WO2011121235A1 - Procede de controle de la charge d'un stockeur d'energie additionnelle d'un vehicule a propulsion micro-hybride et systeme mettant en œuvre le procede - Google Patents

Procede de controle de la charge d'un stockeur d'energie additionnelle d'un vehicule a propulsion micro-hybride et systeme mettant en œuvre le procede Download PDF

Info

Publication number
WO2011121235A1
WO2011121235A1 PCT/FR2011/050705 FR2011050705W WO2011121235A1 WO 2011121235 A1 WO2011121235 A1 WO 2011121235A1 FR 2011050705 W FR2011050705 W FR 2011050705W WO 2011121235 A1 WO2011121235 A1 WO 2011121235A1
Authority
WO
WIPO (PCT)
Prior art keywords
ucap
state
voltage
vehicle
storer
Prior art date
Application number
PCT/FR2011/050705
Other languages
English (en)
Inventor
Patrice Cinneri
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Priority to CN201180017783.9A priority Critical patent/CN102869527B/zh
Priority to EP11719313A priority patent/EP2552722A1/fr
Publication of WO2011121235A1 publication Critical patent/WO2011121235A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1446Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in response to parameters of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the subject of the invention is a method for controlling the charge of an additional energy store of a micro-hybrid powered vehicle and a system implementing the method. It applies to the field of hybrid propulsion vehicles.
  • Hybrid propulsion vehicles that is to say combining a heat engine with at least an electric motor, can minimize fuel consumption and thus contribute to the reduction of greenhouse gas emissions.
  • Systems implementing such a type of propulsion can be classified into several categories representative of their level of hybridization.
  • the systems belonging to the micro-hybrid category usually comprise in addition to the conventional combustion engine a reversible electric motor. This electric motor is used as a starter and as an alternator, the heat engine being cut off automatically when the vehicle is immobilized.
  • FIG. 1 An example of architecture of such a system is illustrated in FIG. 1
  • This exemplary architecture incorporates a reversible alternator 100, a starter 101, a battery 102 and an additional energy store consisting of supercapacitors 103, also known by the term UCAP in the following description.
  • the battery 102 is for example a 12-volt lead battery.
  • the additional energy storer 103 can be put in series with the battery 102 in order to contribute to the start-up, restart and maintenance services of the quality of the onboard network 106. Still by controlling said switches 104, 105, the additional energy storer 103 can be connected to the alternator 100 via a voltage converter 107 to ensure its charging when the engine is running.
  • the UCAP storer 103 can also be connected to the battery 102 via the voltage converter 107 to ensure its recharging when the engine is stopped.
  • the UCAP storer 103 may also be electrically isolated when its contribution is not required by the system and the system is loaded.
  • the additional energy store is therefore usually associated with a switching system 104, 105 for placing in series or in parallel and a voltage converter 107 used for charging.
  • This assembly 108 is highlighted in FIG.
  • Supercapacitors are components whose use is recent in the automotive field. Their use requires a number of intrinsic precautions to avoid damaging them. Among the aging factors affecting these supercapacitors, the terminal voltage and the temperature are preponderant. In particular, high voltage levels induce acceleration of the electrochemical aging of the UCAP storer. The life of the UCAP storer is a determining factor when designing a vehicle using a hybrid propulsion system. Indeed, a car manufacturer usually offers vehicles by committing to their lifespan based on sizing studies and on the expertise of suppliers of supercapacitors. One of the design objectives is for the keeper of such a vehicle to replace the UCAP storer as little as possible, for example by providing a system whose service life tends towards the life of the vehicle. typically 15 years.
  • An object of the invention is in particular to overcome the aforementioned drawbacks.
  • the subject of the invention is a method for controlling the load of the additional energy store UCAP of a micro-hybrid powered vehicle. It comprises a step of detecting a state of said vehicle among a plurality of possible states, a first state called fast rolling state being detected when the speed of the vehicle exceeds a threshold value preset speed V only , a second state being detected when the vehicle is parked, the voltage applied across the UCAP storer being adapted according to the detected state so that it is minimized while ensuring that said storer performs its service functions.
  • an optimized load voltage UCONS_OPTIM is determined and applied to the UCAP storer when the fast rolling state is detected, said voltage being deduced from a nominal load voltage U C ONS associated with the storer UCAP, a voltage difference AU being subtracted from this voltage in order to obtain the optimized charging voltage value U C ONS_OPTIM-
  • the voltage difference AU is determined, for example, using the expression:
  • K is a coefficient materializing the load speed of the storage unit UCAP expressed in V / s for a capacity expressed in Farads and a load / discharge current expressed in Amperes;
  • Yveh is the statistical average of the braking deceleration of the vehicle
  • a multi-function engine control computer CMM included in the micro-hybrid vehicle is, for example, partially awake for a sufficient time so as to determine an optimized load voltage value U C ONS_OPTIM taking into account this state.
  • the optimized charging voltage value U C ONS_OPTIM in the parked state is determined according to the state of health SOH of the UCAP storer.
  • the invention also relates to a microhybrid propulsion system comprising at least one additional energy store UCAP.
  • the system comprises means for detecting the state of the vehicle said system comprising of a plurality of possible states, a first state called fast running state being detected when the vehicle speed exceeds a speed threshold value V predefined SEUN, a second state being detected when the vehicle is parked.
  • the system also comprises means for determining the voltage to be applied across the UCAP storer, said voltage being adapted according to the detected state so that it is minimized while ensuring that said storer performs his service functions. .
  • the invention slows the aging of the UCAP storer, which reduces the number of failures related to the end of life of said storers.
  • the user of the vehicle thus saves in terms of maintenance and replacement expenses.
  • FIG. 1 gives an example of a micro-hybrid system
  • FIG. 2 gives an example of a method for optimizing the life of the UCAP storer in a fast rolling state
  • FIG. 3 gives an example of a method for optimizing the life of the parking storer UCAP in the parking condition
  • the system comprises means for determining the states of life during which the UCAP storer is not solicited and will not be solicited during a given period of time as well as means for reducing the voltage at the terminals of said storer when these states are detected. Maintaining a high voltage has consequences harmful to the aging of the UCAP storer.
  • the implementation of the system allows an extension of the life of the additional energy store.
  • a micro-hybrid system comprises for example a UCAP storer composed of several supercapacitors in series. It can be composed for example of two supercapacitors, each having a maximum allowable voltage of 2.7V, or 5.4V for both. If this maximum voltage is exceeded, the destruction of said storage can be extremely fast.
