EP2395308B1 - Wärmetauscher - Google Patents
Wärmetauscher Download PDFInfo
- Publication number
- EP2395308B1 EP2395308B1 EP10738301.0A EP10738301A EP2395308B1 EP 2395308 B1 EP2395308 B1 EP 2395308B1 EP 10738301 A EP10738301 A EP 10738301A EP 2395308 B1 EP2395308 B1 EP 2395308B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat transfer
- transfer tube
- concave portions
- transfer tubes
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0008—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
- F28D7/0016—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H4/00—Fluid heaters characterised by the use of heat pumps
- F24H4/02—Water heaters
- F24H4/04—Storage heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/42—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
- F28F1/424—Means comprising outside portions integral with inside portions
- F28F1/426—Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/12—Heat pump
- F24D2200/123—Compression type heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2270/00—Thermal insulation; Thermal decoupling
Definitions
- the present invention relates to a heat exchanger for exchanging heat between a first fluid and a second fluid, particularly to a heat exchanger suitable for heat pump type water heaters.
- a heat exchanger for exchanging heat between two kinds of fluids (water and a refrigerant, or air and a refrigerant, for example) is used.
- Patent Literature 1 discloses a heat exchanger 10 according to the preamble of claim 1 as shown in FIGs. 10A and 10B .
- the heat exchanger 10 one circular water tube 11 through which water flows and two circular refrigerant tubes 12 through which a refrigerant flows are in close contact with each other over their entire lengths, and these tubes 11 and 12 are formed in a track-wound shape.
- the outer diameter of each of the circular refrigerant tubes 12 is set to be about half of the outer diameter of the circular water tube 11.
- the two circular refrigerant tubes 12 are disposed at positions at an angle of 45 degrees from the center of the circular water tube 11 with respect to the horizontal line therebetween.
- Patent Literature 1 also shows in FIG.
- Patent Literature 1 further discloses that the water and refrigerant tubes may have a rectangular shape.
- the present invention is intended to provide a heat exchanger that can be downsized further.
- the present invention provides a heat exchanger having the features of claim 1.
- both of the first heat transfer tube and the second heat transfer tube constituting the spiral-shaped heat transfer tube group are provided plurally, small-size tubes can be used as these heat transfer tubes. This makes it possible to reduce the minimum bend radius of the heat transfer tube group.
- the first heat transfer tubes and the second heat transfer tubes are arranged in a direction perpendicular to the direction in which the heat transfer tube group is wound, the width of the row of these tubes also can be kept small.
- the first heat transfer tubes and the second heat transfer tubes are arranged alternately while being in contact with each other, a heat transfer tube of one type is sandwiched between heat transfer tubes of the other type, except for the heat transfer tubes located at both side ends.
- the heat exchanger of the present invention can be downsized further compared to conventional heat exchangers having comparable performances.
- concave portions are provided on both sides, in a direction perpendicular to an arrangement direction in which the first heat transfer tubes are arranged, of an outer circumferential surface of each of the first heat transfer tubes, along an extending direction of the first heat transfer tube.
- the concave portions form convex portions on an inner circumferential surface of each first heat transfer tube. Therefore, the first fluid flows through the first heat transfer tube while colliding with the convex portions, so that the flow of the first fluid is disturbed. This makes it possible to improve the in-plane temperature uniformity of the first fluid and enhance the heat exchanging efficiency between the first fluid and the second fluid. As a result, the heat exchanger can be downsized further.
- a heat exchanger for exchanging heat between water and a refrigerant such as carbon dioxide and chlorofluorocarbon alternative
- a refrigerant such as carbon dioxide and chlorofluorocarbon alternative
- the present invention is not limited to this.
- the present invention is applicable to a heat exchanger for exchanging heat between water and water (hot water), and an internal heat exchanger for exchanging heat between a high temperature refrigerant and a low temperature refrigerant in a heat pump cycle.
- a heat exchanger 1 includes a heat transfer tube group 2 formed in a spiral shape so as to have a shape of a flat rectangular plate.
- the heat transfer tube group 2 has a configuration in which a plurality (4 in the example illustrated) of the first heat transfer tubes 3 and a plurality (3 in the example illustrated) of the second heat transfer tubes 4 are joined while being in contact with each other over the approximately entire lengths and are integrated with each other.
- Relatively low temperature water flows through the first heat transfer tubes 3 and a relatively high temperature refrigerant (a second fluid) flows through the second heat transfer tubes 4, so that the heat is exchanged between the water and the refrigerant and the water is heated by the refrigerant.
- the first heat transfer tubes 3 and the second heat transfer tubes 4 may be made of metal, such as copper, a copper alloy and SUS, having a satisfactory thermal conductivity. Circular tubes are used suitably as the first heat transfer tubes 3 and the second heat transfer tubes 4.
- the first heat transfer tubes 3 and the second heat transfer tubes 4 are arranged alternately in a row in a direction (an up and down direction in FIG. 3 ) perpendicular to extending directions (central axis directions) of the first heat transfer tubes 3 and the second heat transfer tubes 4, while being in contact with each other.
- the first heat transfer tubes 3 and the second heat transfer tubes 4 are arranged so that their centers lie on the same straight line.
- One first heat transfer tube 3 and one second heat transfer tube 4 adjacent to each other are joined to each other.
- the joining between the first heat transfer tube 3 and the second heat transfer tube 4 may be performed by brazing, soldering, use of a thermally conductive adhesive, etc.
