EP2396806B1 - Mass analysis device with wide angular acceptance including a reflectron - Google Patents

Mass analysis device with wide angular acceptance including a reflectron Download PDF

Info

Publication number
EP2396806B1
EP2396806B1 EP20100703478 EP10703478A EP2396806B1 EP 2396806 B1 EP2396806 B1 EP 2396806B1 EP 20100703478 EP20100703478 EP 20100703478 EP 10703478 A EP10703478 A EP 10703478A EP 2396806 B1 EP2396806 B1 EP 2396806B1
Authority
EP
European Patent Office
Prior art keywords
analysis device
mass analysis
time
sample
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20100703478
Other languages
German (de)
French (fr)
Other versions
EP2396806A1 (en
Inventor
Mikhaïl YAVOR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cameca SAS
Original Assignee
Cameca SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cameca SAS filed Critical Cameca SAS
Publication of EP2396806A1 publication Critical patent/EP2396806A1/en
Application granted granted Critical
Publication of EP2396806B1 publication Critical patent/EP2396806B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/405Time-of-flight spectrometers characterised by the reflectron, e.g. curved field, electrode shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0004Imaging particle spectrometry

Definitions

  • the present invention relates to a mass analysis device with wide angular acceptance comprising a reflectron.
  • angular acceptance is understood as the capacity for the device integrating the reflectron, to treat ions emitted from a source such as the surface of a sample to be analyzed, with a large angular dispersion.
  • the present invention is particularly applicable to the field of time-of-flight spectrometry, and more particularly to mass analysis devices such as mass spectrometers and time-of-flight atomic probes equipped with electrostatic mirrors, or reflectrons.
  • a time of flight mass spectrometer or TOF makes it possible to determine the mass of ions torn off from a sample by measuring the flight time of the ions from a given position, real or virtual, from the ion source, to their impact on a detector, through an analysis chamber.
  • the time of flight of an ion through an electrostatic field is proportional to the square root of the mass-to-charge ratio of this ion for a given kinetic energy.
  • the mass resolution of a time-of-flight spectrometer depends, in addition to the precision with which the start and impact times of the ions can be measured, of the energy dispersion of the ions; Indeed, ions of an identical charge-to-charge mass ratio but with different charge-energy ratios have different flight times from the ion source to the detector.
  • a known method making it possible to eliminate, at least in first approximation, the dependence of the flight time of an ion on its energy, and thus to improve the mass resolution of a time-of-flight spectrometer, is to incorporate in the analysis chamber of the mass spectrometer an ion mirror device.
  • This method has been proposed for the first time by Alikhanov, and implemented by Mamyrin.
  • the ion mirrors used in reflectron time-of-flight mass analyzers typically incorporate homogeneous and uniform homogeneous particle retardation fields, that is homogeneous in defined spatial areas.
  • Ionic mirrors commonly consist of a main electrode, a particular geometry and excited by an electrical potential, and a gate electrode of similar geometry and excited by a different electrical potential.
  • the electrostatic field generated by these electrodes is contained in the space separating these electrodes, and its characteristics can for example be adjusted as a function of the excitation potentials.
  • mass spectrometers rely on various ionic emission methods such as field desorption, laser desorption or secondary ion emission, themselves known from the state of the art.
  • a characteristic of the ion beams resulting from these techniques is a strong angular dispersion of emitted ions, which can wait for values of the order of 90 ° or more. It is important not to restrict ion beams with wide angular dispersion in order to maximize the sensitivity of the mass spectrometer.
  • the analysis of ions emitted with wide angular dispersion may be of major interest
  • the atomic probes also called atomic probe microscopes, in which an increase in the angular acceptance is synonymous with an enlargement of the field of view of the microscope, since different angles of emission correspond to different positions on the surface of the sample to which the ions are torn off.
  • Ion mirrors of conventional piecewise homogeneous electrostatic reflectrons can not accept an angular dispersion of the ion beam greater than about 10 °.
  • curved geometry mirrors have been proposed in the article. from Vialle et al., Rev. Sci. Instrum., 68 (1997) 2312 .
  • a reflectron with curved geometry is proposed in the international patent application WO2006 / 120428 . This type of reflectron performs a transformation of the ion beam diverging from a sample of reduced size into a substantially parallel beam, capable of being admitted by a detector of reasonable dimensions.
  • the plane of the detector is substantially perpendicular to the ion beam, in order to avoid increasing the dimensions of the detector, which would otherwise be unavoidable.
  • a device In addition to its spatial focusing properties, and focusing in terms of flight time as a function of ion energy, such a device has spatial focusing properties as a function of ion energy, and can thus be used to obtain spatially resolved images of a sample in atomic probe microscopes.
  • Such a reflectron has some disadvantages.
  • the angular acceptance of such a device can not exceed 90 ° for reasons simply related to the geometry of the device.
  • the angular acceptance of such a reflectron is further reduced by an indispensable inclination with respect to the plane of the detector, the surface on which is made the focusing in terms of flight time as a function of energy.
  • Another disadvantage of this type of reflectron is related to the fact that the intersection between most of the trajectories of the ions and the direction normal to the input gate electrode of the reflectron mirror is made at relatively open angles, which considerably increases the dispersion of the ions at the local inhomogeneities of electric field generated by the grid.
  • WO2006 / 134380 A2 discloses a time-of-flight mass analysis device according to the preamble of claim 1.
  • An object of the present invention is to overcome at least the aforementioned drawbacks, by proposing a new reflectron design, capable of allowing a large angular acceptance of ions emitted from the reduced surface of a sample in at least one direction.
  • the time-of-flight mass analysis device may be characterized in that the detector is disposed at a distance from the spatial focusing point of the ions emitted from the sample in the first direction. , after reflection by the ion mirror, less than a quarter of the first radius of curvature.
  • the time-of-flight mass analysis device may be characterized in that the detector is disposed downstream of the spatial focusing point of the emitted ions of the sample in the first direction, after reflection by the ion mirror.
  • the time of flight mass analysis device can be characterized in that the detector is sensitive to the two-dimensional position of the impact of the ions on its surface.
  • the time-of-flight mass analysis device can be characterized in that the detector is able to be displaced along the main axis of the mass analysis device.
  • the time-of-flight mass analysis device may be characterized in that the ion mirror comprises a rear electrode and a gate electrode, the electrostatic field being formed between the back electrode and the grid electrode.
  • the time of flight mass analysis device may be characterized in that the rear electrode and the gate electrode have a cylindrical surface.
  • the time-of-flight mass analysis device can be characterized in that the rear electrode and the gate electrode are of spherical surface.
  • the time of flight mass analysis device may be characterized in that it comprises additional means capable of varying the electrostatic field produced by the ion mirror.
  • the time-of-flight mass analysis device can be characterized in that the sample is able to be moved in all directions and / or to be rotated.
  • the time of flight mass analysis device may be characterized in that the ion extraction means pull out the ions from the surface of the sample by means of field desorption and / or or laser desorption, or secondary ion emission.
  • a particular reflectron time-of-flight mass analyzer geometry is proposed for this purpose.
  • the sample to be analyzed is placed at a distance substantially close to the center of curvature of the curved-field mirror in the direction of the emitted ion field.
  • the ions emitted, after reflection on the curved-field mirror, are then focused in the direction considered, at a conjugate point located at an opposite position, with respect to the center of curvature, of the position of the sample.
  • the detector can be arranged, depending on the physical problem that arises, either at the point of focus or downstream from this point.
  • the angular image of the sample can be resolved at a detector of reasonable dimensions.
  • An advantage of the present invention is that these properties remain valid for theoretically unlimited angular dispersion, i.e. up to 180 °.
  • Another advantage of the invention lies in the fact that, irrespective of the angular dispersion, the angles of intersection of the ion trajectories with respect to the normal to the surface of the gate-entry electrode of the mirror for the considered direction , remain low, thus allowing a reduction of the angular dispersion of the ions at this level.
  • the spatial energy dispersion offered by the reflectron time-of-flight mass analyzer according to the invention is not zero at the detector. Nevertheless, by using the field of a spherical mirror and a small shift between the sample and the center of curvature of the field, this dispersion can be made negligible and tend towards zero. This is because in the case - impractical in practice - where the position of the sample coincides with the center of curvature of the field, ions follow the same paths to the mirror, then back from the mirror, regardless of their kinetic energy.
  • a reflectron time-of-flight mass analyzer comprising a spherical mirror field and a detector located downstream of the focusing point, gives properties that are particularly favorable to large acceptance.
  • angular beam of the ion beam particularly suitable for use in high resolution and high sensitivity atomic probe microscopes.
  • the figure 1 presents the sectional view in the radial plane of a mass analysis device, of a reflectron geometry known from the state of the art, as presented in the patent application WO2006 / 120148 supra.
  • a mass analyzer 100 comprises a sample 101 of small size, for example in the form of a tip, from which ions are emitted and accelerated by extraction electrodes 102. The emitted ions follow in the analysis chamber of the analyzer. 100 of the trajectories 109 and 110. The ions are reflected in an ionic mirror 103 forming a curved equipotential surface electrostatic field 104. The equipotential lines have a center of curvature 105.
  • the ion mirror 103 consists of a rear electrode 107 and of a gate electrode 106.
  • a detector 108 collects the ions.
  • the detector 108 is sensitive to the position of the point of impact of the ions on its surface.
  • the center of curvature 105 of the equipotential lines of the field generated by the ion mirror 103 is typically at a greater distance from the mirror 103 than from the sample 101.
  • the ion mirror 103 allows divergent ion trajectories from the sample 101 to become substantially less divergent or even slightly convergent after reflection. Thus, at a great distance from the mirror 103, the ion trajectories can still be picked up by the detector 108 whose size can remain reasonable.
  • the intensity of the electrostatic field inside the ion mirror 103, and hence the length of the trajectories within the ion mirror 103, is chosen so that ions emitted from the sample in the same direction, but with different energies, along the paths 109 and 110, reach the detector 108 essentially at the same time; that is, the focus in terms of flight time with respect to ion energy is ensured.
  • the distance between the ion mirror 103 and the detector 108 is chosen so that ions emitted from the sample in the same direction, but with different energies, reach the detector 108 at essentially the same point of impact; that is, the spatial focus with respect to ion energy is ensured.
  • different starting points on the surface of the sample 101 correspond to different emission angles, as is the case, for example, in atomic probe microscopes, an image of the sample can be solved at the same time. detector level, with low chromatic aberration. It clearly appears on the figure 1 that the geometry of the mass analyzer 100 presented here does not allow to increase the angular acceptance beyond 90 °.
  • the figure 2 shows the sectional view in the radial plane of a mass analysis device, an example of reflectron geometry according to an embodiment of the present invention.
  • the sample 101 is disposed near the center of curvature 105 of the equipotential lines 104 of the electrostatic field generated by the ion mirror 103.
  • the electrode 107 of the electrostatic mirror 103 has a spherical geometry, and that the gate electrode 106.
  • the equipotential lines 104 of the electrostatic field have a spherical symmetry.
  • the ions are emitted from the surface of the sample 101 and accelerated by the extraction electrodes 102, then reflected by the ion mirror 103.
  • the ions pass through a point 111, conjugate of the point at which the sample 101 forming a tip can be assimilated into a first approximation. Downstream of point 111, the ions reach the detector 108, sensitive to the position of the points of impact with its surface.
  • the electrostatic field prevailing inside the ion mirror 103, and therefore the length of the trajectories of the ions within the ion mirror 103, are chosen so that ions emitted from the surface of the sample 101, in the same direction. direction but with different energies, along paths 109 and 110, reach the detector 108 essentially at the same time; that is, the focus in terms of flight time with respect to ion energy is ensured.
  • the focus in terms of flight time relative to the energy of the ions can not be rigorously achieved in practice at the detector 108, since the surface on which the condition of such a focus is filled is of substantially spherical shape. with a center located at the conjugate point 111. Nevertheless, this surface is substantially parallel to the central region of the surface of the detector 108, thus the dependence of the flight time of an ion at its energy remains low for an angular dispersion of relatively large emission, this increasing dependence as the square of the distance separating the center of the detector 108 to the point of impact of the ion considered on the surface of the detector 108.
  • the angles formed between the ion trajectories and the normal lines at the surface of the gate electrode 106 of the ion mirror 103 at the points of intersection between the latter are reduced. These angles tend towards zero when the sample 101 tends towards the center of curvature 105 of the ion mirror 103. In other words, the trajectories of the ions are practically perpendicular to the surface of the gate electrode 106 of the ion mirror 103. This particular configuration makes it possible to reduce the effects of ion dispersion caused by the inhomogeneities of the local electrostatic field at the proximity of the gate electrode 106.
  • the difference between the trajectories 109 and 110, ions leaving from the surface of the sample 101 in the same direction, but having different energies, remains reduced after reflection by the ion mirror 103; this gap tends to zero when the sample 101 tends towards the center of curvature 105 of the equipotential lines 104 of the electrostatic field produced by the ion mirror 103.
  • the coincidence, at the level of the detector 108, trajectories of ions of the same initial direction but having different energies is not perfect, it remains excellent if the energy dispersion of the ions remains relatively low. Space chromatic aberration is still said to be weak. In this way, ions with different emission directions can be solved at the detector 108 with good accuracy.
  • the radius of curvature of the rear electrode 107 may for example be equal to 400 mm, the distance from the sample 101 to the center of curvature 105 may be equal to 30 mm, and the The distance from the detector 108 to the focusing point 111 may be 275 mm. More generally, it will be possible to choose to position the sample 101 at a distance from the center of curvature 105 less than a given percentage of the radius of curvature of the rear electrode 107, for example 25%.
  • the figure 3 presents the perspective view, of an example of the image formed at a position-sensitive detector, of ions emitted from a sample in different directions in the radial plane and in the transverse plane, according to a mode embodiment of the present invention.
  • This embodiment of the invention allows the analysis of ions emitted from the surface of the sample 101 with a large angular dispersion, in theory up to ⁇ radians, using a finite size detector 108.
  • the angular acceptance is all the greater as the center of the detector 108 is close to the conjugate point 111 of the point at which the sample 101 is assimilated.
  • this embodiment of the invention allows large mass resolution with wide angular acceptance, as well as good spatial resolution, due to low spatial chromatic aberration.
  • this embodiment of the invention is particularly suitable for an atomic probe microscope type application. Due to the offset of the sample 101 with respect to the axis in the radial plane, the aperture or energy focusing can be realized differently in the radial plane and in the transverse plane. To alleviate this problem, it may be advantageous to use an electrostatic mirror 103 which is not of strictly spherical geometry. In such a configuration, the radius of curvature and thus the center of curvature in the radial plane are different from the radius of curvature and the center of curvature in the transverse plane.
  • the figure 4 shows the perspective view of an exemplary geometry of a reflectron with a detector 108 placed at the conjugate point of focus of the point at which the sample 101 is located, according to another embodiment of the present invention.
  • the intensity of the electrostatic field generated by the ion mirror 103 can be chosen so as to allow focussing in terms of flight time relative to the energy of the ions, at the detector 108.
  • This particular embodiment may be advantageous if a spatial resolution of the ions is not necessary.
  • This embodiment allows a high mass resolution for ions emitted from the surface of the sample 101 with a large angular dispersion.
  • This characteristic can be obtained by placing the detector at a position coinciding with the focusing point 111 in terms of flight time relative to the energy of the ions. More generally, it will be possible to position the detector 108 at a distance from the focusing point 111 less than a given percentage of the radius of curvature of the rear electrode 107, for example 25%.
  • the reflectron geometry can be simplified by using a gate electrode 106 and a rear electrode 107 of cylindrical surfaces.
  • the electrodes of the ion mirror 103 can be equipped with additional mechanical alignment means and / or additional electrode sets for adjusting the shape of the electrostatic field. It is also advantageous, for a better adjustment of the performance of the mass analyzer 100, to allow a displacement of the detector 108 along the main axis of the analysis device 100 and / or the sample 101 along the three axes. It may also be advantageous to provide the sample holding mechanism with means for tilting the sample in order to correct tilting defects of the sample and / or the sample holder.

Description

La présente invention concerne un dispositif d'analyse de masse à large acceptance angulaire comprenant un réflectron. Pour la suite, le terme d'acceptance angulaire s'entend comme la capacité pour le dispositif intégrant le réflectron, de traiter des ions émis depuis une source telle que la surface d'un échantillon à analyser, avec une grande dispersion angulaire.The present invention relates to a mass analysis device with wide angular acceptance comprising a reflectron. In the following, the term angular acceptance is understood as the capacity for the device integrating the reflectron, to treat ions emitted from a source such as the surface of a sample to be analyzed, with a large angular dispersion.

La présente invention s'applique notamment au domaine de la spectrométrie à temps de vol, et plus particulièrement aux dispositifs d'analyse de masse tels que des spectromètres de masse et des sondes atomiques à temps de vol équipés de miroirs électrostatiques, ou réflectrons.The present invention is particularly applicable to the field of time-of-flight spectrometry, and more particularly to mass analysis devices such as mass spectrometers and time-of-flight atomic probes equipped with electrostatic mirrors, or reflectrons.

Un spectromètre de masse à temps de vol ou TOF selon l'acronyme anglo-saxon pour Time-Of-Flight, permet de déterminer la masse d'ions arrachés d'un échantillon en mesurant le temps de vol des ions depuis une position déterminée, réelle ou virtuelle, de la source ionique, jusqu'à leur impact sur un détecteur, au travers d'une chambre d'analyse. Le temps de vol d'un ion au travers d'un champ électrostatique est proportionnel à la racine carrée du rapport masse sur charge de cet ion pour une énergie cinétique donnée. La résolution en masse d'un spectromètre à temps de vol dépend, outre de la précision avec laquelle les instants de départ et d'impact des ions peuvent être mesurés, de la dispersion en énergie des ions ; en effet des ions d'un rapport masse sur charge identique mais avec des rapports énergie sur charge différents présentent des temps de vol différents depuis la source ionique jusqu'au détecteur.A time of flight mass spectrometer or TOF according to the English acronym for Time-Of-Flight, makes it possible to determine the mass of ions torn off from a sample by measuring the flight time of the ions from a given position, real or virtual, from the ion source, to their impact on a detector, through an analysis chamber. The time of flight of an ion through an electrostatic field is proportional to the square root of the mass-to-charge ratio of this ion for a given kinetic energy. The mass resolution of a time-of-flight spectrometer depends, in addition to the precision with which the start and impact times of the ions can be measured, of the energy dispersion of the ions; Indeed, ions of an identical charge-to-charge mass ratio but with different charge-energy ratios have different flight times from the ion source to the detector.

Une méthode connue permettant d'éliminer, au moins en première approximation, la dépendance du temps de vol d'un ion à son énergie, et ainsi d'améliorer la résolution en masse d'un spectromètre à temps de vol, est d'incorporer dans la chambre d'analyse du spectromètre de masse un dispositif de type miroir ionique. Cette méthode a été proposée pour la première fois par Alikhanov, et mise en oeuvre par Mamyrin. On peut se référer aux articles respectifs correspondants : Alikhanov, Soviet Physics Journal of Experimental and Theoretical Physics (JETP), 4 (1956) 452 et Mamyrin et al., Soviet Phys. JETP, 37 (1973) 45 .A known method making it possible to eliminate, at least in first approximation, the dependence of the flight time of an ion on its energy, and thus to improve the mass resolution of a time-of-flight spectrometer, is to incorporate in the analysis chamber of the mass spectrometer an ion mirror device. This method has been proposed for the first time by Alikhanov, and implemented by Mamyrin. One can refer to the corresponding respective articles: Alikhanov, Soviet Physics Journal of Experimental and Theoretical Physics (JETP), 4 (1956) 452 and Mamyrin et al., Soviet Phys. JETP, 37 (1973) 45 .

Les ions les plus énergétiques pénètrent plus profondément dans le champ électrostatique généré par le miroir ionique, le chemin qu'ils parcourent et leur temps de vol dans la chambre d'analyse sont ainsi plus longs que pour les ions de plus faible énergie. Par conséquent, l'allongement du temps de vol des ions les plus énergétiques par rapport aux ions les moins énergétiques au sein du champ électrostatique généré par le miroir ionique, compense le fait que le temps de vol est moindre pour les ions les plus énergétiques, dans la zone de la chambre d'analyse se situant hors du champ généré par le miroir. Ainsi le temps total de vol au sein de la chambre d'analyse est rendu indépendant de l'énergie des ions. On désigne communément les analyseurs de masse - c'est-à-dire notamment les spectromètres de masse et les sondes atomiques - équipés de miroirs électrostatiques, des analyseurs de masse à réflectron.The most energetic ions penetrate deeper into the electrostatic field generated by the ion mirror, the path they travel and their flight time in the analysis chamber are longer than for the lower energy ions. Therefore, the increase in the time of flight of the most energetic ions relative to the least energy ions within the electrostatic field generated by the ion mirror, compensates for the fact that the flight time is lower for the most energetic ions, in the zone of the analysis chamber lying outside the field generated by the mirror. Thus the total flight time within the analysis chamber is made independent of the energy of the ions. Mass analyzers - that is to say mass spectrometers and atomic probes - equipped with electrostatic mirrors and reflectron mass analyzers are commonly referred to.

Les miroirs ioniques utilisés dans des analyseurs de masse à temps de vol à réflectron intègrent typiquement des champs électrostatiques retardateurs homogènes ou bien homogènes par morceaux, c'est-à-dire homogènes dans des zones spatiales déterminées. Les miroirs ioniques sont communément constitués d'une électrode principale, d'une géométrie particulière et excitée par un potentiel électrique, et d'une électrode-grille d'une géométrie similaire et excitée par un potentiel électrique différent. Le champ électrostatique généré par ces électrodes est contenu dans l'espace séparant ces électrodes, et ses caractéristiques peuvent par exemple être ajustées en fonction des potentiels d'excitation.The ion mirrors used in reflectron time-of-flight mass analyzers typically incorporate homogeneous and uniform homogeneous particle retardation fields, that is homogeneous in defined spatial areas. Ionic mirrors commonly consist of a main electrode, a particular geometry and excited by an electrical potential, and a gate electrode of similar geometry and excited by a different electrical potential. The electrostatic field generated by these electrodes is contained in the space separating these electrodes, and its characteristics can for example be adjusted as a function of the excitation potentials.

Différents types de spectromètres de masse reposent sur des méthodes diverses d'émission ionique telles que la désorption de champ, la désorption laser ou l'émission d'ions secondaires, en elles-mêmes connues de l'état de la technique. Une caractéristique des faisceaux ioniques résultant de ces techniques réside en une forte dispersion angulaire des ions émis, pouvant attendre des valeurs de l'ordre de 90° ou plus. Il est important de ne pas restreindre des faisceaux d'ions à large dispersion angulaire, afin de maximiser la sensibilité du spectromètre de masse. En outre, l'analyse d'ions émis avec une large dispersion angulaire peut présenter un intérêt majeur par ailleurs, dans certaines applications telles que par exemple les sondes atomiques, encore nommées microscopes à sonde atomique, dans lesquels une augmentation de l'acceptance angulaire est synonyme d'un élargissement du champ de vision du microscope, étant donné que différents angles d'émission correspondent à différentes positions sur la surface de l'échantillon auquel les ions sont arrachés.Different types of mass spectrometers rely on various ionic emission methods such as field desorption, laser desorption or secondary ion emission, themselves known from the state of the art. A characteristic of the ion beams resulting from these techniques is a strong angular dispersion of emitted ions, which can wait for values of the order of 90 ° or more. It is important not to restrict ion beams with wide angular dispersion in order to maximize the sensitivity of the mass spectrometer. In addition, the analysis of ions emitted with wide angular dispersion may be of major interest Moreover, in certain applications such as for example the atomic probes, also called atomic probe microscopes, in which an increase in the angular acceptance is synonymous with an enlargement of the field of view of the microscope, since different angles of emission correspond to different positions on the surface of the sample to which the ions are torn off.

Il est à noter que toutes les méthodes d'émission d'ions, et tout particulièrement la désorption de champ, sont caractérisées par des dispersions énergétiques significatives ; il est ainsi particulièrement indiqué d'utiliser des miroirs ioniques afin d'améliorer les performances des dispositifs d'analyse de masse à temps de vol.It should be noted that all ion emission methods, and especially field desorption, are characterized by significant energy dispersions; it is thus particularly appropriate to use ion mirrors to improve the performance of time-of-flight mass analysis devices.

Les miroirs ioniques des réflectrons classiques à champ électrostatique homogène par morceaux ne peuvent pas accepter une dispersion angulaire du faisceau ionique supérieure à environ 10°. Afin de permettre d'enregistrer les signaux ioniques avec des détecteurs de dimensions raisonnables, tout en acceptant de fortes dispersions angulaires, des miroirs à géométrie courbe ont été proposés dans l'article de Vialle et al., Rev. Sci. Instrum., 68 (1997) 2312 . Un réflectron à géométrie courbe est proposé dans la demande de brevet internationale WO2006/120428 . Ce type de réflectron réalise une transformation du faisceau ionique divergeant depuis un échantillon de taille réduite, en un faisceau substantiellement parallèle, apte à être admis par un détecteur de dimensions raisonnables. Le plan du détecteur est substantiellement perpendiculaire au faisceau ionique, dans le but d'éviter d'augmenter les dimensions du détecteur, ce qui serait autrement inéluctable. En plus de ses propriétés de focalisation spatiale, et de focalisation en termes de temps de vol en fonction de l'énergie des ions, un tel dispositif possède des propriétés de focalisation spatiale en fonction de l'énergie des ions, et peut ainsi être utilisé pour obtenir des images d'un échantillon résolues spatialement, dans des microscopes à sonde atomique.Ion mirrors of conventional piecewise homogeneous electrostatic reflectrons can not accept an angular dispersion of the ion beam greater than about 10 °. In order to make it possible to record the ionic signals with detectors of reasonable dimensions, while accepting strong angular dispersions, curved geometry mirrors have been proposed in the article. from Vialle et al., Rev. Sci. Instrum., 68 (1997) 2312 . A reflectron with curved geometry is proposed in the international patent application WO2006 / 120428 . This type of reflectron performs a transformation of the ion beam diverging from a sample of reduced size into a substantially parallel beam, capable of being admitted by a detector of reasonable dimensions. The plane of the detector is substantially perpendicular to the ion beam, in order to avoid increasing the dimensions of the detector, which would otherwise be unavoidable. In addition to its spatial focusing properties, and focusing in terms of flight time as a function of ion energy, such a device has spatial focusing properties as a function of ion energy, and can thus be used to obtain spatially resolved images of a sample in atomic probe microscopes.

Un tel réflectron présente cependant quelques inconvénients. D'une part, l'acceptance angulaire d'un tel dispositif ne peut excéder 90° pour des raisons simplement liées à la géométrie du dispositif. L'acceptance angulaire d'un tel réflectron est en outre réduite par une inclinaison indispensable par rapport au plan du détecteur, de la surface sur laquelle est réalisée la focalisation en termes de temps de vol en fonction de l'énergie. Un autre inconvénient de ce type de réflectron est lié au fait que l'intersection entre la plupart des trajectoires des ions et la direction normale à l'électrode-grille d'entrée du miroir du réflectron est réalisée selon des angles assez ouverts, ce qui augmente de manière considérable la dispersion des ions au niveau des inhomogénéités locales de champ électrique générées par la grille.Such a reflectron, however, has some disadvantages. On the one hand, the angular acceptance of such a device can not exceed 90 ° for reasons simply related to the geometry of the device. The angular acceptance of such a reflectron is further reduced by an indispensable inclination with respect to the plane of the detector, the surface on which is made the focusing in terms of flight time as a function of energy. Another disadvantage of this type of reflectron is related to the fact that the intersection between most of the trajectories of the ions and the direction normal to the input gate electrode of the reflectron mirror is made at relatively open angles, which considerably increases the dispersion of the ions at the local inhomogeneities of electric field generated by the grid.

La demande WO2006/134380 A2 décrit un dispositif d'analyse de masse à temps de vol selon le préambule de la revendication 1.Requirement WO2006 / 134380 A2 discloses a time-of-flight mass analysis device according to the preamble of claim 1.

En résumé, l'utilisation de miroirs à champ courbe améliore l'acceptance angulaire dans des spectromètres de masse ou des microscopes à sonde atomique à réflectron. Néanmoins, les réflectrons connus de l'état de la technique ne confèrent pas à ces dispositifs une acceptance angulaire suffisante, et présentent un certain nombre d'autres inconvénients.In summary, the use of curved-field mirrors improves angular acceptance in mass spectrometers or reflectron atom probe microscopes. Nevertheless, the reflectrons known from the state of the art do not give these devices sufficient angular acceptance, and have a number of other disadvantages.

Un but de la présente invention est de pallier au moins les inconvénients précités, en proposant une conception nouvelle de réflectron, capable d'autoriser une grande acceptance angulaire des ions émis depuis la surface réduite d'un échantillon dans au moins une direction.An object of the present invention is to overcome at least the aforementioned drawbacks, by proposing a new reflectron design, capable of allowing a large angular acceptance of ions emitted from the reduced surface of a sample in at least one direction.

A cet effet, l'invention a pour objet un dispositif d'analyse de masse à temps de vol, notamment de type spectromètre de masse ou sonde atomique, caractérisé en ce qu'il comprend :

  • des moyens de réception d'un échantillon,
  • des moyens d'extraction d'ions depuis la surface de l'échantillon,
  • un détecteur,
  • un miroir ionique produisant un champ électrostatique à géométrie toroïdale dont les lignes équipotentielles sont définies par une première courbure dans une première direction comprise dans le plan radial du dispositif d'analyse de masse et un premier centre de courbure, et une seconde courbure dans une seconde direction perpendiculaire à la première direction dans le plan transverse du dispositif d'analyse de masse et un second centre de courbure,
l'échantillon étant disposé à une distance du premier centre de courbure inférieure à un quart du premier rayon de courbure.For this purpose, the subject of the invention is a time-of-flight mass analysis device, particularly of the mass spectrometer or atomic probe type, characterized in that it comprises:
  • means for receiving a sample,
  • means for extracting ions from the surface of the sample,
  • a detector,
  • an ion mirror producing an electrostatic field of toroidal geometry whose equipotential lines are defined by a first curvature in a first direction comprised in the radial plane of the mass analysis device and a first center of curvature, and a second curvature in a second direction perpendicular to the first direction in the transverse plane of the mass analysis device and a second center of curvature,
the sample being disposed at a distance from the first center of curvature less than a quarter of the first radius of curvature.

Dans un mode de réalisation de l'invention, le dispositif d'analyse de masse à temps de vol peut être caractérisé en ce que le détecteur est disposé à une distance du point de focalisation spatiale des ions émis de l'échantillon selon la première direction, après réflexion par le miroir ionique, inférieure à un quart du premier rayon de courbure.In one embodiment of the invention, the time-of-flight mass analysis device may be characterized in that the detector is disposed at a distance from the spatial focusing point of the ions emitted from the sample in the first direction. , after reflection by the ion mirror, less than a quarter of the first radius of curvature.

Dans un mode de réalisation de l'invention, le dispositif d'analyse de masse à temps de vol peut être caractérisé en ce que le détecteur est disposé en aval du point de focalisation spatiale des ions émis de l'échantillon selon la première direction, après réflexion par le miroir ionique.In one embodiment of the invention, the time-of-flight mass analysis device may be characterized in that the detector is disposed downstream of the spatial focusing point of the emitted ions of the sample in the first direction, after reflection by the ion mirror.

Dans un mode de réalisation de l'invention, le dispositif d'analyse de masse à temps de vol peut être caractérisé en ce que le détecteur est sensible à la position bidimensionnelle de l'impact des ions sur sa surface.In one embodiment of the invention, the time of flight mass analysis device can be characterized in that the detector is sensitive to the two-dimensional position of the impact of the ions on its surface.

Dans un mode de réalisation de l'invention, le dispositif d'analyse de masse à temps de vol peut être caractérisé en ce que le détecteur est apte à être déplacé selon l'axe principal du dispositif d'analyse de masse.In one embodiment of the invention, the time-of-flight mass analysis device can be characterized in that the detector is able to be displaced along the main axis of the mass analysis device.

Dans un mode de réalisation de l'invention, le dispositif d'analyse de masse à temps de vol peut être caractérisé en ce que le miroir ionique comprend une électrode arrière et une électrode grille, le champ électrostatique étant formé entre l'électrode arrière et l'électrode grille.In one embodiment of the invention, the time-of-flight mass analysis device may be characterized in that the ion mirror comprises a rear electrode and a gate electrode, the electrostatic field being formed between the back electrode and the grid electrode.

Dans un mode de réalisation de l'invention, le dispositif d'analyse de masse à temps de vol peut être caractérisé en ce que l'électrode arrière et l'électrode grille sont de surface cylindrique.In one embodiment of the invention, the time of flight mass analysis device may be characterized in that the rear electrode and the gate electrode have a cylindrical surface.

Dans un mode de réalisation de l'invention, le dispositif d'analyse de masse à temps de vol peut être caractérisé en ce que l'électrode arrière et l'électrode grille sont de surface sphérique.In one embodiment of the invention, the time-of-flight mass analysis device can be characterized in that the rear electrode and the gate electrode are of spherical surface.

Dans un mode de réalisation de l'invention, le dispositif d'analyse de masse à temps de vol peut être caractérisé en ce qu'il comprend des moyens additionnels aptes à faire varier le champ électrostatique produit par le miroir ionique.In one embodiment of the invention, the time of flight mass analysis device may be characterized in that it comprises additional means capable of varying the electrostatic field produced by the ion mirror.

Dans un mode de réalisation de l'invention, le dispositif d'analyse de masse à temps de vol peut être caractérisé en ce que l'échantillon est apte à être déplacé dans toutes les directions et/ou à être pivoté.In one embodiment of the invention, the time-of-flight mass analysis device can be characterized in that the sample is able to be moved in all directions and / or to be rotated.

Dans un mode de réalisation de l'invention, le dispositif d'analyse de masse à temps de vol peut être caractérisé en ce que les moyens d'extraction des ions arrachent les ions de la surface de l'échantillon par désorption de champ et/ou désorption laser, ou émission d'ions secondaires.In one embodiment of the invention, the time of flight mass analysis device may be characterized in that the ion extraction means pull out the ions from the surface of the sample by means of field desorption and / or or laser desorption, or secondary ion emission.

Selon la présente invention, une géométrie particulière d'analyseur de masse à temps de vol à réflectron est proposée à cette fin. Selon cette géométrie, l'échantillon à analyser est placé à une distance substantiellement proche du centre de courbure du miroir à champ courbe selon la direction du champ ionique émis. Les ions émis, après réflexion sur le miroir à champ courbe, sont ensuite focalisés dans la direction considérée, en un point conjugué situé à une position opposée, par rapport au centre de courbure, de la position de l'échantillon. Le détecteur peut être disposé, selon le problème physique qui se pose, ou bien au point de focalisation ou bien en aval de ce point. Dans le premier cas, le décalage depuis la position du détecteur, des points de focalisation en termes de temps de vol en fonction de l'énergie des ions pour toutes les directions d'émission ionique, est minimal. Dans le dernier cas, l'image angulaire de l'échantillon peut être résolue au niveau d'un détecteur de dimensions raisonnables.
Un avantage de la présente invention réside dans le fait que ces propriétés demeurent valides pour une dispersion angulaire en théorie illimitée, c'est-à-dire jusqu'à 180°.
Un autre avantage de l'invention réside dans le fait que, indépendamment de la dispersion angulaire, les angles d'intersection des trajectoires ioniques par rapport à la normale à la surface de l'électrode-grille d'entrée du miroir pour la direction considérée, restent faibles, permettant ainsi une réduction de la dispersion angulaire des ions à ce niveau.
According to the present invention, a particular reflectron time-of-flight mass analyzer geometry is proposed for this purpose. According to this geometry, the sample to be analyzed is placed at a distance substantially close to the center of curvature of the curved-field mirror in the direction of the emitted ion field. The ions emitted, after reflection on the curved-field mirror, are then focused in the direction considered, at a conjugate point located at an opposite position, with respect to the center of curvature, of the position of the sample. The detector can be arranged, depending on the physical problem that arises, either at the point of focus or downstream from this point. In the first case, the shift from the position of the detector, focus points in terms of flight time as a function of ion energy for all directions of ionic emission, is minimal. In the latter case, the angular image of the sample can be resolved at a detector of reasonable dimensions.
An advantage of the present invention is that these properties remain valid for theoretically unlimited angular dispersion, i.e. up to 180 °.
Another advantage of the invention lies in the fact that, irrespective of the angular dispersion, the angles of intersection of the ion trajectories with respect to the normal to the surface of the gate-entry electrode of the mirror for the considered direction , remain low, thus allowing a reduction of the angular dispersion of the ions at this level.

La dispersion spatiale en énergie offerte par l'analyseur de masse à temps de vol à réflectron selon l'invention n'est pas nulle au niveau du détecteur. Néanmoins, en utilisant le champ d'un miroir sphérique et un décalage faible entre l'échantillon et le centre de courbure du champ, cette dispersion peut être rendue négligeable et tendre vers zéro. Ceci est dû au fait que dans le cas - irréalisable en pratique - où la position de l'échantillon coïncide avec le centre de courbure du champ, des ions suivent les mêmes trajectoires vers le miroir, puis au retour en provenance du miroir, indépendamment de leur énergie cinétique.
Ainsi, la configuration particulière, propre à cette invention, d'un analyseur de masse à temps de vol à réflectron, comprenant un champ de miroir sphérique et un détecteur situé en aval du point de focalisation, confère des propriétés particulièrement favorables à une grande acceptance angulaire du faisceau ionique, notamment particulièrement adaptée à une utilisation dans des microscopes à sonde atomique à haute résolution et grande sensibilité.
The spatial energy dispersion offered by the reflectron time-of-flight mass analyzer according to the invention is not zero at the detector. Nevertheless, by using the field of a spherical mirror and a small shift between the sample and the center of curvature of the field, this dispersion can be made negligible and tend towards zero. This is because in the case - impractical in practice - where the position of the sample coincides with the center of curvature of the field, ions follow the same paths to the mirror, then back from the mirror, regardless of their kinetic energy.
Thus, the particular configuration of this invention of a reflectron time-of-flight mass analyzer, comprising a spherical mirror field and a detector located downstream of the focusing point, gives properties that are particularly favorable to large acceptance. angular beam of the ion beam, particularly suitable for use in high resolution and high sensitivity atomic probe microscopes.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description, donnée à titre d'exemple, faite en regard des dessins annexés qui représentent :

  • la figure 1, la vue en coupe dans le plan radial d'un dispositif d'analyse de masse, d'une géométrie de réflectron connue de l'état de la technique ;
  • la figure 2, la vue en coupe dans le plan radial d'un dispositif d'analyse de masse, d'un exemple de géométrie de réflectron selon un mode de réalisation de la présente invention ;
  • la figure 3, la vue en perspective, d'un exemple de l'image formée au niveau d'un détecteur sensible à la position, d'ions émis d'un échantillon suivant différentes directions dans le plan radial et dans le plan transverse, selon un mode de réalisation de la présente invention ;
  • la figure 4, la vue en coupe dans le plan radial d'un dispositif d'analyse de masse, d'un exemple de géométrie d'un réflectron avec un détecteur placé au point de focalisation conjugué du point auquel est situé l'échantillon, selon un autre mode de réalisation de la présente invention.
Other features and advantages of the invention will appear on reading the description, given by way of example, with reference to the appended drawings which represent:
  • the figure 1 , the sectional view in the radial plane of a mass analysis device, of a reflectron geometry known from the state of the art;
  • the figure 2 , the sectional view in the radial plane of a mass analysis device, of an example of reflectron geometry according to an embodiment of the present invention;
  • the figure 3 , the perspective view, of an example of the image formed at a position-sensitive detector, of ions emitted from a sample in different directions in the radial plane and in the transverse plane, according to a mode embodiment of the present invention;
  • the figure 4 , the sectional view in the radial plane of a mass analysis device, of an example of a reflectron geometry with a detector placed at the conjugated point of focus of the point at which the sample is located, according to another embodiment of the present invention.

La figure 1 présente la vue en coupe dans le plan radial d'un dispositif d'analyse de masse, d'une géométrie de réflectron connue de l'état de la technique, telle que présentée dans la demande de brevet WO2006/120148 précitée.
Un analyseur de masse 100 comprend un échantillon 101 de petite taille, par exemple en forme de pointe, duquel des ions sont émis et accélérés par des électrodes d'extraction 102. Les ions émis suivent dans la chambre d'analyse de l'analyseur de masse 100 des trajectoires 109 et 110. Les ions sont réfléchis dans un miroir ionique 103 formant un champ électrostatique à surface équipotentielles courbes 104. Les lignes équipotentielles ont un centre de courbure 105. Le miroir ionique 103 est constitué d'une électrode arrière 107 et d'une électrode grille 106. Un détecteur 108 recueille les ions.
Le détecteur 108 est sensible à la position du point d'impact des ions sur sa surface. Le centre de courbure 105 des lignes équipotentielles du champ généré par le miroir ionique 103 se situe typiquement à une distance plus grande du miroir 103 que de l'échantillon 101.
Le miroir ionique 103 permet à des trajectoires ioniques divergentes provenant de l'échantillon 101, de devenir essentiellement moins divergentes, voire légèrement convergentes après réflexion. Ainsi, à une grande distance du miroir 103, les trajectoires ioniques peuvent tout de même être captées par le détecteur 108 dont la taille peut rester raisonnable. Ce grand espacement des trajectoires permet aux ions d'avoir un temps de vol suffisant pour conférer à l'analyseur de masse 100 une haute résolution en masse. L'intensité du champ électrostatique à l'intérieur du miroir ionique 103, et partant la longueur des trajectoires au sein du miroir ionique 103, est choisie de manière à ce que des ions émis de l'échantillon dans la même direction, mais avec des énergies différentes, suivant les trajectoires 109 et 110, atteignent le détecteur 108 essentiellement au même moment ; c'est-à-dire que la focalisation en termes de temps de vol par rapport à l'énergie des ions est assurée.
The figure 1 presents the sectional view in the radial plane of a mass analysis device, of a reflectron geometry known from the state of the art, as presented in the patent application WO2006 / 120148 supra.
A mass analyzer 100 comprises a sample 101 of small size, for example in the form of a tip, from which ions are emitted and accelerated by extraction electrodes 102. The emitted ions follow in the analysis chamber of the analyzer. 100 of the trajectories 109 and 110. The ions are reflected in an ionic mirror 103 forming a curved equipotential surface electrostatic field 104. The equipotential lines have a center of curvature 105. The ion mirror 103 consists of a rear electrode 107 and of a gate electrode 106. A detector 108 collects the ions.
The detector 108 is sensitive to the position of the point of impact of the ions on its surface. The center of curvature 105 of the equipotential lines of the field generated by the ion mirror 103 is typically at a greater distance from the mirror 103 than from the sample 101.
The ion mirror 103 allows divergent ion trajectories from the sample 101 to become substantially less divergent or even slightly convergent after reflection. Thus, at a great distance from the mirror 103, the ion trajectories can still be picked up by the detector 108 whose size can remain reasonable. This large spacing of the trajectories allows the ions to have a sufficient flight time to give the mass analyzer 100 a high resolution mass. The intensity of the electrostatic field inside the ion mirror 103, and hence the length of the trajectories within the ion mirror 103, is chosen so that ions emitted from the sample in the same direction, but with different energies, along the paths 109 and 110, reach the detector 108 essentially at the same time; that is, the focus in terms of flight time with respect to ion energy is ensured.

La distance entre le miroir ionique 103 et le détecteur 108 est choisie de manière à ce que des ions émis de l'échantillon dans la même direction, mais avec des énergies différentes, atteignent le détecteur 108 essentiellement au même point d'impact ; c'est-à-dire que la focalisation spatiale par rapport à l'énergie des ions est assurée.
Ainsi, si des points de départ différents sur la surface de l'échantillon 101 correspondent à des angles d'émissions différents, comme c'est le cas par exemple dans des microscopes à sonde atomique, une image de l'échantillon peut être résolue au niveau du détecteur, avec une faible aberration chromatique.
Il apparaît clairement sur la figure 1 que la géométrie de l'analyseur de masse 100 présentée ici ne permet pas d'augmenter l'acceptance angulaire au-delà de 90°. Il apparaît clairement, également, que pour de larges dispersions angulaires, la plupart des ions entrent en intersection avec l'électrode grille 106 du miroir ionique 103 sous des angles relativement importants par rapport à la normale à la surface de l'électrode grille 106. Il est connu du spécialiste de la théorie optique ionique que de tels angles d'intersection entraînent des effets de dispersion au niveau des inhomogénéités de champ électrostatique local au niveau de l'électrode grille 106.
The distance between the ion mirror 103 and the detector 108 is chosen so that ions emitted from the sample in the same direction, but with different energies, reach the detector 108 at essentially the same point of impact; that is, the spatial focus with respect to ion energy is ensured.
Thus, if different starting points on the surface of the sample 101 correspond to different emission angles, as is the case, for example, in atomic probe microscopes, an image of the sample can be solved at the same time. detector level, with low chromatic aberration.
It clearly appears on the figure 1 that the geometry of the mass analyzer 100 presented here does not allow to increase the angular acceptance beyond 90 °. It also clearly appears that for wide angular dispersions, most of the ions intersect with the gate electrode 106 of the ion mirror 103 at relatively large angles relative to the normal at the surface of the gate electrode 106. It is known to those skilled in the art of ionic optical theory that such angles of intersection result in scattering effects at local electrostatic field inhomogeneities at the gate electrode 106.

La figure 2 présente la vue en coupe dans le plan radial d'un dispositif d'analyse de masse, d'un exemple de géométrie de réflectron selon un mode de réalisation de la présente invention.
L'échantillon 101 est disposé à la proximité du centre de courbure 105 des lignes équipotentielles 104 du champ électrostatique généré par le miroir ionique 103. Dans l'exemple de la figure, l'électrode 107 du miroir électrostatique 103 est à géométrie sphérique, ainsi que l'électrode grille 106. Ainsi les lignes équipotentielles 104 du champ électrostatique présentent une symétrie sphérique. D'une manière similaire à la description donnée ci-dessus en référence à la figure 1, les ions sont émis depuis la surface de l'échantillon 101 et accélérés par les électrodes d'extraction 102, puis réfléchies par le miroir ionique 103. Les ions passent par un point 111, conjugué du point à laquelle l'échantillon 101 formant une pointe peut être assimilé en première approximation. En aval du point 111, les ions atteignent le détecteur 108, sensible à la position des points d'impact avec sa surface.
Le champ électrostatique régnant à l'intérieur du miroir ionique 103, et partant la longueur des trajectoires des ions au sein du miroir ionique 103, sont choisis de manière à ce que des ions émis depuis la surface de l'échantillon 101, dans une même direction mais avec des énergies différentes, suivant des trajectoires 109 et 110, atteignent le détecteur 108 essentiellement au même instant ; c'est-à-dire que la focalisation en termes de temps de vol par rapport à l'énergie des ions est assurée. La focalisation en termes de temps de vol relativement à l'énergie des ions ne peut pas être rigoureusement réalisée en pratique au niveau du détecteur 108, étant donné que la surface sur laquelle la condition d'une telle focalisation est remplie est de forme sensiblement sphérique, avec un centre situé au point conjugué 111. Néanmoins, cette surface est sensiblement parallèle à la région centrale de la surface du détecteur 108, ainsi la dépendance du temps de vol d'un ion à son énergie reste faible pour une dispersion angulaire d'émission relativement grande, cette dépendance croissant comme le carré de la distance séparant le centre du détecteur 108 au point d'impact de l'ion considéré sur la surface du détecteur 108.
Etant donné que l'échantillon 101 est proche du centre de courbure 105 du miroir ionique 103, les angles formés entre les trajectoires des ions et les lignes normales à la surface de l'électrode grille 106 du miroir ionique 103 aux points d'intersections entre ces dernières, sont réduits. Ces angles tendent vers zéro lorsque l'échantillon 101 tend vers le centre de courbure 105 du miroir ionique 103. En d'autres termes, les trajectoires des ions sont pratiquement perpendiculaires à la surface de l'électrode grille 106 du miroir ionique 103. Cette configuration particulière permet de réduire les effets de dispersion des ions causée par les inhomogénéités du champ électrostatique local à la proximité de l'électrode grille 106.
De surcroît, l'écart entre les trajectoires 109 et 110, d'ions partant depuis la surface de l'échantillon 101 dans une même direction, mais ayant des énergies différentes, demeure réduit après réflexion par le miroir ionique 103 ; cet écart tend vers zéro lorsque l'échantillon 101 tend vers le centre de courbure 105 des lignes équipotentielles 104 du champ électrostatique produit par le miroir ionique 103. Ainsi, bien que la coïncidence, au niveau du détecteur 108, des trajectoires des ions de même direction initiale mais présentant des énergies différentes ne soit pas parfaite, celle-ci demeure excellente si la dispersion en énergie des ions demeure relativement faible. On dit encore que l'aberration chromatique spatiale demeure faible. De la sorte, des ions avec des directions d'émission différentes peuvent être résolus au niveau du détecteur 108 avec une bonne précision.
Dans un mode de réalisation de l'invention, le rayon de courbure de l'électrode arrière 107 pourra par exemple être égal à 400 mm, la distance de l'échantillon 101 au centre de courbure 105 pourra être égale à 30 mm, et la distance du détecteur 108 au point de focalisation 111 pourra être égale à 275 mm.
Plus généralement, on pourra choisir de positionner l'échantillon 101 à une distance du centre de courbure 105 inférieure à un pourcentage donné du rayon de courbure de l'électrode arrière 107, par exemple 25%.
The figure 2 shows the sectional view in the radial plane of a mass analysis device, an example of reflectron geometry according to an embodiment of the present invention.
The sample 101 is disposed near the center of curvature 105 of the equipotential lines 104 of the electrostatic field generated by the ion mirror 103. In the example of the figure, the electrode 107 of the electrostatic mirror 103 has a spherical geometry, and that the gate electrode 106. Thus the equipotential lines 104 of the electrostatic field have a spherical symmetry. In a manner similar to the description given above with reference to the figure 1 , the ions are emitted from the surface of the sample 101 and accelerated by the extraction electrodes 102, then reflected by the ion mirror 103. The ions pass through a point 111, conjugate of the point at which the sample 101 forming a tip can be assimilated into a first approximation. Downstream of point 111, the ions reach the detector 108, sensitive to the position of the points of impact with its surface.
The electrostatic field prevailing inside the ion mirror 103, and therefore the length of the trajectories of the ions within the ion mirror 103, are chosen so that ions emitted from the surface of the sample 101, in the same direction. direction but with different energies, along paths 109 and 110, reach the detector 108 essentially at the same time; that is, the focus in terms of flight time with respect to ion energy is ensured. The focus in terms of flight time relative to the energy of the ions can not be rigorously achieved in practice at the detector 108, since the surface on which the condition of such a focus is filled is of substantially spherical shape. with a center located at the conjugate point 111. Nevertheless, this surface is substantially parallel to the central region of the surface of the detector 108, thus the dependence of the flight time of an ion at its energy remains low for an angular dispersion of relatively large emission, this increasing dependence as the square of the distance separating the center of the detector 108 to the point of impact of the ion considered on the surface of the detector 108.
Since the sample 101 is near the center of curvature 105 of the ion mirror 103, the angles formed between the ion trajectories and the normal lines at the surface of the gate electrode 106 of the ion mirror 103 at the points of intersection between the latter are reduced. These angles tend towards zero when the sample 101 tends towards the center of curvature 105 of the ion mirror 103. In other words, the trajectories of the ions are practically perpendicular to the surface of the gate electrode 106 of the ion mirror 103. This particular configuration makes it possible to reduce the effects of ion dispersion caused by the inhomogeneities of the local electrostatic field at the proximity of the gate electrode 106.
In addition, the difference between the trajectories 109 and 110, ions leaving from the surface of the sample 101 in the same direction, but having different energies, remains reduced after reflection by the ion mirror 103; this gap tends to zero when the sample 101 tends towards the center of curvature 105 of the equipotential lines 104 of the electrostatic field produced by the ion mirror 103. Thus, although the coincidence, at the level of the detector 108, trajectories of ions of the same initial direction but having different energies is not perfect, it remains excellent if the energy dispersion of the ions remains relatively low. Space chromatic aberration is still said to be weak. In this way, ions with different emission directions can be solved at the detector 108 with good accuracy.
In one embodiment of the invention, the radius of curvature of the rear electrode 107 may for example be equal to 400 mm, the distance from the sample 101 to the center of curvature 105 may be equal to 30 mm, and the The distance from the detector 108 to the focusing point 111 may be 275 mm.
More generally, it will be possible to choose to position the sample 101 at a distance from the center of curvature 105 less than a given percentage of the radius of curvature of the rear electrode 107, for example 25%.

La figure 3 présente la vue en perspective, d'un exemple de l'image formée au niveau d'un détecteur sensible à la position, d'ions émis d'un échantillon suivant différentes directions dans le plan radial et dans le plan transverse, selon un mode de réalisation de la présente invention.
Ce mode de réalisation de l'invention permet l'analyse d'ions émis de la surface de l'échantillon 101 avec une grande dispersion angulaire, en théorie jusqu'à π radians, en utilisant un détecteur 108 de taille finie. L'acceptance angulaire est d'autant plus grande que le centre du détecteur 108 est proche du point 111 conjugué du point auquel l'échantillon 101 est assimilé.
Dans le cas particulier où l'analyseur de masse à temps de vol 100 est une sonde atomique, et donc où différentes directions d'émission d'ions correspondent à différents points sur la surface de l'échantillon 101, ce mode de réalisation de l'invention permet une grande résolution en masse avec une large acceptance angulaire, ainsi qu'une bonne résolution spatiale, grâce à une faible aberration chromatique spatiale. En d'autres termes, ce mode de réalisation de l'invention est particulièrement approprié pour une application de type microscope à sonde atomique.
En raison du décalage de l'échantillon 101 par rapport à l'axe dans le plan radial, la focalisation en ouverture ou en énergie peut être réalisée différemment dans le plan radial et dans le plan transverse. Pour pallier ce problème, il peut être avantageux d'utiliser un miroir électrostatique 103 qui ne soit pas à géométrie rigoureusement sphérique. Dans une telle configuration, le rayon de courbure et donc le centre de courbure dans le plan radial sont différents du rayon de courbure et du centre de courbure dans le plan transverse.
The figure 3 presents the perspective view, of an example of the image formed at a position-sensitive detector, of ions emitted from a sample in different directions in the radial plane and in the transverse plane, according to a mode embodiment of the present invention.
This embodiment of the invention allows the analysis of ions emitted from the surface of the sample 101 with a large angular dispersion, in theory up to π radians, using a finite size detector 108. The angular acceptance is all the greater as the center of the detector 108 is close to the conjugate point 111 of the point at which the sample 101 is assimilated.
In the particular case where the flight time mass analyzer 100 is an atomic probe, and therefore where different ion emission directions correspond to different points on the surface of the sample 101, this embodiment of the The invention allows large mass resolution with wide angular acceptance, as well as good spatial resolution, due to low spatial chromatic aberration. In other words, this embodiment of the invention is particularly suitable for an atomic probe microscope type application.
Due to the offset of the sample 101 with respect to the axis in the radial plane, the aperture or energy focusing can be realized differently in the radial plane and in the transverse plane. To alleviate this problem, it may be advantageous to use an electrostatic mirror 103 which is not of strictly spherical geometry. In such a configuration, the radius of curvature and thus the center of curvature in the radial plane are different from the radius of curvature and the center of curvature in the transverse plane.

La figure 4 présente la vue en perspective, d'un exemple de géométrie d'un réflectron avec un détecteur 108 placé au niveau du point de focalisation conjugué du point auquel est situé l'échantillon 101, selon un autre mode de réalisation de la présente invention.
Selon ce mode de réalisation, l'intensité du champ électrostatique généré par le miroir ionique 103 peut être choisie de manière à permettre une focalisation en termes de temps de vol relativement à l'énergie des ions, au niveau du détecteur 108.
Ce mode de réalisation particulier peut être avantageux si une résolution spatiale des ions n'est pas nécessaire. Ce mode de réalisation permet une grande résolution en masse, pour des ions émis depuis la surface de l'échantillon 101 avec une grande dispersion angulaire. Cette caractéristique peut être obtenue en plaçant le détecteur à une position coïncidant avec le point de focalisation 111 en termes de temps de vol relativement à l'énergie des ions.
D'une manière plus générale, on pourra choisir de positionner le détecteur 108 à une distance du point de focalisation 111 inférieure à un pourcentage donné du rayon de courbure de l'électrode arrière 107, par exemple 25%.
The figure 4 shows the perspective view of an exemplary geometry of a reflectron with a detector 108 placed at the conjugate point of focus of the point at which the sample 101 is located, according to another embodiment of the present invention.
According to this embodiment, the intensity of the electrostatic field generated by the ion mirror 103 can be chosen so as to allow focussing in terms of flight time relative to the energy of the ions, at the detector 108.
This particular embodiment may be advantageous if a spatial resolution of the ions is not necessary. This embodiment allows a high mass resolution for ions emitted from the surface of the sample 101 with a large angular dispersion. This characteristic can be obtained by placing the detector at a position coinciding with the focusing point 111 in terms of flight time relative to the energy of the ions.
More generally, it will be possible to position the detector 108 at a distance from the focusing point 111 less than a given percentage of the radius of curvature of the rear electrode 107, for example 25%.

Il est enfin possible d'envisager un autre mode de réalisation de l'invention, non représenté sur les figures. Ce mode de réalisation est approprié pour des applications dans lesquelles la dispersion angulaire est importante dans un seul plan. Dans une telle configuration, la géométrie du réflectron peut être simplifiée en utilisant une électrode grille 106 et une électrode arrière 107 de surfaces cylindriques.
Il est finalement à noter que d'une manière générale, et en elle-même connue de l'homme du métier, les électrodes du miroir ionique 103 peuvent être équipées de moyens additionnels d'alignement mécanique et/ou de jeux d'électrodes additionnelles permettant l'ajustement de la forme du champ électrostatique. Il est également avantageux, pour un meilleur ajustement des performances de l'analyseur de masse 100, de permettre un déplacement du détecteur 108 selon l'axe principal du dispositif d'analyse 100 et/ou de l'échantillon 101 selon les trois axes. Il peut être également avantageux de doter le mécanisme de tenue de l'échantillon de moyens d'incliner l'échantillon afin de corriger des défauts d'inclinaison de l'échantillon et/ou du porte-échantillon.
Finally, it is possible to envisage another embodiment of the invention, not shown in the figures. This embodiment is suitable for applications in which angular dispersion is important in a single plane. In such a configuration, the reflectron geometry can be simplified by using a gate electrode 106 and a rear electrode 107 of cylindrical surfaces.
Finally, it should be noted that in general, and in itself known to those skilled in the art, the electrodes of the ion mirror 103 can be equipped with additional mechanical alignment means and / or additional electrode sets for adjusting the shape of the electrostatic field. It is also advantageous, for a better adjustment of the performance of the mass analyzer 100, to allow a displacement of the detector 108 along the main axis of the analysis device 100 and / or the sample 101 along the three axes. It may also be advantageous to provide the sample holding mechanism with means for tilting the sample in order to correct tilting defects of the sample and / or the sample holder.

Claims (11)

  1. A time-of-flight mass analysis device (100), notably of mass spectrometer or atom probe type, comprising:
    - means for receiving a sample (101),
    - means for extracting ions from the surface of the sample (101),
    - a detector (108),
    - an ion mirror (103) producing an electrostatic field whose equipotential lines are defined by a first curvature in a first direction contained in the radial plane of the mass analysis device (100) and a first center of curvature (105), and a second curvature in a second direction perpendicular to the first direction in the transverse plane of the mass analysis device (100) and a second center of curvature,
    characterized in that the sample (101) is positioned at a distance from the first center of curvature (105) less than a quarter of the first radius of curvature.
  2. The time-of-flight mass analysis device (100) as claimed in claim 1, characterized in that the detector (108) is positioned at a distance from the spatial focal point (111) of the ions emitted from the sample (101) in the first direction, after reflection by the ion mirror (103), less than a quarter of the first radius of curvature.
  3. The time-of-flight mass analysis device (100) as claimed in claim 1, characterized in that the detector is positioned downstream of the spatial focal point (111) of the ions emitted from the sample (101) in the first direction, after reflection by the ion mirror (103).
  4. The time-of-flight mass analysis device (100) as claimed in any one of the preceding claims, characterized in that the detector (108) is sensitive to the two-dimensional position of the impact of the ions on its surface.
  5. The time-of-flight mass analysis device (100) as claimed in any one of the preceding claims, characterized in that the detector (108) can be displaced along the main axis of the mass analysis device (100).
  6. The time-of-flight mass analysis device (100) as claimed in any one of the preceding claims, characterized in that the ion mirror (108) comprises a rear electrode (107) and a gate electrode (106), the electrostatic field being formed between the rear electrode (107) and the gate electrode (106).
  7. The time-of-flight mass analysis device (100) as claimed in claim 6, characterized in that the rear electrode (107) and the gate electrode (106) have a cylindrical surface.
  8. The time-of-flight mass analysis device (100) as claimed in claim 6, characterized in that the rear electrode (107) and the gate electrode (106) have a spherical surface.
  9. The time-of-flight mass analysis device (100) as claimed in any one of the preceding claims, characterized in that it comprises additional means that can vary the electrostatic field produced by the ion mirror (103).
  10. The time-of-flight mass analysis device (100) as claimed in any one of the preceding claims, characterized in that the sample (101) can be displaced in all directions, and/or be pivoted.
  11. The time-of-flight mass analysis device (100) as claimed in any one of the preceding claims, characterized in that the ion extraction means tear the ions from the surface of the sample (101) by field desorption and/or laser desorption, or secondary ion emission.
EP20100703478 2009-02-13 2010-02-12 Mass analysis device with wide angular acceptance including a reflectron Active EP2396806B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0950955A FR2942349B1 (en) 2009-02-13 2009-02-13 WIDE ANGULAR ACCEPTANCE MASS ANALYSIS DEVICE COMPRISING A REFLECTRON
PCT/EP2010/051764 WO2010092141A1 (en) 2009-02-13 2010-02-12 Mass analysis device with wide angular acceptance including a reflectron

Publications (2)

Publication Number Publication Date
EP2396806A1 EP2396806A1 (en) 2011-12-21
EP2396806B1 true EP2396806B1 (en) 2015-04-29

Family

ID=41009757

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100703478 Active EP2396806B1 (en) 2009-02-13 2010-02-12 Mass analysis device with wide angular acceptance including a reflectron

Country Status (5)

Country Link
US (1) US8502139B2 (en)
EP (1) EP2396806B1 (en)
JP (1) JP2012518246A (en)
FR (1) FR2942349B1 (en)
WO (1) WO2010092141A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642951B2 (en) 2011-05-04 2014-02-04 Agilent Technologies, Inc. Device, system, and method for reflecting ions
CN103907171B (en) * 2011-10-28 2017-05-17 莱克公司 Electrostatic ion mirrors
US9627190B2 (en) * 2015-03-27 2017-04-18 Agilent Technologies, Inc. Energy resolved time-of-flight mass spectrometry
US10614995B2 (en) 2016-06-27 2020-04-07 Cameca Instruments, Inc. Atom probe with vacuum differential

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141159A (en) * 1980-04-04 1981-11-04 Shimadzu Corp Electronic energy analyzer
JPH0665022B2 (en) * 1986-06-11 1994-08-22 株式会社島津製作所 Time-of-flight mass spectrometer
JPH0789476B2 (en) * 1986-12-08 1995-09-27 株式会社島津製作所 Time-of-flight mass spectrometer
US5017780A (en) * 1989-09-20 1991-05-21 Roland Kutscher Ion reflector
JPH0815188A (en) * 1995-07-14 1996-01-19 Hitachi Ltd Surface analyzer
US6518569B1 (en) * 1999-06-11 2003-02-11 Science & Technology Corporation @ Unm Ion mirror
US6858839B1 (en) * 2000-02-08 2005-02-22 Agilent Technologies, Inc. Ion optics for mass spectrometers
AU2001275835A1 (en) * 2000-05-30 2001-12-11 The John Hopkins University Portable time-of-flight mass spectrometer system
US7091479B2 (en) * 2000-05-30 2006-08-15 The Johns Hopkins University Threat identification in time of flight mass spectrometry using maximum likelihood
JP2003014606A (en) * 2001-07-03 2003-01-15 Jeol Ltd Atom probe electric field ion microscope
US6717135B2 (en) * 2001-10-12 2004-04-06 Agilent Technologies, Inc. Ion mirror for time-of-flight mass spectrometer
GB2390740A (en) * 2002-04-23 2004-01-14 Thermo Electron Corp Spectroscopic analyser for surface analysis and method therefor
US7381945B2 (en) * 2002-05-30 2008-06-03 The Johns Hopkins Univeristy Non-linear time-of-flight mass spectrometer
JP4176532B2 (en) * 2002-09-10 2008-11-05 キヤノンアネルバ株式会社 Reflective ion attachment mass spectrometer
US7087897B2 (en) * 2003-03-11 2006-08-08 Waters Investments Limited Mass spectrometer
US7652269B2 (en) * 2004-06-03 2010-01-26 Imago Scientific Instruments Corporation Laser atom probe methods
WO2006120428A2 (en) * 2005-05-11 2006-11-16 Imago Scientific Instruments Corporation Reflectron
EP1879964B1 (en) 2005-05-13 2011-06-22 Huntsman Advanced Materials (Switzerland) GmbH Dye mixtures
WO2006134380A2 (en) * 2005-06-17 2006-12-21 Imago Scientific Instruments Corporation Atom probe
JP5032076B2 (en) * 2006-09-12 2012-09-26 株式会社テクノフロント Mass spectrometer

Also Published As

Publication number Publication date
WO2010092141A1 (en) 2010-08-19
US8502139B2 (en) 2013-08-06
FR2942349A1 (en) 2010-08-20
EP2396806A1 (en) 2011-12-21
FR2942349B1 (en) 2012-04-27
US20110303841A1 (en) 2011-12-15
JP2012518246A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
EP2396806B1 (en) Mass analysis device with wide angular acceptance including a reflectron
EP2198449B1 (en) Wide angle high resolution atom probe
EP0550335B1 (en) System to control the form of a charged particle beam
EP0151078B1 (en) High intensity mass spectrometer with simultaneous multiple detection
FR3055970A1 (en) METHOD FOR DETERMINING THE DEFLECTION OF AN ELECTRON BEAM RESULTING FROM AN ELECTRIC FIELD AND / OR A MAGNETIC FIELD
EP2815418B1 (en) Device and method for emitting electrons and system comprising such a device
EP0254625B1 (en) Procedure and device for discharging insulating samples in the course of an ionic analysis
EP2394290B1 (en) Magnetic achromatic mass spectrometer with double focusing
EP1699067B1 (en) Method of controlling an ion beam
EP0942261A1 (en) Procedure and device to measure the bottom of craters in a physico-chemical analyser
EP2044423B1 (en) Device and method of characterizing surfaces
FR2786316A1 (en) DETECTION OF LOADED PARTICLES IN DUAL MODE
FR2895833A1 (en) Tandem and time of flight mass spectrometry method involves determining time of flight and position of arrival of fragments, and identifying fragment pairs in measured positions and times of flight to generate dissociation spectra
EP1158787A1 (en) Device and analysis method of one or several wide dynamic range signals
EP1490888B1 (en) Device for measuring the emission of x rays produced by an object exposed to an electron beam
WO2021224079A1 (en) Surface analysis system comprising a pulsed electron source
WO2009065938A1 (en) Atom probe with a high acceptance
EP3203219A1 (en) Method for characterising a sample combining x-ray tomography with secondary ion mass spectrometry
FR2942070A1 (en) METHOD FOR CORRECTING ASTIGMATISM IN IMAGING BY ELECTRON EMISSION SPECTROMICROSCOPY
EP2877273B1 (en) Method and apparatus for forming a nanoporous membrane
EP3881650A2 (en) Source and method for generating x-rays by laser interaction with a target
FR3098341A1 (en) PULSE GENERATOR OF ELECTRICALLY CHARGED PARTICLES AND METHOD OF USE OF A PULSE GENERATOR OF ELECTRICALLY CHARGED PARTICLES
EP0308560A1 (en) Charged-particle gun for the pulsed emission of particles having a fixed energy
FR2596579A1 (en) Electric particle gun allowing pulsed emission of particles of specified energy
FR3027399A1 (en) TOMOGRAPHIC ATOMIC PROBE APPARATUS AND PARTICLE BEAM ASSISTED SAMPLE ANALYZED METHOD, AND USE OF SUCH A METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 724852

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010024284

Country of ref document: DE

Effective date: 20150611

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150429

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 724852

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150730

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010024284

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160212

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230123

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230119

Year of fee payment: 14

Ref country code: DE

Payment date: 20230117

Year of fee payment: 14