EP2390374B1 - Multi-alloy article, and method of manufacturing thereof - Google Patents
Multi-alloy article, and method of manufacturing thereof Download PDFInfo
- Publication number
- EP2390374B1 EP2390374B1 EP11161627A EP11161627A EP2390374B1 EP 2390374 B1 EP2390374 B1 EP 2390374B1 EP 11161627 A EP11161627 A EP 11161627A EP 11161627 A EP11161627 A EP 11161627A EP 2390374 B1 EP2390374 B1 EP 2390374B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight percentage
- alloy
- section
- article
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/06—Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/4932—Turbomachine making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/4932—Turbomachine making
- Y10T29/49325—Shaping integrally bladed rotor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12944—Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12958—Next to Fe-base component
Definitions
- Turbomachines such as heavy-duty gas turbines and jet engines operate in extreme environments, exposing the turbine components, especially those in the turbine hot section, to high operating temperatures and stresses.
- cooling air is used to reduce the part's effective temperature.
- the component size is increased to reduce the stresses.
- these approaches can reduce the efficiency of the turbine and increase the cost.
- United Kingdom Patent Application No. 2236501 describes a dual alloy turbine disk made from a rim alloy having high stress rupture and creep resistance and hub alloy having high tensile strength and good low cycle fatigue crack resistance. The hub and rim are joined together at a substantially defect-free joint.
- an enhanced alloy article that is capable of maintaining its mechanical integrity over a range of conditions ranging from higher stress/lower temperature to higher temperature/lower stress.
- the present invention resides in an article and a method for manufacturing an article as recited in the appended claims.
- the invention relates generally to a multi-alloy article, and a method of manufacturing the multi-alloy article, and more particularly, to a dual-alloy article having a first section extending from an outer periphery of an article to a predetermined surface located inward from the outer periphery made of a nanostructured ferritic alloy and, a second section extending from an inner periphery of the article to the predetermined surface located outward from the inner periphery made of another alloy that is different from the nanostructured ferritic alloy used in the first section.
- other alloy discussed herein refers to a different class alloy than the nanostructured ferritic alloy. It should also be noted that in certain embodiments, more than one other alloy may be used in the second section as given in the claims.
- a dual-alloy article includes a turbomachinery component.
- the article includes a first section extending from an outer periphery of the article to a predetermined surface located inward from the outer periphery.
- the first section includes a nanostructured ferritic alloy.
- the article further includes a second section extending from an inner periphery of the article to the predetermined surface located outward from the inner periphery.
- the second section comprises at least one other alloy different from the nanostructured ferritic alloy.
- the article 10 includes a dual-alloy article.
- the article 10 may be a multi-alloy article i.e. the article 10 may include more than two alloys.
- the article 10 includes a first section 12 extending from an outer periphery 14 to a predetermined surface 16.
- the first section 12 includes a nanostructured ferritic alloy.
- the article 10 further includes a second section 18 extending from an inner periphery 20 to the predetermined surface 16.
- the second section 18 includes at least one other alloy different from the nanostructured ferritic alloy.
- the article 10 may be a turbomachinery component.
- the article 10 may also be applicable for any other applications involving operation at higher temperatures.
- the article 10 is a heavy-duty gas turbine wheel.
- the article 10 may be a heavy-duty gas turbine spacer.
- the article 10 may be a turbomachinery component used in aerospace applications.
- the article 10 may be a jet engine disk.
- turbomachinery component 22 is similar to the article 10 of the previous embodiment.
- the turbomachinery component 22 includes a dual-alloy component.
- the component 22 may be a multi-alloy component i.e. the component 22 may include more than two alloys.
- the illustrated component 22 is a heavy-duty gas turbine wheel.
- the component 22 includes a first section 24 extending from a rim 26 (outer periphery) to a predetermined surface 28.
- the first section 24 includes a nanostructured ferritic alloy.
- the component 22 further includes a second section 30 extending from a bore 32 (inner periphery) to the predetermined surface 28.
- the second section 30 includes at least one other alloy different from the nanostructured ferritic alloy.
- the bore is limited by burst strength, and hence would require a higher ultimate tensile strength.
- the rim is limited by a material's creep life and its resistance to HTFCG.