- the first heat transfer tube 3 and the second heat transfer tube 4 has a large joining area therebetween and can ensure an effective heat transfer area sufficiently. It is also possible to join the first heat transfer tubes 3 and the second heat transfer tubes 4 together by bundling collectively the first heat transfer tubes and the second heat transfer tubes 4 with a heat-shrinkable tube.
- the first heat transfer tubes 3 have preferably an outer diameter D 1 equal to or larger than an outer diameter D 2 of the second heat transfer tubes 4 (D 2 ⁇ D 1 ).
- the first heat transfer tubes 3 in the present embodiment have an outer diameter and wall thickness larger than those of the second heat transfer tubes 4.
- the outer diameter D 2 of the second heat transfer tubes 4 is 5.0 mm and the outer diameter D 1 of the first heat transfer tubes 3 is 6.0 mm.
- the heat transfer tube group 2 is wound in a perpendicular direction (hereinafter referred to as "X direction”) perpendicular to an arrangement direction (hereinafter referred to as "Y direction”) in which the first heat transfer tubes 3 and the second heat transfer tubes 4 are arranged.
- X direction perpendicular direction
- Y direction arrangement direction
- the heat transfer tube group 2 is formed in an approximately-rectangular spiral shape that is wound while repeating alternately a straight portion 2a and a quarter-arc bent portion 2b that smoothly is bent approximately 90°.
- a gap S (see FIG. 2 and FIG. 3 ) is formed between an outer-located winding portion and an inner-located winding portion adjacent to each other, that is, between an n-th portion (n is a natural number) and an n+l-th portion when counting from the outside, in the heat transfer tube group 2.
- the thus formed gap S can prevent direct heat transfer between winding portions adjacent to each other in the heat transfer tube group 2.
- a copper tube or a resin sheet for example, may be disposed at an appropriate location between the outer-located winding portion and the inner-located winding portion adjacent to each other in the heat transfer tube group 2 in order to ensure the gap S.
- a heat insulating material may be interposed between the winding portions adjacent to each other. In this case, the same advantageous effects also can be obtained as in the case of forming the gap S.
- all bend radii R of the bent portions 2b in the heat transfer tube group 2 preferably are uniform. Such a configuration can reduce the number of the types of jigs used in the bending process, improving the workability.
- the water flows through the first heat transfer tubes 3 from a peripheral side toward a central side of the spiral shape of the heat transfer tube group 2, and the refrigerant flows through the second heat transfer tubes 4 from the central side toward the peripheral side of the spiral shape of the heat transfer tube group 2.
- Such a configuration allows the water and the refrigerant to form mutually opposed flows, and thereby the heat is exchanged effectively therebetween.
- a first outlet member 6 and a second inlet member 7 are disposed on the central side of the spiral shape of the heat transfer tube group 2, and a first inlet member 5 and a second outlet member 8 are disposed on the peripheral side of the spiral shape of the heat transfer tube group 2.
- the members 5 to 8 have a rectangular parallelepiped shape extending in the Y direction, and have internal spaces 51, 61, 71 and 81, respectively, at one end surface in the longer direction (the end surface illustrated in FIG. 1 ).
- One end of each first heat transfer tube 3 is connected to one side surface of the first outlet member 6, and the other end of each first heat transfer tube 3 is connected to one side surface of the first inlet member 5.
- each second heat transfer tube 4 is connected to one side surface of the second inlet member 7, and the other end of each second heat transfer tube 4 is connected to one side surface of the second outlet member 8. That is, the first inlet member 5 forms water inlets for guiding water into the respective first heat transfer tubes 3, whereas the first outlet member 6 forms water outlets for discharging collectively the water that has flowed through the first heat transfer tubes 3.
- the second inlet member 7 forms refrigerant inlets for guiding refrigerant into the respective second heat transfer tubes 4, whereas the second outlet member 8 forms refrigerant outlets for discharging collectively the refrigerant that has flowed through the second heat transfer tubes 4.
- a plurality of concave portions 3a and 4a as shown in FIG. 4 , FIGs. 5A and 5B are provided in a specified region E 1 of each longer-side straight portion 2a and a specified region E 2 of each shorter-side straight portion 2a in the heat transfer tube group 2 illustrated in FIG. 1 .
- the concave portions 3a and 4a preferably are provided avoiding the bent portions 2b when the bend radii R of the bent portions 2b are small. Thereby, damages during the bending process can be prevented.
- the specified regions E 1 and E 2 each may be across the entire length of the corresponding straight portion 2a or may be narrower than this.
- the lengths of the specified regions E 1 and E 2 may decrease toward the inner side of the spiral shape.
- the concave portions 3a and 4a do not need to be provided on both of the longer-side straight portions 2a and the shorter-side straight portions 2a, and may be provided to either the longer-side straight portions 2a or the shorter-side straight portions 2a.
- the plurality of concave portions 3a are provided on both sides, in the X direction, of an outer circumferential surface 31 of each of the first heat transfer tubes 3 at a specified pitch along the extending direction of the first heat transfer tube 3.
- the plurality of concave portions 4a are provided on both sides, in the X direction, of an outer circumferential surface 41 of each of the second heat transfer tubes 4 at a specified pitch along the extending direction of the second heat transfer tube 4.
- the concave portions 3a provided on the first heat transfer tube 3 form convex portions 3b on an inner circumferential surface 32 of each first heat transfer tube 3.
- FIG. 5A the concave portions 3a provided on the first heat transfer tube 3 form convex portions 3b on an inner circumferential surface 32 of each first heat transfer tube 3.
- the concave portions 4a provided on the second heat transfer tube 3 form convex portions 4b on an inner circumferential surface 42 of each second heat transfer tube 4.
