EP2376789B1 - Pumpe mit achsenausgleichsvorrichtung - Google Patents

Pumpe mit achsenausgleichsvorrichtung Download PDF

Info

Publication number
EP2376789B1
EP2376789B1 EP10706014.7A EP10706014A EP2376789B1 EP 2376789 B1 EP2376789 B1 EP 2376789B1 EP 10706014 A EP10706014 A EP 10706014A EP 2376789 B1 EP2376789 B1 EP 2376789B1
Authority
EP
European Patent Office
Prior art keywords
pump
downstream
nozzle
passage
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10706014.7A
Other languages
English (en)
French (fr)
Other versions
EP2376789A1 (de
Inventor
Sébastien BOUFFLERT
Nicolas Juhel
Patrice Fayolle
Stéphane LAFFITE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArianeGroup SAS
Original Assignee
ArianeGroup SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArianeGroup SAS filed Critical ArianeGroup SAS
Publication of EP2376789A1 publication Critical patent/EP2376789A1/de
Application granted granted Critical
Publication of EP2376789B1 publication Critical patent/EP2376789B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/042Axially shiftable rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0416Axial thrust balancing balancing pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2266Rotors specially for centrifugal pumps with special measures for sealing or thrust balance

Definitions

  • the present invention relates to the axial balancing of a pump, in particular a turbopump, in particular a space engine.
  • These devices are capable of using all the surfaces on the front face (on the blade side) and vice versa on the rear face or on the back of the centrifugal wheels as surfaces on which fluid is just circulated, so as to compensate for the axial resultant. forces exerted on the rotor parts. In known manner, it is used more particularly to achieve this balance the back of the last centrifugal wheel, which is called for this reason the 'balancing piston'.
  • the Figures 1 and 2 represent such a known axial thrust balancing device, arranged between a wheel 11 and a stator 12.
  • the turbopump of the figure 1 comprises essentially a rotating assembly constituted around a central shaft 26, of reduced length, and comprising a single-stage centrifugal pump impeller 11 mounted on the shaft 26, in the middle part thereof, and two wheels turbine 22, mounted on the shaft 26 in the rear portion thereof.
  • FIG. 1 for the single-stage pump is shown an open-type impeller 11 with vanes 6 receiving the working fluid through a suction channel 2 and discharging the pressurized working fluid through a delivery channel 3.
  • the working fluid is introduced axially through the inlet section 28 and passes directly into the suction channel 2 of the pump.
  • This device for axial balancing or axial thrust balancing of the rotating assembly is integrated with the impeller 11 and comprises a single rear balancing chamber 18 interposed between the rear part of the wheel 11 and a portion of the stator 12, and a passage 20 connecting the rear balancing chamber to the fluid stream.
  • a balancing chamber is a chamber in which there is a fluid pressure, the action of this pressure on a movable member (here, the rotor) for regulating and controlling the position of said movable member.
  • This wheel 11 receives the pressure of the fluid stream 14 which tends to move the rotor 10 rearwardly.
  • the fluid pressure in the rear balancing chamber 18 instead tends to move the rotor 10 forward. Equilibrium is achieved when these forces compensate axially, the force exerted by the fluid on the rotor 10 at the rear chamber 18 then compensating for the axial resultant forces exerted by the fluid on the other parts of the rotor, during the various phases of operation of the pump.
  • the axial balancing device modulates the supply pressure of the rear chamber 18, via the axial displacement of the rotor, as follows:
  • the fluid transfer passage 20 has a radial nozzle 40 extending between the rotating wall connected to the rotor 10, that is to say to the centrifugal wheel 11, and a wall facing the stator. 12, that is to say a fixed wall of the pump.
  • the section for the fluid passage of this radial nozzle depends on the relative axial position of the rotor and the stator: It increases as the rotor moves backwards (increase in thickness A of fluid film passing through the passage 20, on the figure 2 , when the wheel 11 moves to the right), which causes an increase in the flow entering the rear chamber, a rise in the pressure in the rear chamber, and therefore an increase in the restoring force exerted by the fluid on the rotor tending to push it forward. Conversely, if the rotor 10 tends to move forward (at the expense of the fluid film thickness A), by a reverse mechanism the return force decreases which causes the rotor to return further back.
  • the displacement of the rotor makes it possible to modulate the pressure in the rear balancing chamber 18, and thus to keep the rotor in a substantially constant axial position, and this advantageously with a minimum of friction.
  • the system is self-regulating, and tends to keep the rotor in its equilibrium position.
  • the fluid passage section is inherently variable, the only degree of freedom available to the designer to vary the effect of the device and therefore the pressure drop between upstream and downstream.