- the gamma double prime nickel-based superalloys cannot meet the HTFCG resistance required at elevated temperatures.
- the nanostructured ferritic alloy of the first section 24 comprises a stainless steel matrix that is dispersion strengthened by a very high density, of at least 10 18 m -3 , preferably at least about 10 20 m -3 , more preferably at least about 10 22 m -3 of nanometer-scale, for example, from about 1 nanometer to about 100 nanometers, or from about 1 nanometer to about 50 nanometers, or from about 1 nanometer to about 10 nanometers, nanofeature including titanium oxide and at least one other element from the oxide used to prepare the nanostructured ferritic alloy or the alloy matrix.
- yttrium oxide, aluminum oxide, zirconium oxide, hafnium oxide may be used to prepare the NFA, in which case, the nanofeatures may comprise yttrium (Y), aluminum (Al), zirconium (Z), hafnium (Hf) or combinations thereof.
- Transition metals such as iron, chromium, molybdenum, tungsten, manganese, silicon, niobium, aluminium, niobium, or tantalum from the alloy matrix may also participate in the creation of the nanofeatures.
- the nanostructured ferritic alloy In a nanostructured ferritic alloy, the majority, if not substantially all, of the added oxide is dissolved into the alloy matrix during powder attrition and participates in the formation of the aforementioned nanofeatures when the powder is raised in temperature during the consolidation process.
- the new oxide in the nanostructured ferritic alloy may include the transition metals present in the base alloy as well as the metallic element(s) of the initial oxide addition.
- the nanostructured ferritic alloy matrix comprises a ferritic stainless steel. In certain other embodiments, the nanostructured ferritic alloy matrix may comprise a martensitic, duplex, austenitic stainless, or precipitation hardened steel.
- the nanostructured ferritic alloy comprises from 5 weight percentage to 30 weight percentage chromium, from 0.1 weight percentage to 2 weight percentage titanium, from 0 weight percentage to 5 weight percentage molybdenum, from 0 weight percentage to 5 weight percentage tungsten, from 0 weight percentage to 5 weight percentage manganese, from 0 weight percentage to 5 weight percentage silicon, from 0 weight percentage to 2 weight percentage niobium, from 0 weight percentage to 2 weight percentage aluminum, from 0 weight percentage to 8 weight percentage nickel, from 0 weight percentage to 2 weight percentage tantalum, from 0 weight percentage to 0.5 weight percentage carbon, and from 0 weight percentage to 0.5 weight percentage nitrogen, with the balance weight percentage being iron and incidental impurities; and a number density of at least 10 18 m -3 nanofeatures including titanium oxide and at least one element from an oxide added during formation of the nanostructured ferritic alloy, or from the alloy matrix.
- the nanostructured ferritic alloy comprises from 9 weight percentage to 20 weight percentage chromium, from 0.1 weight percentage to 1 weight percentage titanium, from 0 weight percentage to 4 weight percentage molybdenum, from 0 weight percentage to 4 weight percentage tungsten, from 0 weight percentage to 2.5 weight percentage manganese, from 0 weight percentage to 2.5 weight percentage silicon, from 0 weight percentage to 1 weight percentage niobium, from 0 weight percentage to 1 weight percentage aluminum, from 0 weight percentage to 4 weight percentage nickel, from 0 weight percentage to 1 weight percentage tantalum, from 0 weight percentage to 0.2 weight percentage carbon, and from 0 weight percentage to 0.2 weight percentage nitrogen, with the balance weight percentage being iron and incidental impurities; and a number density of at least 10 20 m -3 nanofeatures including titanium oxide and at least one element from an oxide added during formation of the nanostructured ferritic alloy, or from the alloy matrix.