- the concave portions 3a need only be provided on both sides, in the X direction, of the outer circumferential surface 31 of each of the heat transfer tubes 3, and the concave portions 4a need only be provided on both sides, in the X direction, of the outer circumferential surface 41 of each of the heat transfer tubes 4, and thus the concave portions 3a and 4a do not necessarily have to be located just lateral to the centers of the heat transfer tubes 3 and 4, respectively.
- the concave portions 3a may be provided at positions upward or downward off the positions just lateral to the center of the heat transfer tube 3, and the concave portions 4a may be provided at positions upwardly or downwardly off the positions just lateral to the center of the heat transfer tube 4.
- the concave portions 3a provided on one side, in the X direction, of the outer circumferential surface 31 of each of the first heat transfer tubes 3 and the concave portions 3a provided on the other side, in the X direction, of the outer circumferential surface 31 of each of the first heat transfer tubes 3 are disposed alternately along the extending direction of the first heat transfer tube 3.
- the concave portions 4a provided on one side, in the X direction, of the outer circumferential surface 41 of each of the second heat transfer tubes 4 and the concave portions 4a provided on the other side, in the X direction, of the outer circumferential surface 41 of each of the second heat transfer tubes 4 are disposed alternately along the extending direction of the second heat transfer tube 4.
- the concave portions 3a provided on each first heat transfer tube 3 and the concave portions 4a provided on each second heat transfer tube 4 are linear recesses extending in a direction parallel to the extending direction of the first heat transfer tube 3 or the second heat transfer tube 4.
- the concave portions 4a with a length of 5.0 mm are provided on both sides, in the X direction, of each of the second heat transfer tube 4 at a pitch of 10 mm
- the concave portions 3a with a length of 5.0 mm are provided on both sides, in the X direction, of each of the first heat transfer tube 3 at a pitch of 10 mm.
- the pitch refers to a center-to-center distance between adjacent concave portions on one side in the X direction.
- the maximum depths (depths at the lowest points located at the deepest positions) of the concave portions 3a and 4a are 5% or more but 20% or less of the outer diameters of the heat transfer tubes 3 and 4, respectively.
- the first heat transfer tubes 3 and the second heat transfer tubes 4 both of which are straight are stacked alternately, these tubes stacked are joined by the above-mentioned method, and then the concave portions 3a and 4a are formed on both sides, right and left, of the heat transfer tube group 2 by pressing, for example. Thereafter, the heat transfer tube group 2 is bent, on the same plane, into an approximately-rectangular spiral shape.
- both of the first heat transfer tube 3 and the second heat transfer tube 4 constituting the spiral heat transfer tube group 2 are provided plurally, small-size tubes can be used as these heat transfer tubes. This makes it possible to reduce the minimum bend radius of the heat transfer tube group 2. Moreover, since the first heat transfer tubes 3 and the second heat transfer tubes 4 are arranged in a direction perpendicular to the direction in which the heat transfer tube group 2 is wound, the width of the row of these tubes also can be kept small.
- the first heat transfer tubes 3 and the second heat transfer tubes 4 are arranged alternately while being in contact with each other, a heat transfer tube of one type is sandwiched between heat transfer tubes of the other type, except for the heat transfer tubes located at both side ends.
- the heat exchanger 1 of the present invention can be downsized further compared to conventional heat exchangers having comparable performances.
- the concave portions 3a are provided on both sides, in the X direction, of the outer circumferential surface 31 of each of the first heat transfer tubes 3, along the extending direction of the first heat transfer tube 3.
- the concave portions 3a form the convex portions 3b on the inner circumferential surface 32 of each first heat transfer tube 3. Therefore, the water flows through the first heat transfer tubes 3 while colliding with the convex portions, so that the flow of the water is disturbed. This makes it possible to improve the in-plane temperature uniformity of the water and enhance the heat exchanging efficiency between the water and the refrigerant. As a result, the heat exchanger can be downsized further.
- the concave portions 3a are not provided in the Y direction in which the first heat transfer tubes 3 and second heat transfer tubes 4 are in contact with each other but are provided in the X direction, the above-mentioned effects can be obtained without increasing thermal contact resistance of these tubes.
- the concave portions 4a also are provided on both sides, in the X direction, of the outer circumferential surface 41 of each of the second heat transfer tubes 4, along the extending direction of the second heat transfer tube 4.
- the concave portions 4a form the convex portions 4b on the inner circumferential surface 42 of each second heat transfer tube 4.
- the refrigerant flows through the second heat transfer tubes 4 while colliding with the convex portions 4b. Accordingly, the flow of the refrigerant is disturbed as well, so that the heat exchanging efficiency between the water and the refrigerant is enhanced further.
- grooved tubes in each of which a plurality of grooves are provided on the inner circumferential surface can be used instead of the circular tubes in each of which the concave portions 4a are provided on the outer circumferential surface 41.
- the cost may be reduced by using, as in the present embodiment, the circular tubes in each of which the concave portions 4a are provided on the outer circumferential surface 41.
- the heat exchanger 10 having a track-wound shape, in other words, including a pair of straight portions disposed in parallel so as to face each other and a pair of semicircular arc portions bent 180° so as to connect end portions of these straight portions to each other, a large dead space with a shape of an approximately right-angled triangle is formed outside each semicircular arc portion, making a factor of increasing the occupancy area.
- the heat transfer tube group 2 is formed in an approximately-rectangular spiral shape and the bent portions 2b located at corners of the spiral shape have the uniform bend radii R, the bend radius of each bent portion 2b located in the outermost winding portion is significantly smaller than that of the track-wound shape.