  • the downstream of this passage is the radial distance B traversed by the fluid in the nozzle of the passage, which in this case corresponds to the distance between the inner and outer radii of the crown that forms this nozzle.
  • this distance B may not be sufficient to obtain the pressure drop required to achieve axial thrust balancing, particularly in the case of a single-stage centrifugal pump open: In this case indeed , the only surface on which we can come to circulate fluid is the balancing piston located at the back of the wheel. In multi-stage pumps, each wheel can contribute to the axial balancing of the pump.
  • the object of the invention is to overcome the aforementioned disadvantages by defining a pump comprising a stator, a rotor comprising at least one impeller, and an axial balancing device arranged on at least one impeller of the rotor in which ( or in particular, but not exclusively, having a wall, in particular a front wall, against which passes a stream of fluid, said device comprising for each wheel involved in this device, a balancing chamber extending between a wall of said involved wheel and the stator, and a passage arranged between said wheel involved and the stator, allowing a discharge of fluid from said vein of fluid to said balancing chamber, said rotor having a slight axial clearance allowing limited axial displacement, the fluid pressure in the balancing chamber (s) can thus compensate for the pressures exerted by the fluid on the other parts of the rotor to achieve r axial balancing of the rotor; pump whose axial thrust balancing device is achievable with the conventional machining means, and has an optimized radial and
  • said passage comprising an upstream nozzle and a downstream nozzle, both axially variable, extending between two crown walls facing each other with a positive, zero or negative overlap, respectively of the wheel involved and of the stator, and an intermediate annular chamber arranged between walls of the involved wheel and the stator, opening downstream of the upstream nozzle and upstream of the downstream nozzle of said passage.
  • the jet of fluid is passed through and circulate in the intermediate chamber, wherein it dissipates its kinetic energy by swirling, resulting in increased pressure loss on both sides of the passage.
  • the term "chamber” here implies that the annular chamber is distinguished from the upstream and downstream nozzles by a large passage section relative to that of the nozzles, which can be in particular greater than triple their passage section.
  • said upstream and downstream nozzles are annular parts of the passage presenting sections that are particularly small relative to the remainder of the passage, or at least smaller than the average section thereof.
  • These nozzles are said to be axially variable, since their passage sections vary as a function of the axial displacements of the rotor relative to the stator.
  • An example of an axially variable nozzle is a passage extending radially between two parallel plane circular rings, perpendicular to the axis of rotation of the pump. The approximation or the axial spacing of these rings causes a reduction or a proportional increase in the cross section between the crowns.
  • the crown walls facing each other of the upstream and / or downstream nozzles may have a positive, zero or negative overlap. These walls may or may not have a radial overlap. There is radial overlap when the two facing surfaces which constitute the nozzle, have an effective overlap in the radial direction, that is to say are at least partly opposite to the axis of the pump (this means that a displacement along the axis of the rotor pump with respect to the stator could bring these surfaces into contact). Conversely, the absence of recovery corresponds to the situation in which these two surfaces have no vis-à-vis along the axis of the pump; that, although they face each other, that is to say, although their normals are of the same direction but of opposite directions. In all cases (with or without radial overlap), the surfaces of a nozzle are arranged in such a way that their relative axial displacement induces a variation of the passage section of the nozzle, that is to say of the passage section between them.
  • the section of the annular chamber in a meridian plane is slightly elongated, i.e., has a larger dimension less than twice its smaller dimension. This arrangement promotes the dissipation of energy by vortex.
  • the invention is particularly advantageous in the case of pumps arranged for pumping liquid hydrogen.
  • the wheel or wheels may reach a peripheral speed greater than 400 m / s or 500 m / s.
  • the shape of the fluid evacuation passage is therefore essential, since it concerns precisely this part of the pump.
  • the invention allows the passage creates a significant pressure drop, while having a very small axial and radial dimensions, and without causing additional manufacturing cost unacceptable.
  • the fluid discharge passage is substantially sealed, except for the fluid inlet via the upstream nozzle, and fluid discharge via the downstream nozzle.
  • the intermediate annular chamber is substantially sealed except for the passage of fluid through the upstream and downstream nozzles, and no fluid exchange path other than the upstream and downstream nozzles is provided.
  • the upstream nozzle and the downstream nozzle are radially staggered.
