EP2396590B1 - Leuchtvorrichtung - Google Patents

Leuchtvorrichtung Download PDF

Info

Publication number
EP2396590B1
EP2396590B1 EP10707236.5A EP10707236A EP2396590B1 EP 2396590 B1 EP2396590 B1 EP 2396590B1 EP 10707236 A EP10707236 A EP 10707236A EP 2396590 B1 EP2396590 B1 EP 2396590B1
Authority
EP
European Patent Office
Prior art keywords
carrier
lighting device
heat sink
layer
driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10707236.5A
Other languages
English (en)
French (fr)
Other versions
EP2396590A1 (de
Inventor
Thomas Preuschl
Florian Zeus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2396590A1 publication Critical patent/EP2396590A1/de
Application granted granted Critical
Publication of EP2396590B1 publication Critical patent/EP2396590B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/001Arrangement of electric circuit elements in or on lighting devices the elements being electrical wires or cables
    • F21V23/002Arrangements of cables or conductors inside a lighting device, e.g. means for guiding along parts of the housing or in a pivoting arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a lighting device, in particular an LED retrofit lamp or an LED module for a retrofit lamp.
  • the LED retrofit lamp has a driver for operating the LED (s), which comprises a voltage regulator for converting a mains voltage, for example 230 V, to a voltage of approximately 10 V to 25 V, typically a transformer.
  • the efficiency of a SELV driver is typically between 70% and 80%.
  • insulation distances between a primary side and a secondary side with respect to the voltage regulator of at least 5 mm must be maintained in order to avoid electric shock caused by leakage currents.
  • overvoltage pulses of up to 4 KV should be kept away from the secondary side, so that even then there is no danger to the user if he electrically conductive touchable parts such. B. touches the heat sink during the occurrence of the pulse.
  • LED retrofit lamps may be constructed so that the LED (s) are mounted on a carrier which is bolted to the heat sink and is electrically isolated therefrom.
  • a necessary length of the creepage distance or insulation between electrically conductive or electrically conductive surface areas (contact fields, conductor traces, etc., eg on copper and / or conductive paste with, for example, silver) and the heat sink is achieved in that, firstly, the potential-carrying surface areas keep a distance of at least 5 mm to an edge of the carrier and secondly an electrical insulating area of at least 5 mm around the screwing points is maintained.
  • the potential-carrying surface areas keep a distance of at least 5 mm to an edge of the carrier and secondly an electrical insulating area of at least 5 mm around the screwing points is maintained.
  • such a design has a large space requirement.
  • the US 2006 / 227558A1 shows in the figures 14 and 15, a lighting device according to the preamble of claim 1.
  • a disadvantage is the complex positioning of the support for the semiconductor light source, which takes place via a screw which takes up much space on the support.
  • the lighting device comprises: a heat sink with at least one carrier applied to its outside for at least one semiconductor light source; a recess for receiving a driver; and at least one electrically insulating supply which connects the recess to the outside of the heat sink; wherein the supply has a flush on the outside of the heat sink adjacent support surface, which is at least partially covered by the carrier. Furthermore, the feed has a protrusion projecting outward on the outside of the heat sink, wherein a surface of the projection and the support surface form a step.
  • the carrier may, for example, be configured as a substrate, a printed circuit board or the like.
  • the heat sink may advantageously consist of a good heat-conducting material with ⁇ > 10 W / (m ⁇ K), particularly preferably ⁇ > 100 W / (m ⁇ K), in particular of a metal such as aluminum, copper or an alloy thereof.
  • the heat sink can also be completely or partially made of an art consist of material; Particularly advantageous for the electrical insulation and extension of the creepage distances is a good heat-conducting and electrically insulating plastic, but it is also the use of a highly thermally conductive and electrically conductive plastic possible.
  • the heat sink may preferably be symmetrical, in particular rotationally symmetric, z. B. about a longitudinal axis.
  • the heat sink may advantageously comprise cooling elements, for. B. cooling fins or cooling pins.
  • the type of semiconductor light source is not limited in principle, but an LED is preferred as the emitter.
  • the semiconductor light source may include one or more emitters.
  • the semiconductor emitter or semiconductors may be mounted on the carrier on which other electronic components such as resistors, capacitors, logic devices, etc. may be mounted.
  • the semiconductor emitters may, for example, be applied to the carrier by means of conventional soldering methods.
  • the semiconductor emitters may also be connected to a substrate by chip-level connection types, such as bonding (wire bonding, flip-chip bonding), etc. (“submount”), e.g. B. by equipping a substrate made of AlN with LED chips.
  • one or more submounts may be mounted on a circuit board.
  • the semiconductor emitters can at least partially also have a different jet color, z. Red (R), green (G), blue (B), amber (A) and / or white (W).
  • R red
  • G green
  • B blue
  • A amber
  • W white
  • a beam color of the light source can be tuned, and it can be set any color point.
  • semiconductor emitters of different jet color can produce a white mixed light.
  • z. B. based on InGaN or AlInGaP
  • organic LEDs OLEDs
  • z. B. diode lasers are used.
  • the carrier may be implemented as a circuit board or other substrate, e.g. B. as a compact ceramic body.
  • the carrier may include one or more wiring layers.
  • the recess has an insertion opening for insertion of a driver, for. B. a driver board.
  • the insertion opening of the recess may advantageously be located on a rear side of the heat sink.
  • the Einzhouöffnüng and the feeder are advantageously located on opposite sides of the recess.
  • the recess may for example be designed cylindrical.
  • the recess may advantageously be electrically insulated from the heat sink to avoid direct creepage distances, z. B. by means of an electrically insulating lining (also housing the driver cavity, GTK, called), z. B. in the form of an inserted through the insertion opening into the recess plastic pipe.
  • the liner may include one or more fasteners for securing the driver.
  • the supply serves to supply or carry out at least one electrical line between the driver located in the recess and the at least one semiconductor light source or the carrier equipped therewith.
  • the feeder and liner may be integrally formed as a single element. With the insertion of the lining into the recess, the supply is then simultaneously pushed through a passage opening of the cooling body.
  • the at least one electrical lead which may be configured, for example, as a wire, cable or connector of any type, may be contacted by any suitable method, e.g. B. by soldering, resistance welding, laser welding, etc.
  • the driver may be a general drive circuit for driving the at least one semiconductor light source.
  • the driver is designed as a non-SELV driver, in particular as a transformerless non-SELV driver.
  • a non-SELV driver has over a SELV driver higher efficiency of typically more than 90% and can also be built more cost-effectively.
  • a separation between the primary side and the secondary side rather takes place primarily between the carrier and the heat sink.
  • the transformer can advantageously be replaced by a coil or a buck configuration / a step-down converter.
  • the part of the outside of the heat sink on which the carrier is mounted, and the flush-fitting contact surface of the feed can advantageously form a common planar surface.
  • the carrier can partially rest on a flat front side or front side of the heat sink and partially on the flush and coplanar adjoining support surface or cover it.
  • the carrier does not need to lie flat over the entire surface covered by it, but may for example also be partially spaced over a gap from the surface covered by it.
  • the creepage distance can be shortened laterally and thus a laterally more compact lighting device can be achieved.
  • the creepage distance may be extended by the lateral distance of the inner edge of the electrically conductive heat sink. Consequently, potential-carrying surfaces of the carrier can be positioned closer to the edge by the same distance, which in turn enables the carrier to have a smaller lateral (lateral) extent.
  • a creepage distance in the region of the support surface of the feed can be extended by its electrically insulating design, since the leakage currents then have to travel a long distance to the heat sink.
  • Electrically conductive, in particular potential, surfaces can advantageously copper and / or conductive pastes with z. B. have silver.
  • the carrier may be secured to the heat sink by means of an electrically insulating transition layer.
  • the electrically insulating transition layer can advantageously be adhesive on both sides for reliable connection between the carrier and the heat sink.
  • the transition layer may advantageously be a thermal interface material (TIM) such as a thermal grease (eg, silicone oil with additions of alumina, zinc oxide, boron nitride, or silver powder), a film, or an adhesive.
  • the film may for example be provided on both sides with an adhesive in the manner of a double-sided adhesive tape.
  • the adhesive can be applied, for example, by means of a dispersion process and a subsequent doctoring.
  • the transitional layer may also have the advantages of high dielectric strength and elongation of the creepage path. Also, by the transitional position, a screwless structure can be achieved by which an otherwise required isolation area on the carrier can be omitted around the screw passages to the heat sink around. This also supports a compact construction of the lighting device.
  • the carrier may in principle be attached to the heat sink in other ways.
  • the carrier can also be screwed by means of one or more plastic screws with the heat sink or through the heat sink with the lining of the driver cavity.
  • Another way of securing the carrier is to use a plastic pin integrated in the lining of the driver cavity which projects through the heat sink and through the carrier. The pin can be hot-staked for fastening the carrier, for example.
  • a fastening by means of riveting in particular Taumelnietens possible, especially using plastic rivets.
  • an attachment for example by means of a centrally guided by the carrier screw, in particular plastic screw possible; Among other things, in this case, the supply may be arranged off-center.
  • Another possibility of attachment consists in a magnetic attachment, for example, with a magnetic pole in the Liner integrated or attached and attached to a magnetic opposite pole to the carrier, for. B. by gluing etc.
  • the feed may also be arranged off-center, for. B. offset laterally from the longitudinal axis of the heat sink or the substrate.
  • the feed can also be arranged outside a lateral extent of the carrier. Then, the at least one electrical line can be guided from the outside to the outside of the carrier.
  • the thermal interface material may laterally extend beyond an inner edge and / or an outer edge beyond the carrier.
  • the creepage distance at the respective edge can be lengthened by the length by which the thermal transfer material projects laterally beyond the respective edge.
  • the support may advantageously have at least one electrically insulating insulation layer.
  • an insulating layer may consist of a material or composite material which is thermally well and electrically poorly conductive, at least in the thickness direction.
  • an insulating layer of ceramic such. With Al 2 O 3 , AlN, BN or SiC.
  • the insulating layer may be configured as a multilayer ceramic carrier, z. In LTCC technology. In this case, for example, layers can be used with different materials, eg. B. with different ceramics. These may, for example, be alternately highly dielectric and low dielectric.
  • the at least one insulating layer may consist of a typical circuit board base material, such as FR4, which is less thermally advantageous but very inexpensive.
  • the insulation layer can be applied on one side or on both sides. In particular, the use of an insulated metal substrate (IMS) or a metal core board (MCPCB) as a carrier is conceivable.
  • IMS insulated metal substrate
  • MCPCB metal core board
  • the carrier may advantageously have a dielectric strength of at least 4 KV, so that overvoltage pulses of at least this magnitude do not strike through the carrier.
  • the carrier may comprise at least one insulating layer and a metal layer arranged on the underside thereof, wherein the underside metal layer is retracted laterally at an inner edge of the carrier.