- the configuration in the present embodiment is different from the track-wound configuration in that the bend radii of the bent portions 2b do not decrease from the peripheral side toward the central side of the spiral shape. Therefore, the heat transfer tube group 2 can reach near the center of the spiral shape, and thus the dead spaces near the center can be reduced.
- the uniform bend radii R of the bent portions 2b lead to satisfactory workability.
- the first inlet member 5 and the second outlet member 8 are disposed on the peripheral side of the spiral shape of the heat transfer tube group 2, and the first outlet member 6 and the second inlet member 7 are disposed on the central side of the spiral shape of the heat transfer tube group 2.
- the relatively low temperature water flows through the first heat transfer tubes 3 from one end located on the peripheral side of the spiral shape toward the other end located on the central side of the spiral shape
- the relatively high temperature refrigerant flows through the second heat transfer tubes 4 from one end located on the central side of the spiral shape toward the other end located on the peripheral side of the spiral shape.
- both of the water and the refrigerant flow so that the temperatures thereof increase from the periphery toward the center of the heat exchanger 1, and thereby the high temperature portion from which a large amount of heat is radiated to the outside can be disposed in a small area and the radiation loss can be suppressed more effectively.
- the viscosity of water lowers as its temperature increases, the configuration in which water flows so that its temperature increases toward the center of the spiral shape is preferable also from the viewpoint of pressure loss.
- the inwardly-protruding convex portions 4b of the second heat transfer tubes 4 through which the refrigerant flows have the following effects.
- the refrigerant contains an oil, such as PAG (polyalkylene glycol), for lubricating compressors, etc.
- PAG polyalkylene glycol
- This causes the flow in each second heat transfer tube 4 to be a two-layer flow, forming an oil film on the inner circumferential surface 42 of the second heat transfer tube 4.
- the thickness of the oil film preferably is as small as possible.
- the convex portions 4b are effective also in reducing the thickness of the oil film.
- the presence of the convex portions 4b increases the flow velocity of the refrigerant near the inner circumferential surface 42, thereby increasing the difference between the velocity of the oil film flowing on the inner circumferential surface 42 and the velocity of the refrigerant.
- the refrigerant takes away a large amount of the oil from the surface of the oil film, reducing the thickness of the oil film.
- the convex portions 4b have an excessively large height, the pressure loss is increased and the performance of the heat exchanger 1 is deteriorated. Therefore, it is preferable to set appropriately the maximum depth of the concave portions 4a and hold the height of the convex portions 4b within a proper range.
- FIGs. 6A and 6B show the results of analyses on the flowability of the refrigerant, which was carbon dioxide, when the maximum depth of the concave portions 4a of the second heat transfer tube 4 was changed.
- the analyses were made using a software "FULENT 6.3", under the conditions that the refrigerant had a mass flow rate of 650 kg/m 2 s, a temperature of 60°C and a pressure of 10 MPa, and the oil concentration in the refrigerant was 1.0 mass%.
- the concave portions 4a with a length of 5.0 mm were provided on both sides, in the X direction, of each of the second heat transfer tubes 4 at a pitch of 10 mm, as shown in FIG. 4 .
- the second heat transfer tubes 4 had an outer diameter of 5.0 mm and an inner diameter of 4.1 mm. Then, a calculation was made in each of the cases where the maximum depth of the concave portions 4a was 0 mm, 0.4 mm, 0.5 mm, and 0.6 mm. 0 mm of the maximum depth of the concave portions 4a indicates that circular tubes having no concave portions 4a were used.
- the flow velocity of the refrigerant near the inner circumferential surface 42 is converged when the maximum depth of the concave portions 4a is in the range of 0.4 to 0.5 mm. This means that the thickness of the oil film is not reduced even if the maximum depth of the concave portions 4a is increased to be more than that.
- the pressure loss is increased rapidly when the maximum depth of the concave portions 4a is in the range of 0.4 to 0.5 mm. Therefore, it is preferable that the maximum depth of the concave portions 4a is in the range of 0.3 to 0.6 mm, which is slightly wider than the above-mentioned range in two directions.
- the above-mentioned heat exchanger 1 is used suitably for a heat pump type water heater 200.
- FIG. 9 shows the heat pump type water heater 200 including the heat exchanger 1 of the present embodiment.
- the heat pump type water heater 200 has a heat pump unit 201 and a tank unit 203.
- the tank unit 203 has a hot water reservoir tank 202 for holding the hot water produced in the heat pump unit 201.
- the hot water held in the hot water reservoir tank 202 is supplied to a hot water tap 204.
- the heat pump unit 201 includes a compressor 205 for compressing the refrigerant, a radiator 207 that allows the refrigerant to radiate heat, an expansion valve 209 for expanding the refrigerant, an evaporator 211 for evaporating the refrigerant, and a refrigerant tube 213 connecting these devices in this order.
- the heat exchanger 1 in the present embodiment is used as the radiator 207.
- a positive displacement expander capable of recovering the expansion energy of the refrigerant may be used instead of the expansion valve 209.
- the present invention is not limited to the above-mentioned embodiment and can be modified variously.
- the number and the outer diameter of the first heat transfer tubes 3 and the second heat transfer tubes 4 can be selected appropriately according to the performance required for the heat exchanger 1 and the types of the first fluid and the second fluid.
- the number of windings that the heat transfer tube group 2 makes and the size of its spiral shape also can be determined appropriately.
- the heat transfer tube group 2 does not need to be formed in an approximately-rectangular spiral shape.
- it may be formed in a circular spiral shape, or in a track-wound shape as shown in FIG. 10A .
- the heat transfer tube group 2 is formed in an approximately-rectangular spiral shape.