- the nanostructured ferritic alloy comprises from 9 weight percentage to 14 weight percentage chromium, from 0.1 weight percentage to 0.5 weight percentage titanium, from 0 weight percentage to 3 weight percentage molybdenum, from 0 weight percentage to 3 weight percentage tungsten, from 0 weight percentage to 1 weight percentage manganese, from 0 weight percentage to 1 weight percentage silicon, from 0 weight percentage to 0.5 weight percentage niobium, from 0 weight percentage to 0.5 weight percentage aluminum, from 0 weight percentage to 2 weight percentage nickel, from 0 weight percentage to 0.5 weight percentage tantalum, from 0 weight percentage to 0.1 weight percentage carbon, and from 0 weight percentage to 0.1 weight percentage nitrogen, with the balance weight percentage being iron and incidental impurities; and a number density of at least 10 22 m -3 nanofeatures including titanium oxide and at least one element from an oxide added during formation of the nanostructured ferritic alloy, or from the alloy matrix.
- the second section 30 includes at least one other alloy different from the nanostructured ferritic alloy.
- the other alloy includes a martensitic steel and the nanostructured ferritic alloy comprises a martensitic steel matrix.
- the other alloy includes a martensitic steel and the nanostructured ferritic alloy comprises a non-martensitic steel matrix.
- the other alloy includes a ferritic steel and the nanostructured ferritic alloy comprises a ferritic steel matrix.
- the other alloy includes a ferritic steel and the nanostructured ferritic alloy comprises a non-ferritic steel matrix.
- the other alloy includes an austenitic steel and the nanostructured ferritic alloy comprises an austenitic steel matrix. In yet another embodiment, the other alloy includes an austenitic steel and the nanostructured ferritic alloy comprises a non-austenitic steel matrix. In yet another embodiment, the other alloy includes a duplex steel and the nanostructured ferritic alloy comprises a duplex steel matrix. In yet another embodiment, the other alloy includes a duplex steel and the nanostructured ferritic alloy comprises a non-duplex steel matrix. In yet another embodiment, the other alloy includes a precipitation hardened steel and the nanostructured ferritic alloy comprises a precipitation hardened steel matrix.
- the other alloy includes a precipitation hardened steel and the nanostructured ferritic alloy comprises a non-precipitation hardened steel matrix.
- the other alloy includes a nickel based superalloy strengthened with a gamma double prime phase and the nanostructured ferritic alloy comprises a ferritic, martensitic, austenitic, or duplex steel matrix.
- the other alloy includes a nickel based superalloy strengthened with a gamma prime phase and the nanostructured ferritic alloy comprises a ferritic, martensitic, austenitic, or duplex steel matrix.
- the nanostructured ferritic alloy is located in the first section 24 extending from the rim 26 to the predetermined surface 28 and the other alloy, for example a martensitic steel is located in the second section 30 extending from the bore 32 to the predetermined surface 28.
- the predetermined surface 28 may be referred to as a "transition surface" between the first section 24 and the second section 30.
- the usage of the alloy material of the second section 30 as the matrix phase of the nanostructured ferritic alloy of the first section 24 works to limit the amount of material inter-diffusion that would occur at a joint during the service of the component 22, thus extending service life.
- the component 22 may be manufactured using several techniques.
- the first section 24 and the second section 30 are manufactured beforehand and then mutually joined.
- the component 22 is manufactured by simultaneously consolidating and joining sections 24 and 30.
- the method includes performing a single heat treatment of the first section 24 and the second section 30.
- the component 22 is formed by forge enhanced bonding.
- the manufacturing process includes isothermal forging of bore and rim preforms, HIP diffusion bonding of bore and rim preforms, isothermal finish forge operations to locally deform a bondline, and heat treating the forge bonded article to optimize the properties in the bore, rim and across the bondline.
- the component 22 is formed by electron beam welding (EBW) in which a beam of high-velocity electrons is applied to the materials being joined.
- EBW electron beam welding
- the materials melt as the kinetic energy of the electrons is transformed into heat upon impact.
- the welding is often done in conditions of a vacuum to prevent dispersion of the electron beam.
- the component 22 is formed by solid state joining technique.
- This technique involves a joining process, which produces coalescence at temperatures essentially below the melting point of the base materials being joined, without the addition of brazing filler metal.
- the solid state joining may include inertia welding, translation friction welding, linear friction welding, consumable rod friction welding, projection welding, or the like.
- the component 22 is formed by diffusion bonding or activated diffusion bonding.
- bonding occurs when two mating surfaces are pressed together under temperature, time and pressure conditions that allow atom interchange across the interface such that the interface effectively ceases to exist.