  • the upstream nozzle and the downstream nozzle are located at different distances from one another relative to the axis of rotation of the pump.
  • the annular chamber may in particular be arranged radially between a radius of the upstream nozzle and a radius of the downstream nozzle (a radius of a nozzle here designating the radius of a lesser passage section of the nozzle).
  • the nozzles In general, various forms of revolution around the axis of the pump may be adopted for the nozzles, the nozzles necessarily necessarily extending radially, but may for example have a conical or other shape, and the respective facing surfaces wheel and stator to be geometrically matched.
  • the expression "facing each other” indicates here that for each of the nozzles, the walls of the wheel and of the stator are substantially opposite one another, the two nozzles being moreover offset one by the other. relative to the other axially and / or radially.
  • the axial and / or radial compactness of the pump is improved, in particular by avoiding the addition of an offset axial balancing plate.
  • At least one of the upstream nozzle and the downstream nozzle extends in a plane perpendicular to the axis of the pump.
  • the axial thrust balancing device can be arranged only in a single impeller. It can therefore be used when the rotor has only one impeller.
  • the thrust balancer may be used in a rotor having a plurality of impellers.
  • the only wheel involved is the last wheel behind the pump, that is to say the one located furthest downstream in the direction of advance of the fluid in the pump.
  • the axial thrust balancing device involves at least two wheels, and in particular all the wheels.
  • the forces are distributed more homogeneously within the rotor.
  • the passage further comprises at least one other intermediate nozzle extending between two opposite crown walls, respectively of the rotor and the stator, and at least one other chamber.
  • annular intermediate arranged between the rotor and the stator, opening downstream of the intermediate nozzle, the intermediate nozzle (s) and intermediate annular chamber (s) being interposed alternately on the path of fluid downstream of the first intermediate annular chamber and upstream of the downstream nozzle.
  • the invention applies more particularly to the realization of turbopumps for space engine, associating a pump as described previously coupled to a turbine.
  • the figure 3 is a partial section of a pump roughly similar to that presented on the figure 1 that is, a single-stage pump having an open-type wheel 111. However, the device balancing the pump of the figure 3 is different from that of the pump of the figure 1 .
  • the pump shown on the figure 3 comprises a rotor 114 and a stator 112, and a thrust balancing device comprising in particular a fluid passage 120 formed between the rotor 114 and the stator 112.
  • the thrust device is arranged on the rear wall of the impeller. It will of course be understood that, in general, the thrust device may be arranged both on a rear wall of the wheel 111 and on a front wall thereof.
  • the passage 120 Upstream of the side of the fluid stream, the passage 120 comprises an upstream axial portion 130 extending between two substantially cylindrical walls 131,132 of circular section facing each other, respectively of the wheel 111 (wheel involved) and the stator 112, located upstream of the upstream nozzle 140.
  • This upstream axial portion constitutes a cavity which advantageously allows a first dissipation of kinetic energy of the fluid passing through the passage 120.
  • the upstream nozzle 140 Immediately downstream of the upstream axial portion extends the upstream nozzle 140. This is a passage extending radially over a distance B between the walls 141 and 142 respectively of the wheel and the stator. There is therefore, on the distance B, an effective radial overlap between the surfaces 141 and 142
  • the intermediate chamber 150 Downstream of the upstream nozzle 140, extends the intermediate chamber 150. This is of annular shape and extends between the walls 151 and 152 of the wheel 111 and the stator 112.
  • the chamber can indifferently be arranged in the volume of the wheel and / or the stator. With the exception of the upstream and downstream nozzles, the chamber 150 is sealed.
  • the annular chamber 150 is of short length in the radial direction, since it extends radially on less than one tenth, and more precisely less than one twentieth of the radius of the wheel 111 at the level of the upstream nozzle.
  • downstream of this intermediate chamber 150 extends the downstream nozzle 160, between the walls 161 and 162 respectively of the wheel and the stator. It is also positive recovery.
  • the upstream and downstream radial nozzles respectively define axial clearances A101 and A102, equal or otherwise, between the wheel 111 and the stator 112.
  • the upstream and downstream nozzles are radially staggered.
  • the upstream nozzle 140 is at a smaller radial distance from the axis of rotation of the pump than the downstream nozzle 160.
  • These two nozzles are separated by the distance radially separating the walls 151 and 152 respectively of the rotor and stator, which corresponds to the radial extension of the annular chamber 150.