- the first heat transfer tubes 3 and the second heat transfer tubes 4 are arranged so that their centers lie on the same straight line.
- the first heat transfer tubes 3 and the second heat transfer tubes 4 may be arranged so that their outermost points on one side in the perpendicular direction perpendicular to the arrangement direction lie on the same straight line, for example.
- the centers of the first heat transfer tubes 3 and the centers of the second heat transfer tube 4 lie in a staggered manner.
- the concave portions 3a provided on one side, in the X direction, of the outer circumferential surface 31 of each of the first heat transfer tubes 3 and the concave portions 3a provided on the other side, in the X direction, of the outer circumferential surface 31 of each of the first heat transfer tubes 3 are disposed alternately along the extending direction of the first heat transfer tube 3 in the above-mentioned embodiment, they may be disposed at positions facing each other in the X direction.
- the concave portions 3a are parallel to the extending direction of the first heat transfer tube 3, since the concave portions 3a thus disposed elongate narrow portions in the first heat transfer tube 3, the concave portions 3a preferably are disposed as in the above-mentioned embodiment. This is also the case with the concave portions 4a provided on the second heat transfer tubes 4.
- the concave portions 3a provided on both sides, in the X direction, of the outer circumferential surface 31 of each of the first heat transfer tubes 3 may be linear recesses extending in a direction inclined with respect to the extending direction of the first heat transfer tube 3.
- the concave portions 4a provided on both sides, in the X direction, of the outer circumferential surface 41 of each of the second heat transfer tubes 4 may be linear recesses extending in a direction inclined with respect to the extending direction of the second heat transfer tube 4.
- Such concave portions 3a and 4a allow the water or the refrigerant to flow while stirring them effectively.
- the heat exchanger 1 is used for the heat pump type water heater 200 as shown in FIG.
- the concave portions 4a provided on the second heat transfer tube 4 through which the refrigerant flows are inclined with respect to the extending direction of the second heat transfer tube 4.
- the refrigerant contains an oil for lubricating the compressor 205, and a relatively large amount of this oil accumulates on the bottom of the second heat transfer tube 4, lowering the heat exchanging efficiency.
- the inclined concave portions 4a could stir the refrigerant and suppress the accumulation of the oil.
- the concave portions 3a provided on one side, in the X direction, of the heat transfer tube 3 and the concave portions 3a provided on the other side, in the X direction, of the heat transfer tube 3 may be disposed at positions facing each other in the X direction
- the concave portions 4a provided on one side, in the X direction, of the heat transfer tube 4 and the concave portions 4a provided on the other side, in the X direction, of the heat transfer tube 4 may be disposed at positions facing each other in the X direction, as shown in FIG. 7 .
- the concave portions 3a provided on one side, in the X direction, of the heat transfer tube 3 and the concave portions 3a provided on the other side, in the X direction, of the heat transfer tube 3 may be disposed alternately along the extending direction of the heat transfer tube 3, and the concave portions 4a provided on one side, in the X direction, of the heat transfer tube 4 and the concave portions 4a provided on the other side, in the X direction, of the heat transfer tube 4 may be disposed alternately along the extending direction of the heat transfer tube 4, as shown in FIG. 8 .
- the shapes and positions of the concave portions 3a and 4a also can be selected appropriately in combination such that the first heat transfer tube 3 is provided with the concave portions 3a parallel to the extending direction whereas the second heat transfer tube 4 is provided with the concave portions 4a inclined with respect to the extending direction, and that the concave portions 3a provided on both sides of the first heat transfer tube 3 are disposed alternately whereas the concave portions 4a provided on both sides of the second heat transfer tube 4 are disposed at the positions facing each other.
- the concave portions of the present invention do not need to be linear recesses as long as they form convex portions on the inner circumferential surface of each first heat transfer tube or second heat transfer tube.
- the first heat transfer tube 3 and the second heat transfer tube 4 may be formed in a wave shape meandering in the X direction so that valley portions of the wave shape may serve as the concave portions. That is, the convex portions of the present invention do not need to reduce the cross-sectional area of a space enclosed by the inner circumferential surface of the first heat transfer tube or the second heat transfer tube.
- the convex portions may be portions protruding inwardly while maintaining the cross-sectional area.
- the concave portions of the present invention are recesses, particularly linear recesses extending in a specified direction, forming the convex portions 3b that reduce the cross-sectional area of a space enclosed by the inner circumferential surface of the first heat transfer tube 3 or the second heat transfer tube 4, as in the above-mentioned embodiments.
- the heat exchanger of the present invention is useful as a heat exchanger for a heat pump, particularly as a heat exchanger for a heat pump type water heater.
- the present invention is applicable to a heat exchanger for exchanging heat between liquids or between gases.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Claims (16)
- Wärmetauscher (1), enthaltend:eine Wärmeübertragungsrohrgruppe, in welcher eine Vielzahl von ersten Wärmeübertragungsrohren (3), durch die eine erste Flüssigkeit strömt, und eine Vielzahl von zweiten Wärmeübertragungsrohren (4), durch die eine zweite Flüssigkeit strömt, die mit der ersten Flüssigkeit Wärme austauscht, wechselweise angeordnet sind, während sie in Verbindung miteinander stehen, wobei die Wärmeübertragungsrohrgruppe in Spiralform ausgebildet ist, sodass sie die Form einer flachen, rechteckigen Scheibe aufweist, indem sie in einer senkrechten Richtung senkrecht zu einer Anordnungsrichtung gewickelt ist, in welcher die ersten Wärmeübertragungsrohre (3) und die zweiten Wärmeübertragungsrohre (4) angeordnet sind,dadurch gekennzeichnet, dass eine Vielzahl von konkaven Abschnitten (3a, 4a) an beiden Seiten, in senkrechter Richtung, in welcher die ersten Wärmeübertragungsrohre (3) und die zweiten Wärmeübertragungsrohre nicht in Kontakt miteinander stehen, an einer äußeren umlaufenden Oberfläche von jeder der ersten Wärmeübertragungsrohre (3), entlang einer Ausdehnungsrichtung der ersten Wärmeübertragungsrohre vorgesehen sind, wobei die Vielzahl der konkaven Abschnitte (3a, 4a) konvexe Abschnitte auf einer inneren umlaufenden Oberfläche der ersten Wärmeübertragungsrohre ausbilden.