- a HIP can is filled with the nanostructured ferritic alloy powder located on a periphery and the second alloy powder located in a center. The can is then evacuated and HIP'd in order to fully densify the powder. The dual-alloy compact is then forged to the required shape.
- the component 22 can be formed by any suitable method.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/757,705 US8616851B2 (en) | 2010-04-09 | 2010-04-09 | Multi-alloy article, and method of manufacturing thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2390374A1 EP2390374A1 (en) | 2011-11-30 |
EP2390374B1 true EP2390374B1 (en) | 2013-01-23 |
Family
ID=44117449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11161627A Not-in-force EP2390374B1 (en) | 2010-04-09 | 2011-04-08 | Multi-alloy article, and method of manufacturing thereof |
Country Status (4)
Country | Link |
---|---|
US (1) | US8616851B2 (ja) |
EP (1) | EP2390374B1 (ja) |
JP (1) | JP6266196B2 (ja) |
CN (1) | CN102220884B (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3008144B1 (fr) * | 2013-07-03 | 2017-08-25 | Snecma | Disque de compresseur de turbomachine et procede de fabrication d'un tel disque |
US9399223B2 (en) | 2013-07-30 | 2016-07-26 | General Electric Company | System and method of forming nanostructured ferritic alloy |
US20150167129A1 (en) * | 2013-12-12 | 2015-06-18 | General Electric Company | Particulate strengthened alloy articles and methods of forming |
US10017843B2 (en) * | 2014-03-25 | 2018-07-10 | Battelle Energy Alliance, Llc | Compositions of particles comprising rare-earth oxides in a metal alloy matrix and related methods |
US10179943B2 (en) | 2014-07-18 | 2019-01-15 | General Electric Company | Corrosion resistant article and methods of making |
WO2016043759A1 (en) | 2014-09-18 | 2016-03-24 | Halliburton Energy Services, Inc. | Precipitation hardened matrix drill bit |
US20160122840A1 (en) * | 2014-11-05 | 2016-05-05 | General Electric Company | Methods for processing nanostructured ferritic alloys, and articles produced thereby |
US10260370B2 (en) * | 2014-12-10 | 2019-04-16 | General Electric Company | Nanostructured ferritic alloy components and related articles |
US10480332B2 (en) | 2014-12-10 | 2019-11-19 | General Electric Company | Rotors and methods of making the same |
US20160207110A1 (en) * | 2015-01-20 | 2016-07-21 | General Electric Company | Corrosion resistant article and methods of making |
US11549374B2 (en) | 2020-02-18 | 2023-01-10 | Raytheon Technologies Corporation | Gas turbine rotor component and method of manufacture |
WO2022083806A1 (en) * | 2020-10-19 | 2022-04-28 | Institute Of Physics Of Materials | Method of consolidating powders by volumetric forming |
US11745256B2 (en) | 2020-12-18 | 2023-09-05 | Caterpillar Inc. | Casting parts cycle life improvement using localized gradient material |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4111603A (en) | 1976-05-17 | 1978-09-05 | Westinghouse Electric Corp. | Ceramic rotor blade assembly for a gas turbine engine |
US5161950A (en) * | 1989-10-04 | 1992-11-10 | General Electric Company | Dual alloy turbine disk |
JP2001509566A (ja) | 1997-07-11 | 2001-07-24 | サーモ キング コーポレイション | 高効率ロータリベーンモータ |
FR2777020B1 (fr) * | 1998-04-07 | 2000-05-05 | Commissariat Energie Atomique | Procede de fabrication d'un alliage ferritique - martensitique renforce par dispersion d'oxydes |
JP4481027B2 (ja) * | 2003-02-17 | 2010-06-16 | 財団法人ファインセラミックスセンター | 遮熱コーティング部材およびその製造方法 |
JP4509664B2 (ja) | 2003-07-30 | 2010-07-21 | 株式会社東芝 | 蒸気タービン発電設備 |
US7316057B2 (en) * | 2004-10-08 | 2008-01-08 | Siemens Power Generation, Inc. | Method of manufacturing a rotating apparatus disk |
JP2008138242A (ja) * | 2006-11-30 | 2008-06-19 | General Electric Co <Ge> | 耐摩耗コーティングと該耐磨耗コーティングを有する物品 |
EP1952915A1 (en) * | 2007-01-23 | 2008-08-06 | General Electric Company | Nanostructured superalloy structural components and methods of making |
US7950146B2 (en) * | 2007-04-10 | 2011-05-31 | Siemens Energy, Inc. | Co-forged steel rotor component for steam and gas turbine engines |
-
2010
- 2010-04-09 US US12/757,705 patent/US8616851B2/en not_active Expired - Fee Related
-
2011
- 2011-03-25 JP JP2011066910A patent/JP6266196B2/ja not_active Expired - Fee Related