  • the passage 120 comprises a downstream axial portion 170 extending between two substantially cylindrical walls 171,172 of circular section facing each other, respectively of the wheel 111 (wheel involved) and the stator 112, located downstream of the downstream nozzle 160.
  • this downstream axial part also constitutes a cavity allowing the dissipation of kinetic energy of the fluid passing through the passage 120.
  • these axial portions upstream and downstream of the passage 120 may adopt other forms of revolution around the axis of the pump, for example present a convergent (upstream) or a divergent (downstream) between frustoconical surfaces facing respectively the wheel 111 and the stator 112.
  • At least one wheel involved in the axial balancing device and in this case the impeller 211 is a closed wheel, or flanged, that is to say closed by a lid 290 (or flange) on the front side of the blades.
  • the axial balancing device is doubled, comprising first axial balancing means (including a first passage 220) very similar to those presented in FIG. relationship with the figure 3 , and second axial balancing means acting in the opposite direction, arranged on the side of the lid.
  • the various elements of the first axial balancing means, and in particular the passage 220, are substantially the same as in the previous embodiment and will therefore not be described again in detail.
  • the upstream and downstream radial nozzles extend substantially in the same plane perpendicular to the axis of rotation of the rotor, whereas on the contrary in the embodiment presented in FIG. figure 3 the upstream and downstream radial nozzles 160 140 are slightly offset along the axis of rotation of the pump. So in the embodiment of the figure 4 , in which the upstream and downstream radial nozzles are in the same plane, the machining of the surfaces 241, 261 of the wheel and 242, 262, of the stator is simplified. In addition, the axial size of the axial balancing device is thus not increased, compared with the axial balancing device presented in FIG. figure 1 .
  • the intermediate chamber was arranged only in the stator. As this chamber can be subjected to rapid wear and / or vibration, these are advantageously concentrated in the stator and not in the rotating assembly of the pump.
  • annular chamber 273 is arranged in the upstream portion of the downstream axial portion 270, in the vicinity of the outlet section of the downstream nozzle 260 of the passage 220. Forcing the fluid to flow also in this annular chamber 273, the pressure drop is further increased when passing through the passage 220.
  • a similar cavity may symmetrically be provided in the downstream portion of the upstream axial portion 230, in the vicinity of the inlet section of the upstream nozzle. 240.
  • the axial balancing device comprises second axial balancing means for the wheel 211, to prevent movement of the latter forward.
  • the axial balancing device thus comprises another balancing chamber 288, called the front balancing chamber, extending between a front wall of the cover 290 and the stator 212, a second passage 292 arranged between the cover and the stator, allowing a discharge of fluid from the fluid stream 214 to the front balancing chamber 288, the second passage 292 comprising an upstream nozzle 294 and a nozzle 296, these nozzles extending between two crown walls facing each other, respectively the lid 290 on the front side and the stator 212 on the back side, and an intermediate annular chamber 298 arranged between walls respectively of the lid 290 and the stator 212, the intermediate annular chamber 298 s opening downstream of the upstream nozzle 294 and upstream of the downstream nozzle 296 of the second passage 292.
  • the front balancing chamber extending between a front wall of the cover 290 and the stator 212
  • a second passage 292 arranged between the cover and the stator, allowing a discharge of fluid from the fluid stream 214 to
  • the structure of the second balancing means is functionally equivalent to that of the first means, but the second means are arranged in a direction opposite to the axis of the pump. Due to this conformation of the axial balancing device with counterbalancing means in opposite directions disposed on both sides of the wheel, the axial displacements of the rotor are compensated in both directions. Note finally that according to the invention, the balancing device can be disposed on one or more flasks, each provided with balancing means in both directions.
  • the various elements of the axial balancing means, and in particular the passage 320, are substantially the same as in the first embodiment and will therefore not be described again in detail.
  • This third embodiment lies in the absence of radial overlap between the surfaces of the upstream and downstream nozzles 360 and 360.
  • the nozzles 340 and 360 do indeed have no radial overlap. Indeed, for each of these nozzles, the surfaces of the nozzles 341, 361; 342,362 respectively of the rotor and the stator, do not comprise any portion vis-à-vis along the axis of the pump. More specifically, concerning the upstream nozzle 340, the surfaces 341 and 342 constituting this nozzle are separated by a radial gap C; concerning the downstream nozzle 360, a radial gap D separates the surfaces 361 and 362 constituting this nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (14)