  • a creepage distance at an edge of the carrier can be further extended, since a leakage current then has to travel an additional distance from the edge of the base material layer to the metal layer and further from the base material layer to the edge of the thermal transfer material.
  • the underside metal layer is retracted by more than 1 mm from the inner or inner edge of the carrier. Together with the thermal transition material thus results in a particularly compact in the lateral plane creepage distance or isolation distance, which is S-shaped in depth.
  • the underside metal layer may advantageously be a DCB (Direct Copper Bonding) layer of copper.
  • the carrier can also have a DCB layer on the upper side.
  • the carrier has at least one insulating layer and a metal layer arranged thereon on the underside, wherein the underside metal layer is retracted laterally at an outer edge of the carrier.
  • a thickness of the carrier can advantageously be in the range between 0.16 mm and 1 mm.
  • a creepage path is at least 1 mm long, particularly preferably at least 5 mm.
  • An at least local thermal conductivity or heat spread of the carrier may advantageously be between 20 (W / m * K) and 400 (W / m * K), e.g. B. about 400 (W / m ⁇ K) for a copper layer.
  • the feed has a protrusion projecting outwards on the outside of the heat sink, wherein a surface of the projection and the support surface form a rectangular step.
  • the projection may advantageously be perpendicular to a flat surface of the heat sink, for. B. a flat face, projecting.
  • the carrier can be placed with close clearance (a small distance around the outward-facing projection of the feeder around, which also supports a compact design.)
  • the projection can serve as a centering aid during assembly of the carrier on the heat sink to have a central opening.
  • the carrier is arranged circumferentially and concentrically or coaxially to the feed. Also, a small lateral extent of the carrier is achieved relative to a longitudinal axis of the heat sink. It may be advantageous for compliance with predetermined isolation distances, when the LEDs are arranged uniformly in the circumferential direction.
  • the lighting device further comprises at least one pressing element for pressing the carrier on the heat sink.
  • the pressure element can advantageously have a circumferential or partially rotating, in particular sectored, ring of a - in particular electrically insulating - material.
  • the lighting device can advantageously have a (at least partially translucent) piston (eg, clamped on the heat sink), which has a Anpressyak pressing on the carrier and / or the pressure element to an additional contact pressure on the heat sink enable.
  • the piston can be equipped with a contact pressure in the form of a circumferential hold-down for the carrier.
  • the carrier can advantageously have on the upper side at least one electrically conductive surface region which maintains a minimum distance from an inner edge of the carrier and / or an outer edge of the carrier, in particular a minimum distance of 3.5 mm or more.
  • the semiconductor light source may advantageously be powered by means of a non-SELV voltage, but use with a safety extra-low voltage (SELV) is also possible.
  • SELV safety extra-low voltage
  • the lighting device can be configured particularly advantageously as retrofit lamp, in particular LED retrofit lamp, or as a module for this purpose.
  • FIG. 1 shows in plan an LED retrofit lamp 1 according to a first embodiment.
  • the LED retrofit lamp 1 serves to replace a conventional light bulb with Edison base and therefore has an outer contour, which roughly reproduces the contour of the conventional light bulb in its basic form (see also FIG. 3 ).
  • the LED retrofit lamp 1 has an outer shell 2, into which an LED module 3 is inserted.
  • the LED module 3 has an aluminum heat sink 4, on the upper side or front surface 5 shown here, an Al 2 O 3 carrier 6 is fixed with an octagonal outer contour.
  • the carrier 6 is equipped with semiconductor light sources in the form of light-emitting diodes 7.
  • the light-emitting diodes 7 shine in the upper half-space, ie in this illustration with a main emission direction out of the image plane.
  • the carrier 6 has a central hole, with which the carrier 6 can be inserted tightly over a feed formed here as a cable channel 8.
  • the cable channel 8 serves as an element for the passage of electrical lines (o. Fig.) Of a in the heat sink
  • the carrier 6 and the cable channel 8 are thus positioned coaxially with respect to a vertically projecting from the image axis longitudinal axis L of the lighting device 1, wherein the longitudinal axis L extends centrally through the cable channel 8.
  • FIG. 2 shows in supervision the carrier 6 FIG. 1 in a more detailed presentation.
  • a front surface 5 of the carrier 6 is equipped with three white LEDs 7, which are arranged approximately angularly symmetrical about a longitudinal axis L, wherein the longitudinal axis L extends centrally through the hole 9 of the carrier 6.
  • the LEDs 7 are electrically contacted to their power supply by means of contact surfaces 10 a with the carrier 6.
  • electrical lines o. Fig.
  • the electrical conductor tracks used for current conduction are formed by a correspondingly structured (here greatly simplified) outer-side copper layer 11.
  • Both the contact surfaces 10 a and the cable connection surfaces 10 b and the copper layer 11 represent potential-carrying surface areas, which are electrically insulated against the heat sink 4 over sufficiently long isolation distances, at least by means of the carrier 6.
  • the copper layer 11 is not executed completely circumferential, but has a radially with respect to the longitudinal axis L extending gap 12 in order to avoid a short circuit.
  • FIG. 3 shows the LED retrofit lamp 1 according to the first embodiment as a sectional view along the section line AA FIG. 1 ,
  • the LED retrofit lamp 1 does not surmount the outer contour of a conventional incandescent lamp and can be used with its Edison base 13 as a substitute for a corresponding incandescent lamp.
  • a cylindrical recess in the form of a driver cavity 14 is present, which on its lateral lateral surface 15 and upper end surface 16 with an electrically insulating lining 17 (hereinafter also "housing the driver cavity", GTK, called) is made of a plastic.
  • a lower insertion opening 18 is electrically sealed against the heat sink 4 by an attachment 19, which also includes the Edison base 13.
  • a driver board 20 is accommodated, which has all or at least some of the required for operating the light emitting diodes 7 elements.
  • the driver board 20 is electrically connected to the Edisonsockel 13 for power supply and outputs the required for operating the light emitting diodes 7 voltage and / or current via electrical cable 21 to the light emitting diodes 7 on.
  • the driver board 20 is connected via the electrical cable 21 with suitable cable connection surfaces 10b.
  • the driver implemented on the driver board 20 is here a transformerless non-SELV driver. A separation between the primary side and the secondary side takes place primarily between the carrier 6 and the heat sink 4.
  • the transformerless non-SELV driver may have a coil or buck configuration / step-down converter for voltage conversion.
  • the upper end surface 16 has a passage opening 22.
  • the liner 17 is configured so that the cable channel 8 is integrally integrated into the liner 17 connecting the recess 14 and the interior of the liner 17 to the front surface 5 of the heat sink 4.
  • the front surface 5 is covered with an opaque or light-scattering piston 27 for its protection and for the homogenization of the light emitted by the lighting device 1.
  • the piston 27 may be clamped to the heat sink 4 and e.g. be equipped with a circumferential Anpress kau in the form of a hold-down for the carrier.
  • FIG. 4 shows a section B from the LED retrofit lamp 1 FIG. 3 , as indicated by the circle B there.
  • a section C of the LED retrofit lamp 1 in the region of the support surface 24 is shown.
  • the cable channel 8 has a radially widened region 23, the upper surface of which serves as a bearing surface 24 for the support 6 when the lining is inserted and rests flush on the front surface 5 of the cooling body 4.
  • a plane 5, 24 which is planar on the front side and perpendicular to the longitudinal axis L is created for supporting the carrier 6.
  • the lining 17 or the cable duct 8 integrated into it has a projection 25 directed perpendicularly from the heat sink 4 to the outside (here: in the longitudinal direction L).
  • the projection 25 and the bearing surface 24 of the lining form a right-angled step 26.
  • the carrier 6 closely surrounds the projection 25 (with little play or tolerance), so that the projection 25 can serve as a centering aid in an assembly of the carrier 6.
  • the carrier 6 completely covers the support surface 24, and the flat front surface 5 of the heat sink 4 partially.
  • the carrier 6 is connected on the underside with the support surface 24 and the flat front surface 5 via an electrically insulating and adhesive transition layer 28 of a thermal transfer material (TIM).
  • TIM thermal transfer material
  • the transitional layer 28 also extends on the inside to the projection 25 and protrudes on the outside (in a lateral direction perpendicular to the longitudinal axis L) beyond the carrier 6.
  • the carrier 6 is pressed by means of a pressure element 35, which is present here in the form of an electrically insulating, circumferential plastic ring, on the heat sink 4.
  • the pressing element 35 itself can be pressed onto the carrier 6 by means of a pressing aid ('hold-down'), not shown here, wherein the pressing aid is located on the piston for easy mounting.
  • the Anpress kau can be performed, for example, rotating.
  • a beginning M of the shortest inner creepage distance K on the copper layer 11 can begin and radially to the inner edge 29 of the carrier (to the right in FIG. 4 ), from there over the inner edge 29 of the carrier 6 and the transition layer 28 down (neglecting the thickness of the transitional layer 28), and again outwards (to the left in FIG. 4 ) over the support surface 24 to a next point N on the heat sink 4.
  • a sufficiently long inner creepage distance K or isolation distance can be provided in a laterally particularly compact manner.
  • the creepage distance should be selected so that requirements for the safety of the device are met. Regulations for this are made in various standards. In general, a creepage distance of more than 6.4 mm has proven to be sufficiently safe for the common applications.
  • This results in an entire outer Creepage distance of also 5.9 mm, in which case the lateral space gain corresponds to the thickness of the carrier 6 of d2 0.4 mm.
  • FIG. 5 shows in one too FIG. 4 analogous representation of a section in the region of a cable channel 8 from a LED retrofit lamp 31 according to a second embodiment, in which now compared to the first embodiment of the carrier 32 is designed differently.
  • the carrier 32 is now multi-layered in that it has an identical to the support 6 of the first embodiment Al 2 O 3 insulation layer 33, on the upper side, the copper layer 11 is attached, but now at the bottom of the insulating layer 33 a Metal layer in the form of a lower copper layer 34 is attached.
  • the carrier 32 can then be embodied particularly simply as a double-sided DCB ("Direct Copper Bonding") -bonded carrier 32.
  • the lower copper layer 34 is thus located between two electrically insulating layers, namely the transition layer 28 and the insulating layer 33.
  • Fig. 6 shows an example of the attachment of the carrier 6 by means of a pressing element 35.
  • the carrier 6 with the LEDs 7 surrounds the cable channel 8 and is fixed on the heat sink 4 and the transitional layer 28 of 4 retaining tabs 36.
  • the retaining tabs 36 together with a retaining ring 37 substantially the pressure element 35.
  • To Positontechnik and fixing serve retaining pins 38.
  • a circumferential Anpress kau 39 is provided.
  • the retaining pins may be designed according to the knowledge of the skilled person, for example as press-fit pins, snap connectors, screws or as H formulateverstemmwind.
  • the present invention is not limited to the embodiments shown.
  • at least one of the distances d1 to d7 is at least 1 mm long, preferably between 1 mm and 5 mm.
  • the length of the creepage paths or creepage distances is at least 1 mm, particularly preferably at least 5 mm.
  • the material of the cooling body except pure aluminum and an aluminum alloy or another metal or its alloy or even have a good heat conducting plastic.
  • the cable channel can also be arranged eccentrically (laterally offset with respect to the longitudinal axis).
  • the supply can generally be a separate component or, for example, integrated into the lining of the recess and / or in the heat sink, for example in one piece.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Description