- 2011-04-08 CN CN201110093546.2A patent/CN102220884B/zh not_active Expired - Fee Related
- 2011-04-08 EP EP11161627A patent/EP2390374B1/en not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
CN102220884B (zh) | 2015-11-25 |
EP2390374A1 (en) | 2011-11-30 |
JP2011219863A (ja) | 2011-11-04 |
US8616851B2 (en) | 2013-12-31 |
US20110250074A1 (en) | 2011-10-13 |
CN102220884A (zh) | 2011-10-19 |
JP6266196B2 (ja) | 2018-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2390374B1 (en) | Multi-alloy article, and method of manufacturing thereof | |
JP5780728B2 (ja) | 多元合金ローターセクション、それを含む溶接されたタービンローター及びその製造方法 | |
Schafrik et al. | Application of alloy 718 in GE aircraft engines: past, present and next five years | |
JP4721659B2 (ja) | 高強度材料を摩擦撹拌接合するための装置及び方法、並びにこれから製造される物品 | |
US9039960B2 (en) | Methods for processing nanostructured ferritic alloys, and articles produced thereby | |
US8882442B2 (en) | Component for a gas turbine and a method for the production of the component | |
JP6711598B2 (ja) | ナノ構造化フェライト合金構成部品及び関連物品 | |
EP2886672A2 (en) | Particulate strengthened alloy articles and methods of forming | |
US8703045B2 (en) | Method of manufacturing a multiple composition component | |
EP1927722A1 (en) | Rotary assembly components and methods of fabricating such components | |
Kushan et al. | ALLVAC 718 Plus™ superalloy for aircraft engine applications | |
JP2012507624A (ja) | 溶接添加剤、溶接添加剤の使用並びにコンポーネント | |
EP2353750B1 (en) | Welding and forging process for producing a component | |
JPS624521B2 (ja) | ||
US20220134428A1 (en) | Method for manufacturing cobalt-based alloy structure, and cobalt-based alloy structure obtained thereby | |
US7108483B2 (en) | Composite gas turbine discs for increased performance and reduced cost | |
JP2015096709A (ja) | 耐熱合金部材およびこれを用いたガスタービン | |
US9399223B2 (en) | System and method of forming nanostructured ferritic alloy | |
Gandy et al. | Overcoming barriers for using PM/HIP technology to manufacture large power generation components | |
US10480332B2 (en) | Rotors and methods of making the same | |
US20140093377A1 (en) | Extruded rotor, a steam turbine having an extruded rotor and a method for producing an extruded rotor | |
Arrell | Next generation engineered materials for ultra supercritical steam turbines | |
Sureshkumar et al. | Investigation of new alternate and conventional materials for manufacturing high pressure turbine disk | |
JPH08200681A (ja) | ガスタービン燃焼器 | |
Gaytor | High temperature alloys for gas turbines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
RTI1 | Title (correction) |
Free format text: MULTI-ALLOY ARTICLE, AND METHOD OF MANUFACTURING THEREOF |
|
17P | Request for examination filed |
Effective date: 20120530 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 595028 Country of ref document: AT Kind code of ref document: T Effective date: 20130215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011000819 Country of ref document: DE Effective date: 20130321 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 595028 Country of ref document: AT Kind code of ref document: T Effective date: 20130123 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130523 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130504 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130423 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130423 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130523 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130424 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
26N | No opposition filed |
Effective date: 20131024 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011000819 Country of ref document: DE Effective date: 20131024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130408 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110408 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130408 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150408 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180427 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180425 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130123 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011000819 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |