EP2396679A2 - Methode de pointe-temps et d'orientation de signaux sismiques de puits a trois composantes - Google Patents

Methode de pointe-temps et d'orientation de signaux sismiques de puits a trois composantes

Info

Publication number
EP2396679A2
EP2396679A2 EP10707083A EP10707083A EP2396679A2 EP 2396679 A2 EP2396679 A2 EP 2396679A2 EP 10707083 A EP10707083 A EP 10707083A EP 10707083 A EP10707083 A EP 10707083A EP 2396679 A2 EP2396679 A2 EP 2396679A2
Authority
EP
European Patent Office
Prior art keywords
seismic
well
components
wave
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10707083A
Other languages
German (de)
English (en)
Inventor
Charles Naville
Sylvain Serbutoviez
Jean-Claude Lecomte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2396679A2 publication Critical patent/EP2396679A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/42Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators in one well and receivers elsewhere or vice versa

Definitions

  • the present invention relates to the field of well seismic, and more particularly to the field of seismic data pre-processing techniques acquired by means of multicomponent sensors, obtained during operations of Vertical Seismic Profile (PSV or VSP in English).
  • PSV Vertical Seismic Profile
  • the present invention relates in particular to a method for estimating the orientation of a multi-component well seismic sensor.
  • the PSV technique is commonly used for a better knowledge of the structure of the deposit and its neighborhood during the exploration phase, or during the exploitation phase. This technique is also used to define the geological structures in the vicinity of the well to guide the drilling, or to redefine a deviation of the drilling trajectory if the latter has unfortunately not achieved its objective.
  • the most traditional implementation of the vertical seismic profile (PSV) is done by means of a seismic emission made by a surface repetitive source, and a reception made in the well. The latter is carried out thanks to a special well probe, which is parked successively at different depths.
  • the well probe includes a three-component sensor, an anchor system, and a scanning unit for most modern tools.
  • the anchoring system and the mechanical design of the well-receiving probe are such that the three-dimensional recording of the three-dimensional displacement of the formation at the passage of the various seismic waves is faithful to the effective displacement of the formation.
  • This notion of vectorial fidelity characterizes the isotropy of the mechanical anchoring of the sensors of the receiving probe at the wall of the well, and the isotropy sought for the seismic reception in three components.
  • the acquisition can be done with a triaxial sensor placed at a single depth, or by an antenna of triaxial sensors located at adjacent depth receiving levels.
  • FIG. 1 schematizes generally the acquisition geometry of a PSV 100 conducted in a well 101 drilled substantially vertically, and generally weakly deflected at certain depth intervals.
  • the depth of the well can typically be several thousand meters.
  • the well seismic probe 105 containing the triaxial seismic sensors is lowered by means of a cable 102, which connects it to a surface recording unit 103 from which the field engineer provides all the controls of the well probe. , the remote control of the seismic source 104, as well as the quality control of the measurements.
  • the seismic signal propagating in the rock formation from the surface seismic source 104 this probe is strongly pressed against the wall of the well by means of an anchoring device.
  • the so-called “zero-offset” surface seismic source 104 is placed in practice within a radius of 100 m with respect to the wellhead; given the depth of the well, the seismic source 104 is called “surface” even if it is placed a few meters deep.
  • the seismic probe 105 schematized on the figurel may actually represent a receiving probe comprising several levels adjacent seismic reception depth, typically separated by a distance of 15 or 20 meters, each level corresponding to an independent seismic probe, comprising seismic sensors triaxial and an anchoring system.
  • FIG. 2a shows schematically the propagation geometry 200 of the direct seismic waves emitted by the surface source 206, received by the sensors 201 to 204 located in the well 205: it can be seen, on this diagram, the narrowness of the solid angle 207 ( ⁇ ) propagation in direct arrival. This angle encompasses the entire deep portion of the well in which the PSV measurements are made with a fine regular interval, commonly 15m. In fact, the narrowness of the solid emission angle guarantees, for reception in the well, the hypothesis of waveform constancy of the eigenmodes of substantially homogeneous stratified layer seismic propagation for adjacent depth measurement levels. . Moreover, it can be seen from the diagram of FIG.
  • the difference in propagation direction is extremely small between the direct spokes, associated with adjacent well measurement levels, such as, for example, the direct spokes a 1 and a 2 associated with the pair. of positions 201-202, or the direct spokes a3 and a4 associated with the couple 203-204.
  • the immediate proximity of the propagation paths between a common source and substantially adjacent receivers is also verified for a down-wave more complex than a direct wave, for example a converted P-type wave S at the right of an interface located at an intermediate depth, for example in the upper half of the total depth of the well .
  • Figures 2b and 2c illustrate two propagation geometries for which the direct arrival of pressure P arrives orthogonally to the direction of the known spatial direction Z component. Consequently, all the P wave energy is recorded by the X and Y sensors of unknown spatial direction, and it is therefore not easy to point a remarkable phase of the direct wave on the raw signals coherently over the Adjacent depth measurement levels.
  • FIG. 2b schematizes the propagation geometry 210 of the direct seismic waves 212 emitted by the surface source 216, received by the sensor 211 situated in the well 215, and arriving perpendicularly to the well 215.
  • the trajectory of this well is substantially horizontal at the level the position of the sensor 211 whose Z component 213 is axial to the well.
  • FIG. 2c schematizes the propagation geometry 220 of the direct seismic waves
  • multicomponent qualifies a particular arrangement of a plurality of seismic sensors.
  • a three-component sensor comprises three unidirectional seismic receivers arranged along orthogonal axes, such as geophones or accelerometers. Since seismic waves propagate in three dimensions, a three-component sensor is used to characterize all the seismic waves.
  • the “component” is the signal from a unit seismic sensor.
  • a three-component sensor generates three electrical signals recorded along three orthogonal axes.
  • the bottom-receiving probe comprises a known axis component arranged either vertically or along the axis of the tool. This axis of the tool substantially coincides with the axis of the well, after anchoring the probe to the well wall, and two orthogonal components, whose exact direction in the orthogonal plane is not known.
  • the conventional limitation of the treatment to one or two of the components leads to potential indeterminations in the identification of the wave mode of certain arrivals received by the sensor, pressure or shear, on the one hand, and in the positioning geological events on the other hand, which can not be lifted.
  • Time inversion, or the migration techniques of the reflection only seismic events lead to a plurality of solutions since the azimuthal direction of dip of the reflectors remains unknown.
  • two seismic events arrive at the same time with similar apparent speeds, and appear on some adjacent depth traces (six to twelve for example), it is verified that it is almost impossible to separate them by a conventional monocomponent treatment.
  • the acquisition step does not allow to provide the actual orientation of the cable geophones, while this information is essential to enable data processing.
  • the horizontal components from three-component PSV have an unknown and random orientation, because the cables carrying the seismic sensors (geophones) can not control the orientation of these elements. Dealing with all three components may be considered, as the mechanical reception isotropic quality of the PSV probe (summarized as "vector fidelity" of the reception) is good enough.
  • orthogonal components from three-component PSV are mostly unknown and random in orientation. This is particularly the case in the well-inclined well depth intervals, in particular below 10 degrees of vertical inclination, intervals in which the partial orientation devices of the mounting type of the gimballed sensors, or the addition of a pendulum sensitive to gravity measuring the angle of "relative bearing" in the plane orthogonal to the axis of the tool, are rendered inoperative.
  • the partial orientation devices of the mounting type of the gimballed sensors or the addition of a pendulum sensitive to gravity measuring the angle of "relative bearing" in the plane orthogonal to the axis of the tool, are rendered inoperative.
  • This technique assumes that the calculated polarization direction belongs to the vertical plane containing the source and receiver positions. This is realistic in a layered sedimentary environment, even with low values dip medium G 'up to about 20 ° and dipping all, if the source and the sensor well are located in the local structural dip of plane in the vicinity well).
  • This process uses the point of the direct pressure wave performed on the vertical or axial component at the well, whose signal form is consistent in the traces of adjacent depths. This process becomes inapplicable if the direct arrival energy of pressure is too low on the orthogonal components.
  • This method of estimating the orientation of the three-component sensors by maximizing the energy of the direct P-wave signal in a time window defined by pointing the vertical or axial component to the well applies well to the geometries of acquisition as offset PSV, which comprises at least one surface seismic source positioned fixed at a certain offset distance from the well (typically equal to 0.2 to 1.5 times the total vertical depth of the well).
  • offset PSV which comprises at least one surface seismic source positioned fixed at a certain offset distance from the well (typically equal to 0.2 to 1.5 times the total vertical depth of the well).
  • the three-component sensors of the 2D or 3D walkaway configurations, and of the walkaround which consists of recording on a fixed sensor antenna 3C in the well, the signal transmitted from a plurality of surface source positions is oriented. according to a provision that determines the type of well seismic study.
  • a 2D walkaway corresponds to an online layout of the source points
  • a 3D walkaway corresponds to a grid of source points, more or less regular
  • the plurality of surface source positions makes it possible to find several for which the P-wave direct arrival maximization process is well adapted to the precise and redundant estimation of the orientation. .
  • the bottom tool does not need to have a component orientation device.
  • a first method makes it possible to determine the orientation of the horizontal components of cardan-mounted sensors, from the polarization energy of a time window around the direct arrival P, with indeterminacy of ⁇ on the angle found. It is well known in this document that this indeterminacy of ⁇ is maintained, whereas it could be easily raised by pointing a remarkable phase of the arrival signal P on the vertical component, in particular an extremum of amplitude, and in imposing a systematically identical polarity on the horizontal component output of the amplitude maximization process, as is practiced industrially.
  • this classical polarization method called PPDI, gives satisfactory results only if the P wave energy is substantial in the horizontal plane, and this method makes use of the massive plurality of surface source points to improve reliability. of orientation and to lift the indeterminacy of ⁇ .
  • RADI the relative azimuth between two adjacent depth stations of geophones, by a method of maximizing a correlation between two-component vectors, calculated over a period or a time window around the direct P wave. high energy on the horizontal components.
  • RADI does not give good results on the real data, that is why it is generally applied after the first method PPDI to lift the indetermination of ⁇ mentioned previously.
  • the polarization properties of the direct seismic waves P to reorient the components located in the plane perpendicular to the axis of the well, in the case of a particular geometry: acquisition geometry in a deflected well of trajectory known, with a single surface seismic source placed offset of the wellhead, and with registration by triaxial sensors fixed relative to the body of a tool not provided with an accessory for measuring the relative bearing angle . A procedure for maximizing the arrival P on the orthogonal components is then applied. It is also assumed that the direct wave radius P is included in the vertical plane containing the surface source and the bottom sensor.
  • a limitation to all the aforementioned orientation processes taking into account the direct arrival of wave P 1 occurs when the energy of the projection of the direct arrival on the two non-axial components, or non-vertical, is very low. .
  • This is for example the case if the well is vertical or weakly deflected, in particular with the very current acquisition geometry known as "zero-offset" PSV, for which the surface source located near the wellhead is activated in a unique position, on land or at sea, with a geological structure with local dips of any kind and often unknown. It is known to overcome this limitation by activating an additional seismic source at the zero-offset source, located at a sufficient distance from the well, and preferably in the general azimuthal direction of the geological structure in the vicinity of the well.
  • some multi-component PSV processing programs are limited to the two components contained in the vertical plane containing the sensor and the source, such as the method described in the following document:
  • the conventional limitation of the treatment to one or two of the components leads to potential indeterminations in the identification of the wave mode of certain arrivals received by the sensor, pressure or shear, on the one hand, and in the positioning of geological events on the other hand, that it is not possible to lift.
  • the object of the invention is an alternative method of spatial orientation of geophones of a multi-component sensor to overcome the difficulties of orientation of the prior art.
  • the method allows geophones to be orientated in a locally coherent and substantially unique coordinate system for all levels of measurement, unknown to a constant rotation, and then to orient the three components in a geographically-related geographical directions, in order to allow the isotropic treatment of the three components, for the benefit of structural and geological interpretation.
  • the method based on an original point-time technique of the arrival times of a direct wave (P or S) on one of the most energetic phases of a modulated signal.
  • P or S direct wave
  • the invention relates to a pretreatment method of seismic data acquired by means of a seismic survey method of the vertical seismic profile type.
  • This seismic survey method of the vertical seismic profile type comprises a seismic wave emission and a reception of these seismic waves by means of at least one multi-component sensor positioned within a well and which is parked at at least two depths.
  • This sensor comprises at least three orthogonal geophones recording as a function of time a first seismic component in a known vector direction, and at least two other seismic components in two directions orthogonal to this known vector direction.
  • the method comprises the following steps: a- a new signal is constructed by calculating the square root of the sum of the squares of at least two orthogonal seismic components, called the modulated signal, and the arrival times of a direct seismic wave on an amplitude extremum of said module signal; b is oriented said seismic components in a single frame regardless of the depth of said sensor, by means of the following steps repeated for each depth:
  • a time window is defined on each side of said arrival times
  • an azimuthal direction is determined by maximizing an energy of said seismic components orthogonal to said known vector direction within said time window;
  • these orthogonal seismic components are oriented at 360 degrees to said known vector direction in a single reference frame defined with respect to the azimuthal direction which is identical for each depth.
  • the modulated signal can be constructed by calculating the square root of the sum of the squares of the two seismic components orthogonal to the known vector direction. We then point the arrival times of a downward shear wave. According to another embodiment, it is also possible to point the arrival of a pressure wave. Shear wave and pressure velocities can then be calculated from these arrival times. We can deduce reports of speed and / or a Poisson's ratio. According to another embodiment, the modulated signal can be constructed by calculating the square root of the sum of the squares of the three seismic components, and the arrival times of a direct pressure wave are plotted.
  • the signal isotropy is preserved in three components, respecting amplitude ratios and phase differences between the seismic components.
  • the invention it is possible to improve a signal-to-noise ratio of the three components of the raw signal, prior to the calculation of the module, by means of an isotropic deconvolution of the three components by a single downward pressure wave signal extracted from the component vectorial direction. It is also possible to filter the modulated signal so as to suppress low frequency components, before pointing the arrival times of the direct seismic wave.
  • the geographical orientation of the single marker can be determined by mounting the multi-component sensor on a double gimbals system, this system making it possible to direct the seismic components by gravity when the inclination of the well reaches a value of at least about 10. degrees.
  • a well measurement tool including the fixedly mounted multi-component sensor can also be lowered into the well.
  • the geographical orientation of the single marker is then determined by means of a system for measuring a "relative bearing" angle mounted on the measuring tool, which makes it possible to find the orientation of the multi-component sensor when the Shaft tilt reaches a value of at least about 10 degrees.
  • a well measurement tool comprising a plurality of multi-component sensors placed at adjacent measurement depths is lowered into the well, and the geographical orientation of the single coordinate system is determined by coupling at least one multi - component sensors to a geographic orientation measuring tool, such as a magnetometer - inclinometer or a gyroscope.
  • At least a portion of the well is horizontal and the multi-component sensor is fixedly mounted in a well measurement tool.
  • We then determines the geographical orientation of the single coordinate system by assimilating a direction of maximization of a direct pressure wave to a line connecting a position of the sensor to a position of a source emitting the seismic waves.
  • orientation can be used in a single reference frame in an automated way to obtain a quality control of the seismic components, immediately after the acquisition of measurements in the field.
  • FIG. 1 schematizes generally the acquisition geometry of a PSV with surface source and probe comprising a single level of seismic reception, lowered into a substantially vertical well by means of a cable.
  • FIG. 2a illustrates the narrowness of the direct arrival propagation solid angle, which guarantees the hypothesis of waveform constancy of the homogeneous seismic propagation modes in stratified medium, substantially homogeneous for adjacent depth measurement levels. .
  • FIGS. 2b and 2c illustrate two propagation geometries for which the direct arrival of pressure P arrives orthogonally to the direction of the known spatial direction Z component; this situation can occur in a horizontal well (Figure 2b), in a deviated well, or in a vertical well ( Figure 2c), when the source is well away from the well.
  • Figures 3a and 3b show the arrangement of the three components of a triaxial sensor mounted on double gimbals of the "turret" type, and placed in a deflected well: vertical plane tangent to the well ( Figure 3a); horizontal plane (fig.3b).
  • Figures 4a and 4b show the arrangement of the three components of a triaxial sensor fixedly mounted in the tool, in the plane orthogonal to the axis of the well and the probe (fig.4a), which allows to illustrate the angle of "relative bearing", and in the vertical plane tangent to the well (fig 4b).
  • FIG. 5 illustrates the spatial attitude of the trihedrons of the seismic sensors in the vertical and deviated parts of a well before orientation (a): fixed mounting, c): mounting on double gimbals), and the configuration of the trihedrons after orientation (b). ).
  • FIGS. 6a, 6b, 6c and 6d illustrate the principle of propagation of the seismic volume shear waves (S waves) in a substantially homogeneous medium, and the orientation method of the two non-oriented orthogonal components in an intermediate reference frame. unique according to the invention.
  • - Figure 7 is a flowchart of the entire orientation process according to the invention.
  • FIG. 8 illustrates the particle motion of the down-wave S in the orientation calculation time window, in the reference of the tool; the angle AG calculated and corresponding to the arrow superimposed on the hodogram indicates the maximization azimuth.
  • FIGS. 9a, 9b and 9c represent the isotropic gross rejects of the respective components Z 1 X, Y measured by the well tool, versus the increasing depth from left to right.
  • Figures 10a, 10b, and 10c show the isotropic raw reps of the respective vertical, H-North (HN), and H-East (HE) oriented geographic components of the tool, versus the increasing depth from left to right, and the coherence obtained on the arrival S in the rectangular window, illustrates the efficiency of the orientation method of the two orthogonal components according to the invention.
  • the invention relates to a method of specific pretreatment of seismic data acquired during the implementation of a seismic survey operation of vertical seismic profile type.
  • this operation comprises a single surface position for the emission of seismic waves, located near the drilling apparatus, and a reception of the seismic waves by means of a multi-component sensor positioned within from a vertical well to weakly deflected.
  • the sensor mounted in the seismic probe
  • the sensor has three orthogonal geophones. And this sensor is parked at least two depths close to a few meters.
  • the signal recorded in the axial direction of each unit sensor is called the component of the signal.
  • the receiving probe records as a function of time at least one component in a known vector direction, vertical or axial to the measurement well, and two so-called "orthogonal" seismic components, that is to say orthogonal to the known vector direction component.
  • FIGs 6a and 6b illustrate the basic physical principle of the propagation of a shear seismic wave, called S (shear).
  • S shear seismic wave
  • P waves pressure waves
  • S waves transverse waves
  • FIG. 6a represents a diagram of a vertical plane of propagation 600: the surface 601 symbolizes not only the surface of the ground but also the first heterogeneous ground layers up to about 200 meters thick, or even the rough surface of the bottom of the sea, which are the seat of P-mode mode conversions in S mode. All wave modes propagating in depth along the vertical axis 602. Thus, from a shallow depth of ground, the S wave propagates vertically in a substantially homogeneous medium at the scale of the seismic wavelengths used.
  • the medium is isotropic or with weak anisotropy for the direction of vertical propagation (resulting in an ordinary birefringence), and it includes a possible stratification of layers of variable characteristics, with a possible dip for all layers or not.
  • the medium is thus representative of usual sedimentary formations or basement.
  • the diagram of FIG. 6a illustrates a birefringent medium in which a complex shear wave train propagates vertically in depth along the axis 602 and comprises:
  • a slow shear wave S-s having a vibration form 604 generally different from 603 and linearly polarized in the constant direction 612 orthogonal to both the propagation axes 602 and the fast S-wave S-wave polarization axis 611.
  • the polarization vectors 611 and 612 symbolize the vibration directions of each of the wave modes S propagated according to the vertical, but also the amplitude of the signal.
  • the amplitude of the vibration signal indiscriminately characterizes the displacement, the speed or the acceleration of the seismic movement of each of the wave modes Sf and Ss, whose direction and waveform remain constant throughout the propagation. according to the physics of the propagation phenomenon.
  • the depth z f i 613 of the fast wave Sf is progressively and slightly higher by a few percent at the depth z s i 614 during the spread.
  • FIG. 6b represents, in the horizontal plane 650, orthogonal to the direction of vertical propagation, projection diagrams of the theoretical vibration motion forms of the wave train S. They each represent a continuous succession of the points [X (t), Y (t)] seismic signals, in a time window centered, in this case, around the time ti of the wave arrival S to illustrate: these diagrams are also known under the names of "particle movement” if the signals X and Y represent a displacement at the passage of the seismic wave, or even “hodograms” if the X and Y signals represent a movement speed, measured for example by a geophone-type sensor. They are also called “polarization diagram” or simply “polarization” if the X and Y signals indifferently represent a displacement, a speed or an acceleration.
  • the randomness of rotation of the logging cable at the end of which the well probe is fixed is well known to those skilled in the art, this hazard being transmitted to the fixed-mount seismic sensors in a probe.
  • said receiving probe comprises turret-type gimbals on which the seismic sensors are mounted
  • the rotation of the gimbals around the axis of the probe is free when the probe is in a vertical well, which also causes an orientation. random horizontal sensors, even if the azimuthal orientation of the probe was known.
  • FIG. 6b symbolically indicates the process P1 (666) according to the invention, via an arrow between each polarization diagram 651 of the data entered in the "IN" 653 right column, and the corresponding oriented polarization diagram in the left column.
  • This process is well suited to the case of PSVs called zero offset in vertical wells, where the P wave source usually used generates unintentionally and very often in practice energetic shear waves at the passage of the altered and heterogeneous surface area or the rough surface of the bottom of the sea.
  • the polarization diagrams 661 of FIG. 6b represent the particle motions of the wave train S illustrated in FIG. 6a, for the same succession of propagation instants ti: it may be noted that the successive diagrams on the left column 663 are of very similar shape, with a maximum direction of amplitude 662 identical. The differences in rotundity observed typically reflect the azimuth anisotropy of birefringence, resulting from the small difference in speed between the fast S-wave Sf and the slow S-wave S.
  • a single coordinate system is defined. This method is all the more precise in that (1) the mechanical coupling of the single-level receiving probe or of each of the receiving probes of a multi-level well tool ensures a good vector fidelity of the measured signal, and that (2) the surface source remains in fixed position and always emits the same signal form during the entire PSV operation.
  • the method includes an orientation of the seismic components in a locally coherent coordinate system regardless of the depth of the probe.
  • Fig. 7 is a flowchart 700 of an embodiment of the orientation method according to the invention. It is a question of orienting the two orthogonal components to a vertical component, or to an axial component to the well.
  • the method relies on the analysis of downward S waves to define a time window necessary for the determination of a rotation angle. Indeed, the recorded P waves usually having too little energy on the horizontal components of PSV, they do not allow to reorient these components. This is particularly the case for PSVs without offset, carried out with wave sources of pressure in wells whose trajectory is close to the vertical. On the other hand, the energy of the direct waves S or waves converted from P to S during the downward propagation is very often sufficient to apply the method.
  • the method comprises the following steps for each measuring depth station: in block 701, the two orthogonal components to be orientated, that is to say that one applies, are isotropically deconvolved the same operator, at the same time on both components. This operation is only considered if the result of operations 702 to 704 is not satisfactory.
  • the module, denoted M (t), of the two raw components to be oriented, or an exponential power (n) of the latter, is calculated; in block 703, the module M (t) is filtered so as to eliminate its low frequency components and possibly high frequencies containing only noise, so as to facilitate the following operation.
  • the time Tp of a remarkable phase of the signal of the filtered module obtained above is pointed out. For example, a peak or a dip of amplitude is pointed out, possibly refined by application of an industrial algorithm of correlated or semblance pointing.
  • Operations 702 to 704 may be automatic, cascadable, and in one pass, but may result in unreliable or inaccurate scoring. In such a case, it is possible to modify the filter of the block 703, or to envisage previously applying operations 702 to 704 the operations described in block 701 intended to increase the signal-to-noise ratio of the wave S that the it is desired to point, all arrivals interfering with the desired arrival S being considered as noise.
  • a time window is then defined around the arrival arrival time S, of a constant length for all the measurement depth levels and at least equal to half a period of the filtered module signal, or even a greater length in the case of an interference wave S or a low signal-to-noise ratio in the block 705, the azimuthal direction is determined, by maximizing the energy of the input components X (t), Y (t), raw or filtered to retain only the highest signal to noise ratio frequencies, according to a known industrial process.
  • the raw input components X (t), Y (t) are then rotated in the plane orthogonal to the gross component Z, in a single intermediate coordinate system defined by the azimuthal direction calculated previously.
  • the components are calibrated in a single intermediate reference, defined with respect to a geographical reference, or a reference linked to the known trajectory of the well if additional information is available for this purpose.
  • the necessary rotations are applied to the single intermediate marker to restore the three components of PSV in a geographical reference linked to the terrestrial globe, according to a known procedure.
  • Block 701 possible preliminary deconvolution: in some cases, the signal of the S-wave forward train is apparent over a large recording time interval, it is potentially interfered with by other relative energy waves more low, but not negligible, which has the effect of making the point of the filtered module more imprecise. It may be useful in such cases to apply a multichannel isotropic deconvolution operation, identical for the two "horizontal" components (components orthogonal to the substantially vertical direction) of each of the depth of measurement levels, and identical in several depth levels.
  • the deconvolution can be carried out by extracting the wave signal P on the vertical component, in order to deconvolute a converted wave PS on the two horizontal components, for example according to the method described in the patents of Nigel Anstey GB 1, 569 581 of 27-09-1977 or CA 1, 106,957 of 9-12-1977 titled "Seismic delineation of oil and gas reservoirs using borehole geophones ".
  • Deconvolution can also be carried out simply with the existing isotropic and multichannel industrial algorithms for surface seismic or for well seismic, Wiener-type or even frequency-spectrum balancing, both based on the amplitude spectrum of the sum of the autocorrelation signals of each of the orthogonal horizontal components to be deconvolved, taking into account the invariance of this sum of autocorrelation signals with respect to the orientation of the two horizontal input components.
  • Block 702 Calculation of the module signal M (O of a two-component signal, and invariance.
  • M (t) which represents one of the polar coordinates deduced from the two raw signals in Cartesian coordinates X (t) and Y (t, d) is calculated as follows:
  • the tool If the PSV tool, whose wall coupling is mechanically isotropic, is anchored at a given depth with an azimuthal direction different from an unknown az angle around the vertical shaft axis, the tool records the horizontal components X1 (t) and Y1 (t) which are expressed as follows as a function of X (t, d) and Y (t, d):
  • the module remains identical regardless of the orientation of the sensors associated with the components X (t) and Y (t), it is invariant with respect to the rotation, always positive value.
  • the module of a two-component signal is also called “M2" in the remainder of the description.
  • M 2 (t) X 2 (t) + Y 2 (t) + Z 2 (t), is also an invariant with respect to any spatial rotation.
  • M (t) an exponential power of the signal M (t)
  • the advantage of the property of invariance of the module is to allow precise pointing operations of the time of a remarkable phase, related to a particular moment of the wave arrival train S 1, for example a well-individualized local extremum, without knowing the prior orientation of the constituent signals of said module.
  • Block 703 Filtering of the module Mit
  • the method comprises a filtering of the module
  • M (t) so as to remove its low frequency component and make this signal more readable.
  • Block 704 Time stamp of a particular extremum of the signal of the filtered module.
  • the point of time Tp of an amplitude extremum of the module, preferably filtered, is described in relation to FIGS. 6c and 6d.
  • FIG. 6c shows a horizontal projection 670 of a polarization diagram 671 of a direct feed train S chosen in a wide appropriate time window.
  • the modulating signal M (t) 672 is represented graphically as one of the polar coordinates derived from the two raw orthogonal recorded signals X (t) and Y (t) in Cartesian coordinates and of arbitrary orientation.
  • the signal M (t) 672 has the mathematical characteristic of being invariant with respect to the Cartesian reference of the raw signals X (t) and Y (t) measured, and in which the module is calculated. Likewise, the shape of the polarization diagram 671 in the time window considered is independent of the marker, with one rotation.
  • the raw signal vectors X (t) and Y (t), as well as the module vector M (t), have the same origin 673 (zero of the amplitudes), the amplitude of the vector M (t) always being positive or zero.
  • the method according to the invention allows to accurately determine the time point of a remarkable phase of the signal of S-wave undirected, independently of the Cartesian frame of the raw signals X (t) and Y (t), for example the time of one of the local maxima 674 of the module signal M (t) 672.
  • FIG. 6d shows a schematic example, as a function of time t, of the modulating signal of a wave train S whose energy is greater than that of all the other waves received at the same time by the seismic sensor. It is found, by experiment, that this modulated signal remains substantially identical as a function of the recording depth, with a time offset corresponding to the propagation of the S waves.
  • the low-frequency components are eliminated by a low-cut filter, the result of which is the filtered signal Mf 693, which also represents the difference between the raw signal 691 and the associated smoothed signal 692.
  • the amplitudes of the filtered signal Mf can also be raised to an exponential power, to further facilitate the pointing by visual method, or by calculation of similarity or correlation between PSV depth measurement stations.
  • the time Tp of amplitude peak 695 is in practice easier to point, unambiguously, on the filtered signal Mf 693 than the peak 694 on the raw signal M 691, both for the eye and for most industrial computer algorithms. of time pointing.
  • Block 705 Determination of the azimuthal direction of maximization of the energy of the two raw components to orient and rotation of the input signals in a coherent intermediate reference frame.
  • the definition of a calculation time window is defined by a constant time difference of the order of 10ms to 20ms on either side of the pointed time Tp on the filtered module, so that the time window includes at least one half period of the dominant period the arrival pointed.
  • the invariance of the modulating signal with regard to the orientation of the sensors causes the coherence of the pointed time of the arrival S, and consequently guarantees its validity for subsequent uses or to know the wave speeds S as a function of the depth. .
  • the raw signals X (t) and Y (t) are taken for each of the measurement depths of the PSV, which is optionally filtered by cutting off the high noisy frequencies. Then, we search for the azimuthal direction that maximizes the seismic energy in the plane of the two input components and in the previously defined time window, using a common technique of maximizing energy, such as that described in the aforementioned documents:
  • Hmax (t) The component corresponding to this direction of maximization is denoted Hmax (t), the calculated angle between Hmax (t) and the first component X (t) is denoted amax180 and is known only to 180 °.
  • FIG. 8 shows hodogram type 800 polarization diagrams drawn in the reference 801 of the gross horizontal X and Y components of a real PSV, recorded in a vertical well with a source with a very small offset, and a well tool comprising three fixed sensors without orientation accessories and whose mechanical coupling ensures good vector fidelity.
  • each of the hodograms To the left of each of the hodograms is a legend indicating the depth 802 of measurement PSV, the times in millisecond of the start 803 and the end 804 of the maximization calculation window 55 ms which follows the dotted time done beforehand on the filtered module, the maximum value 805 of the amplitude of the signal vector 807 calculated in the angular direction of maximization AG 806 expressed in grade (GR) from the reference component X 801 of the well tool and in the opposite direction of the Clockwise.
  • the angle 806 noted AG in FIG. 8 corresponds to the angle ⁇ max 360 defined above modulo 360 degrees or 400 degrees.
  • angle amax360 The subsequent rotation of the raw components X (t) and Y (t) of angle amax360 which is applied over the entire length of the recorded signal, makes it possible to obtain output signals in a single reference frame which makes each of them coherent as a function of the depth.
  • the angle amax 360 can be added with a possible constant.
  • FIGS. 9a, 9b and 9c represent the isotropic raw reefs 900 of the respective vertical Z and horizontal X 1 Y components of the well tool, as a function of the increasing measurement depth ("Measured Depth") MD 901 from the left to right.
  • the replay is called "standardized isotropic 3C", indicating that a constant gain has been applied identically to the amplitudes of the three components, but varies according to the depth, so that the amplitude of direct wave arrival P on the vertical component Z is identical to any depth.
  • the direct arrival of P wave 902 is almost invisible on the horizontal components X, Y on which the wave time P has been represented by a line 903.
  • a direct arrival of wave S 904 is clearly identified on the horizontal components X, Y by its slope greater than that of the P wave 902-903, and one observes coherence defects of the waveform S in the rectangle 905. These defects are associated with the random orientation of the horizontal sensors and the direct arrival maximization direction S illustrated in Figure 8.
  • Figures 10a, 10b and 10c show the normalized isotropic repeats 1000 3C of the respective vertical Z oriented components, HN and horizontal HE oriented in the respective geographical directions North and East, as a function of the increasing MD 1001 depth from left to right, with the same scales of time and depth as those of Figures 9a, 9b and 9c.
  • the four levels of shallow measurements are missing.
  • the time of the direct arrival of wave P 1002 was represented by the line 1003 on the horizontal components HN and HE.
  • the coherence of the direct wave arrival S 1004 on the horizontal components HN and HE in the rectangle 1005 is much better than in the corresponding rectangle 905 of FIGS. 9a, 9b and 9C, which confirms the good orientation obtained.
  • the three components are oriented 360 degrees in a substantially unique frame. This landmark is consistent for each depth. This pretreatment makes it possible to carry out a treatment of the three isotropic components, even if this marker is of unknown azimuthal direction.
  • Block 706 Calibration of the intermediate coherent reference with respect to the geographical reference:
  • the residual energy of the P-wave input which is sometimes greater on the horizontal components of the shallower measurement levels of the PSV, may be used.
  • the residual energy of the P-wave input which is sometimes greater on the horizontal components of the shallower measurement levels of the PSV.
  • the residual energy of the P-wave input may be used.
  • the direct wave arrival P 1003 has a vertical incidence of the order of 10 degrees on the shallower levels situated between 1000 and 1100 m for the PSV data shown in FIGS.
  • the orientation is called complete, when all the parameters allowing the orientation (angles of "Relative Bearing", of Vertical deviation of the well and Azimuth of the deflected well) are measured on all the levels depth of measurement of the PSV. This is possible with a gyroscope type tool coupled to the mono-level PSV tool for example.
  • the orientation is said to be partial, if the orientation measuring tool is coupled to at least one of the measurement satellites of the PSV seismic tool, if the latter comprises several depth levels measured simultaneously.
  • the orientation is also called partial, if the orientation measurement is limited to a given depth interval (for example the limitation to the open-hole well, not jacketed with metal tubes for a tool detecting the direction of the magnetic north), or at a range of deflection angle of the well (such as inclinometer-type devices, measuring pendulum Relative Bearing and universal joints, sensitive to gravity, and rendered inoperative for small vertical deviations from the well).
  • FIG. 3a shows a projection 300 in the vertical plane tangent to the well 310, which comprises the downwardly directed vertical component Z-down 301, and the horizontal component XH 302 oriented in the azimuth of the increasing measured depths of the well. ; the other horizontal component YH 303 is orthogonal to the tangent vertical plane shown.
  • the vertical inclination angle of the well 304, or deviation, is commonly referred by DEV in the industry.
  • 3b shows a projection 350 in the horizontal plane in plan view: the trajectory of the deflected well 310 appears as any line, in the geographical reference 320, the horizontal component XH 302 is tangent to the well at the position of the sensor 311, the horizontal component YH 303 is disposed at + 90 ° with respect to
  • the seismic components HE and HN oriented in a geographical reference frame 320 are recalculated from the components XH 302 and YH 303 by rotation of angle HAZI 305 around the vertical, HAZI 305 corresponding to the azimuth of the well locally to the position of the sensor. 311.
  • the angles DEV 304 and HAZI 305 are generally known and measured independently of the operation of
  • this threshold may vary from one tool mark to another; in practice, given the friction forces inherent in this kind of mechanical device, the orientation becomes more precise when the inclination of the deflected well increases.
  • the orientation of the orthogonal components is not known. While there is similar uncertainty as to the true orientation of the Z-down component relative to the actual vertical direction, this does not significantly alter the processing results or subsequent interpretative conclusions.
  • FIGS. 4a, b show the arrangement of a triaxial seismic sensor mounted in a fixed manner in the tool: FIG.
  • FIG. 4a illustrates the definition of the Relative Bearing angle by the angle between the high generator of the cylindrical well and a direction of the PSV tool in the plane orthogonal to the axis of the tool, with a positive sign convention in the clockwise when looking at the orthogonal plane in the direction of increasing curvilinear depths of the well.
  • the relative bearing angle RB 430 is defined by the angle between the direction XV 422 orthogonal to the axis of the well 410, contained in the vertical plane tangent to the well and pointing upwards, with the reference direction X 419 of the probe containing the sensor 411, corresponding to the measured X 419 orthogonal seismic sensor; the angle RB 430 is positively measured 431 clockwise when looking in the direction of the arrow 412.
  • the vertical inclination angle of the DEV 404 well is indicated between the axis Z 421 axial to the well direction and Z-down 401, vertical seismic component oriented downward; the horizontal component XH 402 oriented in the azimuth of the increasing measured depths of the well and the Z-down seismic component 401 are obtained from the components XV422 and Z 421 by DEV corner rotation
  • the mono-level well tool contains triaxial sensors mounted on double gimbals with a so-called "turret" architecture, as illustrated in FIGS. 3a and 3b, and in a restricted depth interval containing at least one PSV measuring station, the Deflection of the well is sufficiently large (at least about 10 degrees) to allow rotation of the gimbals under the action of gravity: the component 301 Z-down is then naturally oriented in the vertical (fig.3a).
  • the horizontal geographical components 320 HN, HE (FIG 3b) are obtained by rotation of the components XH 302 and YH 303 measured, around the vertical, of the known angle HAZI 305 at 360 degrees, corresponding to the azimuth of the vertical plane. tangent to the well at the sensor position.
  • the mono-level well tool contains triaxial sensors fixedly mounted in the well tool, as illustrated in FIGS. 4a and 4b, and in a depth interval
  • the deflection of the well is large enough to allow a precise measurement to a few degrees of the relative bearing angle RB 430 illustrated in FIG. 4a: three successive rotations are then applied in this case.
  • [XV 1 YH] Rot (RB).
  • [XH, ZV-down] Rot (DEV).
  • [XV, Z] rotation in the vertical plane tangent to the well at the position of the well tool, as shown in fig.
  • [HE 1 HN] Rot (HAZI).
  • [XH 1 YH] Rot (HAZI).
  • [XH 1 YH] Rot (HAZI).
  • [XH 1 YH] Rot (HAZI).
  • [XH 1 YH] Rot (HAZI).
  • [XH 1 YH] Rot (HAZI).
  • [XH 1 YH] Rot (HAZI).
  • [XH 1 YH] Rot (HAZI).
  • [XH 1 YH] Rot (HAZI).
  • the value of this difference is interpolated for the adjacent depth levels which do not benefit from orientation measurement; the interpolated difference angle obtained is the "relative bearing" angle RBi to be used for the rotation of the orthogonal components of the intermediate marker.
  • the three rotations described for the C2 configuration above are then applied, taking the relative bearing angle RBi for the first of the three rotations.
  • FIGS. 5a, 5b and 5c illustrate, in the vertical projection plane 500, the spatial attitude of the trihedrons of the seismic sensors 511 to 513 and 521 to 523 in a well 510 comprising a vertical part 501 and a portion 502 deflected in said plane vertical 500 represented in projection.
  • the so-called vertical part 501 of the well 510 symbolizes a depth interval for which the value of the vertical inclination is below the effective operating threshold value of a double gimbals device, or a gravity-pendulum measuring system.
  • the so-called deflected portion 502 corresponds to an interval for which the vertical deflection angle of the well is above said threshold value, and contains the triadrons 521 to 523.
  • FIG. 5a shows the attitude of the trihedrons corresponding to a fixed mounting of the three orthogonal seismic sensors in the well probe, of which 511 and 521, where the axis of the sensor generally called Z-tool is aligned with the axis of the well and points upward: the trihedron 511 in the vertical part 501 and the trihedron 521 in the deflected part 502 thus illustrate that the angle of "relative bearing" which points the Direction of the orthogonal sensors at the axis of the well relative to the azimuth of the vertical plane 500 is random from one depth station of PSV to another.
  • the measured value of the "relative bearing” can be exploited for the orientation of the components only in the deflected part 502 (see FIG. 4a and associated explanations).
  • FIG. 5c represents the attitude of the trihedrons corresponding to a mounting of the three orthogonal seismic sensors on double turret-type gimbals in the well probe, of which 512 and 522, where the axis of one of the sensors is aligned with the vertical and points upwards: the trihedron 512 and the trihedrons of the adjacent dimensions in the vertical part 501 thus illustrate that the azimuthal direction of the orthogonal sensors at the axis of the well is random from one depth station of PSV to another.
  • the trihedron 522 in the deflected portion 502 illustrates that the orientation of the trihedron is fully known, one of the horizontal components being in the vertical plane 500 of the deviated part of the path of the well, and the other component horizontal plane being normal to plane 500 (see FIGS. 3a and 3b and associated explanations).
  • FIG. 5b represents the known single orientation of the trihedrons obtained after application of the orientation procedures according to one of the modes of the invention, of which 513 and 523, where the axis of one of the sensors is aligned with the vertical and pointing upwards, one of the horizontal components being in the vertical plane 500 of the deflected portion of the well trajectory and pointing in the azimuth of the increasing depths (identical to the direction of deflection of the well in the present case) , and the other horizontal component being normal to the plane 500: the trihedrons 511, 512 and the trihedrons of the adjacent random orientation dimensions in the vertical part 501 are reoriented in a common coordinate system of the triad 513 or 523 using the procedure P1 551 according to the invention.
  • the trihedron 521 in the deflected portion 502 is reoriented in the directions of the trihedron 523 with two successive rotations according to the known procedure P2 552 and described above (comments of Figures 4a and 4b).
  • the trihedron 522 in the deflected portion 502 is naturally oriented identically to the triad 523 and its components require no intervention.
  • the procedure P1 551 according to one of the modes of the invention is also applied to the trihedra of the deflected part 502 immediately adjacent to the vertical part 501, in a short overlap and clutch interval, so as to calibrate the azimuth of the horizontal components of the trihedrons of the vertical part, including 511 and 512, on the known azimuth of the trihedrons of the deflected part 502.
  • the procedure P1 551 is also applied to the trihedra of the deflected part 502 immediately adjacent to the vertical part 501, in a short overlap and clutch interval, so as to calibrate the azimuth of the horizontal components of the trihedrons of the vertical part, including 511 and 512, on the known azimuth of the trihedrons of the deflected part 502.
  • the method according to the invention can be applied in the framework of seismic prospection by conventional PSV method with very small offset of the single source position, in order to position in the three-dimensional space of the geological events in the vicinity of wells.
  • Such a seismic prospecting method then comprises the following steps: the reception by triaxial seismic sensors, arranged in a well and coupled with the formations surrounding the well, in order to measure as accurately as possible the vector signal in three components of the direct waves and reflected in the P, S modes as well as the converted wave modes. the spatial orientation of multi-axis seismic receivers. To do this, the orientation method according to the invention is used. seismic well imaging from three oriented components, such as that described for example in US Pat. No.
  • An important application of the method according to the invention also concerns the improvement of the quality control of the three components recorded on the recording site, using the available computer means: firstly, the computer methods, allowing three-component data orientation in a single reference frame, are easy to implement, and secondly it is easier to visually assess the overall quality of registration and overall smooth operation of the acquisition chain on oriented replay of the three components versus undirected raw replay for any depth.
  • the orientation can be used in a single benchmark in an automated way, to obtain a quality control of the seismic measurement in three components, immediately after the acquisition of measurements in the field.
  • the method allows to orient the three components of PSV, in the depth intervals close to the vertical, especially when only one source position surface seismic located near the drilling rig was used, and the PSV measuring tool lowered into the well is not coupled to a precise tool for measuring all angles allowing the orientation of the three components signals in a geographical landmark. This corresponds to the usual configuration of PSVs in exploration or production wells.
  • the method according to the invention applies effectively on a downshear shear wave train, including in the presence of propagation birefringence anisotropy: indeed, the azimuthal direction does not vary in the presence of speed anisotropy of the two own wave modes S 1 whose effect is very small on adjacent depth levels, provided that the differential attenuation between the two waves also remains low, which is generally verified by experiment.
  • the method also provides guidance for the three components of PSV tools including multiple levels of simultaneous 3C seismic measurement depth, for which a single level (or an incomplete number of levels) is coupled to a full or partial orientation measurement tool. .
  • the simplicity of implementation of the method by means of increasingly powerful computers embedded in the acquisition systems, allows an improvement of the overall on-site quality control of the recorded three-component data, thanks to the production in slightly delayed time. , even in real time, from the point-time of the downward S-wave and from a replay of the three components oriented in a single reference frame, allowing the acquisition engineer to quickly detect on-site and with increased reliability the possible malfunctions of the chain of acquisition of the three components.
  • the advantage of the method is to subsequently allow the isotropic processing of the three-component PSV signals, including for old PSV data set reprocessing for which the downhole tool was not coupled to an orientation measuring tool. complete or partial.
  • Another advantage of the method is to allow the operator who plans to record a PSV, to refine the choice of the type of well seismic tool as well as the desired orientation tool to combine, before initiate the actual on-site acquisition of the PSV into three components, depending on the geological objective pursued, the trajectory deviation of the well considered, and the type of treatment (1C or 3C) desired following the acquisition of the field data.
  • the method is applicable to several geometric well seismic acquisition configurations, but specifically to vertical VSP with a weak deviation, with a source placed at a short distance from the wellhead, a configuration for which there is no known alternative to the method according to the invention.
  • the method is applicable to very common cases where no complete and accurate orientation measuring tool is coupled to the PSV measuring tool, for example when the PSV tool comprises three components of orthogonal directional seismic sensors only.
  • 3C seismic sensors fixedly mounted in the PSV tool a) 3C seismic sensors fixedly mounted in the PSV tool, b) 3C seismic sensors fixedly mounted in a PSV tool further comprising a device for measuring the angle of "Relative Bearing” In the plane orthogonal to the axis of the tool PSV: c) seismic sensors 3C on double gimbals with so-called “turret” architecture, that is to say comprising an axis of free rotation parallel to the axis of the tool, so parallel to the axis of the well at the anchoring station of the PSV tool.
  • Each sensor is mounted together with a mass that is off-center with respect to the axis of the gimbals so as to obtain a pendulum device that is oriented by gravity in a known reference point related to the trajectory of the well, which is assumed to be known, for example to from a log of the measurement of the trajectory of the well by gyroscope, carried out separately.
  • the method according to the invention can also be applied with advantage on the descending P-wave train interfered with in a vertical well, and whose form of the three-component signal varies progressively as a function of depth, but with an azimuth direction of stable total energy for the interfered signal, and in the case where an old tool having three fixed mount components in the tool, without an orientation measuring device is placed in a horizontal drain, and where the direct arrival P shows no energy on the axial component at the well.
  • the method according to the invention can also be applied for configurations
  • the method according to the invention can also be applied with advantage, in order to automate the P-wave pointing and the determination of the orientation of the sensors, in the framework of conventional walkaway seismic prospecting.
  • the well receiving device may be fixed or not, and the surface source is successively activated at neighboring positions, either on a fixed azimuth line (walkaway 2D), or on a circle concentric to well or at the average geographical position of the well sensors (walkaround).
  • the two previous configurations can be combined, either on a more or less complete grid of positions in the vicinity of the well (walkaway 3D or 3D-VSP).
  • the method according to the invention has the advantage of providing a precise and automatic point of the direct wave P when it arrives orthogonally to the known vector direction component (substantially vertical in this case), without having to orient previously the horizontal components, in the configuration illustrated in Figure 2c.
  • a particular application of the method according to the invention consists in mounting a three-component PSV tool in combination with another logging tool whose orientation is desired to be known, in the extreme case or the usual orientation tools of the Like gyroscope or magnetometer / inclinometers are no longer operative, for example when the temperature of the well exceeds 220 0 C.
  • single markers are determined on different portions of the well by means of the method according to the invention.
  • These landmarks have a common axis but can be of different orientation.
  • the portions of the well have overlapping areas, which allow to determine a rotation angle to be applied to the unique markers of each portion, so as to obtain a single reference for the entire well.
  • full waveform the technique of pointing a filtered module signal calculated from the raw components, measured by a dipole sonic logging tool, or quadrupole in the form of a complete waveform, called “full waveform" may be useful in the case where one only wants to know the slowness and the attenuation of a shear wave without looking for the characteristics of azimuth anisotropy. In such a case, it is not useful to measure the orientation of the sonic tool in the well, which alleviates the log measurement operation.

Abstract

Méthode de pointé de temps d'arrivée d'ondes sismiques et utilisation pour orienter les composantes d'un capteur multi-composantes. Après acquisition de données sismiques par une méthode de type PSV, au moyen d'un capteur multi - composantes, on construit un signal module en calculant la racine carrée de la somme des carrés d'au moins deux composantes sismiques orthogonales. Puis, on pointe des temps d'arrivée d'une onde sismique directe sur un extremum d'amplitude de ce signal module. A partir de ce pointé, on peut alors orienter les composantes sismiques dans un repère unique quelle que soit la profondeur du capteur. Pour ce faire, on définit une fenêtre temporelle de part et d'autre des temps d'arrivée pointés, puis on détermine la direction azimutale par maximisation de l'énergie des composantes horizontales au sein de cette fenêtre temporelle. Enfin, on oriente les trois composantes dans un repère unique, défini par rapport à cette direction azimutale qui est identique pour chaque profondeur. Application à l'exploration ou la production de gisement pétrolier par exemple.

Description

MÉTHODE DE POINTÉ-TEMPS ET D'ORIENTATION DE SIGNAUX SISMIQUES DE PUITS À TROIS COMPOSANTES
La présente invention concerne le domaine de la sismique de puits, et plus particulièrement le domaine des techniques de prétraitement de données sismiques acquises au moyen de capteurs multicomposantes, obtenues lors d'opérations de Profil Sismique Verticale (PSV ou VSP en anglais).
La présente invention concerne notamment une méthode d'estimation de l'orientation d'un capteur sismique de puits multi-composantes. La technique de PSV est couramment utilisée pour une meilleure connaissance de la structure du gisement et de son voisinage en phase d'exploration, ou en phase d'exploitation. Cette technique est également utilisée pour définir les structures géologiques au voisinage du puits pour guider le forage, ou redéfinir une déviation de la trajectoire de forage si ce dernier n'a malencontreusement pas atteint son objectif. La mise en oeuvre la plus classique du profil sismique vertical (PSV) se fait au moyen d'une émission sismique effectuée par une source répétitive en surface, et d'une réception faite dans le puits. Cette dernière est effectuée grâce à une sonde de puits particulière, que l'on fait stationner successivement à différentes profondeurs. La sonde de puits comprend un capteur, généralement à trois composantes, un système d'ancrage et une unité de numérisation pour la plupart des outils modernes. Le système d'ancrage et la conception mécanique de la sonde réceptrice de puits sont tels que l'enregistrement en trois composantes, du déplacement en trois dimensions de la formation au passage des diverses ondes sismiques est fidèle au déplacement effectif de la formation. Cette notion de fidélité vectorielle caractérise l'isotropie de l'ancrage mécanique des capteurs de la sonde réceptrice à la paroi du puits, et l'isotropie recherchée de la réception sismique en trois composantes. L'acquisition peut être faite avec un capteur triaxial placé à une profondeur unique, ou par une antenne de capteurs triaxiaux situés à des niveaux de réception profondeur adjacents.
La figure 1 schématise de façon générale la géométrie d'acquisition d'un PSV 100 conduite dans un puits 101 foré sensiblement vertical, et en général faiblement dévié sur certains intervalles de profondeur. La profondeur du puits peut atteindre typiquement plusieurs milliers de mètres. La sonde sismique de puits 105 contenant les capteurs sismiques triaxiaux est descendue au moyen d'un câble 102, qui la relie à une unité d'enregistrement de surface 103 à partir de laquelle l'ingénieur terrain assure toutes les commandes de la sonde de puits, la télécommande de la source sismique 104, ainsi que le contrôle qualité des mesures. Afin de mesurer avec une bonne fidélité vectorielle le signal sismique qui se propage dans la formation rocheuse, en provenance de la source sismique de surface 104, cette sonde est appuyée fortement contre la paroi du puits à l'aide d'un dispositif d'ancrage symbolisé par le bras 106, préalablement à l'enregistrement de chaque station profondeur de mesure. Dans la configuration commune du PSV de base, la source sismique de surface 104 dite "zéro-offset", est placée en pratique dans un rayon de 100m par rapport à la tête de puits; compte tenu de la profondeur du puits, la source sismique 104 est dite "de surface" même si elle est placée à quelques mètres de profondeur. La sonde sismique 105 schématisée sur la figurel peut représenter en réalité une sonde réceptrice comportant plusieurs niveaux profondeur de réception sismique adjacents, séparés typiquement d'une distance de 15 ou 20 mètres, chacun des niveaux correspondant à une sonde sismique indépendante, comportant des capteurs sismiques triaxiaux et un système d'ancrage.
La figure 2a schématise la géométrie de propagation 200 des ondes sismiques directes émises par la source de surface 206, reçues par les capteurs 201 à 204 situés dans le puits 205 : on peut constater, sur ce schéma, l'étroitesse de l'angle solide 207 (β) de propagation en arrivée directe. Cet angle englobe l'ensemble de la partie profonde du puits dans laquelle les mesures de PSV sont réalisées avec un intervalle régulier fin, couramment de 15m. De fait, l'étroitesse de l'angle solide d'émission, garantit pour la réception dans le puits l'hypothèse de constance de forme d'onde des modes propres de propagation sismique en milieu stratifié sensiblement homogène pour des niveaux de mesure profondeur adjacents. De plus, on peut constater sur le schéma de la figure 2a que la différence de direction de propagation est extrêmement réduite entre les rais directs, associés à des niveaux de mesure de puits adjacents, comme par exemple les rais directs ai et a2 associés au couple de positions 201-202, ou les rais directs a3 et a4 associés au couple 203-204. En pratique, la proximité immédiate des chemins de propagation entre une source commune et des récepteurs sensiblement adjacents, voisins d'une dizaine à une centaine de mètres par exemple, est également vérifiée pour une onde descendante plus complexe qu'une onde directe, par exemple une onde de type P convertie S au droit d'une interface située à une profondeur intermédiaire, par exemple dans la moitié supérieure de la profondeur totale du puits. Les figures 2b et 2c illustrent deux géométries de propagation pour lesquelles l'arrivée directe de pression P arrive orthogonalement à la direction de la composante Z de direction spatiale connue. Par conséquent toute l'énergie d'onde P est enregistrée par les capteurs X et Y de direction spatiale inconnue, et il n'est donc pas aisé de pointer un phase remarquable de l'onde directe sur les signaux bruts de façon cohérente sur les niveaux de mesure profondeur adjacents.
La figure 2b schématise la géométrie de propagation 210 des ondes sismiques directes 212 émises par la source de surface 216, reçues par le capteur 211 situé dans le puits 215, et arrivant perpendiculairement au puits 215. La trajectoire de ce puit est sensiblement horizontale au niveau de la position du capteur 211 dont la composante Z 213 est axiale au puits.
La figure 2c schématise la géométrie de propagation 220 des ondes sismiques directes
222 émises par la source de surface 226, reçues par le capteur 221 situé dans le puits 225, et arrivant perpendiculairement à la composante sensiblement verticale Z 223 du capteur
221 à trois composantes. La trajectoire de ce puit 225 est sensiblement verticale au niveau de la position du capteur 221.
Le terme « multicomposante » qualifie une disposition particulière d'une pluralité de capteurs sismiques. Par exemple, un capteur à trois composantes comprend trois récepteurs sismiques unidirectionnels disposés selon des axes orthogonaux, tels que des géophones ou des accéléromètres. Les ondes sismiques se propageant en trois dimensions, on utilise un capteur à trois composantes pour caractériser l'ensemble des ondes sismiques.
On appelle « composante », le signal issu d'un capteur sismique unitaire. Un capteur à trois composantes génère trois signaux électriques enregistrés selon trois axes orthogonaux. En général, la sonde réceptrice de fond comporte une composante d'axe connu, disposée soit selon la verticale, soit selon l'axe de l'outil. Cet axe de l'outil coïncide sensiblement avec l'axe du puits, après ancrage de la sonde à la paroi du puits, et de deux composantes orthogonales, dont on ne connaît pas la direction exacte dans le plan orthogonal.
Il est usuel lors de l'exploitation des données sismiques, obtenues par une méthode de type PSV au moyen de capteur à trois composantes, de traiter une seule des composantes enregistrées, en général soit la composante verticale, soit la composante axiale au puits, soit la composante correspondant à la direction spatiale maximisant l'énergie de l'arrivée directe d'onde de pression. Des exemples de traitement monocomposante de données sismiques sont décrits dans de nombreuses publications et ouvrages publiés, par exemple dans des ouvrages spécialisés suivants :
Hardage.B.; "Vertical Seismic Profiling" : Principles, Third updated and revised édition; in : Handbook of Geophysical Exploration, seismic exploration,Vol.14, 2000, Pergamon, Elsevier Science;
A.H. Balch & Myung W. Lee; Vertical Seismic Profiling : technique, Applications, and case Historiés, 1984, D. Reidel publishing Company;
Mari, J. L. et al; "Seismic WeII Surveying", 1991, Editions Technip, Paris. II est usuel également de prendre en compte la polarisation des ondes directes en mode de pression pour l'orientation et le traitement des profils sismiques verticaux avec offset, pour lesquels le puits est sensiblement vertical et la position de la source est située à une distance supérieure à 10% de la profondeur totale du puits. On calcule la composante orthogonale qui maximise l'énergie de l'arrivée directe d'onde de Pression (onde P) dans le plan orthogonal, et dans une fenêtre temps définie par le pointé temps de cette arrivée directe P. Pour déterminer cette direction azimutale dans un plan, à partir de deux composantes, on utilise une technique de maximisation de l'énergie, par exemple celle décrite dans le document suivant :
DiSiena, J. P., J. E. Gaiser, and D. Corrigan, 1984, "Horizontal components and shear wave analysis of three-component PSV data", in M. N. Toksδz and R. R. Stewart, eds., Vertical seismic profiling, Part B : Advanced concepts : Geophysical Press, 177-235.
Cependant, la limitation classique du traitement à une seule ou à deux des composantes conduit à des indéterminations potentielles dans l'identification du mode d'onde de certaines arrivées reçues par le capteur, pression ou cisaillement, d'une part, et dans le positionnement d'événements géologiques d'autre part, qu'il n'est pas possible de lever. L'inversion des temps, ou les techniques de migration des événements sismiques réfléchis uniquement, conduisent à une pluralité de solutions puisque la direction azimutale de pendage des réflecteurs demeure inconnue. De plus, lorsque deux événements sismiques arrivent en même temps avec des vitesses apparentes voisines, et figurent sur quelques traces profondeur adjacentes (six à douze par exemple), on vérifie qu'il est quasiment impossible de les séparer par un traitement monocomposante classique.
Il apparaît donc indispensable, pour améliorer la fiabilité de l'interprétation des données sismiques de PSV, de traiter les trois composantes. Toutefois, l'étape d'acquisition ne permet pas de fournir l'orientation réelle des géophones du câble, alors que cette information est indispensable pour permettre de traiter les données. En effet, les composantes horizontales issues de PSV à trois composantes ont une orientation inconnue et aléatoire, car les câbles portant les capteurs sismiques (géophones) ne peuvent pas contrôler l'orientation de ces éléments. Traiter les trois composantes peut être envisagé, dans la mesure ou la qualité d'isotropie de réception mécanique de la sonde de PSV (résumée sous l'appellation de "fidélité vectorielle" de la réception) est suffisamment bonne. Ceci est le cas avec la plupart des outils de PSV modernes, dans lesquels le rapport entre la force d'ancrage de la partie de la sonde (ou de la sonde entière) supportant les capteurs triaxiaux, et le poids dans l'air du support (ou de la sonde) est supérieur à cinq. Toutefois, bien qu'il existe des accessoires de mesure d'orientation complète d'un outil dans un puits, comme les magnétomètres-inclinomètres et les gyroscopes de puits, ces accessoires matériels sophistiqués sont souvent inutilisés, car ils représentent un surcoût substantiel. De plus, ils peuvent détériorer les qualités d'ancrage mécanique de la sonde PSV à laquelle ils sont combinés. On constate que l'étape d'acquisition des PSV ne permet que rarement de fournir systématiquement l'orientation réelle et complète des capteurs trois composantes, alors que cette information est indispensable pour permettre le traitement des trois composantes. De fait, les composantes orthogonales issues de PSV à trois composantes ont la plupart du temps une orientation inconnue et aléatoire. C'est en particulier le cas dans les intervalles de profondeur du puits faiblement inclinés, notamment au dessous de 10 degrés d'inclinaison verticale, intervalles dans lesquels les dispositifs d'orientation partiels du type montage des capteurs sur cardans, ou adjonction d'un dispositif pendulaire sensible à la gravité mesurant l'angle de « relative bearing » dans le plan orthogonal à l'axe de l'outil, sont rendus inopérants. Ainsi, afin de traiter de façon complète, efficace et bénéfique tous les signaux issus de capteurs multicomposantes, constituant un jeu usuel de données de sismique de puits, il est nécessaire d'orienter les géophones des capteurs multicomposantes.
État de la technique Pour déterminer une direction azimutale dans l'espace à partir des trois composantes, on peut utiliser la technique d'analyse de matrice de covariance décrite dans les documents suivants :
Benhama.A., Cliet, C, and Dubesset, M., 1988, Study and application of spatial directional filtering in three component recordings : geophysical propecting, 36, 591-613, Cliet, C, and Dubesset, M., 1987 : La paramétrisation des trajectoires de particules, Institut Français du pétrole, Report N° 35080.
Cette technique fait l'hypothèse que la direction de polarisation ainsi calculée appartient au plan vertical contenant les positions de source et de récepteur. Ceci est réaliste dans un milieu sédimentaire stratifié, même avec des valeurs de pendage faible à moyen G'usqu'à environ 20° et pour tout pendage, si la source et le capteur de puits sont situés dans le plan de pendage structural local au voisinage puits). Ce processus fait appel au pointé de l'onde directe de pression effectué sur la composante verticale ou axiale au puits, dont la forme de signal est cohérente sur les traces de profondeurs adjacentes. Ce processus devient inapplicable si l'énergie d'arrivée directe de pression est trop faible sur les composantes orthogonales.
Cette méthode d'estimation de l'orientation des capteurs trois composantes par maximisation d'énergie du signal d'onde-P directe dans une fenêtre temps définie par pointé de la composante vertical ou axiale au puits, s'applique bien aux géométries d'acquisition comme le PSV avec offset, qui comprend au moins une source sismique de surface positionnée de façon fixe à une certaine distance offset du puits (typiquement égale à 0.2 à 1.5 fois la profondeur verticale totale du puits). On oriente de même les capteurs trois composantes des configurations de walkaway 2D ou 3D, et de walkaround, qui consistent à enregistrer sur une antenne de capteurs fixes 3C dans le puits, le signal émis à partir d'une pluralité de positions de source de surface selon une disposition qui détermine le type d'étude sismique de puits. Ainsi un walkaway 2D correspond à une disposition en ligne des points sources, un walkaway 3D correspond à une grille de points sources, plus ou moins régulière, et un walkaround correspond à un cercle de points sources tir autour du puits.
Par exemple, une méthode d'orientation des capteurs orthogonaux à l'aide de la polarisation d'arrivée directe d'onde P est bien illustrée dans la configuration d'une pluralité de points source placés à des azimuts variés autour du puits dans le document suivant :
P. N. Armstrong, "Method of estimating relative bearing of a borehole receiver", juillet 26, 2005, US pat. 6,922,373 B2
Dans tous ces cas de figure, la pluralité de positions de source de surface permet d'en trouver plusieurs pour lesquelles le processus par maximisation d'arrivée directe d'onde-P est bien adapté à l'estimation précise et redondante de l'orientation. Il n'est pas nécessaire que l'outil de fond soit muni de dispositif d'orientation des composantes.
Avec la redondance de points source, l'adoption des hypothèses de propagation commune dans le plan vertical source-récepteur, et pour autant que la rectilinéarité de l'arrivée directe d'onde P soit correcte pour une proportion suffisante de points source, il n'est même pas nécessaire de connaître la trajectoire du puits, comme en témoigne le document suivant :
Stewart A. Greenlagh and lan M. Mason, "Orientation of a downhole triaxial geophone", 1995, Geophysics, VOL.60, NO4, p 1234-1237.
Enfin, on connaît également deux méthodes permettant de déterminer l'orientation des deux composantes horizontales lorsque l'on dispose d'une pluralité de positions de sources en surface, par le document :
X. Zeng, G. A., McMechan, « Two methods for determining geophone orientation from PSV data », Geophysics, Vol. 71, N°. 4, p. V87-V97, 2006.
Une première méthode, basée sur le plan de polarisation, permet de déterminer l'orientation des composantes horizontales de capteurs montés sur cardans, à partir de l'énergie de polarisation d'une fenêtre temporelle autour de l'arrivée directe P, avec une indétermination de π sur l'angle trouvé. Il est notoire de constater dans ce document que cette indétermination de π est maintenue, alors qu'elle pourrait être levée aisément en pointant une phase remarquable du signal d'arrivée P sur la composante verticale, en particulier un extremum d'amplitude, et en imposant une polarité systématiquement identique sur la composante horizontale sortie du processus de maximisation d'amplitude, comme cela est pratiqué industriellement. Naturellement, cette méthode classique de polarisation, nommée PPDI, ne donne des résultats satisfaisants que si l'énergie d'onde P est substantielle dans le plan horizontal, et cette méthode fait usage de la pluralité massive des points source de surface pour améliorer la fiabilité de l'orientation et pour lever l'indétermination de π.
Dans la seconde méthode, appelée RADI, on calcule l'azimut relatif entre deux stations profondeur adjacentes de géophones, par une méthode de maximisation d'une corrélation entre vecteurs bicomposantes, calculée sur une période ou une fenêtre temporelle autour de l'onde P directe de forte énergie sur les composantes horizontales. En pratique, la méthode
RADI ne donne pas de bons résultats sur les données réelles, c'est pourquoi elle est généralement appliquée postérieurement à la première méthode PPDI pour lever l'indétermination de π mentionnée précédemment.
On peut également utiliser les propriétés de polarisation des ondes sismiques directes P pour réorienter les composantes situées dans le plan perpendiculaire à l'axe du puits, dans le cas d'une géométrie particulière : géométrie d'acquisition dans un puits dévié de trajectoire connue, avec une source sismique de surface unique placée en offset de la tête de puits, et avec enregistrement par des capteurs triaxiaux fixes par rapport au corps d'un outil non pourvu d'accessoire de mesure de l'angle de « relative bearing ». On applique alors une procédure de maximisation de l'arrivée P sur les composantes orthogonales. On fait également l'hypothèse que le rayon direct d'onde P est compris dans le plan vertical contenant la source de surface et le capteur de fond. Naturellement cette réorientation n'est valable que pour la diagraphie en cours, et elle est aisée lorsque l'arrivée directe P est de polarisation sensiblement linéaire, descendante ou montante réfractée, et non interférée. Cette technique bien connue de l'homme de l'art est décrite par exemple dans le document suivant :
M. Becquey et M. Dubesset., " Three component sonde orientation in a deviated well" Geophysics, 1990, vol.55 N° 10, p. 1386-1388.
Cette méthode d'orientation fournit en général soit deux solutions, soit une solution double, soit aucune solution. Dans le cas échéant, on lève l'indétermination de double solution de rayon d'arrivée directe d'onde-P, en ne conservant que celle qui est la plus proche de la droite définie par la source et le récepteur. S'il n'y a pas de solution, on conserve la solution double comme approximation : (Φ=Φ0 dans l'équation 6, page 1387 du document précédemment cité). Cette technique de réorientation a été utilisée avec succès sur plusieurs cas réels, comme en témoigne par exemple les illustrations en page 420 du document suivant :
C. Cliet, L. Brodov, A. Tikhonov, D. Marin and D. Michon, "Anisotropy survey for réservoir définition", Geophys. J. Internat., 1991, 107, 417-427.
Une limitation à tous les processus d'orientation précédemment cités prenant en compte l'arrivée directe d'onde P1 survient lorsque l'énergie de la projection de l'arrivée directe sur les deux composantes non axiales, ou non verticales, est très faible. Ceci est par exemple le cas si le puits est vertical ou faiblement dévié, notamment avec la géométrie d'acquisition très courante dite de PSV "zéro-offset", pour laquelle la source de surface située proche de la tête de puits est activée en une position unique, à terre ou en mer, avec une structure géologique ayant des pendages locaux quelconques et souvent inconnus. Il est connu de pallier à cette limitation en activant une source sismique supplémentaire à la source zéro-offset, localisée à une distance suffisante du puits, et de préférence dans la direction azimutale générale de la structure géologique dans le voisinage du puits. Mais cette solution alternative est rarement utilisée car elle entraîne des dépenses supplémentaires pour l'opération de mesure ainsi qu'un allongement de la durée d'acquisition, et donc de l'immobilisation de l'appareil de forage sur le site. L'activation de cette source additionnelle est effectuée successivement ou simultanément à la source zéro offset, avec la même position profondeur d'ancrage et de mesure que l'outil PSV, dont on désire orienter les trois composantes. De plus, ces palliatifs aux méthodes ou configurations géométriques de tir antérieurs, présentent l'inconvénient de ne pas être toujours applicables, soit à cause de reliefs accidentés par exemple, soit à cause d'indisponibilité matérielle ou financière de sources sismiques supplémentaires, soit à cause d'interférence de l'arrivée directe d'onde-P par une arrivée réfractée ou diffractée secondaire. Lorsqu'il est absolument nécessaire de connaître l'orientation des capteurs triaxiaux, il est judicieux d'envisager la mise en oeuvre d'une source supplémentaire en offset du puits, et de confronter cette solution avec le choix alternatif d'un outil de puits combinable avec un accessoire d'orientation. Mais en pratique, ces deux modes de mesure de PSV sont rarement mis en oeuvre.
Par ailleurs, après orientation des composantes triaxiales, certains programmes de traitement de PSV multi composantes se limitent aux deux composantes contenues dans le plan vertical contenant le capteur et la source, comme par exemple la méthode décrite dans le document suivant :
C. Esmersoy, "Velocity estimation from offset VSPs using Direct P and converted SV- waves", POS6.4, SEG abstracts 1987, p538-541.
Cependant, comme expliqué précédemment, la limitation classique du traitement à une seule ou à deux des composantes conduit à des indéterminations potentielles dans l'identification du mode d'onde de certaines arrivées reçues par le capteur, pression ou cisaillement, d'une part, et dans le positionnement d'événements géologiques d'autre part, qu'il n'est pas possible de lever.
Ainsi, afin de traiter de façon complète, efficace et bénéfique tous les signaux issus de capteurs multicomposantes, constituant un jeu usuel de données de sismique de puits, il est nécessaire d'orienter les géophones des capteurs multi composantes.
L'objet de l'invention est une méthode alternative d'orientation spatiale des géophones d'un capteur multi-composantes permettant de s'affranchir des difficultés d'orientation des techniques antérieures. La méthode permet d'orienter les géophones dans un repère localement cohérent et sensiblement unique pour tous les niveaux de mesure, inconnu à une rotation constante près, puis d'orienter les trois composantes dans un repère de directions géographiques liées au globe terrestre, afin de permettre le traitement isotrope des trois composantes, pour le bénéfice de l'interprétation structurale et géologique. La méthode se base sur une technique originale de pointé-temps des temps d'arrivée d'une onde directe (P ou S) sur l'une des phases les plus énergiques d'un signal module.
La méthode selon l'invention Ainsi, l'invention concerne une méthode de prétraitement de données sismiques acquises au moyen d'une méthode de prospection sismique de type profil sismique vertical. Cette méthode de prospection sismique de type profil sismique vertical comprend une émission d'ondes sismiques et une réception de ces ondes sismiques au moyen d'au moins un capteur multi - composantes positionné au sein d'un puits et que l'on fait stationner à au moins deux profondeurs. Ce capteur comprend au moins trois géophones orthogonaux enregistrant en fonction du temps une première composante sismique dans une direction vectorielle connue, et au moins deux autres composantes sismiques dans deux directions orthogonales à cette direction vectorielle connue. La méthode comprend les étapes suivantes : a- on construit un nouveau signal en calculant la racine carrée de la somme des carrés d'au moins deux composantes sismiques orthogonales, appelé signal module, et l'on pointe des temps d'arrivée d'une onde sismique directe sur un extremum d'amplitude dudit signal module; b on oriente lesdites composantes sismiques dans un repère unique quelle que soit la profondeur dudit capteur, au moyen des étapes suivantes répétées pour chaque profondeur :
- on définit une fenêtre temporelle de part et d'autre desdits temps d'arrivée ;
- on détermine une direction azimutale par maximisation d'une énergie desdites composantes sismiques orthogonales à ladite direction vectorielle connue au sein de ladite fenêtre temporelle ;
- on oriente à 360 degrés près lesdites composantes sismiques orthogonales à ladite direction vectorielle connue dans un repère unique défini par rapport à la direction azimutale qui est identique pour chaque profondeur.
Selon un mode de réalisation, on peut construire le signal module en calculant la racine carrée de la somme des carrés des deux composantes sismiques orthogonales à la direction vectorielle connue. On pointe alors les temps d'arrivée d'une onde de cisaillement descendante. Selon un autre mode de réalisation, on peut également pointer l'arrivée d'une onde de pression. On peut alors calculer des vitesses des ondes de cisaillement et de pression à partir de ces temps d'arrivée. On peut en déduire des rapports de vitesse et/ou un coefficient de Poisson. Selon un autre mode de réalisation, on peut construire le signal module en calculant la racine carrée de la somme des carrés des trois composantes sismiques, et l'on pointe les temps d'arrivée d'une onde de pression directe.
De façon préférentielle, préalablement à l'étape a), on préserve l'isotropie du signal en trois composantes, en respectant des rapports d'amplitude et des différences de phase entre les composantes sismiques.
Selon l'invention, on peut améliorer un rapport signal sur bruit des trois composantes du signal brut, préalablement au calcul du module, au moyen d'une déconvolution isotrope des trois composantes par un signal unique d'onde de pression descendante extrait de la composante de direction vectorielle connue. On peut également, filtrer le signal module de façon à supprimer des composantes basses fréquences, avant de pointer les temps d'arrivée de l'onde sismique directe.
Selon un mode réalisation, on peut déterminer l'orientation géographique de ce repère unique.
On peut déterminer l'orientation géographique du repère unique en montant le capteur multi-composantes sur un système de double cardans, ce système permettant d'orienter par gravité les composantes sismiques lorsque l'inclinaison du puits atteint une valeur d'au moins environ 10 degrés.
On peut également descendre dans le puits un outil de mesure de puits comportant le capteur multi-composantes monté de façon fixe. On détermine alors l'orientation géographique du repère unique au moyen d'un système de mesure d'un angle de "relative bearing" monté sur l'outil de mesure, qui permet de retrouver l'orientation du capteur multi- composantes lorsque l'inclinaison du puits atteint une valeur d'au moins environ 10 degrés.
Selon un mode de réalisation, on descend dans le puits un outil de mesure de puits comprenant une pluralité de capteurs multi - composantes placés à des profondeurs de mesure adjacentes, et on détermine l'orientation géographique du repère unique en couplant au moins l'un des capteurs multi - composantes à un outil de mesure d'orientation géographique, tel qu'un magnétomètre-inclinomètre ou un gyroscope.
Selon un autre mode de réalisation, au moins une portion du puits est horizontale et le capteur multi-composantes est monté de façon fixe dans un outil de mesure de puits. On détermine alors l'orientation géographique du repère unique en assimilant une direction de maximisation d'une onde de pression directe à une droite reliant une position du capteur à une position d'une source émettant les ondes sismiques.
Selon l'invention, on peut également déterminer, sur différentes portions du puits, des repères uniques ayant un axe commun, ces portions ayant des zones de chevauchement permettant de déterminer un angle de rotation à appliquer à ces repères uniques, de façon à obtenir un repère unique pour l'ensemble du puits.
Enfin, on peut utiliser l'orientation dans un repère unique de façon automatisée pour obtenir un contrôle de la qualité des composantes sismiques, immédiatement après l'acquisition de mesures sur le terrain.
D'autres caractéristiques et avantages de la méthode selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après.
Présentation succincte des figures
La figure 1 schématise de façon générale la géométrie d'acquisition d'un PSV avec source de surface et sonde comportant un seul niveau de réception sismique, descendue dans un puits sensiblement vertical au moyen d'un câble. - La figure 2a illustre l'étroitesse de l'angle solide de propagation en arrivée directe, qui garantit l'hypothèse de constance de forme d'onde des modes propres de propagation sismique en milieu stratifié, sensiblement homogène pour des niveaux de mesure profondeur adjacents.
Les figures 2b et 2c illustrent deux géométries de propagation pour lesquelles l'arrivée directe de pression P arrive orthogonalement à la direction de la composante Z de direction spatiale connue; cette situation peut arriver en puits horizontal (fig. 2b), en puits dévié, ou en puits vertical (fig. 2c), lorsque la source est éloignée du puits d'une distance adéquate.
Les figures 3a et 3b indiquent la disposition des trois composantes d'un capteur triaxial monté sur double cardans de type "tourelle", et placé dans un puits dévié : plan vertical tangent au puits (fig. 3a); plan horizontal (fig.3b).
Les figures 4a et 4b indiquent la disposition des trois composantes d'un capteur triaxial monté de façon fixe dans l'outil, dans le plan orthogonal à l'axe du puits et de la sonde (fig.4a), qui permet d'illustrer l'angle de « relative bearing », et dans le plan vertical tangent au puits (fig. 4b).
La figure 5 illustre l'attitude spatiale des trièdres des capteurs sismiques dans les parties verticales et déviées d'un puits avant orientation (a) : montage fixe, c) : montage sur doubles cardans), et la configuration des trièdres après orientation (b).
Les figures 6a, 6b, 6c et 6d illustrent le principe de propagation des modes propres d'onde sismique volumique de cisaillement (ondes S) dans un milieu sensiblement homogène, et la méthode d'orientation des deux composantes orthogonales non orientées dans un repère intermédiaire unique selon l'invention. - La figure 7 est un organigramme de l'ensemble du processus d'orientation selon l'invention.
La figure 8 illustre le mouvement de particule de l'onde descendante S dans la fenêtre temps de calcul d'orientation, dans le repère de l'outil; l'angle AG calculé et correspondant à la flèche superposée à l'hodogramme indique l'azimut de maximisation. - Les figures 9a, 9b et 9c, représentent les rejeux bruts isotropes des composantes respectives Z1 X, Y mesurées par l'outil de puits, versus la profondeur croissante de gauche à droite.
Les figures 10a, 10b et 10c représentent les rejeux bruts isotropes des composantes géographiques orientées respectives Z-down verticale, H-Nord(HN) et H-East(HE) de l'outil, versus la profondeur croissante de gauche à droite, et la cohérence obtenue sur l'arrivée S dans la fenêtre rectangulaire, illustre l'efficacité de la méthode d'orientation des deux composantes orthogonales selon l'invention.
Description détaillée de la méthode L'invention concerne une méthode de prétraitement spécifique de données sismiques acquises lors de la mise en oeuvre d'une opération de prospection sismique de type profil sismique vertical. Selon un mode de réalisation cette opération comprend une seule position de surface pour l'émission d'ondes sismiques, située à proximité de l'appareil de forage, et une réception des ondes sismiques au moyen d'un capteur multi - composantes positionné au sein d'un puits vertical à faiblement dévié. Le capteur (monté dans la sonde sismique) comporte trois géophones orthogonaux. Et on fait stationner ce capteur à au moins deux profondeurs voisines de quelques mètres. Le signal enregistré selon la direction axiale de chaque capteur unitaire est appelé composante du signal. La sonde réceptrice enregistre en fonction du temps au moins une composante dans une direction vectorielle connue, verticale ou axiale au puits de mesure, et deux composantes sismiques dites "orthogonales", c'est-à-dire orthogonales à la composante de direction vectorielle connue.
Les figures 6a et 6b illustrent le principe physique de base de la propagation d'une onde sismique de cisaillement, dite S (shear). Il existe deux types d'ondes de volume : les ondes de pression (ondes P), dont la polarisation, ou direction de déplacement de la formation au passage de l'onde, est parallèle à la direction de propagation, non illustrées sur la figure 6a, et les ondes transversales (ondes S) polarisées sensiblement perpendiculairement à la direction de propagation, illustrées sur la figure 6a.
La figure 6a représente un schéma d'un plan vertical de propagation 600 : la surface 601 symbolise non seulement la surface du sol mais également les premières couches de terrain hétérogènes jusqu'à environ 200 mètres d'épaisseur, ou même la surface rugueuse du fond de la mer, qui sont le siège de conversions de modes d'onde P en mode S. Tous les modes d'ondes se propageant en profondeur suivant l'axe vertical 602. Ainsi, à partir d'une faible profondeur de terrain, l'onde S se propage verticalement dans un milieu sensiblement homogène à l'échelle des longueurs d'onde sismiques utilisées. Le milieu est isotrope ou avec anisotropie faible pour la direction de propagation verticale (entraînant une biréfringence ordinaire), et il comporte une stratification éventuelle de couches de caractéristiques variables, avec un pendage éventuel identique pour toutes les couches ou non. Le milieu est ainsi représentatif de formations usuelles sédimentaires ou de socle. Le schéma de la figure 6a illustre un milieu biréfringent dans lequel un train d'onde de cisaillement complexe se propage verticalement en profondeur selon l'axe 602 et comprend :
- une onde de cisaillement rapide S-f ayant une forme de vibration 603 quelconque polarisée linéairement selon la direction constante 611 orthogonale à la direction de propagation 602. ;
- une onde de cisaillement lente S-s ayant une forme de vibration 604 en général différente de 603 et polarisée linéairement selon la direction constante 612 orthogonale à la fois aux axes 602 de propagation et 611 de polarisation d'onde S rapide S-f.
Les vecteurs de polarisation 611 et 612 symbolisent les directions de vibration de chacun des modes propres d'onde S propagées selon la verticale, mais aussi l'amplitude du signal. L'amplitude du signal de vibration caractérise indifféremment le déplacement, la vitesse ou l'accélération du mouvement sismique de chacun des modes propres d'onde S-f et S-s, dont la direction et la forme d'onde demeurent constantes tout au long de la propagation, conformément à la physique du phénomène de propagation. La figure 6a montre, pour des instants successifs de propagation ti 610 (i = 0,1 , 2, i) mesurés à partir de l'instant d'activation de la source sismique de surface, la profondeur zf i 613 atteinte par l'onde rapide S-f, et la profondeur zs i 614 atteinte par l'onde lente S-s, le pied des vecteurs de polarisation respectifs 611 et 612 indiquant la profondeur exacte atteinte par chacune des deux ondes S au temps ti 610. De fait, la profondeur zf i 613 de l'onde rapide S-f est progressivement et faiblement supérieure de quelques pourcents à la profondeur zs i 614 au cours de la propagation. La figure 6b représente dans le plan horizontal 650, orthogonal à la direction de propagation verticale, des diagrammes de projection des formes du mouvement de vibration théoriques du train d'onde S. Ils représentent chacun une succession continue des points [X(t), Y(t)] des signaux sismiques, dans une fenêtre temps centrée, dans le cas présent, autour du temps ti de l'arrivée d'onde S à illustrer : ces diagrammes sont également connus sous les dénominations de "mouvement de particules" si les signaux X et Y représentent un déplacement au passage de l'onde sismique, ou même "hodogrammes" si les signaux X et Y représentent une vitesse de déplacement, mesurée par exemple par un capteur de type géophone. Ils sont encore appelés "diagramme de polarisation" ou simplement "polarisation" si les signaux X et Y représentent indifféremment un déplacement, une vitesse ou une accélération.
La figure 6b montre sur la colonne de droite 653 au dessous de l'indication "IN", et pour des profondeurs verticales fixes successives zi (i = 0,1 ,2,i) 660, atteintes par le train d'onde S dans une fenêtre temps autour des instants de propagation ti 610 (i = 0,1 , 2,i) définis sur la figure 6a, les diagrammes de polarisations théoriques 651 d'orientation totalement aléatoire dans le plan horizontal pour chaque station profondeur zi, que l'on observe dans le repère d'une sonde sismique de puits utilisée pour l'enregistrement des PSV et qui s'ancre à la paroi de puits selon un azimut aléatoire. L'aléa de rotation du câble de diagraphie au bout duquel la sonde de puits est fixée est bien connu de l'homme du métier, cet aléa étant transmis aux capteurs sismiques à montage fixe dans une sonde. Par ailleurs, si ladite sonde réceptrice comporte des cardans de type tourelle sur lesquels sont montés les capteurs sismiques, la rotation des cardans autour de l'axe de la sonde est libre lorsque la sonde est dans un puits vertical, ce qui entraîne également une orientation aléatoire des capteurs horizontaux, même si l'on connaissait l'orientation azimutale de la sonde.
La figure 6b indique symboliquement le processus P1 (666) suivant l'invention, via une flèche entre chaque diagramme de polarisation 651 des données entrées en colonne de droite "IN" 653, et le diagramme de polarisation orienté correspondant en colonne de gauche
"OUT" 663; ce processus consiste à déterminer la direction d'amplitude maximale 652 sur le diagramme 651 , de façon indépendante pour chaque profondeur de mesure sismique de puits, par une technique connue de régression linéaire du groupe des points X(t),Y(t) dans une fenêtre -temps limitée appropriée, si possible plus courte que la fenêtre-temps correspondant au diagrammes 651 ou 661, puis à appliquer une rotation d'axe vertical aux signaux sismiques horizontaux de façon à faire coïncider la direction d'amplitude maximale 651 à une direction azimutale constante arbitraire 662 sur le diagramme 661, dans un premier temps. Ce processus est bien adapté au cas des PSV dits à zéro offset en puits vertical, où la source d'onde P usuellement employée génère involontairement et très souvent en pratique des ondes de cisaillement énergiques au passage de la zone altérée et hétérogène de surface ou de la surface rugueuse du fond de la mer.
La figure 6b montre sur la colonne de gauche 663 au dessous de l'indication "OUT", et pour des profondeurs verticales fixes successives zi (i = 0,1 , 2, i) 660, atteintes par le train d'onde S dans une fenêtre temps autour des instants de propagation ti 610 (i = 0,1 ,2,i) définis sur la figure 6a, les diagrammes de polarisations théoriques 661 que l'on s'attend à observer dans un repère fixe du plan horizontal, par exemple un repère géographique (Nord, Est). On prend par exemple zi = (zf i +zs i)/2, en référence à la figure 6a. On remarque qu'en cas d'isotropie du milieu de propagation pour la direction verticale, zi = zf i =zs i représente la profondeur atteinte par deux ondes S de polarisation orthogonale quelconque. Les diagrammes de polarisation 661 de la figure 6b représentent les mouvements de particules du train d'onde S illustré par la figure 6a, pour la même succession d'instants de propagation ti : on peut noter que les diagrammes successifs sur la colonne de gauche 663 sont de forme très similaires, avec une direction maximale d'amplitude 662 identique. Les différences de rotondité observées traduisent typiquement l'anisotropie azimutale de biréfringence, résultant du faible écart de vitesse entre onde S rapide S-f et onde S lente S-s. Compte tenu de la longueur temps des ondelettes sismiques 603 et 604 (figure 6a) associées aux deux modes propres S-f et S-s émis quasi simultanément, la forme des diagrammes de la figure 6b est elliptique et témoigne de l'interférence des deux modes propres d'onde S qui ne peuvent hélas pas être distingués visuellement en pratique dans le cas général sur ce genre de diagramme. On a constaté par expérience qu'une arrivée sismique énergétique individuelle en onde P de polarisation linéaire ou en onde S de polarisation elliptique quelconque, ondes P ou S dont la forme de polarisation reste sensiblement constante au cours de la propagation, montre une cohérence du temps des extrema d'amplitudes d'une profondeur à la suivante, et en particulier, que la forme du signal module reste sensiblement constante pour une onde descendante de forte énergie. On peut trouver facilement des publications montrant des hodogrammes de trains d'onde S directe émis par une source S placée à faible distance du puits, et réorientés dans un repère fixe géographique à l'aide de source d'onde P placée en offset et activée dans la même passe de mesure, et indiquant que la forme d'hodogramme est sensiblement stable tout au long de la propagation le long du puits vertical et dans un milieu à stratigraphie horizontale comportant une anisotropie azimutale notable en onde S, par exemple dans les documents suivants : Charles Naville, " Détection of Anisotropy Using Shear-Wave Spitting in VSP surveys; Requirements and Alpplications", SEG Expanded Abstracts, 56th int. SEG meeting, 1986, Houston, S5.2, pp. 391-394. lan Bush and Stuart Crampin, "Paris Basin VSPs : case history establishing combinations of fine layer (or lithologie) anisotropy and crack anisotropy from modelling shear wavefields near point singulatities" Geophys. Journal Int., 1991 , N°107, pp. 433-437.
Nicoletis, L., Cliët, C. & Lefeuvre, F., " Shear-wave Splitting measurements from multishot VSP data, Expanded Abstracts, 58th int. SEG meeting, 1988, Anaheim, POS 6.1 , pp.527-530; Dans les trois documents précités, l'hypothèse de la fixité de polarisation des modes propres (figure 6a) pour une direction de propagation donnée est admise de façon explicite ou implicite, et l'on peut vérifier visuellement que pour une propagation verticale à faiblement déviée de la verticale, la forme du diagramme de polarisation demeure similaire avec la propagation, ainsi que la direction azimutale d'amplitude maximale. Ainsi, même en présence d'anisotropie de biréfringence sans atténuation différentielle d'amplitude drastique entre les deux modes propres d'onde S, on peut aisément vérifier mathématiquement que la direction d'amplitude maximale d'un signal à deux composantes d'un train d'onde S direct non interféré, demeure sensiblement fixe le long d'une direction de propagation donnée. Ceci est schématisé sur la colonne de gauche de la figure 6b. Ainsi, en déterminant la direction azimutale pour chaque profondeur à laquelle on dispose d'un enregistrement des composantes horizontales, on définit un repère unique. Cette méthode est d'autant plus précise que (1 ) le couplage mécanique de la sonde réceptrice mono niveau ou de chacune des sondes réceptrices d'un outil de puits multi niveaux assure une bonne fidélité vectorielle du signal mesuré, et que (2) la source de surface reste en position fixe et émette toujours la même forme de signal pendant toute l'opération de PSV.
La méthode comporte une orientation des composantes sismiques dans un repère localement cohérent quelle que soit la profondeur de la sonde. La figure 7 est un organigramme 700 d'un mode de réalisation de la méthode d'orientation selon l'invention. Il s'agit d'orienter les deux composantes orthogonales à une composante verticale, ou à une composante axiale au puits. La méthode repose sur l'analyse des ondes S descendantes pour définir une fenêtre temporelle nécessaire à la détermination d'un angle de rotation. En effet, les ondes P enregistrées ayant habituellement une énergie trop faible sur les composantes horizontales des PSV, elles ne permettent pas de réorienter ces composantes. Ceci est notamment le cas pour les PSV sans déport, effectués avec des sources d'onde de pression dans des puits dont la trajectoire est proche de la verticale. En revanche, l'énergie des ondes S directes ou d'ondes converties de P en S au cours de la propagation descendante est très souvent suffisante pour appliquer la méthode.
Ainsi, selon un mode de réalisation, la méthode comporte les étapes suivantes pour chaque station profondeur de mesure : dans le bloc 701 , on déconvolue de façon isotrope les deux composantes orthogonales à orienter, c'est-à-dire que l'on applique un même opérateur, au même temps sur les deux composantes. Cette opération n'est envisagée que si le résultat des opérations 702 à 704 n'est pas satisfaisant. - dans le bloc 702, on calcule le module, noté M(t), des deux composantes brutes à orienter, ou une puissance exponentielle (n) de ce dernier ; dans le bloc 703, on filtre le module M(t), de façon à supprimer ses composantes basses fréquences et éventuellement des hautes fréquences ne contenant que du bruit, de façon à faciliter l'opération suivante. - dans le bloc 704, on pointe le temps Tp d'une phase remarquable du signal du module filtré obtenu précédent. Par exemple on pointe un pic ou un creux d'amplitude, éventuellement affiné par application d'un algorithme industriel de pointé par corrélation ou par semblance.
Les opérations 702 à 704 peuvent être automatiques, exécutables en cascade et en une seule passe, mais peuvent conduire à un pointé peu fiable ou peu précis. Dans un tel cas, on peut soit modifier le filtre du bloc 703, soit envisager d'appliquer au préalable des opérations 702 à 704 les opérations décrites au bloc 701 , destinées à augmenter le rapport signal sur bruit de l'onde S que l'on désire pointer, toutes les arrivées interférant avec l'arrivée S désirée étant considérées comme du bruit. - dans le bloc 705, on définit ensuite une fenêtre temporelle autour du temps pointé d'arrivée S, d'une longueur constante pour tous les niveaux profondeur de mesure et au moins égale à une demi période du signal module filtré, voire d'une longueur plus grande en cas d'onde S interférée ou de faible rapport signal sur bruit dans le bloc 705, on détermine alors la direction azimutale, par maximisation de l'énergie des composantes d'entrée X(t), Y(t), brutes ou filtrées pour ne retenir que les fréquences de rapport signal sur bruit le plus fort, selon un procédé industriel connu. On effectue ensuite une rotation des composantes d'entrée X(t), Y(t) brutes dans le plan orthogonal à la composante brute Z, dans un repère unique intermédiaire défini par la direction azimutale calculée précédemment. On s'assure que l'amplitude du signal de sortie dans la direction de maximisation demeure de signe identique, par exemple positif, au temps pointé Tp issu de l'opération 704, pour tous les niveaux de mesure du PSV. dans le bloc 707, on calibre les composantes dans un repère intermédiaire unique, défini par rapport à un repère géographique, ou à un repère lié à la trajectoire connue du puits si l'on dispose d'information complémentaire pour ce faire. dans le bloc 708, on applique les rotations nécessaires au repère intermédiaire unique pour restituer les trois composantes du PSV dans un repère géographique lié au globe terrestre, selon une procédure connue.
Chacune des étapes précédentes est décrite ci-après : A. Pointé
• bloc 701 : déconvolution préalable éventuelle : dans certains cas, le signal du train d'arrivée directe d'onde S est apparent sur un grand intervalle de temps d'enregistrement, il est potentiellement interféré par d'autres ondes d'énergie relative plus faible, mais non négligeable, ce qui a pour effet de rendre le pointé du module filtré plus imprécis. Il peut être utile dans de tels cas d'appliquer une opération de déconvolution isotrope multicanale, identique pour les deux composantes « horizontales » (composantes orthogonales à la direction sensiblement verticale) de chacun des niveaux profondeur de mesure, et identique sur plusieurs niveaux profondeurs. Ceci permet de réduire la longueur du train d'onde S sur lequel on désire pointer le temps d'arrivée : la déconvolution peut être effectuée par extraction du signal d'onde P sur la composante verticale, afin de déconvoluer une onde convertie P-S sur les deux composantes horizontales, par exemple selon la méthode décrite dans les brevets de Nigel Anstey GB 1 ,569 581 du 27-09-1977 ou CA 1 ,106,957 du 9-12-1977 intitulés "Seismic delineation of oil and gas réservoirs using borehole geophones". La déconvolution peut également être effectuée simplement avec les algorithmes industriels isotropes et multicanaux existants pour la sismique de surface ou pour la sismique de puits, de type Wiener ou également d'équilibrage du spectre de fréquences, tous deux basés sur le spectre d'amplitude de la somme des signaux d'autocorrélation de chacune des composantes horizontales orthogonales à déconvoluer, compte tenu de l'invariance de cette somme de signaux d'autocorrélation vis à vis de l'orientation des deux composantes horizontales d'entrée. • bloc 702 : Calcul du signal module M(O d'un signal à deux composantes, et invariance.
Après s'être assuré que les opérations de prétraitement de base des enregistrements unitaires du PSV1 telles que l'édition, la sommation verticale, la normalisation d'amplitude de source éventuelle préalable à la sommation..., ont été effectuées de façon isotrope, le signal module, noté M(t), qui représente l'une des coordonnées polaires déduite des deux signaux bruts en coordonnées cartésiennes X(t) et Y{t, d) est calculé comme suit :
M2(ή = X2(ή+ Y2(ή, pour tout temps t
Si l'outil de PSV, dont le couplage à la paroi est mécaniquement isotrope, est ancré à une profondeur donnée avec une direction azimutale différente d'un angle az inconnu autour de l'axe du puits vertical, l'outil enregistre les composantes horizontales X1(t) et Y1(t) qui s'expriment comme suit en fonction de X(t, d) et Y(t, d) :
X1(t) = X(t).cos(az) + Y(t).sin(az) Y1(t) = - X(t).sin(az) + Y(t).cos(az) II est aisé de constater que, pour toute valeur de l'angle az :
Le module demeure identique quelle que soit l'orientation des capteurs associés aux composantes X(t) et Y(t), il est donc invariant eu égard à la rotation, à valeur toujours positive. Le module d'un signal à deux composantes est appelé également "M2" dans la suite de la description. Le module d'un signal à trois composantes, dit "M3", défini par :
M2(t) = X2(t) + Y2(t)+ Z2(t) , est aussi un invariant eu égard à toute rotation spatiale.
Il est intéressant de calculer le module M3 lorsque l'on cherche à pointer une onde de pression (P) directe, dont la direction d'arrivée est orthogonale au puits dans certaines configurations de la géométrie d'acquisition. Par exemple, sur certains intervalles du puits de mesure proche de l'horizontale, lorsque la source est située proche de l'aplomb du capteur sismique 3C, comme illustré sur la figure 2b, ou encore dans les configurations d'acquisition de type Offset-VSP et walkaway, sur certains intervalles du puits proches de la verticale, lorsque la source sismique de surface est suffisamment éloignée du puits, de sorte que le rayon sismique arrive au puits avec une incidence horizontale, comme illustré sur la figure 2c. Comme cette procédure de pointé de l'arrivée P est valide quelle que soit l'incidence du rayon, on automatise le pointé de l'onde P directe en pointant le module M3, en particulier pour les études de type walkaway 2D, et walkaway 3D, cette dernière configuration également connue sous le nom de 3D-VSP.
On peut aussi choisir de travailler sur une puissance exponentielle du signal M(t), afin d'amplifier les variations d'amplitude de ce signal. L'avantage de la propriété d'invariance du module est de permettre des opérations de pointé précis du temps d'une phase remarquable, lié à un instant particulier du train d'arrivée d'onde S1 par exemple un extremum local bien individualisé, sans connaître l'orientation préalable des signaux constitutifs dudit module.
• bloc 703 : Filtrage du module Mit) Selon un mode préférentiel de réalisation, la méthode comporte un filtrage du module
M(t), de façon à supprimer sa composante basse fréquence et à rendre ce signal plus lisible. On peut par exemple utiliser typiquement un filtre passe bande 5-60Hz pour les PSV.
• bloc 704 : Pointé temps d'un extremum particulier du signal du module filtré.
Le pointé du temps Tp d'un extremum d'amplitude du module, de préférence filtré est décrit en relation avec les figures 6c et 6d.
La figure 6c montre une projection horizontale 670 d'un diagramme de polarisation 671 d'un train d'arrivée directe S choisi dans une large fenêtre temps appropriée.
Le signal module M(t) 672 est représenté graphiquement comme l'une des coordonnées polaires dérivée des deux signaux enregistrés orthogonaux bruts X(t) et Y(t) en coordonnées cartésiennes et d'orientation arbitraire.
Par définition, quel que soit le temps t : M2(t) = X2(t) + Y2(t).
Le signal M(t) 672 possède la caractéristique mathématique d'être invariant vis à vis du repère cartésien des signaux bruts X(t) et Y(t) mesurés, et dans lequel le module est calculé. De même, la forme du diagramme de polarisation 671 dans la fenêtre temps considérée est indépendante du repère, à une rotation près. Les vecteurs signaux bruts X(t) et Y(t), ainsi que le vecteur module M(t), ont la même origine 673 (zéro des amplitudes), l'amplitude du vecteur M(t) étant toujours positive ou nulle.
Compte tenu que le diagramme de polarisation de l'onde S directe considérée est également quasi constant au cours de la propagation sismique en profondeur, le procédé selon l'invention permet de déterminer avec précision le pointé temps d'une phase remarquable du signal d'onde S non orienté, de façon indépendante du repère cartésien des signaux bruts X(t) et Y(t), par exemple le temps de l'un des maxima locaux 674 du signal module M(t) 672. La figure 6d montre un exemple schématique, en fonction du temps t, du signal module d'un train d'onde S dont l'énergie est supérieure à celle de toutes les autres ondes reçues au même temps par le capteur sismique. On constate, par expérience, que ce signal module reste sensiblement identique en fonction de la profondeur d'enregistrement, avec un décalage temps correspondant à la propagation des ondes S. En pratique, afin d'amplifier la reconnaissance des extrema locaux du signal module, on élimine les composantes basses fréquences par un filtre coupe bas, dont le résultat est le signal filtré Mf 693, qui représente également la différence entre le signal brut 691 et le signal lissé associé 692. On peut aussi élever les amplitudes du signal filtré Mf à une puissance exponentielle, afin d'en faciliter encore le pointé par méthode visuelle, ou par calcul de semblance ou de corrélation entre stations profondeur de mesure PSV. Le temps Tp du pic d'amplitude 695 est en pratique plus facile à pointer, sans ambiguïté, sur le signal filtré Mf 693 que le pic 694 sur le signal brut M 691, tant pour l'oeil que pour la plupart des algorithmes informatiques industriels de pointé du temps. La méthode selon l'invention, permettant d'obtenir un pointé précis d'une phase remarquable d'un signal d'onde de cisaillement à deux composantes orthogonales dans le plan de polarisation sans orientation préalable, conduit à des applications immédiates : en effet, ce genre de pointé permet d'accéder à la connaissance d'un temps d'arrivée d'onde S à une constante près identique pour toutes les stations profondeur de mesure du PSV, et par conséquent à la connaissance des vitesses d'intervalle en mode S. En combinant le temps S avec la mesure du temps en onde P généralement effectuée sur la composante verticale ou axiale au puits, on accède par exemple au rapport des vitesses d'intervalle Vs/Vp et au coefficient de Poisson. On accède également au module d'Young si la densité de formation est connue par ailleurs. Cette invention permet également de pointer une onde S sur des données en provenance d'outils de puits de mesure de diagraphie ultrasonique d'onde-S de type dipolaire ou quadrupolaire comportant des sources et des récepteurs d'ondes flexurale, sans nécessité de connaître l'orientation de l'outil. Ceci peut conduire à des simplifications de conception et à une diminution du coût opérationnel puisque les éléments matériels de mesure de l'orientation ne sont plus nécessaires.
B. Orientation dans un repère unique et cohérent
• bloc 705 : Détermination de la direction azimutale de maximisation de l'énergie des deux composantes brutes à orienter et rotation des signaux d'entrée dans un repère intermédiaire cohérent. La définition d'une fenêtre temporelle de calcul est définie par un écart de temps constant de l'ordre de 10ms à 20ms de part et d'autre du temps pointé Tp sur le module filtré, de sorte que la fenêtre temporelle englobe au moins une demi période de la période dominante l'arrivée pointée. L'invariance du signal module eu égard à l'orientation des capteurs entraîne la cohérence du temps pointé de l'arrivée S, et garantit par conséquence sa validité pour des utilisations ultérieures ou pour connaître les vitesses d'onde S en fonction de la profondeur.
On reprend les signaux bruts X(t) et Y(t) pour chacune des profondeurs de mesure du PSV, que l'on filtre éventuellement en coupant les hautes fréquences bruitées. Puis, on recherche la direction azimutale qui maximise l'énergie sismique dans le plan des deux composantes entrées et dans la fenêtre temporelle précédemment définie, en utilisant une technique courante de maximisation de l'énergie, telle que celle décrite dans les documents précités suivants :
DiSiena, J. P., J. E. Gaiser, and D. Corrigan, 1984, "Horizontal components and shear wave analysis of three-component PSV data", in M. N. Toksδz and R. R. Stewart, eds., Vertical seismic profiling, Part B : Advanced concepts :Geophysical Press, 177-235.
Benhama, A., Cliet, C, and Dubesset, M., 1988, Study and application of spatial directional filtering in three component recordings : geophysical prospecting, 36, 591-613,
La composante correspondante à cette direction de maximisation est notée Hmax(t), l'angle calculé entre Hmax(t) et la première composante X(t) est noté amax180 et n'est connu qu'à 180° près. Cette indétermination est levée en choisissant, par exemple, que l'amplitude de la composante de sortie Hmax soit impérativement rendue de signe positif à l'instant du temps pointé Tp pour toute profondeur de mesure, en procédant comme suit : si Hmax (Tp) >0, alors on définit un angle amax360 = amax180, exprimé en degré si Hmax (Tp) < 0, alors on définit un angle amax360 = 180 + amax180
La figure 8 montre des diagrammes de polarisation 800 de type hodogramme dessinés dans le repère 801 des composantes horizontales brutes X et Y d'un PSV réel, enregistré dans un puits vertical avec une source à très faible déport, et un outil de puits comportant trois capteurs fixes sans accessoire d'orientation et dont le couplage mécanique assure une bonne fidélité vectorielle. A gauche de chacun des hodogrammes, figure une légende indiquant la profondeur 802 de mesure PSV, les temps en milliseconde du début 803 et de la fin 804 de la fenêtre de calcul de maximisation de 55 ms qui suit le pointé temps effectué au préalable sur le module filtré, la valeur maximale 805 de l'amplitude du vecteur signal 807 calculé dans la direction angulaire de maximisation AG 806 exprimée en grade (GR) à partir de la composante de référence X 801 de l'outil de puits et dans le sens contraire des aiguilles d'une montre. L'angle 806 noté AG sur la figure 8 correspond à l'angle amax360 défini plus haut modulo 360degrés ou 400 grades.
La rotation subséquente des composantes brutes X(t) et Y(t) d'angle amax360 qui est appliquée sur toute la longueur du signal enregistré, permet d'obtenir des signaux de sortie dans un repère unique qui les rend chacun cohérent en fonction de la profondeur. L'angle amax 360 peut être additionné d'une constante éventuelle.
Les figures 9 et 10 montrent les signaux trois composantes du PSV avant et après orientation. Les figures 9a, 9b et 9c, représentent les rejeux bruts isotropes 900 des composantes respectives Z verticale et X1Y horizontales de l'outil de puits, en fonction de la profondeur de mesure (« Measured Depth ») MD 901 croissante de gauche à droite. Le rejeu est dit "isotrope normalisé 3C", indiquant qu'un gain constant a été appliqué de façon identique aux amplitudes des trois composantes, mais variable en fonction de la profondeur, de telle sorte que l'amplitude d'arrivée directe d'onde P sur la composante verticale Z soit identique à toute profondeur. L'arrivée directe d'onde P 902 est quasi invisible sur les composantes horizontales X, Y sur lesquelles le temps d'onde P a été figuré par un trait 903. Une arrivée directe d'onde S 904 est clairement identifiée sur les composantes horizontales X, Y par sa pente plus importante que celle de l'onde P 902-903, et l'on observe des défauts de cohérence de la forme d'onde S dans le rectangle 905. Ces défauts sont associés à l'orientation aléatoire des capteurs horizontaux et de la direction de maximisation de l'arrivée directe S illustrée sur la figure 8.
Les figures 10 a, 10b et 10c représentent les rejeux 1000 isotropes normalisés 3C des composantes orientées respectives Z verticale, HN et HE horizontales orientées dans les directions géographiques respectives Nord et Est, en fonction de la profondeur MD 1001 croissante de gauche à droite, avec les mêmes échelles de temps et de profondeur que celles des figures 9a, 9b et 9c. Les quatre niveaux de mesures les moins profonds sont manquants. Le temps de l'arrivée directe d'onde P 1002 a été figuré par le trait 1003 sur les composantes horizontales HN et HE. La cohérence de l'arrivée directe d'onde S 1004 sur les composantes horizontales HN et HE, dans le rectangle 1005 est bien meilleure que dans le rectangle 905 correspondant des figures 9a, 9b et 9C, ce qui confirme la bonne orientation obtenue.
A ce stade, les trois composantes sont orientées à 360 degrés près dans un repère sensiblement unique. Ce repère est donc cohérent pour chaque profondeur. Ce prétraitement permet de réaliser un traitement des trois composantes isotropes, même si ce repère est de direction azimutale inconnue. C. Orientation dans un repère géographique
• bloc 706 : Calibration du repère cohérent intermédiaire par rapport au repère géographigue :
II est souhaitable, quand c'est possible, d'orienter de façon additionnelle les composantes horizontales dans un repère unique d'orientation géographique connue. Pour ce faire, il est nécessaire de déterminer l'orientation géographique du repère unique intermédiaire obtenu en sortie des opérations du bloc 705 de la figure 7. Cette opération de calibrage azimutal du repère unique permet l'interprétation géologique des résultats de traitement du PSV à trois composantes subséquent, tel que celui indiqué dans le brevet US 6 076 045, focalisé sur la détermination de pendage et azimut de réflecteurs sismiques.
Plusieurs procédés de calibrage du repère unique peuvent être utilisés : a) On peut, par exemple, utiliser l'énergie résiduelle de l'arrivée d'onde P qui est parfois plus importante sur les composantes horizontales des niveaux de mesure les moins profonds du PSV, en faisant l'hypothèse classique que la polarisation de l'onde P directe est dans Ia direction azimutale du segment qui relie la position de la source et celle du capteur. C'est ce qui a été accompli pour obtenir la figure 10, en effectuant une rotation supplémentaire d'angle constant par rapport à la direction azimutale de maximisation de l'arrivée directe S, de façon à orienter les composantes horizontales dans le repère géographique de représentation de la figure 10. En effet, l'arrivée d'onde directe P 1003 a une incidence verticale de l'ordre de 10 degrés sur les niveaux les moins profonds situés entre 1000m et 1100m pour les données du PSV représenté sur les figures 9a-9c (réf. profondeur mesurée 901) et sur les figures 10a-10c (signaux situés sur le côté droit des figures) b) On peut, de façon alternative, utiliser des mesures directionnelles des trois composantes par divers instruments ou accessoires de mesures d'orientation complète ou partielle, si ces derniers ont été descendus de façon couplée à l'outil de PSV mono niveau.
L'orientation est dite complète, lorsque tous les paramètres permettant l'orientation (angles de « Relative Bearing », de Déviation verticale du puits et d'Azimut du puits dévié) sont mesurés sur tous les niveaux profondeur de mesure du PSV. Ceci est possible avec un outil de type gyroscope couplé à l'outil PSV mono niveau par exemple.
L'orientation est dite partielle, si l'outil de mesure d'orientation est couplé à au moins un des satellites de mesure de l'outil sismique de PSV, si ce dernier comporte plusieurs niveaux profondeur mesurés simultanément. L'orientation est également dite partielle, si la mesure d'orientation est limitée à un intervalle profondeur donné (comme par exemple la limitation à l'intervalle de puits en trou ouvert, non chemisé avec des tubes métalliques pour un outil détectant le direction du Nord magnétique), ou à une plage d'angle de déviation du puits (comme par exemple les dispositifs de type inclinomètres, pendule de mesure du « Relative Bearing » et cardans, sensibles à la gravité, et rendus inopérants pour les faibles déviations verticales du puits).
• bloc 707 : Rotations des signaux sismiques entre le repère cohérent intermédiaire et le repère géographique, lorsque l'orientation de l'outil est partielle.
Afin de faciliter la compréhension de l'invention et de son objet, on expose ci dessous un panorama succinct des moyens matériels connus d'orientation des outils de puits sismiques et non sismiques :
B Moyens d'orientation exhaustive et précise d'une sonde de puits à coût opérationnel élevé : L'industrie de la diagraphie dispose de moyens magnétiques d'orientation repérant la direction du champ magnétique terrestre, si l'on opère en trou ouvert, souvent combinée à des inclinomètres précis rendus peu sensibles aux vibrations et capables d'effectuer des mesures en continu pendant la remontée des outils de mesure diagraphique également en fonctionnement continu. Les inclinomètres précis permettent de connaître le relative bearing d'un outil dans un puits tube à partir de quelques degrés d'inclinaison verticale du puits, la trajectoire et les angles d'inclinaison et d'azimut du puits étant connue par ailleurs. Les gyroscopes de puits sont également d'un usage courant pour mesurer avec précision la trajectoire du puits; leur usage en combinaison avec d'autres outils de mesure diagraphique est sporadique, mais pas rare. A l'aide des moyens précédemment décrits, l'orientation des composantes est alors parfaitement mesurée en trou ouvert ou tube. u Moyens d'orientation partielle et peu précise, mais peu onéreuse, d'une sonde de puits : a) pour les puits déviés de trajectoire connue, il est usuel de monter les capteurs triaxiaux sur des doubles cardans avec architecture dite "tourelle", comprenant un axe de rotation parallèle à l'axe puits, et d'un axe horizontal perpendiculaire au plan vertical tangent localement au puits. Les figures 3a, b indiquent la disposition d'un capteur sismique triaxial 311 monté sur de tels cardans, et placé dans un puits dévié
310 : la figure 3a représente une projection 300 dans le plan vertical tangent au puits 310, qui comprend la composante verticale Z-down 301, orientée vers le bas, et la composante horizontale XH 302 orientée dans l'azimut des profondeurs mesurées croissantes du puits; l'autre composante horizontale YH 303 est orthogonale au plan vertical tangent représenté. L'angle d'inclinaison verticale du puits 304, ou déviation, est couramment référé par DEV dans l'industrie. La figure 3b représente une projection 350 dans le plan horizontal en vue de dessus : la trajectoire du puits dévié 310 apparaît comme une ligne quelconque, dans le repère géographique 320, la composante horizontale XH 302 est tangente au puits au niveau de la position du capteur 311, la composante horizontale YH 303 est disposée à +90° par rapport à
XH302, en vue de dessus. On recalcule les composantes sismiques HE et HN orientées dans un repère géographique 320 à partir des composantes XH 302 et YH 303 par rotation d'angle HAZI 305 autour de la verticale, HAZI 305 correspondant à l'azimut du puits localement à la position du capteur 311. Les angles DEV 304 et HAZI 305 sont en général connus et mesurés indépendamment de l'opération de
PSV par les mesures très précises de la trajectoire de puits effectuées à l'aide de moyens de type gyroscope ou magnétomètre - inclinomètre mentionnés plus haut. Le montage des capteurs triaxiaux sur double cardans de type tourelle permet d'orienter les capteurs sismiques trois composantes par gravité dans les puits suffisamment inclinés par rapport à la verticale, typiquement à partir d'une valeur seuil de l'ordre de
10 degrés de l'inclinaison verticale du puits, ce seuil pouvant varier d'une marque d'outil à une autre; en pratique, compte tenu des forces de frottements inhérentes à ce genre de dispositif mécanique, l'orientation devient plus précise lorsque l'inclinaison du puits dévié augmente. Pour les faibles valeurs de déviation du puits au dessous de la valeur seuil d'environ 10 degrés, l'orientation des composantes orthogonales n'est pas connue. Certes, il y a une incertitude du même ordre sur l'orientation réelle de la composante Z-down par rapport à la direction verticale réelle, mais cela n'altère pas significativement les résultats de traitement ni des conclusions interprétatives subséquentes. De façon alternative et courante, il est connu de monter des capteurs sismiques à trois composantes de façon fixe dans un outil de PSV, comprenant en outre un dispositif de mesure de l'angle de Relative Bearing dans le plan orthogonal à l'axe de l'outil PSV : Naturellement ce genre de dispositif appelé communément "capteur de Relative Bearing" est inopérant en puits strictement vertical et restitue une mesure du Relative Bearing qui n'est significative qu'au delà d'une faible valeur de l'inclinaison verticale du puits, de l'ordre de 10 degrés; la mesure du Relative Bearing devient de plus en plus précise lorsque l'inclinaison du puits dévié augmente. Les figures 4a, b indiquent la disposition d'un capteur sismique triaxial monté de façon fixe dans l'outil : la figure 4a illustre la définition de l'angle de Relative Bearing par l'angle entre la génératrice haute du puits cylindrique et une direction de référence de l'outil PSV dans le plan orthogonal à l'axe de l'outil, avec une convention de signe positif dans le sens des aiguilles d'une montre lorsqu'on regarde le plan orthogonal dans la direction des profondeurs curvilignes croissantes du puits. La figure 4a représente une projection 400 dans le plan orthogonal à l'axe Z du puits 410, au niveau du capteur 411, en vue de dessus, la flèche 412 indiquant la direction des profondeurs mesurées croissantes du puits; l'angle de relative bearing RB 430 est défini par l'angle entre la direction XV 422 orthogonale à l'axe du puits 410, contenue dans le plan vertical tangent au puits et pointant vers le haut, avec la direction X 419 de référence de la sonde contenant le capteur 411, correspondant au capteur sismique orthogonal X 419 mesuré; l'angle RB 430 est mesuré positivement 431 dans le sens des aiguilles d'une montre lorsqu'on regarde dans la direction de la flèche 412.
La figure 4b représente une projection 450 dans le plan vertical tangent au puits 410 localement à la position du capteur 411, qui comprend la composante Z 421 mesurée par l'outil, axiale au puits et pointant vers le bas et la composante XV422 précédemment calculée dans la direction de l'axe origine de l'angle de relative bearing (RB=O); la composante horizontale YH 403 est orthogonale au plan vertical tangent représenté. L'angle d'inclinaison verticale du puits DEV 404 est indiqué entre les directions Z 421 axiale au puits et Z-down 401, composante sismique verticale orientée vers le bas; la composante horizontale XH 402 orientée dans l'azimut des profondeurs mesurées croissantes du puits et la composante sismique Z-down 401 sont obtenues à partir des composantes XV422 et Z 421 par rotation d'angle DEV
404 autour de l'axe YH 403.
Trois configurations de mesure partielle d'orientation sont considérées ci dessous :
C1 : l'outil de puits mono niveau contient des capteurs triaxiaux montés sur des doubles cardans avec architecture dite "tourelle", comme illustré sur les figures 3a et 3b, et dans un intervalle profondeur restreint contenant au moins une station de mesure PSV, la déviation du puits est suffisamment importante (au moins 10 degrés environ) pour permettre la rotation des cardans sous l'action de la gravité : la composante 301 Z-down est alors naturellement orientée selon la verticale (fig.3a). Les composantes horizontales géographiques 320 HN, HE (fig. 3b) sont obtenues par rotation des composantes XH 302 et YH 303 mesurées, autour de la verticale, de l'angle HAZI 305 connu à 360 degrés, correspondant à l'azimut du plan vertical tangent au puits à la position du capteur.
[HE1HN] = Rot(HAZI). [XH1YH]
C2 : l'outil de puits mono niveau contient des capteurs triaxiaux montés de façon fixe dans l'outil de puits, comme illustré sur les figures 4a et 4b, et dans un intervalle profondeur restreint contenant au moins une station de mesure PSV, la déviation du puits est suffisamment importante pour permettre une mesure précise à quelques degrés de l'angle de « relative bearing » RB 430 illustré sur Fig.4a : on applique alors trois rotations successives dans cet ordre : [XV1YH] = Rot(RB). [X1Y]1 rotation dans le plan orthogonal à l'axe du puits, puis [XH, ZV-down] = Rot(DEV). [XV, Z ], rotation dans le plan vertical tangent au puits à la position de l'outil de puits, selon l'illustration fig. 4b, puis [HE1HN] = Rot(HAZI). [XH1YH], rotation dans le plan horizontal, selon l'illustration fig. 3b. C3 : l'outil de puits comporte une pluralité de sondes réceptrices placées à des profondeurs de mesure adjacentes qui contiennent chacune des capteurs triaxiaux montés de façon fixe dans l'outil de puits; en outre, l'une des sondes est combinée avec un outil de mesure complète de l'orientation. Dans cette configuration, après rotation d'un des composantes orthogonales à l'axe du puits dans un repère unique, on calcule, pour toutes les stations profondeur mesurées avec la sonde couplée à l'outil de mesure de l'orientation la différence entre l'angle de rotation précédente et l'angle de « relative bearing » mesuré, puis on interpole la valeur de cette différence pour les niveaux profondeurs adjacents qui ne bénéficient pas de mesure d'orientation; l'angle différence interpolé obtenu est l'angle de « relative bearing » RBi à utiliser pour la rotation des composantes orthogonales du repère intermédiaire. On applique alors les trois rotations décrites pour la configuration C2 ci dessus, en prenant l'angle de « relative bearing » RBi pour la première des trois rotations.
Les figures 5a, 5b et 5c illustrent, dans le plan vertical 500 de projection, l'attitude spatiale des trièdres des capteurs sismiques 511 à 513 et 521 à 523 dans un puits 510 comprenant une partie verticale 501 et une partie 502 déviée dans ledit plan vertical 500 représenté en projection.
La partie dite verticale 501 du puits 510 symbolise un intervalle profondeur pour laquelle la valeur de l'inclinaison verticale est au dessous de la valeur de seuil de fonctionnement efficace d'un dispositif de double cardans, ou d'un système de mesure gravitaire-pendulaire de l'angle de « relative bearing », et contient les trièdres 511 à 513. La partie dite déviée 502, correspond à un intervalle pour lequel l'angle de déviation verticale du puits est au dessus de ladite valeur de seuil, et contient les trièdres 521 à 523.
La figure 5a représente l'attitude des trièdres correspondant à un montage fixe des trois capteurs sismiques orthogonaux dans la sonde de puits, dont 511 et 521, où l'axe du capteur généralement appelé Z-outil est aligné avec l'axe du puits et pointe vers le haut : le trièdre 511 dans la partie verticale 501 et le trièdre 521 dans la partie déviée 502 illustrent ainsi que l'angle de « relative bearing » qui repère la direction des capteurs orthogonaux à l'axe du puits par rapport à l'azimut du plan vertical 500 est aléatoire d'une station profondeur de PSV à une autre. La valeur mesurée du « relative bearing » ne peut être exploitée pour l'orientation des composantes que dans la partie déviée 502 (voir figure 4a et explications associées).
La figure 5c représente l'attitude des trièdres correspondant à un montage des trois capteurs sismiques orthogonaux sur doubles cardans de type tourelle dans la sonde de puits, dont 512 et 522, où l'axe de l'un des capteurs est aligné avec la verticale et pointe vers le haut : le trièdre 512 et les trièdres des cotes adjacentes dans la partie verticale 501 illustrent ainsi que la direction azimutale des capteurs orthogonaux à l'axe du puits est aléatoire d'une station profondeur de PSV à une autre. Par contraste, le trièdre 522 dans la partie déviée 502, illustre que l'orientation du trièdre est totalement connue, l'une des composantes horizontales étant dans le plan vertical 500 de la partie déviée de la trajectoire du puits, et l'autre composante horizontale étant normale au plan 500 (voir figures 3a et 3b et explications associées).
La figure 5b représente l'orientation unique connue des trièdres obtenue après application des procédures d'orientation selon l'un des modes de l'invention, dont 513 et 523, où l'axe de l'un des capteurs est aligné avec la verticale et pointe vers le haut, l'une des composantes horizontales étant dans le plan vertical 500 de la partie déviée de la trajectoire du puits et pointe dans l'azimut des profondeurs croissantes (identique à la direction de déviation du puits dans le cas présent), et l'autre composante horizontale étant normale au plan 500 : les trièdres 511, 512 et les trièdres des cotes adjacentes d'orientation aléatoire dans la partie verticale 501 sont réorientés dans un repère commun du trièdre 513 ou 523 à l'aide de la procédure P1 551 selon l'invention. Par contraste, le trièdre 521 dans la partie déviée 502 est réorienté dans les directions du trièdre 523 à l'aide de deux rotations successives selon la procédure connue P2 552 et décrite précédemment (commentaires des figures 4a et 4b). Le trièdre 522 dans la partie déviée 502 est naturellement orienté de façon identique au trièdre 523 et ses composantes ne nécessitent aucune intervention.
En pratique, la procédure P1 551 selon l'un des modes de l'invention est également appliquée aux trièdres de la partie déviée 502 immédiatement adjacente à la partie verticale 501, dans un court intervalle de recouvrement et d'embrayage, de façon à calibrer l'azimut des composantes horizontales des trièdres de la partie verticale, dont 511 et 512, sur l'azimut connu des trièdres de la partie déviée 502. Au final, si l'on désire orienter tous les trièdres 513 à 523 représentés sur la figure 5b dans un repère géographique, on applique une rotation azimutale similaire à celle décrite précédemment (commentaires de la figure 3b).
Applications de l'invention La méthode selon l'invention peut être appliquée dans le cadre de prospection sismique par méthode de PSV conventionnel à très faible déport de l'unique position de source, afin de positionner dans l'espace à trois dimensions des événements géologiques au voisinage de puits. Une telle méthode de prospection sismique comporte alors les étapes suivantes : - la réception par des capteurs sismiques triaxiaux, disposés dans un puits et couplés avec les formations environnant le puits, afin de mesurer aussi fidèlement que possible le signal vectoriel en trois composantes des ondes directes et réfléchies dans les modes P, S ainsi que les modes d'ondes converties. l'orientation dans l'espace des capteurs sismiques multiaxes de réception. On utilise pour ce faire la méthode d'orientation selon l'invention. l'imagerie sismique de puits à partir de trois composantes orientées, telle que celle décrite par exemple dans le brevet US 6 076 045: cette méthode fait appel au traitement isotrope des trois composantes orientées, permettant la lecture de la polarisation des événements réfléchis observés, puis de l'imagerie et du positionnement dans l'espace des réflecteurs correspondants, restituant ainsi le pendage et l'azimut de pendage à 360 degrés de chacun des réflecteurs.
Une application importante de la méthode selon l'invention concerne également l'amélioration du contrôle qualité des trois composantes enregistrées sur le site d'enregistrement, à l'aide des moyens informatiques disponibles : en effet, d'une part les méthodes informatiques, permettant l'orientation des données trois composantes dans un repère unique, sont aisées à mettre en oeuvre, et d'autre part il est plus facile d'évaluer visuellement la qualité générale d'enregistrement et le bon fonctionnement global de la chaîne d'acquisition sur des rejeux orientés des trois composantes par rapport à des rejeux bruts non orientés, pour toute profondeur. Ainsi, on peut utiliser l'orientation dans un repère unique de façon automatisée, pour obtenir un contrôle de la qualité de la mesure sismique en trois composantes, immédiatement après l'acquisition des mesures sur le terrain.
La méthode permet d'orienter les trois composantes des PSV, dans les intervalles profondeur proches de la verticale, en particulier lorsqu'une seule position de source sismique de surface localisée à proximité de l'appareil de forage a été exploitée, et que l'outil de mesure PSV descendu dans le puits n'est pas couplé à un outil de mesure précis de tous les angles permettant l'orientation des trois composantes des signaux dans un repère géographique. Ceci correspond à la configuration usuelle des PSV dans les puits d'exploration ou de production. La méthode selon l'invention s'applique avec efficacité sur un train d'onde de cisaillement descendante, y compris en présence d'anisotropie de biréfringence en propagation : en effet, la direction azimutale ne varie pas en présence d'anisotropie de vitesse des deux modes propres d'onde S1 dont l'effet est très faible sur des niveaux profondeurs adjacents, pour autant que l'atténuation différentielle entre les deux ondes demeure également faible, ce qui est en général vérifié par expérience.
La méthode permet également d'orienter les trois composantes des outils de PSV comprenant plusieurs niveaux profondeur de mesure sismique 3C simultanés, pour lequel un seul niveau (ou un nombre incomplet de niveaux) est couplé à un outil de mesure d'orientation complète ou partielle. La simplicité de mise en œuvre de la méthode, au moyen des ordinateurs de plus en plus puissants embarqués dans les systèmes d'acquisition, permet une amélioration du contrôle qualité globale sur site des données trois composantes enregistrées, grâce à la production en temps légèrement différé, voire en temps réel, du pointé temps de l'onde S descendante et d'un rejeu des trois composantes orientées dans un repère unique, permettant à l'ingénieur d'acquisition de détecter rapidement sur site et avec fiabilité accrue les disfonctionnements éventuels de la chaîne d'acquisition des trois composantes.
L'avantage de la méthode est de permettre subséquemment le traitement isotrope des signaux PSV trois composantes, y compris pour des retraitements de jeux de données PSV anciennes pour lesquelles l'outil de fond n'était pas couplé à un outil de mesure d'orientation complète ou partielle.
Un autre avantage de la méthode est de permettre à l'opérateur qui prévoit d'enregistrer un PSV, d'affiner le choix le type d'outil sismique de puits ainsi que de l'outil d'orientation désirable à combiner, avant d'engager l'acquisition effective sur site du PSV en trois composantes, en fonction de l'objectif géologique poursuivi, de la déviation de trajectoire du puits considéré, et du type de traitement (1C ou 3C) souhaité à la suite de l'acquisition des données au terrain.
La méthode s'applique à plusieurs configurations géométriques d'acquisition de sismique de puits, mais spécifiquement au PSV en puits vertical à faiblement dévié, avec source placée à faible distance de la tête du puits, configuration pour laquelle il n'y a pas d'alternative connue à la méthode selon l'invention. Ainsi, la méthode est applicable aux cas très courants où aucun outil de mesure d'orientation complet et précis n'est couplé à l'outil de mesure de PSV, par exemple lorsque l'outil PSV comprend trois composantes de capteurs sismiques directionnels orthogonaux uniquement, dans les configurations suivantes : a) capteurs sismiques 3C montés de façon fixe dans l'outil PSV, b) capteurs sismiques 3C montés de façon fixe dans un outil de PSV comprenant en outre un dispositif de mesure de l'angle de « Relative Bearing » dans le plan orthogonal à l'axe de l'outil PSV : c) capteurs sismiques 3C sur des doubles cardans avec architecture dite "tourelle", c'est-à-dire comprenant un axe de rotation libre parallèle à l'axe de l'outil, donc parallèle à l'axe du puits à la station d'ancrage de l'outil PSV. Chaque capteur est monté conjointement avec une masse décentrée par rapport à l'axe des cardans de façon à obtenir un dispositif pendulaire qui s'oriente par la gravité dans un repère connu lié à la trajectoire du puits, qui est supposée connue, par exemple à partir d'une diagraphie de mesure de la trajectoire du puits par gyroscope, effectuée séparément.
Naturellement, le type de dispositif appelé communément "capteur de Relative Bearing", ainsi que le montage des capteurs sismiques sur doubles cardans monté en "tourelle" sont inopérants en puits strictement vertical et restituent une orientation des composantes sismiques horizontales qui n'est significative qu'au delà d'une faible valeur de l'ordre de 10 degrés de l'inclinaison verticale du puits, et qui devient de plus en plus précise lorsque l'inclinaison du puits dévié augmente.
La méthode selon l'invention peut également s'appliquer avec bénéfice sur le train d'onde-P descendante interféré dans un puits vertical, et dont la forme du signal trois composantes varie progressivement en fonction de la profondeur, mais avec une direction azimutale d'énergie totale stable pour le signal interféré, et dans le cas où un outil ancien comportant trois composantes à montage fixe dans l'outil, sans dispositif de mesure d'orientation est placé dans un drain horizontal, et où l'arrivée P directe ne montre aucune énergie sur la composante axiale au puits. La méthode selon l'invention peut être également appliquée pour les configurations
PSV de type "walkabove", lorsque la source est située sensiblement à l'aplomb d'un drain horizontal (figure 2b), les capteurs étant montés de façon fixe dans un outil de puits qui ne comporte aucun dispositif d'orientation. Après maximisation de l'arrivée directe P, on peut en première approximation, faire l'hypothèse que cette arrivée est confondue avec la droite qui relie la source et le récepteur, dont on peut déduire l'angle de « relative bearing » à partir de la connaissance de la trajectoire de puits et de la position relative de la source par rapport au puits.
La méthode selon l'invention peut être également appliquée avec bénéfice, afin d'automatiser le pointé de l'onde P et la détermination de l'orientation des capteurs, dans le cadre de prospection sismique par méthode de type walkaway conventionnel. Selon ce type de méthode, le dispositif de réception de puits peut être fixe ou non, et la source de surface est activée successivement à des positions voisines, soit sur une ligne d'azimut fixe (walkaway 2D), soit sur un cercle concentrique au puits ou à la position géographique moyenne des capteurs de puits (walkaround). Les deux configurations précédentes peuvent être combinées, soit sur une grille plus ou moins complète de positions dans le voisinage du puits (walkaway 3D ou 3D-VSP). En particulier, la méthode selon l'invention présente l'avantage de fournir un pointé précis et automatique de l'onde directe P lorsque celle-ci arrive orthogonalement à la composante de direction vectorielle connue (sensiblement verticale dans ce cas), sans devoir orienter au préalable les composantes horizontales, dans la configuration illustrée par la figure 2c.
Une application particulière de la méthode selon l'invention, consiste à monter un outil de PSV à trois composantes en combinaison avec un autre outil de diagraphie, dont on désire connaître l'orientation, dans le cas extrême ou les outils d'orientation usuels du genre gyroscope ou magnétomètre/inclinomètres ne sont plus opératoires, par exemple lorsque la température du puits excède 2200C.
Selon un mode particulier de réalisation, pour des raisons de facilité de calcul et de fiabilité du résultat, on détermine, sur différentes portions du puits, des repères uniques au moyen de la méthode selon l'invention. Ces repères ont un axe commun mais peuvent être d'orientation différentes. Les portions du puits ont des zones de chevauchement, qui permettent de déterminer un angle de rotation à appliquer aux repères uniques de chaque portion, de façon à obtenir un repère unique pour l'ensemble du puits.
Enfin, la technique de pointé d'un signal module filtré calculé à partir des composantes brutes, mesurées par un outil de diagraphie de type sonic dipolaire, ou quadrupolaire en forme d'onde complète, dit "full waveform", peut s'avérer utile dans le cas où l'on ne désire connaître que la lenteur et l'atténuation d'une onde de cisaillement sans rechercher les caractéristiques d'anisotropie azimutale. Dans un tel cas, il n'est pas utile de mesurer l'orientation de l'outil sonic dans le puits, ce qui allège l'opération de mesure diagraphique.

Claims

REVENDICATIONS
1. Méthode de prétraitement de données sismiques acquises au moyen d'une méthode de prospection sismique de type profil sismique vertical qui comprend une émission d'ondes sismiques et une réception desdites ondes sismiques au moyen d'au moins un capteur multi - composantes positionné au sein d'un puits et que l'on fait stationner à au moins deux profondeurs, ledit capteur comprenant au moins trois géophones orthogonaux enregistrant en fonction du temps une première composante sismique dans une direction vectorielle connue, et au moins deux autres composantes sismiques dans deux directions orthogonales à ladite direction vectorielle connue, caractérisée en ce que : a- on construit un nouveau signal en calculant la racine carrée de la somme des carrés d'au moins deux composantes sismiques orthogonales, appelé signal module, et l'on pointe des temps d'arrivée d'une onde sismique directe sur un extremum d'amplitude dudit signal module; b on oriente lesdites composantes sismiques dans un repère unique quelle que soit la profondeur dudit capteur, au moyen des étapes suivantes répétées pour chaque profondeur :
- on définit une fenêtre temporelle de part et d'autre desdits temps d'arrivée ; - on détermine une direction azimutale par maximisation d'une énergie desdites composantes sismiques orthogonales à ladite direction vectorielle connue au sein de ladite fenêtre temporelle ;
- on oriente à 360 degrés près lesdites composantes sismiques orthogonales à ladite direction vectorielle connue dans un repère unique défini par rapport à la direction azimutale qui est identique pour chaque profondeur.
2. Méthode selon la revendication 1 , dans laquelle on construit ledit signal module en calculant la racine carrée de la somme des carrés desdites deux composantes sismiques orthogonales à ladite direction vectorielle connue, et l'on pointe les temps d'arrivée d'une onde de cisaillement descendante.
3. Méthode selon la revendication 2, dans laquelle on pointe également l'arrivée d'une onde de pression, et on calcule des vitesses desdites ondes de cisaillement et de pression à partir desdits temps d'arrivée, et on en déduit des rapports de vitesse et/ou un coefficient de Poisson.
4. Méthode selon la revendication 1 , dans laquelle on construit ledit signal module en calculant la racine carrée de la somme des carrés des trois composantes sismiques, et l'on pointe les temps d'arrivée d'une onde de pression directe.
5. Méthode selon l'une des revendications précédentes, dans laquelle, préalablement à l'étape a), on préserve l'isotropie du signal en trois composantes, en respectant des rapports d'amplitude et des différences de phase entre les composantes sismiques.
6. Méthode selon l'une des revendications précédentes, dans laquelle on améliore un rapport signal sur bruit des trois composantes du signal brut, préalablement au calcul du module, au moyen d'une déconvolution isotrope des trois composantes par un signal unique d'onde de pression descendante extrait de la composante sismique de direction vectorielle connue.
7. Méthode selon l'une des revendications précédentes, dans laquelle on filtre ledit signal module de façon à supprimer des composantes basses fréquences, avant de pointer les temps d'arrivée de l'onde sismique directe.
8. Méthode selon l'une des revendications précédentes, dans laquelle on détermine l'orientation géographique dudit repère unique.
9. Méthode selon la revendication 8, dans laquelle on détermine l'orientation géographique dudit repère unique en montant ledit capteur multi-composantes sur un système de double cardans, ledit système permettant d'orienter par gravité lesdites composantes sismiques lorsque l'inclinaison du puits atteint une valeur d'au moins environ 10 degrés.
10. Méthode selon la revendication 8, dans laquelle on descend dans le puits un outil de mesure de puits comportant ledit capteur multi-composantes monté de façon fixe, et l'on détermine l'orientation géographique dudit repère unique au moyen d'un système de mesure d'un angle de "relative bearing" monté sur ledit outil de mesure, qui permet de retrouver l'orientation dudit capteur multi-composantes lorsque l'inclinaison du puits atteint une valeur d'au moins environ 10 degrés.
11. Méthode selon la revendication 8, dans laquelle on descend dans le puits un outil de mesure de puits comprenant une pluralité de capteurs multi - composantes placés à des profondeurs de mesure adjacentes, et on détermine l'orientation géographique dudit repère unique en couplant au moins l'un des capteurs multi - composantes à un outil de mesure d'orientation géographique, tel qu'un magnétomètre-inclinomètre ou un gyroscope.
12. Méthode selon la revendication 8, dans laquelle au moins une portion du puits est sensiblement horizontale et ledit capteur multi-composantes est monté de façon fixe dans un outil de mesure descendu dans le puits, on détermine l'orientation géographique dudit repère unique en assimilant une direction de maximisation d'une onde de pression directe à une droite reliant une position dudit capteur à une position d'une source émettant lesdites ondes sismiques.
13. Méthode selon l'une des revendications précédentes, dans laquelle on détermine, sur différentes portions du puits, des repères uniques ayant un axe commun, lesdites portions ayant des zones de chevauchement permettant de déterminer un angle de rotation à appliquer auxdits repères uniques, de façon à obtenir un repère unique pour l'ensemble du puits.
14. Méthode selon l'une des revendications précédentes, dans laquelle on utilise l'orientation dans un repère unique de façon automatisée pour obtenir un contrôle de la qualité desdites composantes sismiques, immédiatement après l'acquisition de mesures sur le terrain.
EP10707083A 2009-02-12 2010-02-10 Methode de pointe-temps et d'orientation de signaux sismiques de puits a trois composantes Withdrawn EP2396679A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0900643A FR2942045B1 (fr) 2009-02-12 2009-02-12 Methode de pointe-temps et d'orientation de signaux sismiques de puits a trois composantes
PCT/FR2010/000100 WO2010092249A2 (fr) 2009-02-12 2010-02-10 Methode de pointe-temps et d'orientation de signaux sismiques de puits a trois composantes

Publications (1)

Publication Number Publication Date
EP2396679A2 true EP2396679A2 (fr) 2011-12-21

Family

ID=40935541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10707083A Withdrawn EP2396679A2 (fr) 2009-02-12 2010-02-10 Methode de pointe-temps et d'orientation de signaux sismiques de puits a trois composantes

Country Status (5)

Country Link
US (1) US8898020B2 (fr)
EP (1) EP2396679A2 (fr)
CA (1) CA2751108A1 (fr)
FR (1) FR2942045B1 (fr)
WO (1) WO2010092249A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650645A (zh) * 2020-06-16 2020-09-11 中油奥博(成都)科技有限公司 一种变偏移距vsp弯线校正处理方法和装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338885B (zh) * 2011-06-20 2016-05-25 中国海洋石油总公司 三分量vsp资料初至时间自动拾取方法
US9983276B2 (en) * 2012-06-25 2018-05-29 Halliburton Energy Services, Inc. Downhole all-optical magnetometer sensor
CN104216009B (zh) * 2013-06-05 2017-03-15 中国石油天然气集团公司 一种斜井三维垂直地震剖面时间偏移的方法
EP3042223A4 (fr) 2013-09-03 2017-03-15 University of Houston System Système et procédé pour l'estimation d'une anisotropie sismique avec une résolution élevée
CN104570050B (zh) * 2013-10-12 2017-06-16 中国石油化工股份有限公司 一种突出转换波的vsp观测系统设计方法
CN104570076B (zh) * 2013-10-17 2017-05-03 中国石油化工股份有限公司 一种基于二分法的地震波初至自动拾取方法
US9217808B2 (en) * 2013-11-07 2015-12-22 Schlumberger Technology Corporation Wellbore signal monitor with tangential seismic sensors for tube-wave noise reduction
AU2013409457B2 (en) 2013-12-31 2016-11-17 Halliburton Energy Services, Inc. Rotating sensor mechanism for seismic while drilling sensors
CN105891881A (zh) * 2014-05-15 2016-08-24 蔡晓刚 一种水平界面vti介质转换点ccp道集抽取方法
US9684089B2 (en) * 2014-12-23 2017-06-20 Halliburton Energy Services, Inc. Determining P-wave azimuthal anisotropy from walkaround VSP with offset dependent slowness corrections
US10422212B2 (en) 2015-07-05 2019-09-24 Schlumberger Technology Corporation Borehole trajectory via multi-component borehole seismic receiver
CN105182419B (zh) * 2015-09-18 2017-06-27 电子科技大学 一种基于全局优化的叠前地震信号同相轴拉平方法
US10844705B2 (en) * 2016-01-20 2020-11-24 Halliburton Energy Services, Inc. Surface excited downhole ranging using relative positioning
CN106443776B (zh) * 2016-06-07 2019-01-25 中国地质大学(北京) 一种基于时间切片法的海底地震仪重定位方法
CN106842315B (zh) * 2016-12-12 2019-07-09 中国石油天然气集团公司 节点仪器井炮采集的现场激发质量监控设备及方法
CN111324968B (zh) * 2020-03-06 2023-03-28 西南大学 一种倾斜地层隧道工程微震监测传感器布设方法
US20230084254A1 (en) * 2021-09-07 2023-03-16 Halliburton Energy Services, Inc. Interpolation method and system to obtain azimuthal borehole sonic measurements
CN114185082B (zh) * 2021-12-02 2023-04-21 中国矿业大学 一种基于工作面透射地震观测的煤层下伏陷落柱探测方法
CN116879950B (zh) * 2023-07-12 2024-03-08 成都理工大学 基于直达波和sPL初动极性与振幅比的震源机制反演方法
CN117111156B (zh) * 2023-10-19 2024-02-06 西安中地博睿探测科技有限公司 一种煤矿井下随采随掘深孔地震采集系统及其检测方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB159581A (en) 1919-11-27 1921-02-28 Francis John Potter Improvements in or relating to paper-fasteners
US3221297A (en) * 1960-12-02 1965-11-30 Exxon Production Research Co System for obtaining a composite seismic signal by generating a number of discrete single frequency seismic waveforms and recording individually the detected reflections
GB1569581A (en) * 1976-09-27 1980-06-18 Anstey N Seismic delineation of oi and gas reservoirs using borehole geophones
US4516206A (en) * 1982-10-21 1985-05-07 Mcevilly Thomas V Post-processing of seismic parameter data based on valid seismic event determination
US4783770A (en) * 1985-03-18 1988-11-08 Conoco Inc. Method of three-component reflection seismology
US4706224A (en) * 1986-02-21 1987-11-10 Amoco Corporation Method of vertical seismic profiling and exploration
US5060203A (en) * 1990-06-26 1991-10-22 Chevron Research And Technology Company Method of layer stripping to predict subsurface stress regimes
US5747750A (en) * 1994-08-31 1998-05-05 Exxon Production Research Company Single well system for mapping sources of acoustic energy
FR2759172B1 (fr) * 1997-02-05 1999-03-05 Inst Francais Du Petrole Methode de traitement de donnees sismiques de puits multi-composantes orientees
FR2769718B1 (fr) * 1997-10-09 1999-12-03 Elf Exploration Prod Procede de separation d'ondes en sismique de puits pour des acquisitions de type a deport croissant
GB2362467B (en) * 2000-05-18 2004-03-31 Schlumberger Ltd A method of processing seismic data
FR2831961B1 (fr) * 2001-11-07 2004-07-23 Inst Francais Du Petrole Methode de traitement de donnees sismiques de puits en amplitude preservee absolue
US6922373B2 (en) * 2002-09-14 2005-07-26 Schlumberger Technology Corporation Method of estimating relative bearing of a borehole receiver
US7035165B2 (en) * 2003-01-29 2006-04-25 Baker Hughes Incorporated Imaging near-borehole structure using directional acoustic-wave measurement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010092249A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650645A (zh) * 2020-06-16 2020-09-11 中油奥博(成都)科技有限公司 一种变偏移距vsp弯线校正处理方法和装置
CN111650645B (zh) * 2020-06-16 2022-05-20 中油奥博(成都)科技有限公司 一种变偏移距vsp弯线校正处理方法和装置

Also Published As

Publication number Publication date
WO2010092249A2 (fr) 2010-08-19
WO2010092249A3 (fr) 2011-10-06
US8898020B2 (en) 2014-11-25
FR2942045B1 (fr) 2011-12-16
FR2942045A1 (fr) 2010-08-13
US20120046871A1 (en) 2012-02-23
CA2751108A1 (fr) 2010-08-19

Similar Documents

Publication Publication Date Title
EP2396679A2 (fr) Methode de pointe-temps et d&#39;orientation de signaux sismiques de puits a trois composantes
US7408836B2 (en) Method of and apparatus for processing seismic data in the presence of anisotropy
US9030914B2 (en) Discrete volumetric sonar method and apparatus for sub-seabed surveying
US8948463B2 (en) Method for analyzing seismic data
US6937938B2 (en) Method and apparatus for interferometry, spectral analysis, and three-dimensional holographic imaging of hydrocarbon accumulations and buried objects
US20100271903A1 (en) Extending the Coverage of VSP/CDP Imaging by Using First-Order Downgoing Multiples
FR2647554A1 (fr) Procede et dispositif de mesure de l&#39;anisotropie azimutale d&#39;une formation
FR2793036A1 (fr) Procede de determination de l&#39;azimut d&#39;un geophone horizontal
EP0291388B1 (fr) Méthode de prospection sismique permettant une connaissance améliorée des discontinuités géologiques du sous-sol
EP3359982B1 (fr) Orientation de capteur sismique
US20120035852A1 (en) Processing seismic data
CA2226389C (fr) Methode de traitement de donnees sismiques de puits multi-composantes orientees
US20120269035A1 (en) Evaluating Prospects from P-Wave Seismic Data Using S-Wave Vertical Shear Profile Data
Carrière et al. Deep-water subsurface imaging using OBS interferometry
Yavuz et al. Assessment of the permanent seismic sources for borehole seismic monitoring applications: CO2CRC Otway Project
Poletto et al. Seismic while drilling using a large-aperture ocean bottom array
CN1027471C (zh) 利用椭圆偏振剪切波勘探地震的方法
Lay et al. 3D active source seismic imaging of the Alpine Fault zone and the Whataroa glacial valley in New Zealand
FR2942547A1 (fr) Methode d&#39;orientation de signaux sismiques de puits a trois composantes
Rentsch et al. Migration-based location of seismicity recorded with an array installed in the main hole of the San Andreas Fault Observatory at Depth (SAFOD)
EP0458947B1 (fr) Procede et dipsositif d&#39;acquisition de donnees sismiques de puits selon deux directions opposees
Kimura et al. Stress Field Estimation From S‐Wave Anisotropy Observed in Multi‐Azimuth Seismic Survey With Cabled Seafloor Seismometers Above the Nankai Trough Megathrust Zone, Japan
Mari et al. Well seismic surveying
Palmer Digital processing of shallow seismic refraction data with the refraction convolution section
Liberty et al. Development of land streamer technologies for estimating shear wave velocities in an urban environment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20120410

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160901