  1. Pumpe (8), umfassend
    einen Stator (112),
    einen Rotor (10), umfassend mindestens ein Laufrad, und
    eine Achsenausgleichsvorrichtung, die auf mindestens einem Laufrad (111) des Rotors angeordnet ist, in der ein Fluidkanal (114) verläuft,
    wobei die Vorrichtung für jedes an dieser Vorrichtung beteiligte Rad eine Ausgleichskammer (118) umfasst, die sich zwischen einer Wand (116) des beteiligten Rads (111) und dem Stator (112) erstreckt, und
    einen Durchgang (120), der zwischen dem beteiligten Rad (111) und dem Stator angebracht ist, der eine Ableitung von Fluid von dem Fluidkanal (114) bis zur Ausgleichskammer (118) ermöglicht,
    wobei der Rotor ein geringes axiales Spiel aufweist, das eine begrenzte axiale Verschiebung ermöglicht,
    wobei der Durchgang (120) eine stromaufwärtige Düse (140) und eine stromabwärtige Düse (160) umfasst, die beide axial variabel sind,
    wobei die Pumpe dadurch gekennzeichnet ist, dass
    sich die stromaufwärtige Düse (140) und die stromabwärtige Düse (160) zwischen zwei einander gegenüberliegenden Kronenwänden (141, 142; 161, 162), die mit einer Überdeckung des beteiligten Rades (111) bzw. des Stators (112), die positiv, null oder negativ ist, erstrecken, und dadurch, dass
    der Durchgang (120) ferner eine ringförmige Zwischenkammer (150) umfasst, die zwischen Wänden (151, 152) des beteiligten Rades (111) und des Stators (112) angeordnet ist, die stromabwärts der stromaufwärtigen Düse (140) und stromaufwärts der stromabwärtigen Düse (160) des Durchgangs mündet.
  2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, dass die ringförmige Zwischenkammer (150) bis auf den Fluiddurchgang durch die stromaufwärtige und stromabwärtige Düse im Wesentlichen dicht ist.
  3. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich mindestens die stromaufwärtigen Düse (140) und/oder die stromabwärtige Düse (160) in einer senkrechten Ebene zur Achse der Pumpe erstrecken.
  4. Pumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Durchgang (120) ferner einen stromaufwärtigen axialen Abschnitt (130) umfasst, der sich zwischen zwei im Wesentlichen zylindrischen, einander gegenüberliegenden Wänden (131, 132) mit kreisförmigem Querschnitt des beteiligten Rads (111) bzw. des Stators (112) erstreckt und stromaufwärts der stromaufwärtigen Düse (140) liegt.
  5. Pumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Durchgang (120) ferner einen stromabwärtigen axialen Abschnitt (170) umfasst, der sich zwischen zwei im Wesentlichen zylindrischen, einander gegenüberliegenden Wänden (171, 172) mit kreisförmigem Querschnitt des beteiligten Rads (111) bzw. des Stators (112) erstreckt und stromabwärts der stromabwärtigen Düse (160) liegt.
  6. Pumpe nach Anspruch 5, dadurch gekennzeichnet, dass eine ringförmige Kammer (273) in dem stromaufwärtigen Abschnitt des stromabwärtigen axialen Abschnitts (270) in der Nähe des Auslassabschnitts der stromabwärtigen Düse (260) des Durchgangs (220) angeordnet ist.
  7. Pumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Durchgang (120) ferner mindestens
    eine weitere Düse, genannt Zwischendüse, die sich zwischen zwei einander gegenüberliegenden Kronenwänden des Rotors bzw. des Stators erstreckt, und
    mindestens eine weitere ringförmige Zwischenkammer umfasst, die zwischen dem Rotor und dem Stator angeordnet ist, die stromabwärts dieser Zwischendüse mündet,
    wobei die mindestens eine Zwischendüse und die mindestens eine ringförmige Zwischenkammer abwechselnd in den Fluidweg stromabwärts der ringförmigen Zwischenkammer und stromaufwärts der stromabwärtigen Düse eingefügt sind.
  8. Pumpe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sich die stromaufwärtige (240) und stromabwärtige (260) Düse im Wesentlichen in der gleichen Ebene senkrecht zur Drehachse des Rotors erstrecken.
  9. Pumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Rotor (10) nur ein einziges Laufrad (111) umfasst.
  10. Pumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Rotor (10) eine Vielzahl von Laufrädern (111) umfasst, wobei das einzige beteiligte Rad jenes ist, das in Vorschubrichtung des Fluids in der Pumpe am meisten stromabwärts liegt.
  11. Pumpe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass mindestens ein beteiligtes Rad in der Achsenausgleichsvorrichtung ein Flanschrad ist, das durch eine Abdeckung (290) auf der Vorderseite der Schaufeln geschlossen ist,
    wobei die Ausgleichskammer und der Durchgang auf einer Rückseite des Flanschrads zwischen einer Rückwand des Flanschrads und dem Stator eingerichtet sind,
    wobei die Vorrichtung für das Flanschrad ferner eine andere Ausgleichskammer (288), genannt vordere Ausgleichskammer, umfasst, die sich zwischen einer vorderen Wand der Abdeckung und dem Stator erstreckt,
    einen zweiten Durchgang (292), der zwischen der Abdeckung und dem Stator angebracht ist, der eine Ableitung von Fluid von dem Fluidkanal (214) bis zur vorderen Ausgleichskammer (288) ermöglicht,
    wobei der zweite Durchgang (292) eine stromaufwärtige Düse (294) und eine stromabwärtige Düse (296) umfasst, wobei sich diese Düsen zwischen zwei gegenüberliegenden Kronenwänden der Abdeckung (290) auf der Vorderseite bzw. dem Stator (212) auf der Rückseite erstrecken und eine ringförmige Zwischenkammer (298), die zwischen Wänden der Abdeckung (290) bzw. des Stators (212) angeordnet ist, wobei die ringförmige Zwischenkammer (298) stromabwärts der stromaufwärtigen Düse (294) und stromaufwärts der stromabwärtigen Düse (296) des zweiten Durchgangs (292) mündet.
  12. Pumpe nach einem der Ansprüche 1 bis 11, deren beteiligtes Rad vorgesehen ist, um eine Umfangsgeschwindigkeit von mehr als 400 m/s zu erreichen.
  13. Pumpe nach einem der Ansprüche 1 bis 12, die zum Pumpen von flüssigem Wasserstoff eingerichtet ist.
  14. Pumpe nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass sie eine Turbopumpe eines Raumfahrtmotors ist.
EP10706014.7A 2009-01-09 2010-01-08 Pumpe mit achsenausgleichsvorrichtung Active EP2376789B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0950107A FR2941019A1 (fr) 2009-01-09 2009-01-09 Pompe a dispositif d'equilibrage axial
PCT/FR2010/050027 WO2010079309A1 (fr) 2009-01-09 2010-01-08 Pompe a dispositif d'equilibrage axial.