- Wärmetauscher (1) nach Anspruch 1, wobei die konkaven Abschnitte (3a, 4a), die an einer Seite, in senkrechter Richtung, an der äußeren umlaufenden Oberfläche der ersten Wärmeübertragungsrohre vorgesehen sind, und die konkaven Abschnitte (3a, 4a), die auf der anderen Seite, in senkrechter Richtung, an der äußeren umlaufenden Oberfläche der ersten Wärmeübertragungsrohre vorgesehen sind, wechselweise entlang der Ausdehnungsrichtung der ersten Wärmeübertragungsrohre angeordnet sind.
- Wärmetauscher (1) nach Anspruch 1, wobei die konkaven Abschnitte (3a, 4a), die an einer Seite, in senkrechter Richtung, an der äußeren umlaufenden Oberfläche der ersten Wärmeübertragungsrohre vorgesehen sind, und die konkaven Abschnitte (3a, 4a), die an der anderen Seite, in der senkrechten Richtung, an der äußeren umlaufenden Oberfläche der ersten Wärmeübertragungsrohre vorgesehen sind, an Stellen, die einander in der senkrechten Richtung zugewandt sind, angeordnet sind.
- Wärmetauscher (1) nach einem der Ansprüche 1 bis 3, wobei eine Vielzahl von konkaven Abschnitten (3a, 4a) ebenfalls an beiden Seiten, in senkrechter Richtung, an der äußeren umlaufenden Oberfläche von jeder der zweiten Wärmeübertragungsrohre (4), entlang einer Ausdehnungsrichtung der zweiten Wärmeübertragungsrohre vorgesehen sind, und wobei die Vielzahl von konkaven Abschnitten (3a, 4a) konvexe Abschnitte auf einer inneren umlaufenden Oberfläche der zweiten Wärmeübertragungsrohre ausbilden.
- Wärmetauscher (1) nach Anspruch 4, wobei die konkaven Abschnitte (3a, 4a), die an einer Seite, in senkrechter Richtung, an der äußeren umlaufenden Oberfläche der zweiten Wärmeübertragungsrohre vorgesehen sind und die konkaven Abschnitte (3a, 4a), die an der anderen Seite, in senkrechter Richtung, an der äußeren umlaufenden Oberfläche der zweiten Wärmeübertragungsrohre vorgesehen sind, wechselweise entlang der Ausdehnungsrichtung der zweiten Wärmeübertragungsrohre angeordnet sind.
- Wärmetauscher (1) nach Anspruch 4, wobei die konkaven Abschnitte (3a, 4a), die an einer Seite, in senkrechter Richtung, an der äußeren umlaufenden Oberfläche der zweiten Wärmeübertragungsrohre vorgesehen sind und die konkaven Abschnitte (3a, 4a), die an der anderen Seite, in senkrechter Richtung, an der äußeren umlaufenden Oberfläche der zweiten Wärmeübertragungsrohre vorgesehen sind, an Stellen, die einander in der senkrechten Richtung zugewandt sind, angeordnet sind.
- Wärmetauscher (1) nach einem der Ansprüche 1 bis 6, wobei die konkaven Abschnitte (3a, 4a) lineare Vertiefungen sind, die sich in eine vorgegebene Richtung ausdehnen.
- Wärmetauscher (1) nach Anspruch 7, wobei die vorgegebene Richtung eine Richtung parallel zu der Ausdehnungsrichtung der ersten Wärmeübertragungsrohre oder der zweiten Wärmeübertragungsrohre ist.
- Wärmetauscher (1) nach Anspruch 7, wobei die vorgegebene Richtung eine Richtung ist, die in Bezug auf die Ausdehnungsrichtung der ersten Wärmeübertragungsrohre oder der zweiten Wärmeübertragungsrichtung geneigt ist.
- Wärmetauscher (1) nach einem der Ansprüche 1 bis 9, wobei die Wärmeübertragungsrohrgruppe in einer annährend rechteckigen Spiralform ausgebildet ist, die derart gewickelt ist, dass sich ein gerader Abschnitt und ein gebogener Abschnitt, der ungefähr um 90° mit gleichförmigen Biegeradius gebogen ist, wechselweise wiederholen.
- Wärmetauscher (1) nach einem der Ansprüche 1 bis 10, wobei eine Lücke zwischen einem außen befindlichen Windungsabschnitt und einem innen angeordneten Windungsabschnitt, die in der Wärmeübertragungsrohrgruppe aneinander angrenzen, ausgebildet ist.
- Wärmetauscher (1) nach einem der Ansprüche 1 bis 10, wobei ein Wärmeisolierungsmaterial zwischen einem außen befindlichen Windungsabschnitt und einem innen angeordneten Windungsabschnitt, die in der Wärmeübertragungsrohrgruppe aneinander angrenzen, eingefügt ist.
- Wärmetauscher (1) nach einem der Ansprüche 1 bis 12, wobei die ersten Wärmeübertragungsrohre (3) so eingerichtet sind, dass sie die erste Flüssigkeit mit einer relativ niedrigen Temperatur leiten, und wobei die zweiten Wärmeübertragungsrohre (4) so eingerichtet sind, dass sie die zweite Flüssigkeit mit einer relativ hohen Temperatur leiten.
- Wärmetauscher (1) nach Anspruch 13, wobei die ersten Wärmeübertragungsrohre (3) so eingerichtet sind, dass sie Wasser als die erste Flüssigkeit leiten, und wobei die zweiten Wärmeübertragungsrohre (4) so eingerichtet sind, dass sie ein Kühlmittel als zweite Flüssigkeit leiten.
- Wärmetauscher (1) nach einem der Ansprüche 1 bis 14, wobei sowohl die ersten Wärmeübertragungsrohre (3) als auch die zweiten Wärmeübertragungsrohre (4) kreisförmige Röhren sind, und wobei die ersten Wärmeübertragungsrohre (3) einen äußeren Durchmesser aufweisen, der gleich oder größer als derjenige der zweiten Wärmeübertragungsrohre (4) ist.
- Wärmetauscher (1) nach einem der Ansprüche 1 bis 15, wobei ein erstes Einlasselement (5), das Einlässe zum Führen der ersten Flüssigkeit in die ersten Wärmeübertragungsrohre (3) ausbildet, an einer Umfangsseite der Spiralform angeordnet ist, ein erstes Auslasselement, das Auslässe zum Auslassen der ersten Flüssigkeit ausbildet, an einer zentralen Seite der Spiralform angeordnet ist, ein zweites Einlasselement (7), das Einlässe zum Führen der zweiten Flüssigkeit in die zweiten Wärmeübertragungsrohre (4) ausbildet, an einer zentralen Seite der Spiralform angeordnet ist, und ein zweites Auslasselement (8), das Auslässe zum Auslassen einer zweiten Flüssigkeit ausbildet, an einer Umfangsseite der Spiralform angeordnet ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009024653 | 2009-02-05 | ||
PCT/JP2010/000267 WO2010089957A1 (ja) | 2009-02-05 | 2010-01-19 | 熱交換器 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2395308A1 EP2395308A1 (de) | 2011-12-14 |
EP2395308A4 EP2395308A4 (de) | 2013-09-11 |
EP2395308B1 true EP2395308B1 (de) | 2018-10-24 |
Family
ID=42541870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10738301.0A Not-in-force EP2395308B1 (de) | 2009-02-05 | 2010-01-19 | Wärmetauscher |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110284193A1 (de) |
EP (1) | EP2395308B1 (de) |
JP (1) | JP5394405B2 (de) |
CN (1) | CN102301197B (de) |
WO (1) | WO2010089957A1 (de) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5165740B2 (ja) * | 2010-10-01 | 2013-03-21 | シャープ株式会社 | 熱交換装置及びこれを用いた冷却庫 |
CN103542735B (zh) * | 2013-09-27 | 2014-08-13 | 山东大学 | 一种部分光管的圆弧型封闭式翅片管散热器 |
CN103528394B (zh) * | 2013-09-27 | 2014-07-23 | 山东大学 | 一种圆弧型封闭式翅片管散热器 |
CN103900401B (zh) * | 2013-09-30 | 2015-04-22 | 赵炜 | 一种凸起密度变化的翅片管散热器 |
CN103884211B (zh) * | 2013-09-30 | 2015-04-15 | 赵炜 | 一种凸起高度变化的翅片管散热器 |
CN103471430B (zh) * | 2013-09-30 | 2014-05-21 | 赵炜 | 一种内部设有凸起的翅片管 |
US20150122459A1 (en) * | 2013-11-06 | 2015-05-07 | Carrier Corporation | Brazed heat exchanger design |
CN103968702B (zh) * | 2014-05-19 | 2015-02-25 | 山东大学 | 一种八棱柱形散热器 |
CN104019687B (zh) * | 2014-06-09 | 2015-05-06 | 赵炜 | 沿着主翅片凸起高度变小的散热器 |
CN104048523B (zh) * | 2014-06-09 | 2015-05-06 | 赵炜 | 翅根到翅顶之间凸起高度降低的散热器 |
CN108151372A (zh) * | 2017-12-28 | 2018-06-12 | 新昌县宏宇制冷有限公司 | 一种双重换热蒸发器 |
JP7254307B2 (ja) * | 2020-03-04 | 2023-04-10 | 株式会社Kmct | 伝熱管 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2080626A (en) * | 1936-06-18 | 1937-05-18 | Oliver W Mojonnier | Tube |
JPS54128041A (en) * | 1978-03-28 | 1979-10-04 | Hitoshi Tatsumi | Evaporation system cooling heat exchanger |
SE441302B (sv) * | 1980-05-27 | 1985-09-23 | Euroheat Ab | Trekretsvermevexlare med spirallindade ror i en stapel |
JPH03279788A (ja) * | 1990-03-27 | 1991-12-10 | Hitachi Cable Ltd | コイル状熱交換器 |
JPH0734949B2 (ja) * | 1992-11-06 | 1995-04-19 | 株式会社日立製作所 | 伝熱管の製造方法 |
JP3279788B2 (ja) * | 1993-12-09 | 2002-04-30 | 積水ハウス株式会社 | コンクリート天端の設定用ビスの支持具 |
SE517450C2 (sv) * | 1999-06-18 | 2002-06-04 | Valeo Engine Cooling Ab | Fluidtransportrör samt sätt och anordning för framställning av detsamma |
JP3768147B2 (ja) * | 2001-11-09 | 2006-04-19 | 三洋電機株式会社 | 熱交換器及びヒートポンプ式給湯機 |
FR2835046B1 (fr) * | 2002-01-21 | 2004-05-28 | Rhodia Polyamide Intermediates | Serpentin de circulation d'un fluide caloporteur, procede de fabrication d'un tel serpentin et reacteur comprenant un tel serpentin |
JP3949589B2 (ja) * | 2003-01-24 | 2007-07-25 | 東芝キヤリア株式会社 | ヒートポンプ式給湯器 |
JP2004340455A (ja) * | 2003-05-15 | 2004-12-02 | Taiheiyo Seiko Kk | 熱交換器 |
US6945320B2 (en) * | 2004-01-26 | 2005-09-20 | Lennox Manufacturing Inc. | Tubular heat exchanger with offset interior dimples |
JP2005221094A (ja) * | 2004-02-03 | 2005-08-18 | Iwai Kikai Kogyo Co Ltd | 熱交換器用伝熱管 |
JP2005233479A (ja) * | 2004-02-18 | 2005-09-02 | Tokyo Radiator Mfg Co Ltd | 熱交換器用伝熱管 |
JP2006162204A (ja) * | 2004-12-10 | 2006-06-22 | Mitsubishi Electric Corp | 給湯器用熱交換器 |
CN100451531C (zh) * | 2005-03-25 | 2009-01-14 | 清华大学 | 一种热水器换热管 |
JP4699945B2 (ja) * | 2006-06-09 | 2011-06-15 | 三菱電機株式会社 | 渦巻き多段形熱交換器の製造方法及び渦巻き多段形熱交換器 |
CN1924507A (zh) * | 2006-09-08 | 2007-03-07 | 清华大学 | 用于热水器的螺旋槽换热管 |
JP4634357B2 (ja) * | 2006-09-29 | 2011-02-16 | 三菱電機株式会社 | ヒートポンプ式給湯機 |
JP4983279B2 (ja) * | 2007-02-01 | 2012-07-25 | パナソニック株式会社 | 熱交換器の製造方法 |
-
2010
- 2010-01-19 JP JP2010549372A patent/JP5394405B2/ja not_active Expired - Fee Related
- 2010-01-19 CN CN201080005789.XA patent/CN102301197B/zh not_active Expired - Fee Related
- 2010-01-19 EP EP10738301.0A patent/EP2395308B1/de not_active Not-in-force
- 2010-01-19 WO PCT/JP2010/000267 patent/WO2010089957A1/ja active Application Filing
- 2010-01-19 US US13/147,743 patent/US20110284193A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2395308A4 (de) | 2013-09-11 |
CN102301197B (zh) | 2014-07-23 |
JPWO2010089957A1 (ja) | 2012-08-09 |
US20110284193A1 (en) | 2011-11-24 |
JP5394405B2 (ja) | 2014-01-22 |
CN102301197A (zh) | 2011-12-28 |
EP2395308A1 (de) | 2011-12-14 |
WO2010089957A1 (ja) | 2010-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2395308B1 (de) | Wärmetauscher | |
JP5206830B2 (ja) | 熱交換器 | |
US20150338168A1 (en) | Heat exchanger | |
EP2878909A1 (de) | Plattenwärmetauscher und kältekreislaufvorrichtung damit | |
JP2007017132A (ja) | 熱交換用チューブおよび熱交換器 | |
JP2008144997A (ja) | 耐圧性熱交換器 | |
JP2010121925A (ja) | 熱交換器 | |
JP2009074772A (ja) | 熱交換器 | |
KR19980032977A (ko) | 험프가 있는 플레이트휜 열교환기 | |
KR102025459B1 (ko) | 열교환기 수단용 배관 요소 | |
JP2005201625A (ja) | 熱交換器およびその製造方法 | |
CN111556950A (zh) | 冷冻冷藏库用热交换器 | |
JP5257102B2 (ja) | 熱交換器および冷凍空調装置 | |
JP3906814B2 (ja) | チューブ | |
KR102010156B1 (ko) | 쉘앤플레이트 열교환기용 쉘 및 이를 구비한 쉘앤플레이트 열교환기 | |
JP3922088B2 (ja) | 熱交換器 | |
JP2005024109A (ja) | 熱交換器 | |
JP2004218945A (ja) | 熱交換器およびその製造方法 | |
EP3521746A1 (de) | Flachrohr für wärmetauscher | |
JP2015103736A (ja) | 積層型熱交換器 | |
KR100819011B1 (ko) | 열교환기 | |
JP2018151110A (ja) | パラレルフロー型熱交換器及びその製造方法 | |
JP2003314975A (ja) | 熱交換器 | |
JP7025914B2 (ja) | 熱交換器 | |
JP2012154520A (ja) | 熱交換器用チューブ及び熱交換器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110905 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20130809 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28F 1/40 20060101ALI20130805BHEP Ipc: F28D 7/04 20060101ALI20130805BHEP Ipc: F28D 7/00 20060101AFI20130805BHEP Ipc: F28F 1/42 20060101ALI20130805BHEP Ipc: F28F 13/12 20060101ALI20130805BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LT |
|
17Q | First examination report despatched |
Effective date: 20151222 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180503 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1057191 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010054579 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1057191 Country of ref document: AT Kind code of ref document: T Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190123 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190125 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010054579 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190119 |
|
26N | No opposition filed |
Effective date: 20190725 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190131 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190124 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190119 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010054579 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |