WO2010079309A1 - Pompe a dispositif d'equilibrage axial. - Google Patents

Pompe a dispositif d'equilibrage axial. Download PDF

Info

Publication number
WO2010079309A1
WO2010079309A1 PCT/FR2010/050027 FR2010050027W WO2010079309A1 WO 2010079309 A1 WO2010079309 A1 WO 2010079309A1 FR 2010050027 W FR2010050027 W FR 2010050027W WO 2010079309 A1 WO2010079309 A1 WO 2010079309A1
Authority
WO
WIPO (PCT)
Prior art keywords
downstream
nozzle
stator
passage
upstream
Prior art date
Application number
PCT/FR2010/050027
Other languages
English (en)
Inventor
Sébastien BOUFFLERT
Nicolas Juhel
Patrice Fayolle
Stéphane LAFFITE
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to CN201080004084.6A priority Critical patent/CN102272457B/zh
Priority to RU2011130704/06A priority patent/RU2539954C2/ru
Priority to EP10706014.7A priority patent/EP2376789B1/fr
Priority to JP2011544909A priority patent/JP5492222B2/ja
Priority to US13/143,616 priority patent/US9109606B2/en
Publication of WO2010079309A1 publication Critical patent/WO2010079309A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/042Axially shiftable rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0416Axial thrust balancing balancing pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2266Rotors specially for centrifugal pumps with special measures for sealing or thrust balance

Definitions

  • the present invention relates to the axial balancing of a pump, in particular a turbopump, in particular a space engine. It is known that the rotors of these machines support often considerable axial thrusts due to the pressure differences that are established on either side of the wheels, to the variations in the amount of movement of the fluids conveyed and, in some cases, to the weight or at a fraction of the weight of the rotor itself. As a result, there are usually devices in the pumps for compensating the axial thrust exerted by the fluid on the rotor.
  • FIGS. 1 and 2 show such a device for balancing known axial thrust, arranged between a wheel 11 and a stator 12.
  • the turbopump of FIG. 1 essentially comprises a rotating assembly constituted around a central shaft 26, of reduced length, and comprising a single blade impeller 11 of a single stage centrifugal pump mounted on the shaft 26, in the middle portion thereof. ci, as well as two turbine wheels 22, mounted on the shaft 26 in the rear portion thereof.
  • FIG. 1 shows, for the single-stage pump, an open-type impeller 11 with vanes 6 receiving the working fluid through a suction channel 2 and discharging the pressurized working fluid through a suction channel. repression 3.
  • the working fluid is introduced axially through the inlet section 28 and passes directly into the suction channel 2 of the pump.
  • This device for axial balancing or axial thrust balancing of the rotating assembly is integrated with the impeller 11 and comprises a single rear balancing chamber 18 interposed between the rear part of the wheel 11 and a portion of the stator 12, and a passage 20 connecting the rear balancing chamber to the fluid stream.
  • a balancing chamber is a chamber in which there is a fluid pressure, the action of this pressure on a movable member (here, the rotor) for regulating and controlling the position of said movable member.
  • the front face of this wheel 11 receives the pressure of the fluid stream 14 which tends to move the rotor 10 rearwardly.
  • the fluid pressure in the rear balancing chamber 18 instead tends to move the rotor 10 forward. Equilibrium is achieved when these forces compensate axially, the force exerted by the fluid on the rotor 10 at the rear chamber 18 then compensating for the axial resultant forces exerted by the fluid on the other parts of the rotor, during the various phases of operation of the pump.
  • the axial balancing device modulates the supply pressure of the rear chamber 18, via the axial displacement of the rotor, as follows:
  • the fluid transfer passage 20 has a radial nozzle 40 extending between the rotating wall connected to the rotor 10, that is to say to the centrifugal wheel 11, and a wall facing the stator. 12, i.e. a fixed wall of the pump.
  • the section for the fluid passage of this radial nozzle depends on the relative axial position of the rotor and the stator; It increases when the rotor moves backwards (increase in thickness A of fluid film passing through passage 20, in FIG. 2, when wheel Ii moves to the right), which causes an increase in flow rate. entering the back bedroom, a climb from the pressure in the rear chamber, and therefore an increase in the restoring force exerted by the fluid on the rotor tending to push it forward. Conversely, if the rotor 10 tends to move forward (to the detriment of the thickness of fluid film), by a reverse mechanism the return force decreases which causes the rotor to return further back.
  • the displacement of the rotor makes it possible to modulate the pressure in the rear balancing chamber 18, and thus to keep the rotor in a substantially constant axial position, and this advantageously with a minimum of friction.
  • the system is self-regulating, and tends to keep the rotor in its equilibrium position.
  • the fluid passage section is inherently variable, the only degree of freedom available to the designer to vary the effect of the device and therefore the pressure drop between upstream and downstream.
  • the downstream of this passage is the radial distance B traversed by the fluid in the nozzle of the passage, which in this case corresponds to the distance between the inner and outer radii of the crown that forms this nozzle.
  • this distance B may not be sufficient to obtain the pressure drop required to achieve axial thrust balancing, particularly in the case of a single-stage centrifugal pump open: In this case indeed , the only surface on which we can come to circulate fluid is the balancing piston located at the back of the wheel. In multi-stage pumps, each wheel can contribute to the axial balancing of the pump.
  • the object of the invention is to overcome the aforementioned disadvantages by defining a pump comprising a stator, a rotor comprising at least one impeller, and an axial balancing device arranged on at least one impeller of the rotor in which ( or in particular, but not exclusively, having a wall, in particular a front wall, against which passes a stream of fluid, said device comprising for each wheel involved in this device, a balancing chamber extending between a wall of said involved wheel and the stator, and a passage arranged between said wheel involved and the stator, allowing a discharge of fluid from said vein of fluid to said balancing chamber, said rotor having a slight axial clearance allowing limited axial displacement, the fluid pressure in the balancing chamber (s) can thus compensate for the pressures exerted by the fluid on the other parts of the rotor to achieve r axial balancing of the rotor; pump whose axial thrust balancing device is achievable with the conventional machining means, and has an optimized radial and
  • said passage comprising an upstream nozzle and a downstream nozzle, both axially variable, extending between two crown walls facing each other with a positive, zero or negative overlap, respectively of the wheel involved and of the stator, and an intermediate annular chamber arranged between walls of the involved wheel and the stator, opening downstream of the upstream nozzle and upstream of the downstream nozzle of said passage.
  • the jet of fluid is passed through and circulate in the intermediate chamber, wherein it dissipates its kinetic energy by swirling, resulting in increased pressure loss on both sides of the passage.
  • the term "chamber” here implies that the annular chamber is distinguished from the upstream and downstream nozzles by a large passage section relative to that of the nozzles, which can be in particular greater than triple their passage section.
  • said upstream and downstream nozzles are annular parts of the passage presenting sections that are particularly small relative to the remainder of the passage, or at least smaller than the average section thereof.
  • These nozzles are said to be axially variable, since their passage sections vary as a function of the axial displacements of the rotor relative to the stator.
  • An example of an axially variable nozzle is a passage extending radially between two parallel plane circular rings, perpendicular to the axis of rotation of the pump. The approximation or the axial spacing of these rings causes a reduction or a proportional increase in the cross section between the crowns.
  • the crown walls facing each other of the upstream and / or downstream nozzles may have a positive, zero or negative overlap. These walls may or may not have a radial overlap. There is radial overlap when the two facing surfaces which constitute the nozzle, have an effective overlap in the radial direction, that is to say are at least partly opposite to the axis of the pump (this means that a displacement along the axis of the rotor pump with respect to the stator could bring these surfaces into contact). Conversely, the absence of recovery corresponds to the situation in which these two surfaces have no vis-à-vis along the axis of the pump; that, although they face each other, that is to say, although their normals are of the same direction but of opposite directions. In all cases (with or without radial overlap), the surfaces of a nozzle are arranged in such a way that their relative axial displacement induces a variation of the passage section of the nozzle, that is to say of the passage section between them.
  • the section of the annular chamber in a meridian plane is slightly elongated, i.e., has a larger dimension less than twice its smaller dimension. This arrangement promotes the dissipation of energy by vortex.
  • the invention is particularly advantageous in the case of pumps arranged for pumping liquid hydrogen.
  • Ia or the impellers can reach a peripheral speed greater than 400 m / s r or even 500 m / s, it is understood that under these conditions, any unwanted contact occurring at the periphery of the wheels between a paddle wheel and the stator can have considerable consequences.
  • the shape of the fluid evacuation passage is therefore essential, since it concerns precisely this part of the pump.
  • the invention allows the passage creates a significant pressure drop, while having a very small axial and radial dimensions, and without causing additional manufacturing cost unacceptable.
  • the fluid discharge passage is substantially sealed, except for the fluid inlet via the upstream nozzle, and fluid discharge via the downstream nozzle.
  • the intermediate annular chamber is substantially sealed except for the passage of fluid through the upstream and downstream nozzles, and no fluid exchange path other than the upstream and downstream nozzles is provided.
  • the upstream nozzle and the downstream nozzle are radially stages. In other words, the upstream nozzle and the downstream nozzle are located at different distances from one another relative to the axis of rotation of the pump. With this arrangement, it is possible to achieve an axially compact axial balancing device, that is to say of short length along the axis of the pump.
  • the annular chamber may in particular be arranged radially between a radius of the upstream nozzle and a radius of the downstream nozzle (a radius of a nozzle here designating the radius of a lesser passage section of the nozzle).
  • the nozzles In general, various forms of revolution around the axis of the pump may be adopted for the nozzles, the nozzles necessarily necessarily extending radially, but may for example have a conical or other shape, and the respective facing surfaces wheel and stator to be geometrically matched.
  • the expression "facing each other” indicates here that for each of the nozzles, the walls of the wheel and of the stator are substantially opposite one another, the two nozzles being moreover offset one by the other. relative to the other axially and / or radially.
  • At least one of the upstream nozzle and the downstream nozzle extends in a plane perpendicular to the axis of the pump.
  • the axial thrust balancing device can be arranged only in a single impeller. It can therefore be used when the rotor has only one impeller.
  • the thrust balancer may be used in a rotor having a plurality of impellers.
  • the only wheel involved is the last wheel behind the pump, that is to say the one located furthest downstream in the direction of advance of the fluid in the pump.
  • the axial thrust balancing device involves at least two wheels, and in particular all the wheels.
  • the forces are distributed more homogeneously within the rotor.
  • the passage further comprises at least one other intermediate nozzle extending between two opposite crown walls, respectively of the rotor and the stator, and at least one other chamber.
  • annular intermediate arranged between the rotor and the stator, opening downstream of the intermediate nozzle, or the intermediate nozzle (s) and intermediate annular chamber (s) being interposed alternately on the path of fluid downstream of the first intermediate annular chamber and upstream of the downstream nozzle.
  • the invention applies more particularly to the realization of turbopumps for space engine, associating a pump as described previously coupled to a turbine.
  • FIG. 1 already described is an axial sectional view of a centrifugal pump equipped with an axial thrust balancing device
  • Ia Figure 2 already described is an axial sectional view of a fluid transfer passage of this device, in a known conformation
  • FIG. 3 is an axial sectional view of a fluid transfer passage of an axial pump balancing device, in a first embodiment of FIG. embodiment of the invention
  • FIG. 4 is a view in axial section of a fluid transfer passage of an axial pump balancing device, in a second embodiment of the invention
  • FIG. an axial sectional view of a fluid transfer passage of an axial pump balancing device, in a third embodiment of the invention.
  • FIGS. 3 to 5 show axial balancing devices that can be implemented in a pump such as that presented with reference to FIG. 1.
  • the operation of an axial pump balancing device, in a first embodiment of the invention, will now be described with reference to FIG.
  • Figure 3 is a partial section of a pump generally similar to that shown in Figure 1, namely a single stage pump having an open type wheel 111. However, the device of the pump of FIG. 3 is different from that of the pump of FIG.
  • the pump shown in FIG. 3 comprises a rotor 114 and a stator 112, and a thrust balancing device comprising in particular a fluid passage 120 formed between the rotor 114 and the stator 112.
  • the thrust device is arranged on the rear wall of the impeller. It will of course be understood that, in general, the thrust device may be arranged both on a rear wall of the wheel 111 and on a front wall thereof.
  • the passage 120 Upstream of the side of the fluid stream, the passage 120 comprises an upstream axial portion 130 extending between two substantially cylindrical walls 131,132 of circular section facing each other, respectively of the wheel 111 (wheel involved) and the stator 112, located upstream of the upstream nozzle 140.
  • This upstream axial portion constitutes a cavity which advantageously allows a first dissipation of kinetic energy of the fluid passing through the passage 120.
  • the upstream nozzle 140 Immediately downstream of the upstream axial portion extends the upstream nozzle 140. This is a passage extending radially over a distance B between the walls 141 and 142 respectively of the wheel and the stator. There is therefore, on the distance B, an effective radial overlap between the surfaces 141 and 142
  • the chamber 150 This is of annular shape and extends between the walls 151 and 152 of the wheel 111 and the stator 112.
  • the chamber can indifferently be arranged in the volume of the wheel and / or the stator. With the exception of the upstream and downstream nozzles, the chamber 150 is sealed.
  • the annular chamber 150 is of short length in the radial direction, since it extends radially on less than one tenth, and more precisely less than one twentieth of the radius of the wheel 111 at the level of the upstream nozzle.
  • this intermediate chamber 150 extends the downstream nozzle 160, between the walls 161 and 162 respectively of the wheel and the stator. It is also positive recovery.
  • the upstream and downstream radial nozzles respectively define axial sets A1O1 and A1Q2, equal or otherwise, between the wheel 111 and the stator 112.
  • the upstream and downstream nozzles are radially raised.
  • the upstream nozzle 140 is at a smaller radial distance from the axis of rotation of the pump than the downstream nozzle 160.
  • These two nozzles are separated by the distance radially separating the walls 151 and 152 respectively of the rotor and stator, which corresponds to the radial extension of the annular chamber 150.
  • the passage 120 comprises a downstream axial portion 170 extending between two substantially cylindrical walls 171,172 of circular section facing each other, respectively of the wheel
  • stator 112 located downstream of the downstream nozzle
  • this downstream axial part also constitutes a cavity allowing the dissipation of kinetic energy of the fluid passing through the passage 120.
  • these axial portions upstream and downstream of the passage 120 may adopt other forms of revolution around the axis of the pump, for example present a convergent (upstream) or a divergent (downstream) between frustoconical surfaces facing respectively the wheel 111 and the stator 112.
  • the impeller 211 is a closed wheel, or flanged, that is to say closed by a lid 290 (or flange) on the front side of the blades.
  • the axial balancing device is doubled, comprising first axial balancing means (including a first passage 220) very similar to those presented in FIG. FIG. 3 and second counterbalancing axial balancing means arranged on the cover side.
  • the various elements of the first axial balancing means, and in particular the passage 220, are substantially the same as in the previous embodiment and will therefore not be described again in detail.
  • the upstream and downstream radial nozzles extend substantially in the same plane perpendicular to the axis of rotation of the rotor, whereas on the contrary in the embodiment shown in FIG.
  • the upstream radial nozzles 140 and downstream 160 are slightly offset along the axis of rotation of the pump.
  • the machining of the surfaces 241, 261 of the wheel and 242, 262, of the stator is simplified.
  • the axial size of the axial balancing device is thus not increased, compared to the axial balancing device shown in FIG.
  • the intermediate chamber was arranged only in the stator. As this chamber can be subjected to rapid wear and / or vibration, these are advantageously concentrated in the stator and not in the rotating assembly of the pump.
  • annular chamber 273 is arranged in the upstream portion of the downstream axial portion 270, in the vicinity of the outlet section of the downstream nozzle 260 of the passage 220. Forcing the fluid to flow also in this annular chamber 273, the pressure drop is further increased when passing through the passage 220.
  • a similar cavity may symmetrically be provided in the downstream portion of the upstream axial portion 230, in the vicinity of the inlet section of the upstream nozzle. 240.
  • the axial balancing device comprises second axial balancing means for the wheel 211, to prevent movement of the latter forward.
  • the axial balancing device thus comprises another balancing chamber 288, called the front balancing chamber, extending between a front wall of the cover 290 and the stator 212, a second passage 292 arranged between the cover and the stator, allowing fluid to be discharged from the fluid channel 214 to the front balancing chamber 288, the second passage 292 comprising an upstream nozzle 294 and a nozzle 296, these nozzles extending between two crown walls facing each other, respectively the lid 290 on the front side and the stator 212 on the rear side, and an intermediate annular chamber 298 arranged between walls respectively of the lid 290 and the stator 212, the intermediate annular chamber 298 s opening downstream of the upstream nozzle 294 and upstream of the downstream nozzle 296 of the second passage 292.
  • the front balancing chamber extending between a front wall of the cover 290 and the stator 212
  • a second passage 292 arranged between the cover and the stator, allowing fluid to be discharged from the fluid channel 214 to
  • the structure of the second balancing means is functionally equivalent to that of the first means, but the second means are arranged in a direction opposite with respect to the pump fee. Due to this conformation of the axial balancing device with counterbalancing means in opposite directions disposed on both sides of the wheel, the axial displacements of the rotor are compensated in both directions. Note finally that according to the invention, the balancing device can be disposed on one or more flasks, each provided with balancing means in both directions.
  • the various elements of the axial balancing means, and in particular the passage 320, are substantially the same as in the first embodiment and will therefore not be described again in detail.
  • This third embodiment lies in the absence of radial overlap between the surfaces of the upstream and downstream nozzles 360 and 360.
  • the nozzles 340 and 360 do indeed have no radial overlap. Indeed, for each of these nozzles, the surfaces of the nozzles 341, 361; 342,362 respectively of the rotor and the stator, do not comprise any portion vis-à-vis along the axis of the pump. More specifically, concerning the upstream nozzle 340, the surfaces 341 and 342 constituting this nozzle are separated by a radial gap C; concerning the downstream nozzle 360, a radial gap D separates the surfaces 361 and 362 constituting this nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

La pompe comprend un stator (112) et un rotor comportant une roue à aubes dans laquelle passe une veine de fluide (114). Un dispositif d'équilibrage axial aménagé sur cette roue (111) comporte une chambre d'équilibrage arrière (118) et un passage (120) aménagés entre la roue (111) et le stator (112), permettant l'évacuation de fluide depuis la veine de fluide (114) jusqu'à la chambre d'équilibrage (118). La pression de fluide dans la chambre d'équilibrage (118) compense les pressions exercées par le fluide sur le reste du rotor (111) permettant l'équilibrage axial du rotor. Le passage (120) comporte un ajutage amont (140) et un ajutage aval (160), ainsi qu'une chambre annulaire intermédiaire (150), aménagés entre des parois (151,152;141,142;161,162) de la roue (111) et du stator (112), la chambre intermédiaire étant aménagée en aval de l'ajutage amont (140) et en amont de l'ajutage aval (160).

Description

Pompe à dispositif d'équilibrage axial
La présente invention concerne l'équilibrage axial d'une pompe, en particulier d'une turbopompe, notamment de moteur spatial. On sait que les rotors de ces machines supportent des poussées axiales souvent considérables dues aux différences de pression qui s'établissent de part et d'autre des roues, aux variations de quantité de mouvement des fluides véhiculés et, dans certains cas, au poids ou à une fraction du poids du rotor lui-même. De ce fait, on trouve habituellement dans les pompes des dispositifs permettant la compensation de la poussée axiale exercée par le fluide sur le rotor.
Ces dispositifs sont susceptibles d'utiliser l'ensemble des surfaces en face avant (du côté des aubes) et inversement en face arrière ou de dos des roues centrifuges comme surfaces sur lesquelles on vient faire circuler du fluide , de manière à compenser la résultante axiale des efforts exercés sur les parties rotoriques. De manière connue, on utilise plus particulièrement pour réaliser cet équilibrage le dos de la dernière roue centrifuge, qui est appelé pour cette raison le 'piston d'équilibrage'. Les figures 1 et 2 représentent un tel dispositif d'équilibrage de poussée axiale connu, aménagé entre une roue 11 et un stator 12.
La turbopompe de la figure 1 comprend essentiellement un ensemble tournant constitué autour d'un arbre central 26, de longueur réduite, et comprenant une roue à aubes 11 unique de pompe centrifuge monoétage montée sur l'arbre 26, dans la partie médiane de celui-ci, ainsi que deux roues de turbine 22, montées sur l'arbre 26 dans la partie arrière de celui-ci.
Les roues de turbine 22, montées en porte-à-faux à l'arrière de l'arbre 26, entraînent celui-ci en rotation sous l'action d'un flux de gaz chauds appliqué à la périphérie des roues de turbine 22, à partir d'un tore 24 d'amenée des gaz.
Sur la figure 1, on a représenté pour la pompe monoétage une roue à aubes 11 de type ouvert, avec des aubes 6 recevant le fluide de travail à travers un canal d'aspiration 2 et refoulant le fluide de travail pressurisé à travers un canal de refoulement 3. Le fluide de travail est introduit axialement par Ia section d'entrée 28 et passe directement dans le canal d'aspiration 2 de Ia pompe.
Les différents composants de Ia pompe sont connus et leur description ne sera pas détaillée davantage, à l'exception du système d'équilibrage axial de la pompe dont une partie est visible sur la figure 2.
Ce dispositif d'équilibrage axial ou d'équilibrage de poussée axiale de l'ensemble tournant est intégré à la roue à aubes 11 et comprend une unique chambre d'équilibrage arrière 18 interposée entre la partie arrière de la roue 11 et une partie du stator 12, et un passage 20 reliant la chambre d'équilibrage arrière à la veine de fluide.
Une chambre d'équilibrage est une chambre dans laquelle règne une pression de fluide, l'action de cette pression sur un élément mobile (ici, le rotor) servant à réguler et asservir la position dudit élément mobile.
Via le passage 20, une partie du fluide passant dans la veine de fluide est prélevée pour alimenter la chambre d'équilibrage arrière 18 située sur la face arrière 16 de la roue 11.
La face avant de cette roue 11 reçoit la pression de la veine de fluide 14 qui tend à déplacer le rotor 10 vers l'arrière. D'autre part, la pression de fluide dans la chambre d'équilibrage arrière 18 au contraire tend à déplacer le rotor 10 vers l'avant. L'équilibre est atteint lorsque ces forces se compensent axialement, l'effort exercé par le fluide sur le rotor 10 au niveau de la chambre arrière 18 compensant alors la résultante axiale des efforts exercés par le fluide sur les autres parties du rotor, durant les diverses phases de fonctionnement de la pompe. Pour atteindre et maintenir cet équilibre, le dispositif d'équilibrage axial permet de moduler la pression d'alimentation de la chambre arrière 18, via le déplacement axial du rotor, de la manière suivante :
Le passage 20 de transfert de fluide présente un ajutage 40, radial, s'étendant entre la paroi tournante liée au rotor 10, c'est-à-dire à la roue centrifuge 11, et une paroi en vis-à-vis du stator 12, c'est-à-dire une paroi fixe de Ia pompe. La section pour le passage de fluide de cet ajutage radial dépend de la position axiale relative du rotor et du stator ; Elle augmente lorsque le rotor se déplace vers l'arrière (augmentation de l'épaisseur A de film de fluide traversant le passage 20, sur la figure 2, lorsque la roue Ii se déplace vers la droite), ce qui entraine une augmentation du débit entrant dans la chambre arrière, une montée de la pression dans la chambre arrière, et de ce fait une augmentation de la force de rappel exercée par le fluide sur le rotor tendant à le repousser vers l'avant. Inversement, si le rotor 10 tend à se déplacer vers l'avant (au détriment de l'épaisseur  de film de fluide), par un mécanisme inverse la force de rappel diminue ce qui conduit le rotor à revenir davantage en arrière.
On comprend donc que le déplacement du rotor permet de moduler la pression dans la chambre d'équilibrage arrière 18, et ainsi de maintenir le rotor dans une position axiale sensiblement constante, et cela avantageusement avec un minimum de frottements. Le système est auto- régulé, et tend à maintenir le rotor dans sa position d'équilibre.
Toutefois, dans un tel système d'équilibrage de charge, la section de passage du fluide étant intrinsèquement variable, le seul degré de liberté dont dispose le concepteur pour faire varier l'effet du dispositif et donc la perte de charge entre l'amont et l'aval de ce passage, est la distance radiale B parcourue par le fluide dans l'ajutage du passage, qui correspond dans ce cas à l'écart entre les rayons intérieur et extérieur de la couronne que forme cet ajutage.
Or, il n'est pas forcément souhaitable de trop augmenter cette distance B, et avec elle la dimension des parois correspondantes du rotor et/ou du stator, car la pompe est alors plus sensible aux déformations de ces pièces, du fait du risque de contacts néfastes entre le rotor et le stator.
De plus, l'augmentation de cette distance B peut ne pas suffire à obtenir la perte de charge nécessaire pour réaliser l'équilibrage de poussée axiale, en particulier dans le cas d'une pompe monoétage à roue centrifuge ouverte : Dans ce cas en effet, la seule surface sur laquelle on peut venir faire circuler du fluide est le piston d'équilibrage situé en dos de la roue. Dans des pompes multi-étages, chaque roue peut contribuer à l'équilibrage axial de la pompe.
Comme une solution alternative connue, on peut avoir recours, si l'augmentation de la largeur de l'ajutage radial ne suffit pas pour compenser les efforts axiaux, à un plateau d'équilibrage axial déporté. Cela entraine un accroissement de la complexité de la pompe et de sa mise en œuvre, et une perte de rendement de la pompe. De plus# notamment du fait de l'allongement de l'arbre qui en résulte, l'encombrement axial et/ou radial de la pompe est augmenté.
Le but de l'invention est de remédier aux inconvénients précités en définissant une pompe comprenant un stator, un rotor comportant au moins une roue à aubes, et un dispositif d'équilibrage axial aménagé sur au moins une roue à aubes du rotor dans laquelle (ou notamment, mais non exclusivement, présentant une paroi, en particulier une paroi avant, contre laquelle) passe une veine de fluide, ledit dispositif comportant pour chaque roue impliquée dans ce dispositif, une chambre d'équilibrage s'étendant entre une paroi de ladite roue impliquée et le stator, et un passage aménagé entre ladite roue impliquée et le stator, permettant une évacuation de fluide depuis ladite veine de fluide jusqu'à ladite chambre d'équilibrage, ledit rotor ayant un léger jeu axial permettant un déplacement axial limité, la pression de fluide dans la ou les chambre(s) d'équilibrage pouvant ainsi compenser les pressions exercées par le fluide sur les autres parties du rotor pour réaliser l'équilibrage axial du rotor ; pompe dont le dispositif d'équilibrage de poussée axiale soit réalisable avec les moyens conventionnels d'usinage, et présente un encombrement radial et axial optimisé de manière à permettre l'obtention d'une pompe compacte présentant un bon rendement hydraulique.
Cet objectif est atteint grâce au fait que ledit passage comportant un ajutage amont et un ajutage aval, tous deux axialement variables, s'étendant entre deux parois en couronne se faisant face avec un recouvrement positif, nul ou négatif, respectivement de la roue impliquée et du stator, et une chambre annulaire intermédiaire aménagée entre des parois de la roue impliquée et du stator, s'ouvrant en aval de l'ajutage amont et en amont de l'ajutage aval dudit passage.Grâce à la disposition du passage avec une chambre annulaire disposée entre deux ajutages, le jet de fluide est amené à traverser et circuler dans la chambre intermédiaire, dans laquelle il dissipe son énergie cinétique en tourbillonnant, d'où une perte de charge accrue de part et d'autre du passage. Le terme 'chambre' implique ici que la chambre annulaire se distingue des ajutages amont et aval par une section de passage grande par rapport à celle des ajutages, pouvant être notamment supérieure au triple de leur section de passage. Dans la formulation précédente, lesdits ajutages amont et aval sont des parties annulaires du passage présentant des sections particulièrement faibles par rapport au reste du passage, ou du moins plus faibles que la section moyenne de celui-ci. Ces ajutages sont dits axialement variables, car leurs sections de passage varient en fonction des déplacements axiaux du rotor par rapport au stator. Un exemple d'ajutage axialement variable est un passage s'étendant radialement entre deux couronnes circulaires planes parallèles, perpendiculaires à l'axe de rotation de la pompe. Le rapprochement ou l'écartement axial de ces couronnes entraine une réduction ou une augmentation proportionnelle de la section de passage entre les couronnes.
On notera que les parois en couronne se faisant face des ajutages amont et/ou aval peuvent présenter un recouvrement positif, nul ou négatif. Ces parois peuvent ainsi présenter ou non un recouvrement radial. Il y a recouvrement radial lorsque les deux surfaces en regard qui constituent l'ajutage, présentent un recouvrement effectif dans le sens radial, c'est-à-dire sont au moins en partie en vis-à-vis suivant l'axe de la pompe (cela signifie qu'un déplacement suivant l'axe de la pompe du rotor par rapport au stator pourrait mettre en contact ces surfaces). A l'inverse, l'absence de recouvrement correspond à la situation dans laquelle ces deux surfaces ne présentent aucun vis-à-vis suivant l'axe de la pompe ; cela, bien qu'elles se fassent face, c'est-à-dire, bien que leurs normales soient de même direction mais de sens opposés. Dans tous les cas (avec ou sans recouvrement radial), les surfaces d'un ajutage sont disposées de telle sorte que leur déplacement axial relatif induit une variation de la section de passage de l'ajutage, c'est-à-dire de la section de passage entre elles.
Dans un mode de réalisation, la section de la chambre annulaire dans un plan méridien est peu allongée, c'est-à-dire présente une plus grande dimension inférieure au double de sa plus faible dimension. Cette disposition favorise la dissipation d'énergie par tourbillon.
L'invention est particulièrement avantageuse dans Ie cas de pompes agencées pour Ie pompage d'hydrogène liquide. Dans de telles pompes en effet, Ia ou les roues à aubes peuvent atteindre une vitesse en périphérie supérieure à 400 m/sr voire 500 m/s, On comprend que dans ces conditions, tout contact non souhaité se produisant à la périphérie des roues entre une roue à aube et le stator peut avoir des conséquences considérables. La forme du passage d'évacuation de fluide est donc essentielle, puisqu'elle concerne précisément cette partie de la pompe. Avantageusement, l'invention permet que le passage crée une perte de charge importante, tout en ayant un encombrement axial et radial très faible, et cela sans entraîner de surcoût de fabrication inacceptable.
Dans un mode de réalisation, le passage d'évacuation de fluide est sensiblement étanche, à l'exception de l'entrée de fluide via l'ajutage amont, et l'évacuation de fluide via l'ajutage aval. Ainsi, aucune évacuation ni aucun apport de fluide n'a lieu de l'amont à l'aval du passage. En particulier, la chambre annulaire intermédiaire est sensiblement étanche à l'exception du passage de fluide à travers les ajutages amont et aval, et aucune voie d'échange de fluide autre que les ajutages amont et aval n'est prévue. Enfin, dans un mode de réalisation l'ajutage amont et l'ajutage aval sont radialement étages. En d'autres termes, l'ajutage amont et l'ajutage aval sont situés à des distances différentes l'un et l'autre par rapport à l'axe de rotation de la pompe. Grâce à cette disposition, il est possible de réaliser un dispositif d'équilibrage axial axialement compact, c'est-à-dire de faible longueur suivant l'axe de la pompe. La chambre annulaire peut notamment être disposée radialement entre un rayon de l'ajutage amont et un rayon de l'ajutage aval (un rayon d'un ajutage désignant ici le rayon d'une section de moindre passage de l'ajutage).
De manière générale, diverses formes de révolution autour de l'axe de la pompe peuvent être adoptées pour les ajutages, les ajutages devant toutefois nécessairement s'étendre radialement, mais pouvant par exemple présenter une forme conique ou autre, et les surfaces en regard respectives de la roue et du stator devant se correspondre géométriquement. On notera que l'expression "se faisant face' indique ici que respectivement pour chacun des ajutages, les parois de la roue et du stator sont sensiblement en face l'une de l'autre, les deux ajutages étant par ailleurs décalés l'un par rapport à l'autre axialement et/ou radialement.
Grâce à la présence dans le passage, au lieu d'un unique ajutage radial, de deux ajutages séparés par une chambre intermédiaire, pour un jeu axial donné Ia perte de charge générée par le passage est augmentée, sans que l'extension radiale de l'ajutage n'ait augmenté. Inversement, la perte de charge qui permet l'équilibrage du rotor étant donnée, Ie choix de cette conformation conduit avantageusement à augmenter le jeu axial entre le rotor et le stator, ce qui conduit à une sécurité de fonctionnement accrue pour ces deux pièces. La compacité axiale et/ou radiale de la pompe est améliorée, notamment en évitant l'ajout d'un plateau d'équilibrage axial déporté.
Dans un mode de réalisation, l'un au moins parmi l'ajutage amont et l'ajutage aval s'étend dans un plan perpendiculaire à l'axe de la pompe. Par ailleurs, avantageusement, le dispositif d'équilibrage de poussée axiale peut n'être aménagé que dans une roue à aubes unique. Il peut donc être utilisé lorsque le rotor ne comporte qu'une seule roue à aubes.
Cela étant, le dispositif d'équilibrage de poussée peut aussi bien être utilisé dans un rotor comportant une pluralité de roues à aubes.
Dans ce cas, on peut prévoir que la seule roue impliquée est la dernière roue en arrière de la pompe, c'est-à-dire celle située la plus en aval dans le sens d'avancée du fluide dans la pompe.
Comme solution alternative, on peut également prévoir que le dispositif d'équilibrage de poussée axiale implique au moins deux roues, et en particulier toutes les roues. Ainsi, les efforts sont répartis de manière plus homogènes au sein du rotor.
Enfin, il convient de noter que le principe d'interposition de chambre intermédiaire, séparée par des ajutages radiaux, peut être multiplié ou réitéré. Ainsi selon l'invention, il est possible de prévoir que le passage comporte en outre au moins un autre ajutage, intermédiaire, s'étendant entre deux parois en couronne se faisant face, respectivement du rotor et du stator, et au moins une autre chambre annulaire intermédiaire aménagée entre le rotor et le stator, s'ouvrant en aval de cet ajutage intermédiaire, le ou les ajutage(s) întermédiaire(s) et chambre(s) annulaire(s) intermédiaïre(s) étant interposés alternés sur le trajet de fluide en aval de la première chambre annulaire intermédiaire et en amont de l'ajutage aval.
Dans la configuration ainsi obtenue, on a donc une suite de chambres intermédiaires se faisant suite, séparées par des ajutages radiaux, Â débit de fluide identique, le saut de pression généré par le passage peut ainsi être encore plus important qu'avec une seule chambre intermédiaire. Enfin, l'invention s'applique plus particulièrement à Ia réalisation de turbopompes pour moteur spatial, associant une pompe telle que décrite précédemment couplée à une turbine.
L'invention sera bien comprise et ses avantages apparaîtront mieux à Ia lecture de la description détaillée qui suit, de modes de réalisation représentés à titre d'exemples non limitatifs. La description se réfère aux dessins annexés, sur lesquels : la figure 1 déjà décrite est une vue en coupe axiale d'une pompe centrifuge équipée d'un dispositif d'équilibrage de poussée axiale, Ia figure 2 déjà décrite est une vue en coupe axiale d'un passage de transfert de fluide de ce dispositif, dans une conformation connue, la figure 3 est une vue en coupe axiale d'un passage de transfert de fluide d'un dispositif d'équilibrage axial de pompe, dans un premier mode de réalisation de l'invention, la figure 4 est une vue en coupe axiale d'un passage de transfert de fluide d'un dispositif d'équilibrage axial de pompe, dans un deuxième mode de réalisation de l'invention, et la figure 5 est une vue en coupe axiale d'un passage de transfert de fluide d'un dispositif d'équilibrage axial de pompe, dans un troisième mode de réalisation de l'invention.
Lorsqu'un élément apparaît sur plusieurs figures, soit à l'identique, soit sous une forme analogue, il est décrit en relation avec la première figure sur laquelle il apparaît ; sur les suivantes, il porte une référence numérique qui est sa référence numérique initiale, augmentée de 100, 200, etc. ; de plus, la description de l'élément n'est faite qu'une fois ; dans les figures suivantes, elle est omise ou simplifiée.
Les figures 3 à 5 présentent des dispositifs d'équilibrage axial, susceptibles d'être mis en œuvre dans une pompe telle que celle présentée en relation avec la figure 1. Le fonctionnement d'un dispositif d'équilibrage axial de pompe, dans un premier mode de réalisation de l'invention, va maintenant être décrit en faisant référence à la figure 3.
La figure 3 est une section partielle d'une pompe globalement similaire à celle présentée sur la figure 1, à savoir une pompe monoétage comportant une roue 111 de type ouvert. Cependant, le dispositif d'équilibrage de la pompe de la figure 3 est différent de celui de la pompe de la figure 1.
La pompe représentée sur la figure 3 comporte un rotor 114 et un stator 112, et un dispositif d'équilibrage de poussée comportant notamment un passage de fluide 120 formé entre le rotor 114 et le stator 112.
Sur la pompe de la figure 3, le dispositif de poussée est agencé sur la paroi arrière de la roue à aubes. On comprend naturellement que de manière générale, le dispositif de poussée peut être agencé aussi bien sur une paroi arrière de la roue 111, que sur une paroi avant de celle-ci.
En amont du côté de la veine de fluide, le passage 120 comporte une partie axiale amont 130 s'étendant entre deux parois sensiblement cylindriques 131,132 de section circulaire se faisant face, respectivement de la roue 111 (roue impliquée) et du stator 112, située en amont de l'ajutage amont 140. Cette partie axiale amont constitue une cavité qui permet avantageusement une première dissipation d'énergie cinétique du fluide passant à travers le passage 120.
Immédiatement en aval de la partie axiale amont s'étend l'ajutage amont 140. Celui-ci est un passage s'étendant radialement sur une distance B entre les parois 141 et 142 respectivement de la roue et du stator. Il y a donc, sur la distance B, un recouvrement radial effectif entre les surfaces 141 et 142
En aval de l'ajutage amont 140, s'étend la chambre intermédiaire
150. Celle-ci est de forme annulaire et s'étend entre les parois 151 et 152 de la roue 111 et du stator 112. La chambre peut indifféremment être aménagée dans le volume de la roue et/ou du stator. A l'exception des ajutages amont et aval, la chambre 150 est étanche.
La chambre annulaire 150 est de faible longueur dans le sens radial, puisqu'elle s'étend radialement sur moins d'un dixième, et plus précisément moins d'un vingtième du rayon de la roue 111 au niveau de l'ajutage amont.
De plus, elle est également de faible longueur dans le sens axial, puisqu'elle s'étend axialement sur moins d'un dixième, et plus précisément moins d'un vingtième du rayon de la roue 111 au niveau de l'ajutage amont. En aval de cette chambre intermédiaire 150 s'étend l'ajutage aval 160, entre les parois 161 et 162 respectivement de la roue et du stator. Celui-ci est également à recouvrement positif.
Les ajutages radiaux amont et aval définissent respectivement des jeux axiaux AlOl et A1Q2, égaux ou non, entre la roue 111 et le stator 112.
Par ailleurs, les ajutages amont et aval sont radialement étages. Ainsi, l'ajutage amont 140 se trouve à une distance radiale plus faible par rapport à l'axe de rotation de la pompe que l'ajutage aval 160. Ces deux ajutages sont séparés par la distance séparant radialement les parois 151 et 152 respectivement du rotor et du stator, qui correspond à l'extension radiale de la chambre annulaire 150.
Enfin, en aval de l'ajutage aval 160, le passage 120 comporte une partie axiale aval 170 s'étendant entre deux parois 171,172 sensiblement cylindriques de section circulaire se faisant face, respectivement de la roue
111 (roue impliquée) et du stator 112, située en aval de l'ajutage aval
160.
Comme la partie axiale amont, cette partie axiale aval constitue également une cavité permettant la dissipation d'énergie cinétique du fluide passant à travers le passage 120.
Même si une forme cylindrique de section circulaire (l'axe étant celui de la pompe) est préférable, ces parties axiales amont et aval du passage 120 peuvent adopter d'autres formes de révolution autour de l'axe de la pompe, par exemple présenter un convergent (en amont) ou un divergent (en aval) entre des surfaces tronconiques se faisant face respectivement de la roue 111 et du stator 112.
En faisant référence à la figure 4, un dispositif dans une pompe centrifuge dans un deuxième mode de réalisation de l'invention, va maintenant être décrit. Dans ce mode de réalisation, au moins une roue impliquée dans le dispositif d'équilibrage axial, et dans ce cas la roue à aubes 211 est une roue fermée, ou flasquée, c'est-à-dire fermée par un couvercle 290 (ou flasque) du côté avant des aubes. Pour permettre l'équilibrage axial dans les deux sens le long de l'axe de la pompe, le dispositif d'équilibrage axial est doublé, comprenant de premiers moyens d'équilibrage axial (notamment un premier passage 220) très similaires à ceux présentés en relation avec Ia figure 3, et de deuxièmes moyens d'équilibrage axial agissant dans le sens opposé, disposés du côté du couvercle.
Dans ce mode de réalisation, les différents éléments des premiers moyens d'équilibrage axial, et notamment le passage 220, sont sensiblement les mêmes que dans le mode de réalisation précédent et ne seront donc pas décrits à nouveau en détail.
Concernant ces premiers moyens d'équilibrage axial, disposés sur la côté arrière de la roue 211, les différences sont les suivantes.
Tout d'abord, les ajutages radiaux amont et aval s'étendent sensiblement dans le même plan perpendiculaire à l'axe de rotation du rotor, alors qu'au contraire dans le mode de réalisation présenté en figure
3, les ajutages radiaux amont 140 et aval 160 sont légèrement décalés suivant l'axe de rotation de la pompe. Ainsi dans le mode de réalisation de la figure 4, dans lequel les ajutages radiaux amont et aval sont dans un même plan, l'usinage des surfaces 241, 261 de la roue et 242, 262, du stator est simplifié. De plus, l'encombrement axial du dispositif d'équilibrage axial n'est ainsi pas augmenté, par rapport au dispositif d'équilibrage axial présenté en figure 1.
On note en outre que la chambre intermédiaire a été aménagée uniquement dans le stator. Comme cette chambre peut être soumise à une usure rapide et/ou des vibrations, avantageusement celles-ci sont concentrées dans le stator et non dans l'ensemble tournant de la pompe.
D'autre part, une chambre annulaire 273 est aménagée dans la partie amont de la partie axiale aval 270, au voisinage de la section de sortie de l'ajutage aval 260 du passage 220. En forçant le fluide à circuler également dans cette chambre annulaire 273, on augmente encore la perte de charge lors de la traversée du passage 220. Une cavité similaire peut de manière symétrique être prévue dans la partie aval de la partie axiale amont 230, au voisinage de la section d'entrée de l'ajutage amont 240.
Enfin, le dispositif d'équilibrage axial comporte de deuxièmes moyens d'équilibrage axial pour la roue 211, pour empêcher les déplacements de celle-ci vers l'avant.
Le dispositif d'équilibrage axial comporte ainsi une autre chambre d'équilibrage 288 dite chambre d'équilibrage avant, s'étendant entre une paroi avant du couvercle 290 et le stator 212, un deuxième passage 292 aménagé entre le couvercle et le stator, permettant une évacuation de fluide depuis Ia veine de fluide 214 jusqu'à la chambre d'équilibrage avant 288, le deuxième passage 292 comportant un ajutage amont 294 et un ajutage 296, ces ajutages s'étendant entre deux parois en couronne se faisant face, respectivement du couvercle 290 sur le côté avant et du stator 212 sur le côté arrière, et une chambre annulaire intermédiaire 298 aménagée entre des parois respectivement du couvercle 290 et du stator 212, la chambre annulaire intermédiaire 298 s'ouvrant en aval de l'ajutage amont 294 et en amont de l'ajutage aval 296 du deuxième passage 292. La structure des deuxièmes moyens d'équilibrage est fonctionnellement équivalente à celle des premiers moyens, mais les deuxièmes moyens sont disposés dans un sens opposé par rapport à Taxe de la pompe. Grâce à cette conformation du dispositif d'équilibrage axial avec des moyens d'équilibrage de sens opposés disposés sur les deux côtés de la roue, les déplacements axiaux du rotor sont compensés dans les deux sens. On notera enfin que suivant l'invention, le dispositif d'équilibrage peut être disposé sur une ou plusieurs roues flasquées, pourvues chacune de moyens d'équilibrage dans les deux sens.
En faisant référence à la figure 5, un dispositif dans une pompe centrifuge dans un troisième mode de réalisation de l'invention, va maintenant être décrit.
Dans ce mode de réalisation, les différents éléments des moyens d'équilibrage axial, et notamment le passage 320, sont sensiblement les mêmes que dans le premier mode de réalisation et ne seront donc pas décrits à nouveau en détail.
La particularité de ce troisième mode de réalisation, par rapport au premier mode de réalisation, réside dans l'absence de recouvrement radial entre les surfaces des ajutages amont 340 et aval 360.
Dans ce mode de réalisation, les ajutages 340 et 360 ne présentent en effet aucun recouvrement radial. En effet, pour chacun de ces ajutages, les surfaces des ajutages 341, 361 ; 342,362 respectivement du rotor et du stator, ne comportent aucune partie en vis-à-vis suivant l'axe de la pompe. Plus précisément, concernant l'ajutage amont 340, les surfaces 341 et 342 constituant cet ajutage sont séparées par un écart radial C ; concernant l'ajutage aval 360, un écart radial D sépare les surfaces 361 et 362 constituant cet ajutage. L'intérêt de cette conformation est que, les surfaces des ajutages n'ayant pas de partie radialement commune, ou en d'autres termes, étant radialement décalées, les mouvements axiaux relatifs du rotor par rapport au stator ne peuvent conduire à un contact entre rotor et stator. Cette propriété peut être absolument indispensable, au cas où un tel contact provoquerait un échauffement pour Ia machine pouvant conduire à la destruction de celle- ci.

Claims

REVENDICATIONS
1. Pompe (8) comprenant un stator (112), un rotor (10) comportant au moins une roue à aubes, et un dispositif d'équilibrage axial aménagé sur au moins une roue à aubes (111) du rotor dans laquelle passe une veine de fluide (114), ledit dispositif comportant pour chaque roue impliquée dans ce dispositif, une chambre d'équilibrage (118) s'étendant entre une paroi (116) de ladite roue impliquée (111) et le stator (112), et un passage (120) aménagé entre ladite roue impliquée (111) et le stator, permettant une évacuation de fluide depuis ladite veine de fluide (114) jusqu'à ladite chambre d'équilibrage (118) ; ledit rotor ayant un léger jeu axial permettant un déplacement axial limité ; ledit dispositif d'équilibrage axial étant caractérisé en ce que ledit passage (120) comporte un ajutage amont (140) et un ajutage aval (160), tous deux axialement variables, s'étendant entre deux parois (141,142 ; 161,162) en couronne se faisant face avec un recouvrement positif, nul ou négatif, respectivement de la roue impliquée (111) et du stator (112), et une chambre annulaire intermédiaire (150) aménagée entre des parois (151,152) de la roue impliquée (111) et du stator (112), s'ouvrant en aval de l'ajutage amont (140) et en amont de l'ajutage aval (160) dudit passage.
2. Pompe selon la revendication 1, caractérisée en ce que la chambre annulaire intermédiaire (150) est sensiblement étanche à l'exception du passage de fluide à travers les ajutages amont et aval.
3. Pompe selon la revendication 1 ou 2, caractérisée en ce que l'un au moins parmi l'ajutage amont (140) et l'ajutage aval (160) s'étend dans un plan perpendiculaire à l'axe de la pompe.
4. Pompe selon l'une quelconque des revendications i à 3, caractérisée en ce que ledit passage (120) comporte en outre une partie axiale amont (130) s'étendant entre deux parois sensiblement cylindriques (131,132) de section circulaire se faisant face, respectivement de Ia roue impliquée (111) et du stator (112), et située en amont de l'ajutage amont (140).
5. Pompe selon Tune quelconque des revendications 1 à 4, caractérisée en ce que ledit passage (120) comporte en outre une partie axiale aval (170) s'étendant entre deux parois (171,172) sensiblement cylindriques de section circulaire se faisant face, respectivement de la roue impliquée (111) et du stator (112), et située en aval de l'ajutage aval (160).
6. Pompe selon la revendication 5, caractérisée en ce qu'une chambre annulaire (273) est aménagée dans la partie amont de la partie axiale aval (270), au voisinage de la section de sortie de l'ajutage aval (260) du passage (220).
7. Pompe selon l'une quelconque des revendications 1 à 6, caractérisée en ce que ledit passage (120) comporte en outre au moins un autre ajutage dit intermédiaire, s'étendant entre deux parois en couronne se faisant face, respectivement du rotor et du stator, et au moins une autre chambre annulaire intermédiaire aménagée entre le rotor et le stator, s'ouvrant en aval de cet ajutage intermédiaire, lesdits au moins un ajutage intermédiaire et au moins une chambre annulaire intermédiaire étant interposés alternés sur le trajet de fluide en aval de ladite chambre annulaire intermédiaire et en amont dudit ajutage aval.
8. Pompe selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les ajutages amont (240) et aval (260) s'étendent sensiblement dans le même plan perpendiculaire à l'axe de rotation du rotor.
9. Pompe selon l'une quelconque des revendications 1 à 8, caractérisée en ce que le rotor (10) ne comporte qu'une seule roue à aubes (111).
10. Pompe selon l'une quelconque des revendications 1 à 8, caractérisée en ce que Ie rotor (10) comporte une pluralité de roues à aubes (111), la seule roue impliquée étant celle située Ia plus en aval dans le sens d'avancée du fluide dans la pompe.
11. Pompe selon l'une quelconque des revendications 1 à 9, caractérisée en ce qu'au moins une roue impliquée dans le dispositif d'équilibrage axial est une roue fiasquée fermée par un couvercle (290) sur le côté avant des aubes ; ladite chambre d'équilibrage et ledit passage sont agencés sur un côté arrière de ladite roue flasquée, entre une paroi arrière de la roue flasquée et le stator ; ledit dispositif comporte en outre pour ladite roue flasquée, une autre chambre d'équilibrage (288) dite chambre d'équilibrage avant, s'étendant entre une paroi avant dudit couvercle et le stator, un deuxième passage (292) aménagé entre le couvercle et le stator, permettant une évacuation de fluide depuis ladite veine de fluide (214) jusqu'à ladite chambre d'équilibrage avant (288), ledit deuxième passage (292) comportant un ajutage amont (294) et un ajutage aval (296), ces ajutages s'étendant entre deux parois en couronne se faisant face, respectivement du couvercle (290) sur le côté avant et du stator (212) sur le côté arrière, et une chambre annulaire intermédiaire (298) aménagée entre des parois respectivement du couvercle (290) et du stator (212), ladite chambre annulaire intermédiaire (298) s'ouvrant en aval de l'ajutage amont (294) et en amont de l'ajutage aval (296) dudit deuxième passage (292).
12. Pompe selon l'une quelconque des revendications 1 à 11, dont ladite roue impliquée est prévue pour atteindre une vitesse en périphérie supérieure à 400 m/s.
13. Pompe selon l'une quelconque des revendications 1 à 12, agencée pour le pompage d'hydrogène liquide,
14. Turbopompe de moteur spatial selon l'une quelconque des revendications 1 à 13.
PCT/FR2010/050027 2009-01-09 2010-01-08 Pompe a dispositif d'equilibrage axial. WO2010079309A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080004084.6A CN102272457B (zh) 2009-01-09 2010-01-08 具有轴向平衡装置的泵
RU2011130704/06A RU2539954C2 (ru) 2009-01-09 2010-01-08 Насос с осевым балансировочным устройством
EP10706014.7A EP2376789B1 (fr) 2009-01-09 2010-01-08 Pompe a dispositif d'equilibrage axial.
JP2011544909A JP5492222B2 (ja) 2009-01-09 2010-01-08 軸線方向平衡装置を備えたポンプ
US13/143,616 US9109606B2 (en) 2009-01-09 2010-01-08 Pump having an axial balancing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0950107 2009-01-09
FR0950107A FR2941019A1 (fr) 2009-01-09 2009-01-09 Pompe a dispositif d'equilibrage axial

Publications (1)

Publication Number Publication Date
WO2010079309A1 true WO2010079309A1 (fr) 2010-07-15

Family

ID=40845920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/050027 WO2010079309A1 (fr) 2009-01-09 2010-01-08 Pompe a dispositif d'equilibrage axial.

Country Status (7)

Country Link
US (1) US9109606B2 (fr)
EP (1) EP2376789B1 (fr)
JP (1) JP5492222B2 (fr)
CN (1) CN102272457B (fr)
FR (1) FR2941019A1 (fr)
RU (1) RU2539954C2 (fr)
WO (1) WO2010079309A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019110909A1 (fr) * 2017-12-08 2019-06-13 Arianegroup Sas Pompe comprenant un systeme d'equilibrage axial

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010016563A1 (de) 2010-04-21 2011-10-27 Miklos Gäbler Vorrichtung zum Umwandeln von Energie aus einer oszillatorischen Bewegung in elektrische Energie sowie Anordnung
WO2016160016A1 (fr) * 2015-04-02 2016-10-06 Schlumberger Canada Limited Chambres d'équilibrage dans des pompes électriques submersibles
US10513928B2 (en) * 2017-08-31 2019-12-24 Flowserve Management Company Axial thrust balancing device
CN109973401B (zh) * 2018-10-24 2020-06-26 浙江朗庆智能科技有限公司 基于离心式的尿素泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR405266A (fr) * 1908-07-24 1909-12-24 Henri Legros Dispositif pour équilibrer la poussée axiale dans les pompes centrifuges
DE922807C (de) * 1945-03-06 1955-01-24 Aeg Einrichtung zum Ausgleich des Axialschubes mehrstufiger Kreiselpumpen
CH330272A (fr) * 1955-07-19 1958-05-31 Harland Engineering Company Li Pompe à rotor en porte à faux
DE1528717A1 (de) * 1965-06-30 1969-10-30 Halbergerhuette Gmbh Vorrichtung zum Ausgleich des Axialschubes bei mehrstufigen Kreiselpumpen
US4867633A (en) * 1988-02-18 1989-09-19 Sundstrand Corporation Centrifugal pump with hydraulic thrust balance and tandem axial seals
DE19631824A1 (de) * 1996-08-07 1998-02-12 Klein Schanzlin & Becker Ag Kreiselpumpenlagerung mit Axialschubausgleich

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1020699A (en) * 1912-03-19 Gen Electric Centrifugal pump.
US1488931A (en) * 1921-10-26 1924-04-01 Marechal Paul Joseph Charles Turbo engine
JPS56109689U (fr) * 1980-01-25 1981-08-25
JPS56109689A (en) 1980-02-02 1981-08-31 Bunsaku Taketomi Overrlocking sewing machine particularly for sewing machine for both use
FR2698667B1 (fr) * 1992-11-30 1995-02-17 Europ Propulsion Pompe centrifuge à rouet ouvert.
JP3646740B2 (ja) * 1995-06-27 2005-05-11 石川島播磨重工業株式会社 バランスピストン機構を備えたターボポンプ
RU2095607C1 (ru) 1995-07-19 1997-11-10 Ракетно-космическая корпорация "Энергия" им.С.П.Королева Жидкостный ракетный двигатель на криогенном топливе
KR100610012B1 (ko) 2004-08-16 2006-08-09 삼성전자주식회사 터보 펌프
US7445213B1 (en) * 2006-06-14 2008-11-04 Florida Turbine Technologies, Inc. Stepped labyrinth seal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR405266A (fr) * 1908-07-24 1909-12-24 Henri Legros Dispositif pour équilibrer la poussée axiale dans les pompes centrifuges
DE922807C (de) * 1945-03-06 1955-01-24 Aeg Einrichtung zum Ausgleich des Axialschubes mehrstufiger Kreiselpumpen
CH330272A (fr) * 1955-07-19 1958-05-31 Harland Engineering Company Li Pompe à rotor en porte à faux
DE1528717A1 (de) * 1965-06-30 1969-10-30 Halbergerhuette Gmbh Vorrichtung zum Ausgleich des Axialschubes bei mehrstufigen Kreiselpumpen
US4867633A (en) * 1988-02-18 1989-09-19 Sundstrand Corporation Centrifugal pump with hydraulic thrust balance and tandem axial seals
DE19631824A1 (de) * 1996-08-07 1998-02-12 Klein Schanzlin & Becker Ag Kreiselpumpenlagerung mit Axialschubausgleich

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019110909A1 (fr) * 2017-12-08 2019-06-13 Arianegroup Sas Pompe comprenant un systeme d'equilibrage axial
FR3074859A1 (fr) * 2017-12-08 2019-06-14 Arianegroup Sas Pompe comprenant un systeme d'equilibrage axial

Also Published As

Publication number Publication date
CN102272457A (zh) 2011-12-07
EP2376789A1 (fr) 2011-10-19
CN102272457B (zh) 2015-06-10
JP2012514713A (ja) 2012-06-28
RU2539954C2 (ru) 2015-01-27
RU2011130704A (ru) 2013-02-20
US20120148384A1 (en) 2012-06-14
JP5492222B2 (ja) 2014-05-14
EP2376789B1 (fr) 2018-09-12
FR2941019A1 (fr) 2010-07-16
US9109606B2 (en) 2015-08-18

Similar Documents

Publication Publication Date Title
EP0494007B1 (fr) Turbopompe à gavage intégré en flux unique
EP1577495B1 (fr) Palier à roulement de turbomachine à encombrement réduit
EP1988292B1 (fr) Machine tournante comportant un système d'équilibrage axial passif
EP1626170B1 (fr) Turbomachine à soufflantes contrarotatives
EP2009234B1 (fr) Dispositif de refroidissement des alvéoles d'un disque de rotor de turbomachine
EP2376789B1 (fr) Pompe a dispositif d'equilibrage axial.
FR2698666A1 (fr) Pompe centrifuge hautement performante à rouet ouvert.
FR2908844A1 (fr) Pompe a palettes a deplacement variable
FR2965858A1 (fr) Amortisseur a compression de film liquide
EP2366061A1 (fr) Roue de turbine avec système de rétention axiale des aubes
FR2940351A1 (fr) Rotor de turbine d'un moteur a turbine a gaz comprenant un disque de rotor et un flasque d'etancheite
FR2856440A1 (fr) Compresseur de turbomachine et roue dudit compresseur
EP2430314B1 (fr) Pompe centrifuge a double echappement
EP1181438B1 (fr) Turbomachine radiale
FR3033180A1 (fr) Assemblage d'une plateforme rapportee d'aube de soufflante sur un disque de soufflante
EP4073371B1 (fr) Système propulsif aéronautique à faible débit de fuite et rendement propulsif amélioré
WO2017137701A1 (fr) Systeme de mise en rotation d'une soufflante d'un turboreacteur
FR2865775A1 (fr) Unite de transfert de carburant pour alimenter un moteur a combustion interne
EP1473462B1 (fr) Groupe compresseur à montage en cartouche
EP0469964B1 (fr) Turbopompe pour comprimer simultanément deux fluides
EP3935273B1 (fr) Turbine à gaz contrarotative pour aéronef à double rotor
FR2981993A1 (fr) Pompe a engrenages a cylindree variable pour turbomachine d'aeronef
FR2785645A1 (fr) Machine hydraulique rotative
FR2964163A1 (fr) Pompe a vide de type seche
WO2021013797A1 (fr) Pompe a engrenage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004084.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10706014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010706014

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011544909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011130704

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13143616

Country of ref document: US