est supérieure à la durée de charge complète, les consignes de charge consistent à définir au moins quatre phases de charge de la batterie de sorte qu'elle démarre la charge à l'instant t0 correspondant à l'instant initial de la phase d'immobilisation du véhicule et atteint ensuite l'état de charge le plus élevé (100%) juste avant l'utilisation du véhicule par paliers de niveau d'état de charge et se termine à l'instante tf.
11. procédé de gestion selon la revendication 10, caractérisé en ce que les consignes de charge comprennent quatre phases de charge qui sont définies de la manière suivante :
- phase 1 : la charge démarre à t0 et se termine lorsque l'état de charge de la batterie atteint un niveau d'état de charge SOC1 prédéfini ;
- phase 2 : la batterie est maintenue au repos à SOC1 pendant une durée t2-ti, - phase 3 : la charge démarre à t2 et se termine lorsque la tension de la batterie atteint une valeur Uc à l'instant t3,
-phase 4 : la charge à tension constante Uc se termine dès que l'un des deux critères est atteint : - soit lorsque l'intensité qui décroît durant cette phase atteint le seuil de coupure lf,
- soit lorsque la durée de cette phase 4 atteint une durée préfixée Δt, Δt étant défini de sorte que la charge se termine à l'instant t4, t4 pouvant être inférieur ou égal à l'instant tf indiqué par le conducteur.
EP10708316A 2009-02-17 2010-02-09 Systeme et procede de gestion de recharge d'une batterie Withdrawn EP2398670A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0951003A FR2942358B1 (fr) 2009-02-17 2009-02-17 Systeme et procede de gestion de recharge d'une batterie
PCT/FR2010/050216 WO2010094875A1 (fr) 2009-02-17 2010-02-09 Systeme et procede de gestion de recharge d'une batterie

Publications (1)

Publication Number Publication Date
EP2398670A1 true EP2398670A1 (fr) 2011-12-28

Family

ID=41227203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10708316A Withdrawn EP2398670A1 (fr) 2009-02-17 2010-02-09 Systeme et procede de gestion de recharge d'une batterie

Country Status (4)

Country Link
EP (1) EP2398670A1 (fr)
CN (1) CN102317103B (fr)
FR (1) FR2942358B1 (fr)
WO (1) WO2010094875A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021185480A1 (fr) 2020-03-20 2021-09-23 Perkins Engines Company Limited Charge de véhicules électriques et machines de construction
WO2021185479A1 (fr) 2020-03-20 2021-09-23 Perkins Engines Company Limited Charge de véhicules électriques et de machines de construction

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967303B1 (fr) * 2010-11-05 2013-04-12 Renault Sa Procede de charge pour une batterie d'alimentation d'un moteur d'entrainement d'un vehicule automobile
JP5982736B2 (ja) * 2011-03-30 2016-08-31 ソニー株式会社 蓄電装置、蓄電方法およびプログラム
US9321352B2 (en) 2011-10-24 2016-04-26 Arpin Renewable Energy, LLC Solar auxiliary power systems for vehicles
FR2989839B1 (fr) * 2012-04-19 2016-01-01 Peugeot Citroen Automobiles Sa Procede d'optimisation de la recharge de batteries en cours de stockage
US9056552B2 (en) * 2012-10-31 2015-06-16 GM Global Technology Operations LLC Method and system for charging a plug-in electric vehicle
FR3021613B1 (fr) * 2014-05-27 2017-11-24 Renault Sas Procede d'estimation du temps de rehabilitation de la performance d'une batterie de traction d'un vehicule hybride
DE102018116472A1 (de) * 2018-07-06 2020-01-09 Torqeedo Gmbh Verfahren, Computerprogrammprodukt und Prognosesystem zur Bestimmung der Lebensdauer einer Antriebsbatterie eines Fahrzeugs, insbesondere eines Boots
JP7265905B2 (ja) * 2019-03-27 2023-04-27 株式会社Subaru 車両
DE102019119761A1 (de) * 2019-07-22 2021-01-28 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Batterie eines geparkten Kraftfahrzeugs und Kraftfahrzeug
CN111497668B (zh) * 2020-05-19 2022-02-22 广东电网有限责任公司 车辆充电管理方法、装置、计算机设备和存储介质
US11598810B2 (en) * 2020-09-24 2023-03-07 Dell Products L.P. Battery runtime forecasting for an information handling system
CN113511099A (zh) * 2021-04-29 2021-10-19 江苏爱玛车业科技有限公司 电动车辆的充电方法、装置及系统
FR3128804A1 (fr) 2021-11-04 2023-05-05 Psa Automobiles Sa Procede de prediction d’au moins un horaire de roulement et d’au moins un horaire de stationnement d’un vehicule

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558281A (en) * 1982-06-12 1985-12-10 Lucas Industries Battery state of charge evaluator
JP2508275B2 (ja) * 1989-06-21 1996-06-19 神鋼電機株式会社 バッテリ―の充電制御装置
FR2827711B1 (fr) * 2001-07-17 2003-09-26 Electricite De France Dispositif de suivi d'un parc de batteries de vehicule, boitiers de batterie, de vehicule et de chargeur
US7564213B2 (en) * 2004-08-13 2009-07-21 Eaton Corporation Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery
CN1956287B (zh) * 2005-10-25 2011-03-30 杰生自动技术有限公司 车辆电池电力管理方法及其装置
CN1877473A (zh) * 2006-06-30 2006-12-13 中国南车集团株洲电力机车研究所 一种用于电动车辆的动力电池管理系统
CN101359753A (zh) * 2008-08-27 2009-02-04 奇瑞汽车股份有限公司 一种混合动力车动力电池的智能化均衡充电方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010094875A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021185480A1 (fr) 2020-03-20 2021-09-23 Perkins Engines Company Limited Charge de véhicules électriques et machines de construction
WO2021185479A1 (fr) 2020-03-20 2021-09-23 Perkins Engines Company Limited Charge de véhicules électriques et de machines de construction

Also Published As

Publication number Publication date
CN102317103B (zh) 2014-10-01
CN102317103A (zh) 2012-01-11
FR2942358B1 (fr) 2011-01-28
WO2010094875A1 (fr) 2010-08-26
FR2942358A1 (fr) 2010-08-20

Similar Documents

Publication Publication Date Title
EP2398670A1 (fr) Systeme et procede de gestion de recharge d'une batterie
WO2015091235A1 (fr) Charge d'une batterie
EP3224923B1 (fr) Pack de batteries pour un vehicule automobile
EP4093633B1 (fr) Procédé et dispositif de contrôle d'un système de stockage d'énergie, par exemple une batterie de véhicule
EP2892753A2 (fr) Recharge d'un parc de batteries
WO2007042724A1 (fr) Dispositif et procede de gestion d'une batterie
WO2010097554A1 (fr) Dispositif et procédé de gestion optimisée de l'énergie électrique d'une source de stockage électrochimique embarquée dans un véhicule hybride
EP2396189A1 (fr) Dispositif et procédé de gestion du niveau de charge électrique lors de la mise en charge d'une source de stockage électrochimique embarquée dans un véhicule
FR2991104A1 (fr) Procede et dispositif pour la desulfatation d'une batterie
EP3153369A1 (fr) Procede de determination des plages d'utilisation d'une batterie de traction
FR2942086A1 (fr) Dispositif et procede de gestion du niveau de charge electrique lors de la mise en charge d'une source de stockage electrochimique embarquee dans un vehicule
EP1309064A2 (fr) Procédé de gestion du fonctionnement d'une source de stockage d'énergie électrique, notamment d'un supercondensateur
WO2011121235A1 (fr) Procede de controle de la charge d'un stockeur d'energie additionnelle d'un vehicule a propulsion micro-hybride et systeme mettant en œuvre le procede
WO2020260173A1 (fr) Procédé pour optimiser la durée de vie d'une batterie
FR2972029A1 (fr) Dispositif d'inhibition d'une commande d'arret/redemarrage automatique d'un moteur thermique
FR2826457A1 (fr) Systeme d'evaluation de la duree de vie d'une batterie de stockage d'energie electrique d'alimentation d'une chaine de traction electrique ou hybride d'un vehicule automobile
FR2942357A1 (fr) Systeme et procede de gestion de recharge d'une batterie
FR2963997A1 (fr) Dispositif et procede pour la charge de la batterie d'un vehicule sur un reseau de distribution electrique
FR2977325A1 (fr) Procede et dispositif de controle du rechargement d'une batterie de vehicule, pour optimiser la recuperation d'energie cinetique
WO2008034991A1 (fr) Procede de gestion de la charge d'une batterie de vehicule
FR3122365A1 (fr) Voiture de véhicule, notamment ferroviaire, comprenant un système de surveillance du véhicule et procédé de surveillance associé
FR3082159A1 (fr) Vehicule comportant un ensemble de stockage d’energie electrique et procede de gestion de la charge de cet ensemble
FR3129633A1 (fr) Procédé de contrôle d’un système de gestion des batteries
WO2023104472A1 (fr) Procede de determination et de recalage de l'etat de charge des batteries d'un vehicule hybride
FR3124314A1 (fr) Systeme de batterie et procede de controle d’un systeme de batterie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140516

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140902