  • Die Erfindung betrifft eine Leuchtvorrichtung, insbesondere eine LED-Retrofitlampe oder ein LED-Modul für eine Retrofitlampe.
  • LED-Retrofitlampen bzw. deren Lichtquellen werden typischerweise mit einer Schutzkleinspannung ("Safety Extra Low Voltage"; SELV) betrieben. Dazu weist die LED-Retrofitlampe einen Treiber zum Betrieb der LED(s) auf, welcher einen Spannungsregulator zur Umwandlung einer Netzspannung, beispielsweise von 230 V, auf eine Spannung von etwa 10 V bis 25 V umfasst, typischerweise einen Transformator. Die Effizienz eines SELV-Treibers liegt typischerweise zwischen 70% und 80%. Bei SELV-Geräten müssen zum Schutz eines Verbrauchers Isolationsabstände zwischen einer Primärseite und einer Sekundärseite bezüglich des Spannungsregulators von mindestens 5 mm eingehalten werden, um einen durch Kriechströme verursachten Stromschlag des Nutzers vermeiden zu können. Insbesondere sollten von einem Spannungsnetz stammende Überspannungsimpulse von bis zu 4 KV von der Sekundärseite ferngehalten werden, so dass auch dann keine Gefahr für den Nutzer besteht, falls er elektrisch leitende berührbare Teile wie z. B. den Kühlkörper während des Auftretens des Impulses berührt.
  • LED-Retrofitlampen können beispielsweise so aufgebaut sein, dass die LED(s) auf einem Träger montiert sind, welcher am Kühlkörper verschraubt ist und elektrisch davon isoliert ist. Eine notwendige Länge der Kriechstrecke bzw. Isolierung zwischen potenzialführenden oder elektrisch leitenden Oberflächenbereichen (Kontaktfelder, Leitungsspuren usw., z. B. auf Kupfer und / oder Leitpaste mit z. B. Silber) und dem Kühlkörper wird dadurch erreicht, dass erstens die potenzialführenden Oberflächenbereiche einen Abstand von mindestens 5 mm zu einem Rand des Trägers einhalten und zweitens ein elektrisch isolierender Bereich von mindestens 5 mm um die Verschraubungsstellen eingehalten wird. Jedoch besitzt eine solche Ausgestaltung einen großen Flächenbedarf.
  • Die US 2006/227558A1 zeigt in den Figuren 14 und 15 eine Beleuchtungsvorrichtung nach dem Oberbegriff des Anspruchs 1. Nachteilig dabei ist die aufwändige Positionierung des Trägers für die Halbleiterlichtquelle, welche über eine Schraube erfolgt, die viel Bauraum auf dem Träger beansprucht.
  • Es ist die Aufgabe der vorliegenden Erfindung, eine besonders kompakte Leuchtvorrichtung, insbesondere LED-Retrofitlampe, bereitzustellen.
  • Diese Aufgabe wird mittels einer Leuchtvorrichtung nach dem unabhängigen Anspruch gelöst. Bevorzugte Ausführungsformen sind insbesondere den abhängigen Ansprüchen entnehmbar.
  • Die Leuchtvorrichtung weist auf: einen Kühlkörper mit mindestens einem an seiner Außenseite aufgebrachten Träger für mindestens eine Halbleiterlichtquelle; eine Aussparung zur Aufnahme eines Treibers; und mindestens eine elektrisch isolierende Zuführung, welche die Aussparung mit der Außenseite des Kühlkörpers verbindet; wobei die Zuführung eine an der Außenseite des Kühlkörpers flächenbündig anschließende Auflagefläche aufweist, die zumindest teilweise von dem Träger überdeckt ist. Weiterhin weist die Zuführung einen an der Außenseite des Kühlkörpers nach Außen hervorstehenden Vorsprung auf, wobei eine Oberfläche des Vorsprungs und die Auflagefläche eine Stufe bilden. Der Träger kann beispielsweise als ein Substrat, eine Leiterplatte o. ä. ausgestaltet sein.
  • Der Kühlkörper kann vorteilhafterweise aus einem gut wärmeleitenden Material mit λ > 10 W/(m·K), besonders bevorzugt λ > 100 W/(m·K), bestehen, insbesondere aus einem Metall wie Aluminium, Kupfer oder einer Legierung davon. Der Kühlkörper kann aber auch vollständig oder teilweise aus einem Kunst stoff bestehen; besonders vorteilhaft zur elektrischen Isolierung und Verlängerung der Kriechstrecken ist ein gut wärmeleitender und elektrisch isolierender Kunststoff, es ist aber auch die Verwendung eines gut wärmeleitenden und elektrisch leitenden Kunststoffs möglich. Der Kühlkörper kann vorzugsweise symmetrisch sein, insbesondere rotationssymmetrisch, z. B. um eine Längsachse. Der Kühlkörper kann vorteilhafterweise Kühlelemente aufweisen, z. B. Kühlrippen oder Kühlstifte.
  • Die Art der Halbleiter-Lichtquelle ist grundsätzlich nicht beschränkt, jedoch wird als Emitter eine LED bevorzugt. Die Halbleiter-Lichtquelle kann einen oder mehrere Emitter aufweisen. Der oder die Halbleiter-Emitter können auf dem Träger aufgebracht sein, auf dem auf weitere elektronische Bausteine wie Widerstände, Kondensatoren, Logikbausteine usw. montiert sein können. Die Halbleiter-Emitter können beispielsweise mittels herkömmlicher Lötverfahren auf dem Träger aufgebracht sein. Die Halbleiter-Emitter können aber auch durch Chip-Level-Verbindungsarten, wie Bonden (Drahtbonden, Flip-Chip-Bonden) usw. mit einem Substrat verbunden sein ("Submount"), z. B. durch Bestückung eines Substrats aus AlN mit LED-Chips. Auch können ein oder mehrere Submounts auf einer Leiterplatte montiert sein. Bei Vorliegen mehrerer Halbleiter-Emitter können diese in der gleichen Farbe strahlen, z. B. weiß, was eine einfache Skalierbarkeit der Helligkeit ermöglicht. Die Halbleiter-Emitter können aber zumindest teilweise auch eine unterschiedliche Strahlfarbe aufweisen, z. B. rot (R), grün (G), blau(B), bernstein (A) und / oder weiß (W). Dadurch kann ggf. eine Strahlfarbe der Lichtquelle durchgestimmt werden, und es kann ein beliebiger Farbpunkt eingestellt werden. Insbesondere kann es bevorzugt sein, wenn Halbleiter-Emitter unterschiedlicher Strahlfarbe ein weißes Mischlicht erzeugen können. Anstelle oder zusätzlich zu anorganischen Leuchtdioden, z. B. auf Basis von InGaN oder AlInGaP, sind allgemein auch organische LEDs (OLEDs) einsetzbar. Auch können z. B. Diodenlaser verwendet werden.
  • Der Träger kann als eine Platine oder ein anderes Substrat ausgeführt sein, z. B. als ein kompakter Keramikkörper. Der Träger kann ein oder mehrere Verdrahtungslagen aufweisen.
  • Die Aussparung weist eine Einführöffnung zum Einführen eines Treibers auf, z. B. einer Treiberplatine. Die Einführöffnung der Aussparung kann sich vorteilhafterweise an einer Rückseite des Kühlkörpers befinden. Die Einführöffnüng und die Zuführung befinden sich vorteilhafterweise an gegenüberliegenden Seiten der Aussparung. Die Aussparung kann beispielsweise zylinderförmig ausgestaltet sein. Die Aussparung kann vorteilhafterweise gegenüber dem Kühlkörper elektrisch isoliert sein, um direkte Kriechstrecken zu vermeiden, z. B. mittels einer elektrisch isolierenden Auskleidung (auch Gehäuse der Treiberkavität, GTK, genannt), z. B. in Form eines durch die Einführöffnung in die Aussparung eingesteckten Kunststoffrohrs. Die Auskleidung kann ein oder mehrere Befestigungselement zur Befestigung des Treibers aufweisen. die Zuführung dient zur Zuführung bzw. Durchführung mindestens einer elektrischen Leitung zwischen dem in der Aussparung befindlichen Treiber und der mindestens einen Halbleiterlichtquelle bzw. dem damit bestückten Träger. Die Zuführung und die Auskleidung können einstückig als ein einziges Element ausgestaltet sein. Mit dem Einführen der Auskleidung in die Aussparung wird dann gleichzeitig auch die Zuführung durch eine Durchgangsöffnung des Kühlkörpers geschoben.
  • Die mindestens eine elektrische Leitung, die beispielsweise als ein Draht, ein Kabel oder Verbinder jeglicher Art ausgestaltet sein kann, kann mittels jeglicher geeigneten Methode kontaktiert werden, z. B. mittels Lötens, Widerstandsschweißens, Laserschweißens usw.
  • Der Treiber kann eine allgemeine Ansteuerschaltung zum Ansteuern der mindestens einen Halbleiterlichtquelle sein. Vorzugsweise ist der Treiber als ein Nicht-SELV-Treiber ausgestaltet, insbesondere als ein trafoloser Nicht-SELV-Treiber. Ein Nicht-SELV-Treiber besitzt gegenüber einem SELV-Treiber einen höheren Wirkungsgrad von typischerweise mehr als 90% und kann zudem kostengünstiger aufgebaut werden. Es werden keine Sicherheitsabstände im Treiber von der Primärseite zur Sekundärseite benötigt, so wie es bei einem SELV-Treiber unter Verwendung eines Transformators vorgeschrieben ist. Eine Trennung zwischen Primärseite und Sekundärseite findet vielmehr vornehmlich zwischen Träger und Kühlkörper statt. Bei einem trafolosen Nicht-SELV-Treiber kann der Transformator vorteilhafterweise durch eine Spule Oder eine Buck-Konfiguration / einen Stepdown-Konverter ersetzt werden.
  • Derjenige Teil der Außenseite des Kühlkörpers, auf welchem der Träger befestigt ist, und die sich flächenbündig daran anschließende Auflagefläche der Zuführung können vorteilhafterweise eine gemeinsame ebene Fläche bilden. Insbesondere kann der Träger teilweise auf einer ebenen Vorderseite oder Stirnseite des Kühlkörpers und teilweise auf der daran bündig und koplanar anschließenden Auflagefläche aufliegen bzw. diese überdecken. Der Träger braucht dabei nicht über die gesamte von ihm überdeckte Fläche flächig aufzuliegen, sondern kann beispielsweise teilweise auch über einen Spalt von der von ihm überdeckten Fläche beabstandet sein.
  • Durch das Vorsehen der elektrisch isolierenden Auflagefläche (d. h., der Auflagefläche aus elektrisch isolierendem Material) kann die Kriechstrecke lateral verkürzt werden und damit eine lateral kompaktere Leuchtvorrichtung erreicht werden. So mag beispielsweise für den Fall, dass ein innerer Rand eines elektrisch isolierenden Trägers auf der Auflagefläche aufliegt, die Kriechstrecke um den lateralen Abstand des inneren Rands von dem elektrisch leitenden Kühlkörper verlängert werden. Folglich können potenzialführende Flächen des Trägers um denselben Abstand näher an dem Rand positioniert werden, wodurch wiederum der Träger mit geringerer lateraler (seitlicher) Ausdehnung auskommen kann. Allgemein kann eine Kriechstrecke im Bereich der Auflagefläche der Zuführung durch deren elektrisch isolierende Ausführung verlängert werden, da die Kriechströme dann einen längen Weg zum Kühlkörper zurücklegen müssen. Elektrisch leitfähige, insbesondere potenzialbehaftete, Oberflächen können vorteilhafterweise Kupfer und/oder Leitpasten mit z. B. Silber aufweisen.
  • Vorteilhafterweise kann der Träger mittels einer elektrisch isolierenden Übergangslage an dem Kühlkörper befestigt sein. Die elektrisch isolierende Übergangslage kann zur zuverlässigen Verbindung zwischen Träger und Kühlkörper vorteilhafterweise beidseitig haftfähig sein. Die Übergangslage kann vorteilhafterweise ein thermisches Übergangsmaterial (TIM, "Thermal Interface Material") wie eine Wärmeleitpaste (z. B. Silikonöl mit Zusätzen von Aluminiumoxid, Zinkoxid, Bornitrid oder Silberpulver), eine Folie oder ein Kleber sein. Die Folie kann beispielsweise auch in Art eines doppelseitigen Klebebandes beidseitig mit einem Kleber versehen sein.
    Der Kleber kann beispielsweise mittels eines Dispergiervorgangs und eines folgenden Rakelns aufgebracht werden. Die Übergangslage kann ferner die Vorteile einer hohen Durchschlagsfestigkeit und einer Verlängerung des Kriechpfades aufweisen. Auch kann durch die Übergangslage ein schraubenloser Aufbau erreicht werden, durch den ein ansonsten benötigter Isolationsbereich am Träger um die Schraubendurchführungen zum Kühlkörper herum entfallen kann. Dies unterstützt ebenfalls einen kompakten Aufbau der Leuchtvorrichtung.
  • Jedoch kann der Träger grundsätzlich auch auf andere Weise an dem Kühlkörper befestigt werden. So kann der Träger auch mittels einer oder mehrerer Kunststoffschrauben mit dem Kühlkörper oder durch den Kühlkörper hindurch mit der Auskleidung der Treiberkavität verschraubt sein. Eine weitere Möglichkeit der Befestigung des Trägers ist es, einen in der Auskleidung der Treiberkavität integrierten Kunststoffstift zu verwenden, welcher durch den Kühlkörper und durch den Träger ragt. Der Stift kann zur Befestigung des Trägers beispielsweise heißverstemmt werden. Auch ist eine Befestigung mittels Nietens, insbesondere Taumelnietens möglich, speziell unter Verwendung von Kunststoffnieten. Auch ist eine Befestigung beispielsweise mittels einer mittig durch den Träger geführten Schraube, insbesondere Kunststoffschraube möglich; unter Anderem kann in diesem Fall die Zuführung außermittig angeordnet sein. Eine weitere Möglichkeit der Befestigung besteht in einer magnetische Befestigung, z.B. mit einem magnetischen Pol in der Auskleidung integriert oder befestigt und einem magnetischen Gegenpol an dem Träger befestigt, z. B. durch Kleben usw.
  • Allgemein kann die Zuführung auch außermittig angeordnet sein, z. B. lateral von der Längsachse des Kühlkörpers oder des Substrats versetzt. Dabei kann die Zuführung auch außerhalb einer lateralen Ausdehnung des Trägers angeordnet sein. Dann kann die mindestens eine elektrische Leitung von seitlich Außen zum Träger geführt werden.
  • Vorteilhafterweise kann das thermische Übergangsmaterial lateral über einen inneren Rand und / oder einen äußeren Rand über den Träger hinausreichen. Dadurch kann die Kriechstrecke am jeweiligen Rand um diejenige Länge verlängert werden, um die das thermische Übergangsmaterial lateral über den jeweiligen Rand hinaussteht.
  • Der Träger kann vorteilhafterweise mindestens eine elektrisch isolierende Isolationslage aufweisen. Besonders vorteilhaft kann eine Isolationslage aus einem zumindest in Dickenrichtung thermisch gut und elektrisch schlecht leitenden Material oder Materialverbund bestehen. Besonders vorteilhaft ist eine Isolationslage aus Keramik, wie z. B. mit Al2O3, AlN, BN oder SiC. Die Isolierlage kann als Mehrlagenkeramikträger ausgestaltet sein, z. B. in LTCC-Technik. Dabei können beispielsweise auch Lagen mit unterschiedlichen Materialien verwendet werden, z. B. mit unterschiedlichen Keramiken. Diese können beispielsweise abwechselnd hochgradig dielektrisch und niedrig dielektrisch ausgestaltet sein. Auch kann die mindestens eine Isolationslage aus einem typischen Leiterplatten-Basismaterial bestehen, wie FR4, was thermisch weniger vorteilhaft aber sehr kostengünstig ist. Die Isolationslage kann einseitig oder beidseitig aufgebracht sein. Insbesondere ist auch die Verwendung eines isolierten Metall-Substrats (IMS) oder einer Metallkernplatine (MCPCB) als Träger denkbar.
  • Der Träger kann vorteilhafterweise eine Durchschlagsfestigkeit von mindestens 4 KV aufweisen, damit Überspannungspulse mindestens dieser Größenordnung nicht durch den Träger schlagen.
  • Vorteilhafterweise kann der Träger mindestens eine Isolationslage und eine dazu unterseitig angeordnete Metalllage aufweisen, wobei die unterseitige Metalllage an einem inneren Rand des Trägers lateral zurückgezogen ist. Dadurch kann eine Kriechstrecke an einem Rand des Trägers noch weiter verlängert werden, da ein Kriechstrom dann einen zusätzlichen Weg von dem Rand der Basismateriallage zu der Metalllage und weiter von der Basismateriallage zum Rand des thermischen Übergangsmaterials zurücklegen muss. Besonders vorteilhaft kann es sein, wenn die unterseitige Metalllage von dem inneren oder innenseitigen Rand des Trägers um mehr als 1 mm zurückgezogen ist. Zusammen mit dem thermischen Übergangsmaterial ergibt sich so ein in der lateralen Ebene besonders kompakter Kriechweg bzw. Isolationsstrecke, der in die Tiefe S-förmig ist. Zur einfachen Anbringung und Formgestaltung kann die unterseitige Metalllage vorteilhafterweise eine DCB ('Direct Copper Bonding')-Lage aus Kupfer sein. Der Träger kann aber auch oberseitig eine DCB-Lage aufweisen.
  • Alternativ oder zusätzlich kann es auf analoge Weise vorteilhaft sein, wenn der Träger mindestens eine Isolationslage und eine dazu unterseitig angeordnete Metalllage aufweist, wobei die unterseitige Metalllage an einem äußeren Rand des Trägers lateral zurückgezogen ist.
  • Zur Erreichung eines besonders vorteilhaften Kompromisses zwischen einerseits einer Maximierung der Isolationsstrecke und andererseits einer Minimierung des thermischen Pfads zwischen Lichtquelle(n) und Kühlkörper kann eine Dicke des Trägers vorteilhafterweise im Bereich zwischen 0,16 mm und 1 mm liegen.
  • Allgemein kann es bevorzugt sein, wenn ein Kriechpfad mindestens 1 mm lang ist, besonders bevorzugt mindestens 5 mm.
  • Eine zumindest lokale Wärmeleitfähigkeit oder Wärmespreizung des Trägers kann vorteilhafterweise zwischen 20 (W/m·K) und 400 (W/m·K) liegen, z. B. ca. 400 (W/m·K) für eine Kupferlage.
  • Es kann es vorteilhaft sein, wenn die Zuführung einen an der Außenseite des Kühlkörpers nach Außen hervorstehenden Vorsprung aufweist, wobei eine Oberfläche des Vorsprungs und die Auflagefläche eine rechtwinklige Stufe bilden. Der Vorsprung kann vorteilhafterweise senkrecht von einer ebenen Fläche des Kühlkörpers, z. B. einer ebenen Stirnfläche, hervorstehen. Dadurch kann insbesondere eine in Umlaufrichtung im Wesentlichen gleichmäßige Bauteilgeometrie erreicht werden. Auch kann so der Träger mit engem Spiel (in geringem Abstand um den nach Außen weisenden Vorsprung der Zuführung herum gelegt werden, was ebenfalls eine kompakte Bauweise unterstützt. Der Vorsprung kann dabei als Zentrierhilfe bei der Montage des Trägers auf dem Kühlkörper dienen. Der Träger kann dazu eine mittige Öffnung aufweisen.
  • Zur gleichmäßigen Verteilung mehrerer LEDs bei gleichzeitig einfacher Auslegung der Kriechstrecken unter Einhaltung vorgegebener Isolationsstrecken kann es vorteilhaft sein, wenn der Träger umlaufend und konzentrisch oder koaxial zu der Zuführung angeordnet ist. Auch wird so eine geringe seitliche Ausdehnung des Trägers relativ zu einer Längsachse des Kühlkörpers erreicht. Es kann zur Einhaltung vorgegebener Isolationsstrecken vorteilhaft sein, wenn die LEDs in Umfangsrichtung gleichmäßig angeordnet sind.
  • Zur Sicherstellung einer zuverlässigen Befestigung des Trägers auf dem Kühlkörper kann es vorteilhaft sein, wenn die Leuchtvorrichtung ferner mindestens ein Andrückelement zum Andrücken des Trägers auf den Kühlkörper aufweist.
  • Zur gleichmäßigen Druckaufbringung und daraus resultierenden Vermeidung von Biegespannungen im Träger und seinem lokalen Abheben kann das Andrückelement vorteilhafterweise einen umlaufenden oder teilumlaufenden, insbesondere sektorierten, Ring aus einem - insbesondere elektrisch isolierenden - Material aufweisen.
  • Zur einfachen Montage kann die Leuchtvorrichtung vorteilhafterweise einen (zumindest teilweise lichtdurchlässigen) Kolben aufweisen (z. B. auf den Kühlkörper geklemmt), der eine Anpresshilfe aufweist, die auf den Träger und / oder das Andrückelement drückt, um einen zusätzlichen Anpressdruck auf den Kühlkörper zu ermöglichen. Beispielsweise kann der Kolben mit einer Anpresshilfe in Form eines umlaufenden Niederhalters für den Träger ausgerüstet sein.
  • Zur Einhaltung einer geforderten Kriechstrecke kann der Träger vorteilhafterweise oberseitig mindestens einen elektrisch leitenden Oberflächenbereich aufweisen, welcher einen Mindestabstand von einem inneren Rand des Trägers und / oder einem äußeren Rand des Trägers einhält, insbesondere einen Mindestabstand von 3,5 mm oder mehr.
  • Die Halbleiterlichtquelle kann vorteilhafterweise mittels einer Nicht-SELV-Spannung gespeist werden, jedoch ist auch eine Verwendung mit einer Schutzkleinspannung (SELV) möglich.
  • Die Leuchtvorrichtung kann besonders vorteilhaft als Retrofitlampe, insbesondere LED-Retrofitlampe, oder als ein Modul dafür ausgestaltet sein.
  • In den folgenden Figuren wird die Erfindung anhand von Ausführungsbeispielen schematisch genauer beschrieben. Dabei können zur besseren Übersichtlichkeit gleiche oder gleichwirkende Elemente mit gleichen Bezugszeichen versehen sein.
  • FIG 1
    zeigt in Aufsicht eine LED-Retrofitlampe mit einem bestückten Träger gemäß einer ersten Ausführungsform;
    FIG 2
    zeigt in Aufsicht den Träger aus FIG 1 in einer detaillierteren Darstellung;
    FIG 3
    zeigt die LED-Retrofitlampe gemäß der ersten Ausführungsform als Schnittdarstellung entlang der Schnittlinie A-A aus FIG 1 in Seitenansicht;
    FIG 4
    zeigt einen Ausschnitt aus FIG 3 der LED-Retrofitlampe gemäß der ersten Ausführungsform im Bereich eines Kabelkanals;
    FIG 5
    zeigt in einer zu FIG 4 analogen Darstellung einen Ausschnitt im Bereich eines Kabelkanals aus einer LED-Retrofitlampe gemäß einer zweiten Ausführungsform;
  • FIG 1 zeigt in Aufsicht eine LED-Retrofitlampe 1 gemäß einer ersten Ausführungsform. Die LED-Retrofitlampe 1 dient hier zum Ersatz einer herkömmlichen Glühbirne mit Edisonsockel und weist daher eine äußere Kontur auf, welche die Kontur der herkömmlichen Glühbirne zumindest in ihrer Grundform grob wiedergibt (siehe auch FIG 3). Die LED-Retrofitlampe 1 weist eine äußere Hülle 2 auf, in die ein LED-Modul 3 eingesetzt ist. Das LED-Modul 3 weist einen Aluminium-Kühlkörper 4 auf, auf dessen hier gezeigter Oberseite bzw. Frontfläche 5 ein Al2O3-Träger 6 mit einer achtkantigen Außenkontur befestigt ist. Der Träger 6 ist mit Halbleiterlichtquellen in Form von Leuchtdioden 7 bestückt. Die Leuchtdioden 7 leuchten in den oberen Halbraum, d. h. in dieser Darstellung mit einer Hauptabstrahlrichtung aus der Bildebene hinaus. Der Träger 6 weist ein mittiges Loch auf, mit dem der Träger 6 eng über eine hier als Kabelkanal 8 ausgebildete Zuführung gesteckt werden kann. Der Kabelkanal 8 dient als Element zur Durchführung von elektrischen Leitungen (o. Abb.) von einem in dem Kühlkörper 4 befindlichen Treiber (o. Abb.) zum Träger 6. Der Träger 6 und der Kabelkanal 8 sind somit koaxial bezüglich einer senkrecht aus der Bildachse herausstehenden Längsachse L der Leuchtvorrichtung 1 positioniert, wobei die Längsachse L mittig durch den Kabelkanal 8 verläuft.
  • FIG 2 zeigt in Aufsicht den Träger 6 aus FIG 1 in einer detaillierteren Darstellung. Eine Frontfläche 5 des Trägers 6 ist mit drei weißen Leuchtdioden 7 bestückt, welche in etwa winkelsymmetrisch um eine Längsachse L angeordnet sind, wobei die Längsachse L mittig durch das Loch 9 des Trägers 6 verläuft. Die Leuchtdioden 7 sind zu ihrer Stromversorgung mittels Kontaktflächen 10a mit dem Träger 6 elektrisch kontaktierbar. Zur Stromversorgung werden elektrische Leitungen (o. Abb.) von dem Treiber durch den Kabelkanal zu Kabelanschlussflächen 10b geführt. Die zur Stromführung verwendeten elektrischen Leiterbahnen werden durch eine entsprechend strukturierte (hier stark vereinfacht dargestellte) außenseitige Kupferlage 11 gebildet. Sowohl die Kontaktflächen 10a als auch die Kabelanschlussflächen 10b und die Kupferlage 11 stellen potenzialführende Oberflächenbereiche dar, welche gegen den Kühlkörper 4 über ausreichend lange Isolationsstrecken zumindest mittels des Trägers 6 elektrisch isoliert sind. Die Kupferlage 11 ist nicht vollständig umlaufend ausgeführt, sondern weist einen sich radial bezüglich der Längsachse L erstreckenden Spalt 12 auf, um einen Kurzschluss zu vermeiden.
  • FIG 3 zeigt die LED-Retrofitlampe 1 gemäß der ersten Ausführungsform als Schnittdarstellung entlang der Schnittlinie A-A aus FIG 1. Die LED-Retrofitlampe 1 überragt die Außenkontur einer herkömmlichen Glühlampe nicht und kann mit ihrem Edisonsockel 13 als Ersatz für eine entsprechende Glühlampe verwendet werden. Im Kühlkörper 4 ist eine zylinderförmige Aussparung in Form einer Treiberkavität 14 vorhanden, welche an ihrer seitlichen Mantelfläche 15 und oberen Endfläche 16 mit einer elektrisch isolierenden Auskleidung 17 (im Folgenden auch "Gehäuse der Treiberkavität", GTK, genannt) aus einem Kunststoff belegt ist. Eine untere Einführöffnung 18 ist elektrisch gegen den Kühlkörper 4 isolierend von einem Aufsatz 19 verschlossen, welcher auch den Edisonsockel 13 beinhaltet. In der Treiberkavität 14 bzw. der Auskleidung 17 ist eine Treiberplatine 20 aufgenommen, welche alle oder zumindest einige der zum Betreiben der Leuchtdioden 7 benötigten Elemente aufweist. Die Treiberplatine 20 ist dazu mit dem Edisonsockel 13 elektrisch zur Stromversorgung verbunden und gibt die zum Betreiben der Leuchtdioden 7 benötigte Spannung und / oder Strom über elektrische Kabel 21 an die Leuchtdioden 7 weiter. Dazu ist die Treiberplatine 20 über die elektrischen Kabel 21 mit geeigneten Kabelanschlussflächen 10b verbunden. Der auf der Treiberplatine 20 implementierte Treiber ist hier ein trafoloser Nicht-SELV-Treiber. Eine Trennung zwischen Primärseite und Sekundärseite findet vornehmlich zwischen dem Träger 6 und dem Kühlkörper 4 statt. Der trafolosen Nicht-SELV-Treiber kann zur Spannungswandlung eine Spule oder eine Buck-Konfiguration / einen Stepdown-Konverter aufweisen.
  • Zur Durchführung der Kabel 21 durch die obere Endfläche 16 weist die obere Endfläche 16 eine Durchgangsöffnung 22 auf. Zur elektrischen Isolierung der Treiberplatine 20 gegenüber dem Kühlkörper 4 ist die Auskleidung 17 so ausgestaltet, dass der Kabelkanal 8 integral in die Auskleidung 17 integriert ist, der die Aussparung 14 bzw. das Innere der Auskleidung 17 mit der Frontfläche 5 des Kühlkörpers 4 verbindet. Die Frontfläche 5 ist zu ihrem Schutz und zur Homogenisierung des von der Leuchtvorrichtung 1 ausgestrahlten Lichts mit einem opaken bzw. lichtstreuenden Kolben 27 überdeckt. Beispielsweise kann der Kolben 27 an den Kühlkörper 4 geklemmt werden und z.B. mit einer umlaufenden Anpresshilfe in Form eines Niederhalters für den Träger ausgerüstet sein.
  • FIG 4 zeigt einen Ausschnitt B aus der LED-Retrofitlampe 1 aus FIG 3, wie dort durch den Kreis B angedeutet. Zudem ist ein Ausschnitt C der LED-Retrofitlampe 1 im Bereich der Auflagefläche 24 gezeigt. Der Kabelkanal 8 weist einen radial erweiterten Bereich 23 auf, dessen obere Oberfläche bei eingesetzter Auskleidung als Auflagefläche 24 für den Träger 6 dient und an der Frontfläche 5 des Kühlkörpers 4 flächenbündig anliegt. Dadurch wird eine frontseitig ebene, zur Längsachse L senkrechte Fläche 5,24 zur Auflage des Trägers 6 geschaffen. Um die Kabel 21 problemlos zum Träger 6 zu führen, weist die Auskleidung 17 bzw. der in diese integrierte Kabelkanal 8 einen vom Kühlkörper 4 senkrecht nach Außen (hier: in Längsrichtung L) gerichteten Vorsprung 25 auf. Der Vorsprung 25 und die Auflagefläche 24 der Auskleidung bilden eine rechtwinklige Stufe 26. Der Träger 6 umgibt den Vorsprung 25 eng (mit geringem Spiel oder Toleranz), so dass der Vorsprung 25 als Zentrierhilfe bei einer Montage des Trägers 6 dienen kann. Der Träger 6 überdeckt die Auflagefläche 24 vollständig, und die ebene Frontfläche 5 des Kühlkörpers 4 teilweise. Der Träger 6 ist unterseitig mit der Auflagefläche 24 und der ebenen Frontfläche 5 über eine elektrisch isolierende und haftende Übergangslage 28 aus einem thermischen Übergängsmaterial (TIM) verbunden. Die Übergangslage 28 stellt einen zusätzlichen Durchschlagsschutz zur Verfügung und ist thermisch gut leitend. Die Übergangslage 28 reicht innenseitig ebenfalls bis an den Vorsprung 25 und ragt außenseitig (in lateraler Richtung senkrecht zur Längsachse L) über den Träger 6 hinaus. Zur Sicherstellung eines festen Sitzes des Trägers 6 auf dem Kühlkörper 4 wird der Träger 6 mittels eines Andrückelements 35, das hier in Form eines elektrisch isolierenden, umlaufenden Kunststoffrings vorliegt, auf den Kühlkörper 4 gedrückt. Das Andrückelement 35 kann beispielsweise selbst mittels einer hier nicht dargestellten Anpresshilfe ('Niederhalter') auf den Träger 6 gedrückt werden, wobei sich die Anpresshilfe zur einfachen Montage an dem Kolben befindet. Die Anpresshilfe kann beispielsweise umlaufend ausgeführt sein. Wie insbesondere in Ausschnitt C ersichtlich, wird durch die elektrisch isolierende Auflagefläche 24 eine (gepunktet eingezeichnete) innere Kriechstrecke K über den inneren Rand 29 des Trägers 6 verlängert. So kann ein Beginn M der kürzesten inneren Kriechstrecke K an der Kupferlage 11 beginnen und radial zum inneren Rand 29 des Trägers (nach rechts in FIG 4) laufen, von dort über den inneren Rand 29 des Trägers 6 und der Übergangslage 28 nach unten (unter Vernachlässigung der Dicke der Übergangslage 28), und wieder nach außen (nach links in FIG 4) über die Auflagefläche 24 bis zu einem nächsten Punkt N am Kühlkörper 4. Die Gesamtlänge der Kriechstrecke K ergibt sich aus einer Addition des Abstands d1 der Kupferlage 11 zum inneren Rand 29 des Trägers, der Dicke d2 des Trägers 6 und ggf. der Übergangslage 28 und aus dem sich anschließenden Abstand d3 des inneren Rands 29 zum Kühlkörper (was der radialen oder lateralen Erstreckung der Auflagefläche 24 entspricht). In dem gezeigten Ausführungsbeispiel ergibt sich so eine Länge der Kriechstrecke K zu d1 = 3,5 mm + d2 = 0,4 mm + d3 = 2 mm von insgesamt 5,9 mm bei einem lateralen Abstand der Kupferlage 11 vom Vorsprung 25 von lediglich d1 = 3,5 mm. Somit kann eine ausreichend lange innere Kriechstrecke K bzw. Isolationsstrecke auf eine lateral besonders kompakte Weise bereitgestellt werden.
    Generell ist die Kriechstrecke so zu wählen, dass Anforderungen an die Sicherheit der Vorrichtung erfüllt werden. Regelungen hierzu sind in verschiedenen Normen getroffen. Generell hat sich eine Kriechstrecke von mehr als 6,4 mm als hinreichend sicher für die gängigen Anwendungen herausgestellt.
  • Eine sich, wie in Ausschnitt B gezeigt, über einen äußeren Rand 30 des Trägers 6 erstreckende Kriechstrecke berechnet sich in dieser Ausführungsform aus einem lateralen Abstand d4 = 2,2 mm zwischen einem äußeren Punkt O der Kupferlage 11 und dem äußeren Rand 30, zuzüglich der Dicke bzw. Tiefe des äußeren Rands 30 von d2 = 0,4 mm und der radialen Erstreckung d5 = 3,3 mm des nach Außen über den Träger überstehenden Bereichs der Übergangslage 28 bis zu einem Punkt P am Kühlkörper 4. Dies ergibt eine gesamte äußere Kriechstrecke von ebenfalls 5,9 mm, wobei hier der laterale Raumgewinn der Dicke des Trägers 6 von d2 = 0,4 mm entspricht.
  • FIG 5 zeigt in einer zu FIG 4 analogen Darstellung einen Ausschnitt im Bereich eines Kabelkanals 8 aus einer LED-Retrofitlampe 31 gemäß einer zweiten Ausführungsform, bei der nun im Vergleich zur ersten Ausführungsform der Träger 32 unterschiedlich ausgestaltet ist. Und zwar ist der Träger 32 nun dahingehend mehrlagig ausgestaltet, dass er eine zum Träger 6 aus der ersten Ausführungsform identische Al2O3-Isolationslage 33 aufweist, auf der oberseitig die Kupferlage 11 angebracht ist, wobei nun aber an der Unterseite der Isolationslage 33 eine Metalllage in Form einer unteren Kupferlage 34 angebracht ist. Der Träger 32 kann dann besonders einfach als doppelseitig DCB ("Direct Copper Bonding")-gebondeter Träger 32 ausgeführt sein. Die untere Kupferlage 34 befindet sich somit zwischen zwei elektrisch isolierenden Lagen, nämlich der Übergangslage 28 und der Isolationslage 33. Gegenüber der Isolationslage 33 weist die untere Kupferlage 34 an jedem Rand einen jeweiligen Rücksprung oder Rückzug d6 bzw. d7 auf, so dass sich unter Vernachlässigung einer Dicke der Kupferlage 34 jeweils eine im Vergleich zur ersten Ausführungsform um zweimal der radialen bzw. lateralen Länge d6 bzw. d7 des Rückzugs verlängerte Kriechstrecke ergibt. Genauer gesagt kann dadurch, wie genauer in Ausschnitt D gezeigt, am inneren Rand 29 bei gleicher lateraler Ausdehnung die innere Kriechstrecke von 5,9 mm auf 5,9 mm + 2·d6 = 5,9 mm + 2 · 1,1 mm = 8,1 mm verlängert werden. Analog kann die äußere Kriechstrecke von 5,9 mm auf 5,9 mm + 2·d7 = 5,9 mm + 2 · 0,6 mm = 7,1 mm verlängert werden.
  • Fig. 6 zeigt ein Beispiel für die Befestigung des Trägers 6 mittels eines Andrückelements 35. Der Träger 6 mit den Leuchtdioden 7 umgibt den Kabelkanal 8 und wird auf dem Kühlkörper 4 bzw. der Übergangslage 28 von 4 Haltelaschen 36 fixiert. Die Haltelaschen 36 bilden zusammen mit einem Haltering 37 im Wesentlichen das Andrückelement 35. Zur Positonierung und Fixierung dienen Haltestifte 38. Zusätzlich ist eine umlaufende Anpresshilfe 39 vorgesehen. Die Haltestifte können entsprechend dem Wissen des Fachmanns beispielsweise als Presspassungsstifte, Schnappverbinder, Schrauben oder als Heißverstemmstift ausgeführt sein.
  • Selbstverständlich ist die vorliegende Erfindung nicht auf die gezeigten Ausführungsbeispiele beschränkt. So kann es allgemein vorteilhaft sein, wenn mindestens einer der Abstände d1 bis d7 mindestens 1 mm lang ist, vorzugsweise zwischen 1 mm und 5 mm. Allgemein kann es auch bevorzugt sein, wenn die Länge der Kriechpfade oder Kriechstrecken mindestens 1 mm, besonders bevorzugt mindestens 5 mm beträgt. Auch kann das Material des Kühlköpers außer reinem Aluminium auch eine Aluminiumlegierung oder ein anderes Metall oder dessen Legierung oder auch einen gut wärmeleitenden Kunststoff aufweisen. Ferner kann der Kabelkanal auch außermittig (lateral bezüglich der Längsachse versetzt) angeordnet sein. Die Zuführung kann allgemein ein separates Bauteil sein oder beispielsweise in die Auskleidung der Aussparung und / oder in den Kühlkörper integriert sein, z.B. einstückig.
  • Bezugszeichenliste
  • 1
    LED-Retrofitlampe
    2
    Hülle
    3
    LED-Modul
    4
    Kühlkörper
    5
    Frontfläche
    6
    Träger
    7
    Leuchtdiode
    8
    Kabelkanal
    9
    Loch des Trägers
    10
    Kontaktfläche
    11
    Kupferlage
    12
    Spalt
    13
    Edisonsockel
    14
    Treiberkavität
    15
    Mantelfläche
    16
    obere Endfläche
    17
    Auskleidung
    18
    Einführöffnung
    19
    Aufsatz
    20
    Treiberplatine
    21
    kabel
    22
    Durchgangsöffnung
    23
    radial erweiterter Bereich
    24
    Auflagefläche
    25
    Vorsprung
    26
    Stufe
    27
    Kolben
    28
    Übergangslage
    29
    innerer Rand des Trägers
    30
    äußerer Rand des Trägers
    31
    LED-Retrofitlampe
    32
    Träger
    33
    Isolationslage
    34
    untere Kupferlage
    35
    Andrückelement
    36
    Haltelasche
    37
    Haltering
    38
    Haltestift
    39
    Anpresshilfe
    d
    Abstand
    K
    innere Kriechstrecke
    L
    Längsachse
    M
    Beginn der inneren Kriechstrecke
    N
    Ende der inneren Kriechstrecke
    O
    Beginn der äußeren Kriechstrecke
    P
    Ende der äußeren Kriechstrecke

Claims (14)

  1. Leuchtvorrichtung (1;31), aufweisend
    - einen Kühlkörper (4) mit mindestens einem an seiner Außenseite (5) aufgebrachten Träger (6;32) für mindestens eine Halbleiterlichtquelle (7), insbesondere Leuchtdiode;
    - eine Aussparung (14) zur Aufnahme eines Treibers (20);
    - mindestens eine elektrisch isolierende Zuführung (8), welche die Aussparung (14) mit der Außenseite (5) des Kühlkörpers (4) verbindet;
    - wobei die Zuführung (8) eine an der Außenseite (5) des Kühlkörpers (4) flächenbündig anschließende Auflagefläche (24) aufweist, die zumindest teilweise von dem Träger (6;32) überdeckt ist, dadurch gekennzeichnet, dass die Zuführung (8) einen bezüglich der Außenseite (5) des Kühlkörpers (4) nach außen hervorstehenden Vorsprung (25) aufweist, wobei eine Oberfläche des Vorsprungs (25) und die Auflagefläche (24) eine Stufe (26) bilden.
  2. Leuchtvorrichtung (1;31) nach Anspruch 1, bei welcher der Träger (6;32) mittels einer elektrisch isolierenden Übergangslage (28) an dem Kühlkörper (4) befestigt ist.
  3. Leuchtvorrichtung (1;31) nach Anspruch 2, bei dem die Übergangslage (28) lateral über einen inneren Rand (29) und / oder einen äußeren Rand (30) des Trägers (6;32) hinausreicht.
  4. Leuchtvorrichtung (31) nach einem der Ansprüche 2 oder 3, bei dem der Träger (32) eine Isolationslage (33) und eine dazu unterseitig angeordnete Metalllage (34) aufweist, wobei die unterseitige Metalllage (34) an einem inneren Rand (29) und / oder einem äußeren Rand (30) des Trägers (32) lateral zurückgezogen ist.
  5. Leuchtvorrichtung (31) nach Anspruch 4, bei dem die unterseitige Metalllage (34) eine DCB-Lage ist.
  6. Leuchtvorrichtung (1;31) nach einem der vorhergehenden Ansprüche, wobei eine Oberfläche des Vorsprungs (25) und die Auflagefläche (24) eine rechtwinklige Stufe (26) bilden.
  7. Leuchtvorrichtung (1;31) nach einem der vorhergehenden Ansprüche, bei welcher der Träger (6;32) umlaufend und konzentrisch zur Zuführung (8) angeordnet ist.
  8. Leuchtvorrichtung (1) nach einem der vorhergehenden Ansprüche, ferner aufweisend mindestens ein Andrückelement (35) zum Andrücken des Trägers (6) auf den Kühlkörper (4).
  9. Leuchtvorrichtung (1) nach Anspruch 8, bei der das Andrückelement (35) einen umlaufenden oder teilumlaufenden Ring aus einem elektrisch isolierenden Material aufweist.
  10. Leuchtvorrichtung nach Anspruch 8 oder 9, die einen Kolben (27) aufweist, der eine Anpresshilfe aufweist, die auf den Träger (6) und / oder das Andrückelement (35) drückt.
  11. Leuchtvorrichtung (1;31) nach einem der vorhergehenden Ansprüche, bei welcher der Träger (6;32) oberseitig mindestens einen elektrisch leitenden Oberflächenbereich (10,11) aufweist, welcher einen Mindestabstand (d1,d4) von einem inneren Rand (29) des Trägers (6;32) und / oder einem äußeren Rand (30) des Trägers (6;32) einhält, insbesondere einen Mindestabstand (d1) von 3,5 mm oder mehr.
  12. Leuchtvorrichtung (1;31) nach einem der vorhergehenden Ansprüche, bei der die Halbleiterlichtquelle (7) mit einer Nicht-SELV-Spannung gespeist wird.
  13. Leuchtvorrichtung (1;31) nach Anspruch 12, bei welcher der Treiber ein trafoloser Nicht-SELV-Treiber ist.
  14. Leuchtvorrichtung (1;31) nach einem der vorhergehenden Ansprüche, die als LED-Retrofitlampe oder als LED-Modul für eine LED-Retrofitlampe ausgestaltet ist.
EP10707236.5A 2009-02-12 2010-02-11 Leuchtvorrichtung Active EP2396590B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009008637.4A DE102009008637B4 (de) 2009-02-12 2009-02-12 Leuchtvorrichtung
PCT/EP2010/051703 WO2010092110A1 (de) 2009-02-12 2010-02-11 Leuchtvorrichtung

Publications (2)

Publication Number Publication Date
EP2396590A1 EP2396590A1 (de) 2011-12-21
EP2396590B1 true EP2396590B1 (de) 2016-06-29

Family

ID=42173229

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10707236.5A Active EP2396590B1 (de) 2009-02-12 2010-02-11 Leuchtvorrichtung

Country Status (6)

Country Link
US (1) US8622587B2 (de)
EP (1) EP2396590B1 (de)
JP (1) JP2012517681A (de)
CN (1) CN102317674B (de)
DE (1) DE102009008637B4 (de)
WO (1) WO2010092110A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10228093B2 (en) * 2015-08-17 2019-03-12 Jiaxing Super Lighting Electric Appliance Co., Ltd LED light bulb and LED filament thereof
JP5348410B2 (ja) * 2009-06-30 2013-11-20 東芝ライテック株式会社 口金付ランプおよび照明器具
DE102009054519A1 (de) * 2009-12-10 2011-06-16 Osram Gesellschaft mit beschränkter Haftung Led-Lampe
WO2011108272A1 (ja) * 2010-03-04 2011-09-09 パナソニック株式会社 電球形ledランプおよび照明装置
JP5073872B2 (ja) * 2011-01-18 2012-11-14 パナソニック株式会社 電球形ランプおよび照明装置
JP5773810B2 (ja) * 2011-09-05 2015-09-02 三菱電機株式会社 照明器具
DE102011084795B4 (de) 2011-10-19 2013-11-07 Osram Gmbh Halbleiterleuchtvorrichtung mit einem galvanisch nicht-isolierten Treiber
KR101933189B1 (ko) 2012-01-31 2019-04-05 서울반도체 주식회사 발광다이오드 패키지
KR101349513B1 (ko) 2012-03-20 2014-01-09 엘지이노텍 주식회사 조명장치 및 이를 포함하는 조명 제어 시스템
CN103807623B (zh) * 2012-11-09 2017-11-17 欧司朗有限公司 发光装置和一种包括该发光装置的照明装置
JP2014207112A (ja) * 2013-04-12 2014-10-30 パナソニック株式会社 照明器具
CN105706440A (zh) * 2013-11-12 2016-06-22 汤姆逊许可公司 通过pcb孔的电缆引线穿管
CN105023987B (zh) * 2014-04-23 2018-01-09 光宝光电(常州)有限公司 Led承载座及其制造方法
TWI589814B (zh) * 2014-07-24 2017-07-01 光寶電子(廣州)有限公司 發光裝置
JP6180469B2 (ja) * 2015-07-03 2017-08-16 三菱電機照明株式会社 照明装置
EP4374665A1 (de) * 2021-07-21 2024-05-29 Lumileds LLC Spät konfigurierbares led-modul und fahrzeugscheinwerfer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670216B2 (en) * 2001-10-31 2003-12-30 Ixys Corporation Method for manufacturing a power semiconductor device and direct bonded substrate thereof
US7111961B2 (en) * 2002-11-19 2006-09-26 Automatic Power, Inc. High flux LED lighting device
CN100559073C (zh) 2005-04-08 2009-11-11 东芝照明技术株式会社
US7758223B2 (en) 2005-04-08 2010-07-20 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
JP4482706B2 (ja) 2005-04-08 2010-06-16 東芝ライテック株式会社 電球型ランプ
US7226189B2 (en) * 2005-04-15 2007-06-05 Taiwan Oasis Technology Co., Ltd. Light emitting diode illumination apparatus
JP5209910B2 (ja) * 2005-09-20 2013-06-12 パナソニック株式会社 Led照明器具
US20110128742A9 (en) * 2007-01-07 2011-06-02 Pui Hang Yuen High efficiency low cost safety light emitting diode illumination device
DE202007009655U1 (de) 2007-07-11 2007-09-06 Aeon Lighting Technology Inc., Chung-Ho City Wärmeableitvorrichtung für LED-Licht emittierendes Modul
TWM332793U (en) 2007-11-28 2008-05-21 Cooler Master Co Ltd Heat radiating structure and the lighting apparatus

Also Published As

Publication number Publication date
DE102009008637B4 (de) 2022-05-12
DE102009008637A1 (de) 2010-12-09
US8622587B2 (en) 2014-01-07
EP2396590A1 (de) 2011-12-21
CN102317674B (zh) 2013-08-07
US20110310624A1 (en) 2011-12-22
CN102317674A (zh) 2012-01-11
JP2012517681A (ja) 2012-08-02
WO2010092110A1 (de) 2010-08-19

Similar Documents

Publication Publication Date Title
EP2396590B1 (de) Leuchtvorrichtung
DE102011084795B4 (de) Halbleiterleuchtvorrichtung mit einem galvanisch nicht-isolierten Treiber
EP2198196B1 (de) Lampe
WO2011012437A1 (de) Leuchtvorrichtung und verfahren zum herstellen einer leuchtvorrichtung
EP2531772A1 (de) Leiterplatte mit mindestens einer halbleiterlichtquelle, auflage für die leiterplatte, system aus der leiterplatte und der auflage sowie verfahren zum befestigen der leiterplatte an der auflage
DE102010030702A1 (de) Halbleiterlampe
EP3167224B1 (de) Halbleiterlampe
EP2815177B1 (de) Leuchtmodul
EP2459927A1 (de) Leuchtvorrichtung und verfahren zum montieren einer leuchtvorrichtung
EP2780956B1 (de) Led-modul
DE102010039120A1 (de) Leiterplatte mit mindestens einer Halbleiterlichtquelle, Auflage für die Leiterplatte, System aus der Leiterplatte und der Auflage sowie Verfahren zum Befestigen der Leiterplatte an der Auflage
WO2012065861A1 (de) Halbleiterlampe
DE102008016458A1 (de) Leiterplatte
EP2507548B1 (de) Retrofit led-lampe
DE202013000980U1 (de) "LED-Retrofit-Lampe"
EP2443390B1 (de) Kühlkörper für halbleiterleuchtelemente
EP2815176A1 (de) Leuchtmodul-leiterplatte
WO2015007904A1 (de) Leuchtvorrichtung mit halbleiterlichtquelle und treiberplatine
DE102011006749A1 (de) Lampenvorrichtung
DE102017109836B4 (de) Leuchtmittel mit Kühlkörper
DE202010008309U1 (de) LED-Lampe
DE102012211143A1 (de) Träger für elektrisches bauelement mit wärmeleitkörper
DE102014225487A1 (de) Leiterplatte, Vorrichtungen damit und Herstellungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010011911

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21K0099000000

Ipc: F21K0009232000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 29/70 20150101ALN20160128BHEP

Ipc: F21V 23/00 20150101ALI20160128BHEP

Ipc: F21K 9/232 20160101AFI20160128BHEP

Ipc: F21Y 115/10 20160101ALN20160128BHEP

INTG Intention to grant announced

Effective date: 20160211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 809393

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011911

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161029

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011911

Country of ref document: DE

Representative=s name: DF-MP DOERRIES FRANK-MOLNIA & POHLMAN PATENTAN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010011911

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 80807 MUENCHEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011911

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

26N No opposition filed

Effective date: 20170330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170211

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 809393

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170211

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: LEDVANCE GMBH, DE

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011911

Country of ref document: DE

Representative=s name: LANCHAVA, BAKURI, DR. RER. NAT., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 15

Ref country code: GB

Payment date: 20240220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240226

Year of fee payment: 15