Publications (2)

Publication Number Publication Date
EP2376789A1 EP2376789A1 (de) 2011-10-19
EP2376789B1 true EP2376789B1 (de) 2018-09-12

Family

ID=40845920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10706014.7A Active EP2376789B1 (de) 2009-01-09 2010-01-08 Pumpe mit achsenausgleichsvorrichtung

Country Status (7)

Country Link
US (1) US9109606B2 (de)
EP (1) EP2376789B1 (de)
JP (1) JP5492222B2 (de)
CN (1) CN102272457B (de)
FR (1) FR2941019A1 (de)
RU (1) RU2539954C2 (de)
WO (1) WO2010079309A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010016563A1 (de) 2010-04-21 2011-10-27 Miklos Gäbler Vorrichtung zum Umwandeln von Energie aus einer oszillatorischen Bewegung in elektrische Energie sowie Anordnung
WO2016160016A1 (en) * 2015-04-02 2016-10-06 Schlumberger Canada Limited Balance chambers in electric submersible pumps
US10513928B2 (en) * 2017-08-31 2019-12-24 Flowserve Management Company Axial thrust balancing device
FR3074859B1 (fr) * 2017-12-08 2019-12-27 Arianegroup Sas Pompe comprenant un systeme d'equilibrage axial
CN109973401B (zh) * 2018-10-24 2020-06-26 浙江朗庆智能科技有限公司 基于离心式的尿素泵

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1020699A (en) * 1912-03-19 Gen Electric Centrifugal pump.
FR405266A (fr) * 1908-07-24 1909-12-24 Henri Legros Dispositif pour équilibrer la poussée axiale dans les pompes centrifuges
US1488931A (en) * 1921-10-26 1924-04-01 Marechal Paul Joseph Charles Turbo engine
DE922807C (de) * 1945-03-06 1955-01-24 Aeg Einrichtung zum Ausgleich des Axialschubes mehrstufiger Kreiselpumpen
CH330272A (fr) * 1955-07-19 1958-05-31 Harland Engineering Company Li Pompe à rotor en porte à faux
DE1528717B2 (de) * 1965-06-30 1976-04-15 Halberg Maschinenbau Gmbh & Co, 6700 Ludwigshafen Vorrichtung zum ausgleich des axialschubes bei mehrstufigen kreiselpumpen
JPS56109689U (de) * 1980-01-25 1981-08-25
JPS56109689A (en) 1980-02-02 1981-08-31 Bunsaku Taketomi Overrlocking sewing machine particularly for sewing machine for both use
US4867633A (en) * 1988-02-18 1989-09-19 Sundstrand Corporation Centrifugal pump with hydraulic thrust balance and tandem axial seals
FR2698667B1 (fr) * 1992-11-30 1995-02-17 Europ Propulsion Pompe centrifuge à rouet ouvert.
JP3646740B2 (ja) * 1995-06-27 2005-05-11 石川島播磨重工業株式会社 バランスピストン機構を備えたターボポンプ
RU2095607C1 (ru) 1995-07-19 1997-11-10 Ракетно-космическая корпорация "Энергия" им.С.П.Королева Жидкостный ракетный двигатель на криогенном топливе
DE19631824A1 (de) * 1996-08-07 1998-02-12 Klein Schanzlin & Becker Ag Kreiselpumpenlagerung mit Axialschubausgleich
KR100610012B1 (ko) 2004-08-16 2006-08-09 삼성전자주식회사 터보 펌프
US7445213B1 (en) * 2006-06-14 2008-11-04 Florida Turbine Technologies, Inc. Stepped labyrinth seal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20120148384A1 (en) 2012-06-14
FR2941019A1 (fr) 2010-07-16
US9109606B2 (en) 2015-08-18
CN102272457A (zh) 2011-12-07
EP2376789A1 (de) 2011-10-19
JP2012514713A (ja) 2012-06-28
WO2010079309A1 (fr) 2010-07-15
RU2011130704A (ru) 2013-02-20
CN102272457B (zh) 2015-06-10
RU2539954C2 (ru) 2015-01-27
JP5492222B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
EP0494007B1 (de) Einzeldurchfluss-Turbopumpe mit integrierter Überdruckpumpe
EP1577495B1 (de) Wälzlagereinheit einer Turbomaschine mit reduziertem Platzbedarf
EP2376789B1 (de) Pumpe mit achsenausgleichsvorrichtung
EP1988292B1 (de) Umlaufende Maschine, die ein passives axiales Ausgleichssystem umfasst
FR2698666A1 (fr) Pompe centrifuge hautement performante à rouet ouvert.
FR2872870A1 (fr) Commande de jeu de pale
FR2965858A1 (fr) Amortisseur a compression de film liquide
FR2908844A1 (fr) Pompe a palettes a deplacement variable
EP2430314B1 (de) Zentrifugalpumpe mit doppeltem auslass
FR2856440A1 (fr) Compresseur de turbomachine et roue dudit compresseur
FR2698661A1 (fr) Turbopompe compacte de forte puissance pour moteur-fusée.
FR2859250A1 (fr) Pompe a vide
EP4073371B1 (de) Aeronautisches antriebssystem mit geringer leckflussrate und verbesserter antriebssystemseffizienz
FR3033180A1 (fr) Assemblage d'une plateforme rapportee d'aube de soufflante sur un disque de soufflante
EP3152472B1 (de) Rotierender hochdruckdichtungsstopfen mit expandierbarem durchgehendem ring
EP0494008A1 (de) Turbopumpe mit einer durch axialer Durchströmung angetriebenen Überdruckpumpe
EP0494006B1 (de) Turbopumpe mit einer durch Bypassströmung angetriebenen Überdruckpumpe
EP2305960B1 (de) Verdichterablassventil vom primären Kanal und entsprechendes Verfahren zur Vermeidung des Pumpvorgangs
FR2865775A1 (fr) Unite de transfert de carburant pour alimenter un moteur a combustion interne
WO2017137701A1 (fr) Systeme de mise en rotation d'une soufflante d'un turboreacteur
EP1473462B1 (de) Patrone zum Zusammenbau eines Verdichters
FR2981993A1 (fr) Pompe a engrenages a cylindree variable pour turbomachine d'aeronef
EP0469964B1 (de) Turbopumpe zur gleichzeitigen Kompression von zwei Flüssigkeiten
FR2964163A1 (fr) Pompe a vide de type seche
WO2021013797A1 (fr) Pompe a engrenage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOUFFLERT, SEBASTIEN

Inventor name: FAYOLLE, PATRICE

Inventor name: LAFFITE, STEPHANE

Inventor name: JUHEL, NICOLAS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170817

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180420

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARIANEGROUP SAS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010053498

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1040932

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180912

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1040932

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010053498

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

26N No opposition filed

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190108

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010053498

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240129

Year of fee payment: 15

Ref country code: FR

Payment date: 20240124

Year of fee payment: 15