  • the recharge can be limited preferably by a threshold value slightly lower than this maximum value, 5V for example.
  • a voltage level close to the threshold defined above may be necessary for the UCAP to fully perform its service functions. This is particularly the case when the UCAP storer contributes to start-up / restart services and maintains the quality of the on-board network, which implies repeated charges at voltages close to said threshold.
  • the UCAP storer is usually used for one-off needs during a vehicle taxi cycle. Thus, it is possible to exploit the states or phases of life during which the UCAP storer is not made to contribute to lowering the voltage at its terminals.
  • the UCAP storer is requested at the first start of the vehicle, that is to say the start of the vehicle while it is in parked state.
  • the UCAP storer is also requested at each restart, that is to say following phases called stop phases and corresponding for example to a stop in front of a red light. From these states of activity or reloading of the UCAP storer can determine inactivity time intervals during which the UCAP storer is not requested.
  • the first state is called fast rolling state and the second is called parking state.
  • the fast driving state corresponds to a state in which the vehicle is in driving situation on road or highway. In this state of operation, a vehicle traveling on the road or motorway will very rarely enter the stop phase. Thus the UCAP storer will not be used to restart. It is then possible to carry out a sensitive discharge of the UCAP storer as soon as the speed exceeds a configurable threshold value and to reload it when the speed returns below this value.
  • a vehicle that is about to be parked usually has a fully loaded UCAP storer.
  • the UCAP storer remains loaded for the duration of the parking, without any real need.
  • optimized management would consist in substantially unloading the UCAP when the vehicle is stopped.
  • Figure 2 gives an example of a method for optimizing the life of the UCAP storer in fast running state.
  • a voltage set point calculation is continuously performed and adjusted according to the state of the entire electrical chain so that the UCAP storer is always sufficiently loaded to respond to a problem.
  • soliciting a solicitation for example corresponding to a booster energy to restart the engine after a stop phase.
  • a further adjustment of this setpoint can be implemented so as to discharge the UCAP storer by applying a certain voltage deviation to the nominal load voltage.
  • This discharge makes it possible to preserve the lifespan of the UCAP storer.
  • this voltage drop can be applied in a progressive manner depending on the speed of the vehicle, so that in case of braking the refilling of the UCAP storer is not penalized, said storer having to be subsequently put to use following a stop phase.
  • the voltage U C ONS_OPTIM to be applied to the terminals of the storer UCAP, called in the rest of the description Optimized voltage setpoint can be determined using for example three steps.
  • a first step 200 determines what is the state of the vehicle. Thus, if the detected state corresponds to a fast rolling state, an indicator (R / A of rolling state detection is activated .
  • This indicator corresponds for example to a boolean and can be considered as active when it takes the value 1.
  • a second step 201 determines a voltage difference AU corresponding to a voltage drop to be applied to a nominal voltage set U C ONS applied across the UCAP storer, one of the objectives being to optimize the life of the UCAP storer.
  • This voltage difference AU is determined taking into account the value of the indicator ⁇ ⁇ / ⁇ .
  • V V EH is for example an affine function such that the difference AU is proportional to the difference between the instantaneous speed V V EH and the speed threshold V V EH_STOP allowing the transition to the stop phase.
  • the coefficient of proportionality of this affine function can take into account the load / unload time of the UCAP storer with respect to the braking time of the vehicle.
  • K is a coefficient materializing the load speed of the storage unit UCAP expressed in V / s for a capacity expressed in Farads and a load / discharge current expressed in Amperes;
  • Tveh is the statistical average of the braking deceleration of the vehicle
  • the factor 10/36 is used for the conversion of speeds expressed in km / h to speeds expressed in m / s.
  • a third step 203 determines the optimized voltage setpoint U C ONS_OPTIM taking into account the difference AU and the nominal voltage setpoint U C ONS-
  • the following expression is used for example:
  • Figure 3 gives an example of a method of optimizing the life of the parking storer UCAP.
  • the UCAP storer As part of the usual operation of a micro-hybrid propulsion system when the vehicle is parked, the UCAP storer is at a high voltage level when this is unnecessary because it will not be solicited before the next start.
  • the voltage setpoint is difficult to control because in practice the multifunctional engine control computer, usually designated by the acronym CMM, falls asleep when the vehicle is parked. It is no longer possible to calculate a voltage setpoint to be applied to the UCAP storer.
  • the invention proposes to prolong the calculation of the setpoint during a time of partial awakening of the CMM.
  • This partial awakening is provided for a sufficient duration to adjust the voltage of the UCAP storer to a level that is not detrimental to its lifetime.
  • do not completely unload the UCAP storage because the charging time for the next start must be limited.
  • the optimized voltage set point UCONS_OPTIM to be applied to the terminals of the UCAP storer can be determined using, for example, two steps.
  • a first step 300 determines whether the vehicle is in a parked state. This detection can be carried out on the basis of a partial wake-up indicator of the CMM calculator RPARTIEL, said indicator taking the value 1 when the CMM computer is awake despite the fact that the vehicle is in a parked state.
  • a second step 301 is applied when the indicator s PC is positioned in an active state.
  • the instruction U C ONS_OPTIM can then be determined by using the following expression:
  • U s is a configurable voltage value, resulting from a compromise allowing optimization of the lifespan of the UCAP storer while guaranteeing an acceptable charging time for the next start of the vehicle.
  • the value of U s can be determined using an expression such as:
  • SOH an acronym derived from the English expression "State Of Health”
  • SOH represents the state of health of the UCAP storer expressed in percentages, a value of 0% corresponding to an unusable UCAP storer and a value of 100% to a storer.
  • New UCAP in perfect working order.
  • SOH is for example estimated in an electronic box dedicated to the UCAP storer and allows in particular to weight the voltage setpoint according to the remaining life of the UCAP.
  • the state of health of the UCAP storer influences the internal characteristics of the UCAP, in particular its internal resistance and his capacity. Therefore, aging also impacts the charging time for startup
  • the reference voltage is not optimized and is expressed simply by the expression:
  • Figure 4 shows the statistical distribution of the voltage across the UCAP throughout its lifetime.
  • the right curve 400 represents the statistical distribution of the voltage at the terminals of the UCAP storer when the invention is not used. This voltage is often high, and aging of the UCAP storage is fast.
  • the left curve 401 represents the statistical distribution of the voltage at the terminals of the UCAP storer when the invention is used. The voltage is statistically lower and the aging of the UCAP storer will therefore be slowed down.

Abstract

L'invention a pour objet un procédé de contrôle de la charge du stockeur d'énergie additionnelle UCAP d'un véhicule à propulsion micro-hybride. Le procédé comporte une étape de détection d'un état dudit véhicule (200) parmi une pluralité d'états possibles, un premier état appelé état de roulage rapide étant détecté lorsque la vitesse du véhicule dépasse une valeur seuil de vitesse Vseuil prédéfinie, un second état étant détecté lorsque le véhicule est stationné, la tension appliquée aux bornes du stockeur UCAP étant adaptée (201, 202) en fonction de l'état détecté de manière à ce que celle-ci soit minimisée tout en garantissant que ledit stockeur assure ses fonctions de service. L'invention a aussi pour objet un système mettant en œuvre le procédé.

Description

Procédé de contrôle de la charge d'un stockeur d'énergie additionnelle d'un véhicule à propulsion micro-hybride et système mettant en œuvre le procédé La présente invention revendique la priorité de la demande française 1052506 déposée le 02 avril 2010 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
L'invention a pour objets un procédé de contrôle de la charge d'un stockeur d'énergie additionnelle d'un véhicule à propulsion micro-hybride et système mettant en œuvre le procédé. Elle s'applique au domaine des véhicules à propulsion hybride.
Les véhicules à propulsion hybride, c'est-à-dire associant un moteur thermique à au moins à moteur électrique, permettent de minimiser la consommation de carburant et participent ainsi à la réduction des émissions de gaz à effet de serre.
Les systèmes mettant en œuvre un tel type de propulsion peuvent être classés en plusieurs catégories représentatives de leur niveau d'hybridation. Ainsi, les systèmes appartenant à la catégorie micro-hybride comprennent habituellement en plus du moteur thermique classique un moteur électrique réversible. Ce moteur électrique est utilisé comme démarreur et comme alternateur, le moteur thermique étant coupé automatiquement à l'immobilisation du véhicule.
Un exemple d'architecture d'un tel système est illustré figure 1 .
Cette exemple d'architecture intègre un alternateur réversible 100, un démarreur 101 , une batterie 102 et un stockeur d'énergie additionnelle constitué de supercondensateurs 103 encore connu sous le terme d'UCAP dans la suite de la description. La batterie 102 est par exemple une batterie 12 Volts au plomb.
Au moyen d'une électronique de commande spécifique permettant le contrôle d'interrupteurs 104, 105, le stockeur d'énergie additionnelle 103 peut être mis en série avec la batterie 102 afin de contribuer aux prestations de démarrage, de redémarrage et de maintien de la qualité du réseau de bord 106. Toujours par contrôle desdits interrupteurs 104, 105, le stockeur d'énergie additionnelle 103 peut être mis en parallèle de l'alternateur 100 via un convertisseur de tension 107 pour assurer sa recharge lorsque le moteur est tournant. Le stockeur UCAP 103 peut aussi être mis en parallèle de la batterie 102 via le convertisseur de tension 107 afin d'assurer sa recharge lorsque le moteur à l'arrêt. Le stockeur UCAP 103 peut aussi être isolé électriquement lorsque sa contribution n'est pas requise par le système et que celui-ci est chargé.
Comme explicité précédemment, le stockeur d'énergie additionnel est donc habituellement associé à un système de commutation 104, 105 pour la mise en série ou en parallèle et à un convertisseur de tension 107 utilisé pour sa recharge. Cet ensemble 108 est mis en évidence sur la figure 1 .
Les supercondensateurs sont des composants dont l'utilisation est récente dans le domaine de l'automobile. Leur utilisation nécessite un certain nombre de précautions intrinsèques pour ne pas les endommager. Parmi les facteurs de vieillissement affectant ces supercondensateurs, la tension aux bornes et la température sont prépondérants. En particulier, des niveaux de tension élevés induisent une accélération du vieillissement électrochimique du stockeur UCAP. La durée de vie du stockeur UCAP est un facteur déterminant lors de la conception de véhicule utilisant un système de propulsion hybride. En effet, un constructeur automobile propose habituellement des véhicules en s'engageant sur leur durée de vie en se basant sur des études de dimensionnement et sur l'expertise des fournisseurs de supercondensateurs. Un des objectifs de conception est que le détenteur d'un tel véhicule ait à procéder au remplacement du stockeur UCAP le moins souvent possible, en permettant par exemple de disposer d'un système dont la durée de vie tend vers la durée de vie du véhicule, typiquement de 15 années.
Un but de l'invention est notamment de pallier les inconvénients précités.
A cet effet l'invention a pour objet un procédé de contrôle de la charge du stockeur d'énergie additionnelle UCAP d'un véhicule à propulsion micro-hybride. Il comporte une étape de détection d'un état dudit véhicule parmi une pluralité d'états possibles, un premier état appelé état de roulage rapide étant détecté lorsque la vitesse du véhicule dépasse une valeur seuil de vitesse VseuN prédéfinie, un second état étant détecté lorsque le véhicule est stationné, la tension appliquée aux bornes du stockeur UCAP étant adaptée en fonction de l'état détecté de manière à ce que celle-ci soit minimisée tout en garantissant que ledit stockeur assure ses fonctions de service.
Selon un aspect de l'invention, une tension de charge optimisée UCONS_OPTIM est déterminée et appliquée au stockeur UCAP lorsque l'état de roulage rapide est détecté, ladite tension étant déduite d'une tension de charge nominale UCONS associée au stockeur UCAP, un écart de tension AU étant soustrait à cette tension afin d'obtenir la valeur de tension de charge optimisée UCONS_OPTIM-
Selon un autre aspect de l'invention, l'écart de tension AU est déterminé en utilisant une fonction affine AU = f(VVEH) telle que l'écart AU soit proportionnel à la différence entre la vitesse instantanée VVEH et un seuil de vitesse prédéfini VVEH_STOP permettant le passage en phase de stop.
L'écart de tension AU est déterminé, par exemple, en utilisant l'expression :
V
Δυ = κ = 26
Figure imgf000005_0001
dans laquelle :
K est un coefficient matérialisant la vitesse de charge du stockeur UCAP exprimée en V/s pour une capacité exprimée en Farads et un courant de charge/décharge exprimé en Ampères ;
Yveh correspond à la moyenne statistique de la décélération au freinage du véhicule ;
Lorsque l'état de stationnement est détecté, un calculateur de contrôle moteur multifonctions CMM compris dans le véhicule micro-hybride est, par exemple, partiellement maintenu en éveil pendant une durée suffisante de manière à déterminer une valeur de tension de charge optimisée UCONS_OPTIM tenant compte de cet état.
Selon un mode de mise en œuvre, la valeur de tension de charge optimisée UCONS_OPTIM en état de stationnement est déterminée en fonction de l'état de santé SOH du stockeur UCAP. L'invention a aussi pour objet un système de propulsion microhybride comprenant au moins un stockeur d'énergie additionnelle UCAP. Le système comporte des moyens pour détecter l'état du véhicule comprenant ledit système parmi une pluralité d'états possibles, un premier état dit état de roulage rapide étant détecté lorsque la vitesse du véhicule dépasse une valeur seuil de vitesse VseuN prédéfinie, un second état étant détecté lorsque le véhicule est stationné. Le système comporte aussi des moyens pour déterminer la tension à appliquer aux bornes du stockeur UCAP, ladite tension étant adaptée en fonction de l'état détecté de manière à ce que celle- ci soit minimisée tout en garantissant que ledit stockeur assure ses fonctions de service.
Avantageusement, l'invention ralentit le vieillissement du stockeur UCAP ce qui diminue le nombre de pannes liées à la fin de vie desdits stockeurs. L'utilisateur du véhicule fait donc des économies en termes de dépenses de maintien et de remplacement.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit donnée à titre illustratif et non limitatif, faite en regard des dessins annexés parmi lesquels :
- la figure 1 donne un exemple de système micro-hybride ;
- la figure 2 donne un exemple de méthode d'optimisation de la durée de vie du stockeur UCAP en état de roulage rapide ;
- la figure 3 donne un exemple de méthode d'optimisation de la durée de vie du stockeur UCAP en état de stationnement
- la figure 4 représente la répartition statistique de la tension aux bornes de l'UCAP tout au long de sa durée de vie.
Le système selon l'invention comprend des moyens pour déterminer les états de vie durant lesquelles le stockeur UCAP n'est pas sollicité et ne le sera pas pendant un intervalle de temps donné ainsi que des moyens pour réduire la tension aux bornes dudit stockeur lorsque ces états sont détectés. Le maintien d'une tension élevée a des conséquences néfastes sur le vieillissement du stockeur UCAP. Avantageusement, la mise en œuvre du système permet un allongement de la durée de vie du stockeur d'énergie additionnelle.
Un système micro-hybride comporte par exemple un stockeur UCAP composé de plusieurs supercondensateurs en série. Il peut être composé par exemple de deux supercondensateurs, chacun ayant une tension maximale admissible de 2,7V, soit 5,4V pour les deux. Si cette tension maximale est dépassée, la destruction dudit stockeur peut être extrêmement rapide. Ainsi, la recharge peut être limitée de préférence par une valeur seuil légèrement inférieure à cette valeur maximale, 5V par exemple. Par ailleurs, dans certaines circonstances, un niveau de tension proche du seuil défini précédemment peut être nécessaire pour que l'UCAP assure pleinement ses fonctions de service. C'est le cas notamment lors de la contribution du stockeur UCAP aux prestations de démarrage/redémarrage et au maintien de la qualité du réseau de bord, ce qui implique des charges répétées à des tensions proches dudit seuil. Même si l'on ne dépasse pas la valeur maximale admissible de l'UCAP, 5.4V dans cet exemple, le maintien prolongé à un niveau de tension élevé a néanmoins un impact sur la durée de vie du stockeur. Ainsi, le seul fait de limiter la recharge du stockeur UCAP à une tension seuil s'avère insuffisante vis-à-vis des exigences en termes de durée de vie.
Le stockeur UCAP est habituellement utilisé pour des besoins ponctuels au cours d'un cycle de roulage véhicule. Ainsi, il est possible d'exploiter les états ou phases de vie durant lesquelles le stockeur UCAP n'est pas amené à contribuer pour abaisser la tension à ses bornes. En pratique, le stockeur UCAP est sollicité au premier démarrage du véhicule, c'est-à-dire le démarrage du véhicule alors que celui-ci est en état stationné. Le stockeur UCAP est aussi sollicité à chaque redémarrage, c'est-à-dire suivant des phases dites phases de stop et correspondant par exemple à un arrêt devant un feu rouge. De ces états d'activité ou de recharge du stockeur UCAP peuvent déterminés des intervalles temporels d'inactivité pendant lesquels le stockeur UCAP n'est pas sollicité.
Dans la suite de la description, deux types d'état de fonctionnement du système de propulsion hybride sont identifiés. Le premier état est appelé état de roulage rapide et le second est appelé état de stationnement.
L'état de roulage rapide correspond à un état dans lequel le véhicule est en situation de conduite sur route ou autoroute. Dans cet état de fonctionnement, un véhicule roulant sur route ou autoroute n'entrera que très rarement en phase de stop. Ainsi le stockeur UCAP ne sera pas utilisé pour redémarrer. Il est alors possible de procéder à une décharge sensible du stockeur UCAP dès que la vitesse dépasse une valeur seuil paramétrable et de le recharger lorsque la vitesse repasse en-dessous de ladite valeur.
Pour ce qui est de l'état de stationnement, un véhicule sur le point de stationner dispose habituellement d'un stockeur UCAP pleinement chargé. De ce fait, le stockeur UCAP reste chargé pendant toute la durée du stationnement, sans besoin réel. En suivant le principe de l'invention, une gestion optimisée consisterait à décharger sensiblement l'UCAP lorsque le véhicule est arrêté.
La figure 2 donne un exemple de méthode d'optimisation de la durée de vie du stockeur UCAP en état de roulage rapide.
Que ce soit en état de roulage rapide ou non, un calcul de consigne de tension est réalisé en permanence et ajusté en fonction de l'état de toute la chaîne électrique de manière à ce que le stockeur UCAP soit toujours suffisamment chargé pour répondre à une sollicitation, une sollicitation correspondant par exemple à un appoint énergétique pour redémarrer le moteur thermique suite à une phase de stop.
Un ajustement supplémentaire de cette consigne peut être mis en œuvre de manière à décharger le stockeur UCAP en appliquant un certain écart de tension à la tension nominale de charge. Cette décharge permet notamment de préserver la durée de vie du stockeur UCAP. Avantageusement, cette chute de tension peut être appliquée de manière progressive en fonction de la vitesse du véhicule, de telle sorte qu'en cas de freinage la recharge du stockeur UCAP ne soit pas pénalisée, ledit stockeur devant être ensuite mis à contribution suite à une phase de stop.
Ainsi, en état de roulage rapide, la tension UCONS_OPTIM à appliquer aux bornes du stockeur UCAP, appelée dans la suite de la description consigne de tension optimisée, peut être déterminée en utilisant par exemple trois étapes.
Une première étape 200 détermine quel est l'état du véhicule. Ainsi, si l'état détecté correspond à un état de roulage rapide, un indicateur ( R/A de détection d'état de roulage est activé. Cet indicateur correspond par exemple à un booléen et peut être considéré comme actif lorsqu'il prend la valeur 1 . A titre d'exemple, l'activation de l'indicateur (pR/A peut être déterminé de la manière suivante : si la vitesse du véhicule VVEH dépasse une valeur seuil paramétrable VseuN indiquant un roulage rapide, alors (pR/A = 1 . Si cette valeur seuil n'est pas dépassée, alors ( R/A = 0.
Une deuxième étape 201 détermine un écart de tension AU correspondant à une chute de tension à appliquer à une consigne de tension nominale UCONS appliquée aux bornes du stockeur UCAP, un des objectifs étant d'optimiser la durée de vie du stockeur UCAP.
Cet écart de tension AU est déterminé en tenant compte de la valeur de l'indicateur φΒ/Α.
Ainsi :
si c R/A est actif, AU est déterminé tel que AU = f(VVEH) ; si ( R/A est inactif, AU = 0.
La fonction f(VVEH) est par exemple une fonction affine telle que l'écart AU soit proportionnel à la différence entre la vitesse instantanée VVEH et au seuil de vitesse VVEH_STOP permettant le passage en phase de stop.
Le coefficient de proportionnalité de cette fonction affine peut tenir compte du temps de charge/décharge du stockeur UCAP par rapport au temps de freinage du véhicule.
A titre d'exemple, l'expression suivante peut être utilisée :
( VV -V )·—
Δυ = κ = ^
7veh (1 ) dans laquelle K est un coefficient matérialisant la vitesse de charge du stockeur UCAP exprimée en V/s pour une capacité exprimée en Farads et un courant de charge/décharge exprimé en Ampères ;
Tveh correspond à la moyenne statistique de la décélération au freinage du véhicule ;
le facteur 10/36 est utilisé pour la conversion des vitesses exprimées en km/h vers des vitesses exprimées en m/s.
Il s'agit d'un exemple de réalisation avantageux, mais on aurait très bien pu, pour déterminer l'écart de tension AU, utiliser une autre formule, une valeur constante, une cartographie....
Une troisième étape 203 détermine la consigne de tension optimisée UCONS_OPTIM en tenant compte de l'écart AU et de la consigne de tension nominale UCONS- L'expression suivante est par exemple utilisée :
UCONS_OPTIM = UCONS _ AU (2)
La figure 3 donne un exemple de méthode d'optimisation de la durée de vie du stockeur UCAP en état de stationnement.
Dans le cadre du fonctionnement habituel d'un système de propulsion micro-hybride lorsque le véhicule est stationné, le stockeur UCAP se retrouve à un niveau de tension élevé alors que cela est inutile car celui-ci ne sera plus sollicité avant le prochain démarrage. De plus, la consigne de tension est difficilement contrôlable car en pratique le calculateur de contrôle moteur multifonctions, désigné habituellement par l'acronyme CMM, s'endort lorsque le véhicule est stationné. Il n'est alors plus possible de calculer une consigne de tension à appliquer au stockeur UCAP.
L'invention propose de prolonger le calcul de la consigne pendant un temps d'un réveil partiel du CMM. Ce réveil partiel est prévu d'une durée suffisante pour ajuster la tension du stockeur UCAP jusqu'à un niveau non préjudiciable pour sa durée de vie. Il ne faut cependant pas complètement décharger le stocker UCAP car le temps de charge en vue du prochain démarrage doit être limité. En état de stationnement, la consigne de tension optimisée UCONS_OPTIM à appliquer aux bornes du stockeur UCAP peut être déterminée en utilisant par exemple deux étapes.
Une première étape 300 détermine si le véhicule est en état de stationnement. Cette détection peut être réalisée sur la base d'un indicateur RPARTIEL de réveil partiel du calculateur CMM, ledit indicateur prenant la valeur 1 lorsque le calculateur CMM est réveillé malgré le fait que le véhicule soit en état de stationnement.
Ainsi, si RPARTIEL = 1 , un indicateur cps de détection de phase de stationnement est positionné en état actif, c'est-à-dire cps = 1 par exemple. cps est positionné en état inactif sinon, c'est-à-dire cps= 0 par exemple.
Une deuxième étape 301 est appliquée lorsque l'indicateur cps est positionné dans un état actif. La consigne UCONS_OPTIM peut alors être déterminée en utilisant l'expression suivante :
UCONS_OPTIM = Us (3) dans laquelle :
Us est une valeur de tension paramétrable, résultant d'un compromis permettant une optimisation de la durée de vie du stockeur UCAP tout en garantissant un temps de charge acceptable en vue du prochain démarrage du véhicule.
A titre d'exemple, la valeur de Us peut être déterminée en utilisant une expression telle que :
Us = f(SOH) (4) dans laquelle :
SOH, acronyme venant de l'expression anglo-saxonne « State Of Health », représente l'état de santé du stockeur UCAP exprimé en pourcents, une valeur de 0% correspondant à un stockeur UCAP inutilisable et une valeur de 100% à un stockeur UCAP neuf en parfait état de marche. SOH est par exemple estimé dans un boîtier électronique dédié au stockeur UCAP et permet notamment de pondérer la consigne de tension en fonction de la durée de vie restante de l'UCAP. L'état de santé du stockeur UCAP influe sur les caractéristiques internes de l'UCAP, notamment sa résistance interne et sa capacité. Par conséquent, le vieillissement impacte aussi le temps de charge pour le démarrage
Si l'indicateur cps est positionné dans un état inactif, la tension de consigne n'est pas optimisée et est exprimée simplement par l'expression :
UCONS_OPTIM = UCONS (4)
La figure 4 représente la répartition statistique de la tension aux bornes de l'UCAP tout au long de sa durée de vie.
La courbe de droite 400 représente la répartition statistique de la tension aux bornes du stockeur UCAP lorsque l'invention n'est pas utilisée. Cette tension est souvent élevée, et le vieillissement du stockeur UCAP est alors rapide.
La courbe de gauche 401 représente la répartition statistique de la tension aux bornes du stockeur UCAP lorsque l'invention est utilisée. La tension est statistiquement plus basse et le vieillissement du stockeur UCAP sera par conséquent ralenti.

Claims

REVENDICATIONS
Procédé de contrôle de la charge du stockeur d'énergie additionnelle UCAP (1 03) d'un véhicule à propulsion micro-hybride caractérisé en ce qu'il comporte une étape de détection d'un état dudit véhicule (200, 300) parmi une pluralité d'états possibles, un premier état appelé état de roulage rapide étant détecté lorsque la vitesse du véhicule dépasse une valeur seuil de vitesse Vseuii prédéfinie, un second état étant détecté lorsque le véhicule est stationné, la tension appliquée aux bornes du stockeur UCAP étant adaptée (201 , 202, 301 ) en fonction de l'état détecté de manière à ce que celle-ci soit minimisée tout en garantissant que ledit stockeur assure ses fonctions de service.
Procédé selon la revendication 1 caractérisé en ce qu'une tension de charge optimisée UCONS_ OPTIM est déterminée et appliquée (201 , 202) au stockeur UCAP lorsque l'état de roulage rapide est détecté, ladite tension étant déduite d'une tension de charge nominale UCONS associée au stockeur UCAP, un écart de tension AU étant soustrait à cette tension afin d'obtenir la valeur de tension de charge optimisée
UcONS_OPTIM-
Procédé selon la revendication 2 caractérisé en ce que l'écart de tension AU est déterminé (202) en utilisant une fonction affine AU = Î(VVEH) telle que l'écart AU soit proportionnel à la différence entre la vitesse instantanée VVEH et un seuil de vitesse prédéfini VVEH_STOP permettant le passage en phase de stop.
Procédé selon la revendication 3 caractérisé en ce que l'écart de tension AU est déterminé en utilisant l'expression :
( VV -V )·—
Δυ = κ = ^
7v< dans laquelle K est un coefficient matérialisant la vitesse de charge du stockeur UCAP exprimée en V/s pour une capacité exprimée en Farads et un courant de charge/décharge exprimé en Ampères ;
Yveh correspond à la moyenne statistique de la décélération au freinage du véhicule ;
Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que lorsque l'état de stationnement est détecté, un calculateur de contrôle moteur multifonctions CMM compris dans le véhicule micro-hybride est partiellement maintenu en éveil pendant un durée suffisante de manière à déterminer une valeur de tension de charge optimisée UCONS_OPTIM tenant compte de cet état.
6- Procédé selon la revendication 5 caractérisé en ce que la valeur de tension de charge optimisée UCONS_OPTIM en état de stationnement est déterminée (301 ) en fonction de l'état de santé SOH du stockeur UCAP.
Système de propulsion micro-hybride comprenant au moins un stockeur d'énergie additionnelle UCAP caractérisé en ce qu'il comporte des moyens pour détecter l'état du véhicule (200, 300) comprenant ledit système parmi une pluralité d'états possibles, un premier état dit état de roulage rapide étant détecté lorsque la vitesse du véhicule dépasse une valeur seuil de vitesse VseuN prédéfinie, un second état étant détecté lorsque le véhicule est stationné, ainsi que des moyens pour déterminer la tension à appliquer aux bornes du stockeur UCAP, ladite tension étant adaptée en fonction de l'état détecté de manière à ce que celle-ci soit minimisée tout en garantissant que ledit stockeur assure ses fonctions de service.
PCT/FR2011/050705 2010-04-02 2011-03-30 Procede de controle de la charge d'un stockeur d'energie additionnelle d'un vehicule a propulsion micro-hybride et systeme mettant en œuvre le procede WO2011121235A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180017783.9A CN102869527B (zh) 2010-04-02 2011-03-30 微型混合动力车辆的附加储能装置充电控制方法及使用该方法的系统
EP11719313A EP2552722A1 (fr) 2010-04-02 2011-03-30 Procede de controle de la charge d'un stockeur d'energie additionnelle d'un vehicule a propulsion micro-hybride et systeme mettant en uvre le procede

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1052506 2010-04-02
FR1052506A FR2958464B1 (fr) 2010-04-02 2010-04-02 Procede de controle de la charge d'un stockeur d'energie additionnelle d'un vehicule a propulsion micro-hybride et systeme mettant en oeuvre le procede

Publications (1)

Publication Number Publication Date
WO2011121235A1 true WO2011121235A1 (fr) 2011-10-06

Family

ID=43447171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050705 WO2011121235A1 (fr) 2010-04-02 2011-03-30 Procede de controle de la charge d'un stockeur d'energie additionnelle d'un vehicule a propulsion micro-hybride et systeme mettant en œuvre le procede

Country Status (4)

Country Link
EP (1) EP2552722A1 (fr)
CN (1) CN102869527B (fr)
FR (1) FR2958464B1 (fr)
WO (1) WO2011121235A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464508B2 (en) 2015-05-19 2019-11-05 Man Truck & Bus Ag Switching arrangement for discharging an energy storage device of a motor vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069497B1 (fr) * 2017-07-26 2019-08-02 Psa Automobiles Sa Procede pour vehicule hybride de controle d’un alternateur de recharge d’une batterie d’un reseau de bord
US20220080836A1 (en) * 2020-09-14 2022-03-17 Transportation Ip Holdings, Llc Systems and methods for active damping of a platform of a vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1052506A (fr) 1951-03-19 1954-01-25 Smidth & Co As F L Appareil transporteur de matières en grains ou en poudre
US20020140405A1 (en) * 2001-04-03 2002-10-03 Manfred Malik Methods and apparatus for storing electrical energy
US20070159007A1 (en) * 2006-01-09 2007-07-12 General Electric Company Energy storage system for electric or hybrid vehicle
EP1811629A1 (fr) * 2005-11-09 2007-07-25 Matsushita Electric Industrial Co., Ltd. Système d'alimentation
FR2907611A1 (fr) * 2006-10-24 2008-04-25 Peugeot Citroen Automobiles Sa Procede de regulation de l'etat de charge d'un moyen de stockage d'energie.
DE102007040906A1 (de) * 2007-08-30 2009-03-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Bordnetz zur vorausschauenden Erhöhung der Bordnetzspannung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101214797B (zh) * 2007-12-29 2010-08-11 奇瑞汽车有限公司 一种混合动力汽车电池充放电电流限制保护方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1052506A (fr) 1951-03-19 1954-01-25 Smidth & Co As F L Appareil transporteur de matières en grains ou en poudre
US20020140405A1 (en) * 2001-04-03 2002-10-03 Manfred Malik Methods and apparatus for storing electrical energy
EP1811629A1 (fr) * 2005-11-09 2007-07-25 Matsushita Electric Industrial Co., Ltd. Système d'alimentation
US20070159007A1 (en) * 2006-01-09 2007-07-12 General Electric Company Energy storage system for electric or hybrid vehicle
FR2907611A1 (fr) * 2006-10-24 2008-04-25 Peugeot Citroen Automobiles Sa Procede de regulation de l'etat de charge d'un moyen de stockage d'energie.
DE102007040906A1 (de) * 2007-08-30 2009-03-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Bordnetz zur vorausschauenden Erhöhung der Bordnetzspannung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464508B2 (en) 2015-05-19 2019-11-05 Man Truck & Bus Ag Switching arrangement for discharging an energy storage device of a motor vehicle

Also Published As

Publication number Publication date
FR2958464A1 (fr) 2011-10-07
CN102869527A (zh) 2013-01-09
FR2958464B1 (fr) 2012-10-05
EP2552722A1 (fr) 2013-02-06
CN102869527B (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
EP2715909B1 (fr) Procede de rechargement d&#39;un couple de batteries de vehicule de tensions nominales differentes, et systeme associe
EP1951553A2 (fr) Dispositif de gestion d&#39;alimentation d&#39;un reseau de consommateurs pour vehicule automobile
WO2008139103A2 (fr) Dispositif de stockage d&#39;energie, notamment pour vehicule automobile
FR3003705A1 (fr) Reseau de bord de vehicule automobile et son procede de gestion ainsi que des moyens d&#39;implementation du procede
WO2010094875A1 (fr) Systeme et procede de gestion de recharge d&#39;une batterie
EP2552722A1 (fr) Procede de controle de la charge d&#39;un stockeur d&#39;energie additionnelle d&#39;un vehicule a propulsion micro-hybride et systeme mettant en uvre le procede
EP2112739B1 (fr) Procédé de limitation de l&#39;échauffement interne d&#39;un supercondensateur.
WO2014033385A1 (fr) Circuit electrique d&#39;un vehicule automobile
EP1309064A2 (fr) Procédé de gestion du fonctionnement d&#39;une source de stockage d&#39;énergie électrique, notamment d&#39;un supercondensateur
WO2008125766A2 (fr) Procede et dispositif de recharge d&#39;un stockeur d&#39;energie electrique d&#39;un vehicule
EP3760490B1 (fr) Circuit électrique et véhicule automobile comprenant un tel circuit
FR2992487A1 (fr) Procede de gestion d&#39;un reseau electrique, agencement pour la mise en oeuvre du procede, support d&#39;enregistrement et programme informatique associes au procede, vehicule automobile
EP3092144B1 (fr) Méthode pour estimer l&#39;aptitude d&#39;une batterie à fournir un profil de puissance prédéterminé
EP2476001A1 (fr) Procede de determination d&#39;un etat de fonctionnement de moyens de stockage d&#39;energie electrique constitues d&#39;au moins un supercondensateur
WO2020260173A1 (fr) Procédé pour optimiser la durée de vie d&#39;une batterie
EP2628234A1 (fr) Procede de recharge d&#39;un module supercondensateur d&#39;un vehicule automobile et vehicule automobile correspondant
EP2794375B1 (fr) Procédé de gestion de l&#39;énergie électrique d&#39;un véhicule automobile et véhicule automobile mettant en ouvre un tel procède
FR2977325A1 (fr) Procede et dispositif de controle du rechargement d&#39;une batterie de vehicule, pour optimiser la recuperation d&#39;energie cinetique
WO2010106257A1 (fr) Systeme de recharge de batteries
WO2021204806A1 (fr) Système d&#39;alimentation en énergie électrique d&#39;un véhicule automobile
FR2965309A1 (fr) Procede de gestion de l&#39;arret et du redemarrage automatique d&#39;un moteur thermique de vehicule automobile et vehicule automobile correspondant
EP2084803A2 (fr) Procede d&#39;initialisation d&#39;un element de stockage d&#39;energie
FR2961641A1 (fr) Dispositif de controle d&#39;un accumulateur d&#39;energie
FR2937424A1 (fr) Procede et dispositif de detection de la fin de vie d&#39;un pack de supercondensateur dans un systeme electrique de vehicule automobile
FR3010833A3 (fr) Batterie pour vehicule hybride

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017783.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11719313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011719313

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE