WO2021204806A1 - Système d'alimentation en énergie électrique d'un véhicule automobile - Google Patents
Système d'alimentation en énergie électrique d'un véhicule automobile Download PDFInfo
- Publication number
- WO2021204806A1 WO2021204806A1 PCT/EP2021/058950 EP2021058950W WO2021204806A1 WO 2021204806 A1 WO2021204806 A1 WO 2021204806A1 EP 2021058950 W EP2021058950 W EP 2021058950W WO 2021204806 A1 WO2021204806 A1 WO 2021204806A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- threshold
- battery
- setpoint
- maximum
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/14—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
- H02J7/1423—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/14—Preventing excessive discharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/20—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/08—Three-wire systems; Systems having more than three wires
- H02J1/082—Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present application relates to a system and a method for supplying electric power to a motor vehicle comprising a dual network, in particular for micro-hybrid motor vehicles.
- a dual network comprises at least two electrical storage batteries.
- Such a network can in particular be used by specializing the role of each of the batteries.
- a dual network includes an on-board network battery providing power to the network when the engine and alternator are not operating.
- An energy recovery battery charges when the operating point of the engine and the vehicle is favorable and discharges, for example, when the vehicle is moving at a steady speed or accelerating.
- the invention aims to remedy these drawbacks.
- the invention aims to allow the electric power supply of a vehicle by a dual network, by limiting the loss of gain in consumption of the vehicle.
- a system for supplying electrical energy to a motor vehicle comprising a network of at least one electrical consumer unit, a first electrical storage battery connected to the network and having a first maximum voltage at empty, a second electric storage battery connected to the network and having a second maximum no-load voltage strictly greater than the first maximum voltage off-load, a controllable alternator connected to the network and able to deliver electrical energy, and an electronic management unit able to control a voltage supplied by the alternator when the vehicle is running.
- the electronic management unit is configured to impose on the alternator successively, while the vehicle is being driven, a first setpoint voltage strictly between the first maximum no-load voltage and the second maximum voltage. no-load, a second setpoint voltage strictly between the first maximum no-load voltage and the first setpoint voltage and a third setpoint voltage strictly lower than the first maximum no-load voltage.
- the electronic management unit comprises a map delivering voltage values as a function of a state of charge of the first battery, the electronic management unit being configured to impose, while the vehicle is being driven. , the voltage value delivered by the mapping.
- the first threshold is between 83.5% and 84.5%.
- the second threshold is between 90% and 92%.
- the third threshold is between 84.5% to 85.5%.
- the fourth threshold is between 88% and 90%.
- the electronic management unit is configured to impose, if the motor vehicle is going through an energy recovery phase, a fourth setpoint voltage that is strictly greater than the first setpoint voltage.
- the first setpoint voltage is calculated as the product of the second maximum no-load voltage by a first coefficient between 0.8 and 0.99.
- the second setpoint voltage is calculated as the product of the first maximum no-load voltage by a factor between 1.01 and 1.1.
- a supply method is provided. in electrical energy of a motor vehicle by means of a system as defined above, in which the electronic control unit successively imposes on the alternator, during the running of the vehicle, the first setpoint voltage, the second voltage setpoint and the third setpoint voltage.
- FIG. 1 diagrammatically represents a system according to a aspect of the invention
- FIG. 1 is a graph illustrating a map of the system of figure 1
- FIG. 3 schematically illustrates the system of figure 1 operating according to a first operating mode
- FIG. 4 schematically illustrates the system, the system of figure 1 operating according to a second operating mode
- FIG. 5 schematically illustrates the system of figure 1 operating according to a third operating mode
- FIG. 6 schematically illustrates the system of figure 1 operating according to a fourth operating mode
- FIG 7 schematically illustrates a method according to another aspect of the invention.
- System 2 is intended to be incorporated into a motor vehicle (not referenced), in this case a micro-hybrid vehicle.
- System 2 comprises an electrical network 4 and a fuse 5.
- System 2 comprises an alternator 6 connected to network 4 via fuse 5.
- Alternator 6 is used to convert the mechanical energy taken from a shaft connected to a motor.
- thermal (not shown) into electrical energy sent to network 4.
- System 2 comprises an on-board network battery 8 connected to network 4 via fuse 5.
- System 2 comprises an energy recovery battery 10 connected to network 4 via fuse 5.
- the network 4 comprises a plurality of electrical consumer units, in this case an air conditioning device 14, lighting means 16 and heating means 18. It is not beyond the scope of the invention to envisage consuming units. different electrics.
- the battery 8 is a lead acid battery.
- the battery 8 has a maximum no- load voltage V batt s max and a minimum no- load voltage V batt s min .
- Battery 10 is a lithium-ion type battery.
- the battery 10 has a maximum no-load voltage Vbatt i omax and a minimum no-load voltage Vbatt i omin.
- the voltage Vbatt i omax is strictly greater than the voltage Vbatt8max [Math 1]
- the voltage Vbatt i omax is equal to 16 V and the voltage Vbattsmax is equal to 12.8 V. More specifically, the no-load voltage characteristic of battery 8 is shown in Table 1 below. [Table 1]
- the alternator 6 can be controlled. More particularly, the voltage Tait of the electrical energy delivered by the alternator 6 can be imposed.
- the system 2 comprises an electronic management unit 12.
- the electronic management unit 12 is capable of controlling the voltage Tait when the vehicle is moving. To do this, the electronic management unit 12 is configured to take into account the state of charge SOCs of the battery 8. In this regard, the electronic management unit 12 comprises a map 20 illustrated by the graph in FIG. 2.
- the mapping 20 includes a tension T values is based on the SOCs charge state.
- T is the voltage delivered by the mapping 20 corresponds to the voltage imposed by the electronic control unit 12 to the alternator 6.
- the map 20 comprises a first zone 22 corresponding to a state of charge SOCs below a threshold S i.
- the threshold S i is between 83.5% and 84.5% and substantially equal to 84%.
- the tension T is delivered by the mapping 20 is a strictly TCi reference voltage between the voltage V batt s max and the voltage
- the voltage TCi is substantially equal to
- FIG. 3 An operating diagram of the system 2 when the map 20 delivers the voltage TCi for the value of T ait In this case, the vehicle is rolling and the alternator 6 delivers electrical energy at voltage TCi as represented by arrow 24.
- This electrical energy supplies the network 4 as illustrated by the arrow 26.
- the relatively high setpoint voltage TCi makes it possible to recharge the battery 8 as illustrated by the arrow 28. Moreover, this voltage almost completely reduces the possibility of restoring energy from battery 10, which operates most of the time on charge, as illustrated by arrow 30.
- zone 22 corresponds to a mode of recharging the on-board network battery 8 aimed at increasing the state of charge SOCs even if it means reducing the possibility of restoring energy by the battery 10.
- the graph illustrating the map 20 comprises a second zone 32 corresponding to a state of charge SOCs greater than or equal to a threshold S2 strictly greater than threshold S i.
- the threshold S2 is between 90% and 92%.
- the map 20 delivers a voltage TC2 strictly lower than the voltage Vbattsmax:
- the voltage TC2 is substantially equal to 12.6 V.
- the operating case corresponding to zone 32 has been schematically represented in FIG. 4.
- the vehicle is traveling and the state of charge SOCs is relatively high.
- the alternator 6 delivers electrical energy as shown diagrammatically by the arrow 34, at the voltage TC2 lower than in the case of operation corresponding to FIG. 3.
- the battery 8 Due to the relatively low voltage TC2, the battery 8 is forced to give back energy as illustrated by arrow 36. Likewise, the battery 10 is forced, most of the time, to give back energy as. illustrated by the arrow 38. The energy delivered by the alternator 6, the battery 8 and the battery 10 is transmitted to the network 4 as illustrated by the arrow 40.
- zone 32 corresponds to an energy return mode in which the electrical energy supplied to the network 4 is notably delivered by the battery 10 and by the alternator 6, and possibly by the battery 8.
- the graph illustrating the map 20 comprises a third zone 42 extending between thresholds S3 and S4.
- the thresholds S i, S3, S4 and S2 follow each other in this order on the x-axis of the graph of figure 2.
- the threshold S 3 is between 84.5% and 85.5% and the threshold S 4 is between 88% and 90%.
- the map 20 delivers a voltage Tait equal to a reference voltage TC 3 .
- the voltage TC3 is strictly between the voltage Vbattsmax and the voltage TCi: [Math 5]
- the voltage TC3 is substantially equal to 13 V.
- the operating case corresponding to zone 42 has been schematically represented.
- the vehicle is traveling without an energy recovery phase and the state of charge SOCs is slightly less than 90%.
- the alternator 6 delivers electrical energy to the voltage TC3 as illustrated by the arrow 44.
- the electronic management unit 12 forces the system 2 into a limited energy return mode in which the energy return by the battery 10 is allowed within a certain limit, in order to avoid charging and discharging the battery 8.
- the graph illustrating the cartography 20 comprises a transient zone 50 situated between zones 22 and 42 and a transient zone 52 situated between zones 42 and 32.
- zone 50 corresponds to a state of charge SOCs between S i and S3.
- Zone 52 corresponds to a state of charge between S 4 and S 2 .
- the mapping 20 delivers a setpoint voltage TC 4 if the motor vehicle is going through an energy recovery phase.
- the voltage TC 4 is strictly greater than the voltage TCi and strictly less than a maximum voltage V max of network 4: [Math 6]
- the electronic management unit 12 may for example include a means of receiving the instruction at the vehicle pedal. The electronic management unit 12 can therefore detect an engine deceleration phase and deduce that the vehicle is going through an energy recovery phase.
- the operating case corresponding to an energy recovery phase has been schematically illustrated.
- the vehicle is moving and is going through an energy recovery phase.
- Alternator 6 delivers electrical energy to voltage TC 4 as illustrated by arrow 50.
- batteries 8 and 10 are forced into recharging mode as illustrated by arrows 52 and 54. Electrical energy supplied by the alternator 6 is also sent to the network 4 as illustrated by the arrow 56.
- the electronic management unit 12 forces the system 2 into energy recovery mode in which the energy supplied by the alternator 6 is sent to the network 4, the rest being stored in the batteries 8 and 10.
- FIG. 7 there is schematically illustrated an electrical supply method according to another aspect of the invention.
- the method comprises a first initialization step E01 which can be implemented periodically, for example every tenth of a second while the vehicle is being driven.
- the method comprises a second step E02 in which it is determined whether the vehicle is going through a recovery phase.
- step E02 If the response of step E02 is “YES”, a step E03 is applied during which the voltage Tait is set equal to TC4.
- step E02 If the response of step E02 is “NO”, a step E04 of calculating the state of charge SOCs is implemented.
- step E05 of calculating the tension T is determined corresponding to the load condition during the step E04.
- the map 20 schematically shown in Figure 2.
- step E06 of controlling the alternator 6 is implemented by imposing the voltage of the electrical energy delivered by the alternator 6 equal to the voltage T is determined during step E03 or E05. This results in forcing of the system 2 in one of the operating cases exposed with reference to FIGS. 3 to 6. At the end of step E06, the process is terminated.
- the state of charge SOCs of the on-board network battery 8 must naturally converge towards 90%. Indeed, the recovery phases detailed with reference to FIG. 6 will recharge the battery 8 without letting it discharge as long as the state of charge SOCs is less than 90%. If the state of charge SOCs exceeds 90%, the battery 8 contributes to the discharge phases, due to the reduction of the tension T is delivered by the alternator 6. Such an operation makes it possible, starting from an average state of charge at 90%, to keep all the performance of the energy recovery battery 10, even if the on-board network battery 8 is called upon between two missions of the vehicle. In fact, in certain phases, such as parking, the energy recovery battery 10 is not available because its capacity does not allow it to supply power to all the electronic systems of the vehicle.
- This power supply function may drop the state of charge of the onboard power supply battery 8 below 90%. If the SOCs state of charge remains satisfactory, in this case greater than 85%, the power supply system 2 will be practically completely operational and the on-board network battery 8 will be charged in the recovery phases without preventing the essential phases of discharge of the energy recovery battery 10. If, on the contrary, the state of charge SOCs drops too low, we will go to a forced charging phase as long as the state of charge SOCs has not gone below. above the 85% threshold.
- the setpoint voltage TCi is calculated as the product of the voltage Vbatt i omax by a coefficient between 0.8 and 0.99.
- the voltage TC 2 is calculated as the product of the voltage Vbattsmax by a coefficient between 0.8 and 0.99.
- the voltage TC 3 is calculated as the product of the voltage Vbattsmax by a factor between 1.01 and 1.1.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Ce système d'alimentation (2) en énergie électrique d 'un véhicule automobile comprend un réseau (4), une première batterie (8) connectée au réseau (4) et présentant une première tension maximale à vide, une seconde batterie (10) connectée au réseau (4) et présentant une seconde tension maximale à vide strictement supérieure à la première tension maximale à vide, un alternateur (6) pilotable connecté au réseau (4) et apte à délivrer une énergie électrique, et une unité de gestion électronique (12) pilotant une tension de l'énergie électrique délivrée par l 'alternateur (6) lors du roulage du véhicule. L'unité de gestion électronique (12) impose successivement une première tension de consigne strictement comprise entre les tensions maximales à vide, une deuxième tension de consigne strictement comprise entre la première tension maximale à vide et la première tension de consigne et une troisième tension de consigne strictement inférieure à la première tension maximale à vide.
Description
Système d'alimentation en énergie électrique d'un véhicule automobile
La présente demande concerne un système et un procédé d'alimentation électrique d'un véhicule automobile comportant un réseau dual, notamment pour des véhicules automobiles micro-hybride.
Dans le domaine automobile, un réseau dual comporte au moins deux batteries d'accumulation électrique. Un tel réseau peut notamment être utilisé en spécialisant le rôle de chacune des batteries.
Dans un exemple typique, un réseau dual comprend une batterie de réseau de bord assurant l'alimentation du réseau lorsque le moteur et l’ alternateur ne fonctionnent pas. Une batterie de récupération d'énergie se charge lorsque le point de fonctionnement du moteur et du véhicule est favorable et se décharge, par exemple, lorsque le véhicule roule en vitesse stabilisée ou accélère.
On pourra par exemple se rapporter au brevet délivré FR 2 975 839 qui décrit un tel exemple de réseau dual.
Bien qu'un tel réseau apporte globalement satisfaction, il arrive que, lorsque la batterie de réseau de bord n’ est pas correctement chargée, celle-ci impose une tension de recharge à l’ alternateur, qui empêche la décharge de la batterie de récupération d’ énergie. Il en résulte, notamment pour les véhicules à propulsion hybride ou micro hybride, un moindre gain en consommation du véhicule.
L'invention vise à remédier à ces inconvénients.
Plus particulièrement, l'invention vise à permettre l'alimentation électrique d'un véhicule par un réseau dual, en limitant la perte de gain de consommation du véhicule.
A cet effet, il est proposé un système d'alimentation en énergie électrique d'un véhicule automobile, comprenant un réseau d'au moins un organe consommateur électrique, une première batterie d'accumulation électrique connectée au réseau et présentant une première tension maximale à vide, une seconde batterie d'accumulation électrique connectée au réseau et présentant une seconde tension maximale à vide strictement supérieure à la première tension maximale
à vide, un alternateur pilotable connecté au réseau et apte à délivrer une énergie électrique, et une unité de gestion électronique apte à piloter une tension délivrée par l'alternateur lors du roulage du véhicule.
Selon une caractéristique générale de ce système, l'unité de gestion électronique est configurée pour imposer à l’ alternateur successivement, au cours du roulage du véhicule, une première tension de consigne strictement comprise entre la première tension maximale à vide et la seconde tension maximale à vide, une deuxième tension de consigne strictement comprise entre la première tension maximale à vide et la première tension de consigne et une troisième tension de consigne strictement inférieure à la première tension maximale à vide.
Un tel pilotage de la tension délivrée par l’ alternateur en utilisant les tensions de consigne précitées permet de temporiser la recharge de la première batterie, ce qui évite de rencontrer des difficultés à vider la seconde batterie et donc de perdre du gain de consommation du véhicule.
Dans un mode de réalisation, l'unité de gestion électronique comprend une cartographie délivrant des valeurs de tension en fonction d’un état de charge de la première batterie, l’ unité de gestion électronique étant configurée pour imposer, au cours du roulage du véhicule, la valeur de tension délivrée par la cartographie.
On peut en outre prévoir que la cartographie délivre la première tension de consigne si l’ état de charge de la première batterie est inférieur ou égal à un premier seuil et la cartographie délivre la troisième tension de consigne si l’état de charge de la première batterie est supérieur ou égal à un second seuil, le second seuil étant strictement supérieur au premier seuil.
Selon un mode de réalisation, le premier seuil est compris entre 83 ,5 % et 84,5%. Selon un autre mode de réalisation, le second seuil est compris entre 90% et 92%.
On peut en outre prévoir que la cartographie délivre la deuxième tension de consigne si l’ état de charge de la première batterie est compris entre un troisième seuil et un quatrième seuil, le troisième seuil
étant supérieur ou égal au premier seuil, le quatrième seuil étant strictement supérieur au troisième seuil et inférieur ou égal au second seuil.
Dans un mode de réalisation, le troisième seuil est compris entre 84,5 % à 85 ,5 %.
De préférence, le quatrième seuil est compris entre 88% et 90%.
Avantageusement, l'unité de gestion électronique est configurée pour imposer, si le véhicule automobile traverse une phase de récupération d’énergie, une quatrième tension de consigne strictement supérieure à la première tension de consigne.
Avantageusement, la première tension de consigne est calculée comme le produit de la seconde tension maximale à vide par un premier coefficient compris entre 0,8 et 0,99.
On peut également prévoir de calculer la troisième tension de consigne comme le produit de la première tension maximale à vide par un second coefficient compris entre 0,8 et 0,99.
Dans un autre mode de réalisation, la deuxième tension de consigne est calculée comme le produit de la première tension maximale à vide par un facteur compris entre 1 ,01 et 1 , 1. Selon un autre aspect, il est proposé un procédé d'alimentation en énergie électrique d'un véhicule automobile au moyen d’un système tel que défini précédemment, dans lequel l’unité de gestion électronique impose à l’ alternateur successivement, au cours du roulage du véhicule, la première tension de consigne, la deuxième tension de consigne et la troisième tension de consigne.
D'autres buts, caractéristiques et avantages de l'invention apparaîtront la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : [fig 1 ] représente schématiquement un système selon un aspect de l'invention,
[fig 2] est un graphe illustrant une cartographie du système de la figure 1 ,
[fig 3] illustre schématiquement le système de la figure 1 fonctionnant selon un premier mode de fonctionnement,
[fig 4] illustre schématiquement le système le système de la figure 1 fonctionnant selon un deuxième mode de fonctionnement, [fig 5] illustre schématiquement le système de la figure 1 fonctionnant selon un troisième mode de fonctionnement,
[fig 6] illustre schématiquement le système de la figure 1 fonctionnant selon un quatrième mode de fonctionnement, et
[fig 7] illustre schématiquement un procédé selon un autre aspect de l'invention.
En référence à la figure 1 , on a schématiquement représenté un système d'alimentation électrique 2. Le système 2 est destiné à être incorporé dans un véhicule automobile (non référencé), en l’ espèce un véhicule micro-hybride. Le système 2 comporte un réseau électrique 4 et un fusible 5. Le système 2 comporte un alternateur 6 connecté au réseau 4 via le fusible 5. L’ alternateur 6 sert à la conversion de l'énergie mécanique prélevée sur un arbre relié à un moteur thermique (non représenté) en énergie électrique envoyée sur le réseau 4. Le système 2 comporte une batterie de réseau de bord 8 connectée au réseau 4 via le fusible 5. Le système 2 comporte une batterie de récupération d'énergie 10 connectée au réseau 4 via le fusible 5.
Le réseau 4 comprend une pluralité d'organes consommateurs électriques, en l'espèce un dispositif de climatisation 14, des moyens d'éclairage 16 et des moyens de chauffage 18. On ne sort pas du cadre de l'invention en envisageant des organes consommateurs électriques différents.
Dans l'exemple illustré, la batterie 8 est une batterie au plomb. La batterie 8 présente une tension maximale à vide Vbattsmax et une tension minimale à vide Vbattsmin.
La batterie 10 est une batterie de type lithium-ion. La batterie 10 présente une tension maximale à vide Vbatt i omax et une tension minimale à vide Vbatt i omin . La tension Vbatt i omax est strictement supérieure à la tension Vbatt8max
[Math 1]
^battlOmax ^battSmax
En l'espèce, la tension Vbatt i omax est égale à 16 V et la tension Vbattsmax est égale à 12,8 V . Plus précisément, la caractéristique de tension à vide de la batterie 8 est illustrée dans le tableau 1 ci-dessous. [Tableau 1]
La caractéristique de tension à vide de la batterie 10 est illustrée dans le tableau 2 ci-dessous. [Tableau 21
L'alternateur 6 est pilotable. Plus particulièrement, la tension Tait de l’ énergie électrique délivrée par l'alternateur 6 peut être imposée. Le système 2 comporte une unité de gestion électronique 12. L’unité de gestion électronique 12 est capable de piloter la tension Tait lors du roulage du véhicule. Pour ce faire, l'unité de gestion électronique 12 est configurée pour tenir compte de l'état de charge SOCs de la
batterie 8. A cet égard, l'unité de gestion électronique 12 comprend une cartographie 20 illustrée par le graphe de la figure 2.
En référence à la figure 2, la cartographie 20 comprend des valeurs d'une tension Tait en fonction de l'état de charge SOCs. La tension Tait délivrée par la cartographie 20 correspond à la tension imposée par l'unité de gestion électronique 12 à l'alternateur 6.
La cartographie 20 comprend une première zone 22 correspondant à un état de charge SOCs inférieur à un seuil S i . En l'espèce, le seuil S i est compris entre 83,5 % et 84,5 % et sensiblement égal à 84 % . Lorsque l'état de charge SOCs est compris dans la zone 22, la tension Tait délivrée par la cartographie 20 est une tension de consigne TCi strictement comprise entre la tension Vbattsmax et la tension
Vbatt l Omax
[Math 2] Vbatt8max ^ TC i < VbattlOmax
Dans l'exemple illustré, la tension TCi est sensiblement égale à
14,5 V.
On a schématiquement représenté sur la figure 3 un schéma de fonctionnement du système 2 lorsque la cartographie 20 délivre la tension TCi pour la valeur de Tait· Dans ce cas, le véhicule est en roulage et l'alternateur 6 délivre de l’énergie électrique à la tension TCi comme représenté par la flèche 24.
Cette énergie électrique alimente le réseau 4 comme illustré par la flèche 26. La tension de consigne TCi relativement importante permet de recharger la batterie 8 comme illustré par la flèche 28. Par ailleurs, cette tension réduit presque totalement la possibilité de restitution d'énergie de la batterie 10, qui fonctionne la plupart du temps en charge, comme illustré par la flèche 30.
Ainsi, la zone 22 correspond à un mode de recharge de la batterie de réseau de bord 8 visant à augmenter l'état de charge SOCs quitte à réduire la possibilité de restitution d’ énergie par la batterie 10.
De nouveau en référence à la figure 2, le graphe illustrant la cartographie 20 comprend une deuxième zone 32 correspondant à un état de charge SOCs supérieur ou égal à un seuil S2 strictement supérieur au
seuil S i . En l'espèce, le seuil S2 est compris entre 90 % et 92 %. Dans la zone 32, la cartographie 20 délivre une tension TC2 strictement inférieure à la tension Vbattsmax :
[Math 3] TC 2 < Vbatt8max
En l'espèce, la tension TC2 est sensiblement égale à 12,6 V.
On a schématiquement représenté sur la figure 4 le cas de fonctionnement correspondant à la zone 32. Dans ce cas, le véhicule est en roulage et l'état de charge SOCs est relativement important. L'alternateur 6 délivre de l'énergie électrique comme schématisé par la flèche 34, à la tension TC2 plus faible que dans le cas de fonctionnement correspondant à la figure 3.
Du fait de la tension TC2 relativement faible, la batterie 8 est forcée à restituer de l’énergie comme illustré par la flèche 36. De la même façon, la batterie 10 est forcée, la plupart du temps, à restituer de l’énergie comme illustré par la flèche 38. L'énergie délivrée par l'alternateur 6, la batterie 8 et la batterie 10 est transmise au réseau 4 comme illustré par la flèche 40.
Ainsi, la zone 32 correspond à un mode de restitution d’ énergie dans lequel l'énergie électrique fournie au réseau 4 est notamment délivrée par la batterie 10 et par l'alternateur 6, et éventuellement par la batterie 8.
De nouveau en référence la figure 2, le graphe illustrant la cartographie 20 comprend une troisième zone 42 s'étendant entre des seuils S3 et S4. Les seuils S i , S3, S4 et S2 se succèdent en cet ordre sur l'axe des abscisses du graphe de la figure 2. En d'autres termes, on a :
[Math 4]
Si < S3 < S4 < S 2
En l'espèce, le seuil S3 est compris entre 84,5 % et 85,5 % et le seuil S4 est compris entre 88 % et 90 %.
Dans la zone 42, la cartographie 20 délivre une tension Tait égale à une tension de consigne TC3.
La tension TC3 est strictement comprise entre la tension Vbattsmax et la tension TCi :
[Math 5]
Vbatt8max T C3 < TC1
En l'espèce, la tension TC3 est sensiblement égale à 13 V.
En référence à la figure 5 , on a schématiquement représenté le cas de fonctionnement correspondant à la zone 42. Dans ce cas, le véhicule est en roulage sans phase de récupération énergie et l'état de charge SOCs est légèrement inférieur à 90 %. L'alternateur 6 délivre une énergie électrique à la tension TC3 comme illustré par la flèche 44.
Du fait de la tension TC3 faiblement supérieure à la tension V batt 8max , la batterie 8 n'est ni chargée, ni déchargée. En effet quand on donne une valeur typique à TC3 de 13 volts, il s’ agit de ce qu’on appelle dans la littérature technique la tension de « floating », c’ est-à-dire de maintien de la charge.
La différence entre 13 volts et 12,8 volts, diminuée des pertes de toutes natures (électrochimiques, résistives, ...) ne permet pas d’ atteindre un courant de charge supérieur à quelques centaines de mA. Ce qui veut dire que lorsqu’on fait tendre la tension TC3 vers 13 volts pour un SOCs calculé de 90% , on va en pratique s ’ arrêter à cette valeur de 90%. En théorie, il faudrait plusieurs heures pour continuer à faire monter le SOCs. Par exemple, si on arrivait à 1 ampère, il faudrait 7 heures pour passer de 90 à 100%. En pratique, on observe un courant souvent très proche de 0A, lors d’ un roulage sur autoroute d’une bonne heure, lorsque la batterie est arrivée à 90%, et le SOCs calculé ne bouge plus.
En revanche, compte tenu de la tension de consigne TC3 nettement plus faible que la tension Vbatt i omax , la restitution d'énergie par la batterie 10 est autorisée comme illustré par la flèche 46, toutefois dans une moindre mesure que dans le cas de fonctionnement de la figure 4. L'énergie électrique délivrée par l'alternateur 6 et la batterie 10 est transmise au réseau 4 comme illustré par la flèche 48.
Ainsi, dans ce cas de fonctionnement, l’unité de gestion électronique 12 force le système 2 dans un mode restitution d'énergie limitée dans lequel la restitution d'énergie par la batterie 10 est
autorisée dans une certaine limite, afin d'éviter la charge et la décharge de la batterie 8.
De nouveau en référence à la figure 2, le graphe illustrant la cartographie 20 comprend une zone transitoire 50 située entre les zones 22 et 42 et une zone transitoire 52 située entre les zones 42 et 32.
Autrement dit, la zone 50 correspond à un état de charge SOCs compris entre S i et S3. La zone 52 correspond à un état de charge compris entre S4 et S2.
Dans la zone 50, la courbe Tait = f(SOCs) forme une interpolation linéaire entre les zones 22 et 42. Dans la zone 52, la courbe Tait = f(SOCs) forme une interpolation linéaire entre les zones 42 et 32. On ne sort pas du cadre de l’invention en envisageant une interpolation d’ ordre différent, ou encore en envisageant une autre transition entre les zones 22, 42 et 32. Quelle que soit la valeur de l’état de charge SOCs, la cartographie 20 délivre une tension de consigne TC4 si le véhicule automobile traverse une phase de récupération d'énergie. La tension TC4 est strictement supérieure à la tension TCi et strictement inférieure à une tension maximale Vmax du réseau 4 : [Math 6]
TCt < TC4 < Vmax
Pour déterminer si le véhicule automobile traverse une phase de récupération d’ énergie, l’ unité de gestion électronique 12 peut par exemple comprendre un moyen de réception de la consigne à la pédale du véhicule. L’unité de gestion électronique 12 peut, de ce fait, détecter une phase de décélération moteur et en déduire que le véhicule traverse une phase de récupération d’ énergie.
En référence à la figure 6, on a schématiquement illustré le cas de fonctionnement correspondant à une phase de récupération d’énergie. Dans ce cas, le véhicule est en roulage et traverse une phase de récupération énergie. L’ alternateur 6 délivre une énergie électrique à la tension TC4 comme illustré par la flèche 50.
Compte tenu de la valeur élevée de la tension TC4, les batteries 8 et 10 sont forcées en mode recharge comme illustré par les flèches 52 et
54. De l’énergie électrique fournie par l’ alternateur 6 est par ailleurs envoyée au réseau 4 comme illustré par la flèche 56.
Dans ce cas, l’ unité de gestion électronique 12 force le système 2 en mode récupération d'énergie dans lequel l'énergie fournie par l'alternateur 6 est envoyée au réseau 4, le reste étant stocké dans les batteries 8 et 10.
En référence à la figure 7, on a schématiquement illustré un procédé d'alimentation électrique selon un autre aspect de l'invention.
Le procédé comprend une première étape d'initialisation E01 pouvant être mise en œuvre de manière périodique, par exemple chaque dixième de seconde au cours du roulage du véhicule.
Le procédé comprend une deuxième étape E02 dans laquelle on détermine si le véhicule traverse une phase de récupération.
Si la réponse de l'étape E02 est « OUI », on applique une étape E03 au cours de laquelle on fixe la tension Tait égale à TC4.
Si la réponse étape E02 est « NON », on met en œuvre une étape E04 de calcul de l'état de charge SOCs.
On met ensuite en œuvre une étape E05 de calcul de la tension Tait correspondant à l'état de charge déterminé au cours de l’ étape E04. Pour ce faire, on peut utiliser la cartographie 20 schématiquement représentée sur la figure 2.
A l'issue de l'étape E03 ou de l'étape E05, on met en œuvre une étape E06 de pilotage de l'alternateur 6 en imposant la tension de l'énergie électrique délivrée par l'alternateur 6 égale à la tension Tait déterminée au cours de l'étape E03 ou E05. Il s'ensuit le forçage du système 2 dans l’un des cas de fonctionnement exposés en référence aux figures 3 à 6. A l'issue de l'étape E06, le procédé est terminé.
Grâce à ce procédé, l’ état de charge SOCs de la batterie de réseau de bord 8 doit naturellement converger vers 90 %. En effet, les phases de récupération détaillées en référence à la figure 6 vont recharger la batterie 8 sans la laisser se décharger tant que l'état de charge SOCs est inférieur à 90 %. Si l'état de charge SOCs dépasse 90 %, la batterie 8 contribue aux phases de décharge, du fait de la diminution de la tension Tait délivrée par l'alternateur 6.
Un tel fonctionnement permet, en partant d'un état de charge moyen à 90 %, de garder toutes les performances de la batterie de récupération d’ énergie 10, même si la batterie de réseau de bord 8 est sollicitée entre deux missions du véhicule. En effet, dans certaines phases, comme le parking, la batterie de récupération d’ énergie 10 n'est pas disponible car sa capacité ne lui permet pas d’ assurer l'alimentation de l'ensemble des systèmes électroniques du véhicule. Cette fonction d'alimentation risque de faire chuter l’état de charge de la batterie de réseau de bord 8 en dessous de 90 %. Si l’état de charge SOCs reste satisfaisant, en l'espèce supérieur à 85 % , le système d'alimentation électrique 2 sera pratiquement complètement opérationnel et la batterie de réseau de bord 8 se chargera dans les phases de récupération sans empêcher l'essentiel des phases de décharge de la batterie de récupération d’ énergie 10. Si au contraire, l'état de charge SOCs descend trop bas, on passera à une phase de charge forcée tant que l’ état de charge SOCs ne sera pas passée au-dessus du seuil de 85 %.
On peut, sans sortir du cadre de l'invention, envisager des tensions de consigne différente des valeurs précitées. De préférence, la tension de consigne TCi est calculée comme le produit de la tension Vbatt i omax par un coefficient compris entre 0,8 et 0,99. De même, la tension TC2 est calculée comme le produit de la tension Vbattsmax par un coefficient compris entre 0,8 et 0,99. La tension TC3 est calculée comme le produit de la tension Vbattsmax par un facteur compris entre 1 ,01 est 1 , 1.
De telles plages de valeurs permettent de faire converger l'état de charge de la batterie 8 vers un état de charge relativement élevé, tout en permettant de forcer facilement le système d'alimentation 2 en mode restitution d'énergie et restitution d'énergie limitée. Il en résulte la possibilité de temporiser de manière optimale la recharge de la batterie de réseau de bord 8 et donc de maximiser le gain de consommation du véhicule.
Claims
1. Système d'alimentation (2) en énergie électrique d'un véhicule automobile, comprenant un réseau (4) d'au moins un organe (14, 16, 18) consommateur électrique, une première batterie (8) d'accumulation électrique connectée au réseau (4) et présentant une première tension maximale à vide, une seconde batterie (10) d'accumulation électrique connectée au réseau (4) et présentant une seconde tension maximale à vide strictement supérieure à la première tension maximale à vide, un alternateur (6) pilotable connecté au réseau (4) et apte à délivrer une énergie électrique, et une unité de gestion électronique ( 12) apte à piloter une tension (Tait) délivrée par l'alternateur (6) lors du roulage du véhicule, caractérisé en ce que, lorsque le véhicule n’est pas en phase de récupération d’ énergie, l’unité de gestion électronique ( 12) est configurée pour imposer à l’ alternateur (6) successivement, au cours du roulage du véhicule, en fonction de l’état de charge de la première batterie (8) d’ accumulation électrique, une première tension de consigne (TCi) strictement comprise entre la première tension maximale à vide et la seconde tension maximale à vide, une deuxième tension de consigne (TC3) strictement comprise entre la première tension maximale à vide et la première tension de consigne (TCi) et une troisième tension de consigne (TC2) strictement inférieure à la première tension maximale à vide.
2. Système (2) selon la revendication 1 , dans lequel l’unité de gestion électronique ( 12) comprend une cartographie (20) délivrant des valeurs de tension (Tait) en fonction d’ un état de charge (SOCs) de la première batterie (8), l’ unité de gestion électronique (12) étant configurée pour imposer, au cours du roulage du véhicule, la valeur de tension (Tait) délivrée par la cartographie (20).
3. Système (2) selon la revendication 2, dans lequel la cartographie (20) délivre la première tension de consigne (TCi) si l’ état de charge (SOCs) de la première batterie est inférieur ou égal à un premier seuil (S i) et la cartographie (20) délivre la troisième tension de consigne (TC2) si l’état de charge (SOCs) de la première batterie (8) est
supérieur ou égal à un second seuil (S2), le second seuil (S2) étant strictement supérieur au premier seuil (S i).
4. Système (2) selon la revendication 3, dans lequel le premier seuil (S i) est compris entre 83 ,5 % et 84,5% et/ou le second seuil (S2) est compris entre 90% et 92%.
5. Système (2) selon la revendication 3 ou 4, dans lequel la cartographie (20) délivre la deuxième tension de consigne (TC3) si l’ état de charge (SOCs) de la première batterie (8) est compris entre un troisième seuil (S3) et un quatrième seuil (S4), le troisième seuil (S3) étant supérieur ou égal au premier seuil (S i), le quatrième seuil (S4) étant strictement supérieur au troisième seuil (S3) et inférieur ou égal au second seuil (S2).
6. Système (2) selon la revendication 5 , dans lequel le troisième seuil (S3) est compris entre 84,5% et 85 ,5% et/ou le quatrième seuil (S4) est compris entre 88% et 90%.
7. Système (2) selon l’ une quelconque des revendications 1 à 6, dans lequel l’unité de gestion électronique (12) est configurée pour imposer, si le véhicule automobile traverse une phase de récupération d’ énergie, une quatrième tension de consigne (TC4) strictement supérieure à la première tension de consigne (TCi).
8. Système (2) selon l’ une quelconque des revendications 1 à 7, dans lequel la première tension de consigne (TCi) est calculée comme le produit de la seconde tension maximale à vide par un premier coefficient et/ou la troisième tension de consigne (TC2) est calculée comme le produit de la première tension maximale à vide par un second coefficient, les premier et second coefficients étant compris entre 0,8 et 0,99.
9. Système (2) selon l’ une quelconque des revendications 1 à 8, dans lequel la deuxième tension de consigne (TC3) est calculée comme le produit de la première tension maximale à vide par un facteur compris entre 1 ,01 et 1 , 1.
10. Procédé d'alimentation en énergie électrique d'un véhicule automobile au moyen d’un système (2) selon l’une quelconque des revendications 1 à 9, dans lequel l’unité de gestion électronique (12)
impose à l’ alternateur (6) successivement, au cours du roulage du véhicule, la première tension de consigne (TCi), la deuxième tension de consigne (TC2) et la troisième tension de consigne (TC3).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21717054.7A EP4133567A1 (fr) | 2020-04-10 | 2021-04-06 | Système d'alimentation en énergie électrique d'un véhicule automobile |
CN202180033805.4A CN115516733A (zh) | 2020-04-10 | 2021-04-06 | 用于向机动车辆供应电能的系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2003624 | 2020-04-10 | ||
FR2003624A FR3109248B1 (fr) | 2020-04-10 | 2020-04-10 | Système d'alimentation en énergie électrique d'un véhicule automobile |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021204806A1 true WO2021204806A1 (fr) | 2021-10-14 |
Family
ID=70978231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2021/058950 WO2021204806A1 (fr) | 2020-04-10 | 2021-04-06 | Système d'alimentation en énergie électrique d'un véhicule automobile |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4133567A1 (fr) |
CN (1) | CN115516733A (fr) |
FR (1) | FR3109248B1 (fr) |
WO (1) | WO2021204806A1 (fr) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2975839A1 (fr) | 2011-05-23 | 2012-11-30 | Renault Sa | Procede de rechargement d'un couple de batteries de vehicule de tensions nominales differentes, et systeme associe |
US20160167534A1 (en) * | 2014-12-12 | 2016-06-16 | Toyota Jidosha Kabushiki Kaisha | Charging apparatus |
US20170182892A1 (en) * | 2015-12-24 | 2017-06-29 | Fuji Jukogyo Kabushiki Kaisha | Vehicle power source |
-
2020
- 2020-04-10 FR FR2003624A patent/FR3109248B1/fr active Active
-
2021
- 2021-04-06 EP EP21717054.7A patent/EP4133567A1/fr active Pending
- 2021-04-06 WO PCT/EP2021/058950 patent/WO2021204806A1/fr unknown
- 2021-04-06 CN CN202180033805.4A patent/CN115516733A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2975839A1 (fr) | 2011-05-23 | 2012-11-30 | Renault Sa | Procede de rechargement d'un couple de batteries de vehicule de tensions nominales differentes, et systeme associe |
US20160167534A1 (en) * | 2014-12-12 | 2016-06-16 | Toyota Jidosha Kabushiki Kaisha | Charging apparatus |
US20170182892A1 (en) * | 2015-12-24 | 2017-06-29 | Fuji Jukogyo Kabushiki Kaisha | Vehicle power source |
Also Published As
Publication number | Publication date |
---|---|
CN115516733A (zh) | 2022-12-23 |
FR3109248B1 (fr) | 2022-03-04 |
FR3109248A1 (fr) | 2021-10-15 |
EP4133567A1 (fr) | 2023-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2715909B1 (fr) | Procede de rechargement d'un couple de batteries de vehicule de tensions nominales differentes, et systeme associe | |
EP2788221B1 (fr) | Procede de gestion d'un alternateur associe a au moins une batterie d'alimentation et entraine par un moteur thermique | |
WO2010079296A2 (fr) | Procede de pilotage d'une unite de stockage d'energie dans un systeme micro-hybride pour vehicule | |
EP1130737B1 (fr) | Installation électrique autonome, notamment pour véhicule automobile | |
EP2906440B1 (fr) | Procede de recuperation d'energie electrique avec lissage de tension sur un reseau electrique embarque | |
EP2346711A2 (fr) | Procede et dispositif de commande d'un systeme micro-hybride a freinage recuperatif apte a equiper un vehicule automobile | |
FR2964511A1 (fr) | Reseau de bord d'un vehicule avec dispositif de maintien en tension comprenant un supercondensateur, vehicule et procede de dechargement d'un supercondensateur | |
EP2112739B1 (fr) | Procédé de limitation de l'échauffement interne d'un supercondensateur. | |
WO2021204806A1 (fr) | Système d'alimentation en énergie électrique d'un véhicule automobile | |
EP1309064A2 (fr) | Procédé de gestion du fonctionnement d'une source de stockage d'énergie électrique, notamment d'un supercondensateur | |
EP3760490B1 (fr) | Circuit électrique et véhicule automobile comprenant un tel circuit | |
FR2934429B1 (fr) | Procede de regulation de la tension de sortie d'un generateur de vehicule automobile | |
EP2552722A1 (fr) | Procede de controle de la charge d'un stockeur d'energie additionnelle d'un vehicule a propulsion micro-hybride et systeme mettant en uvre le procede | |
EP1642764B1 (fr) | Système de contrôle du fonctionnement de moyens de stockage d'énergie électrique de moyens de motorisation hybride | |
EP2794375B1 (fr) | Procédé de gestion de l'énergie électrique d'un véhicule automobile et véhicule automobile mettant en ouvre un tel procède | |
FR2977325A1 (fr) | Procede et dispositif de controle du rechargement d'une batterie de vehicule, pour optimiser la recuperation d'energie cinetique | |
EP2817865B1 (fr) | Procédé de gestion de l'énergie électrique d'une architecture électrique d'un véhicule automobile et véhicule automobile mettant en oeuvre un tel procédé | |
FR2965309A1 (fr) | Procede de gestion de l'arret et du redemarrage automatique d'un moteur thermique de vehicule automobile et vehicule automobile correspondant | |
WO2012069723A2 (fr) | Procede de pilotage de la charge d'une batterie de demarrage au plomb, dont la valeur de regulation correspond a une charge partielle | |
FR3129776A1 (fr) | Procede de refroidissement optimise d’une batterie de vehicule electrique ou hybride | |
FR3010833A3 (fr) | Batterie pour vehicule hybride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21717054 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021717054 Country of ref document: EP Effective date: 20221110 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |