WO2021013797A1 - Pompe a engrenage - Google Patents

Pompe a engrenage Download PDF

Info

Publication number
WO2021013797A1
WO2021013797A1 PCT/EP2020/070456 EP2020070456W WO2021013797A1 WO 2021013797 A1 WO2021013797 A1 WO 2021013797A1 EP 2020070456 W EP2020070456 W EP 2020070456W WO 2021013797 A1 WO2021013797 A1 WO 2021013797A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
toothed wheel
pinion
fluid
cavity
Prior art date
Application number
PCT/EP2020/070456
Other languages
English (en)
Inventor
Mathieu Pierre CHENOUX
Original Assignee
Safran Aero Boosters Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aero Boosters Sa filed Critical Safran Aero Boosters Sa
Priority to US17/624,741 priority Critical patent/US11739750B2/en
Publication of WO2021013797A1 publication Critical patent/WO2021013797A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/101Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with a crescent-shaped filler element, located between the inner and outer intermeshing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/20Fluid liquid, i.e. incompressible
    • F04C2210/206Oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a pump and more particularly to an internal gear pump used to circulate a lubricating fluid in an aircraft turbojet.
  • An internal gear pump is generally composed of a crown with internal teeth cooperating with a toothed wheel arranged inside the crown.
  • the toothed wheel drives the ring gear in rotation and fluid travels through the internal space between the toothed wheel and the ring gear.
  • the object of the invention is to provide a gear pump which simultaneously enables reduced drive torque, reduced bulk and reduced complexity.
  • the subject of the invention is an internal gear pump preferably suitable for use in an aircraft engine, the pump comprising: an internal toothed ring defining a cavity and a toothed wheel arranged in the cavity, the toothed wheel comprising a toothing external co-operating with the internal toothing to drive the ring gear in rotation, remarkable in that it comprises a pinion arranged in said cavity and driving the toothed wheel in rotation.
  • the pinion By being located in the pump enclosure, the pinion ensures the compactness of the assembly.
  • the pump can include one or more of the following characteristics, taken in isolation or in any technically possible combination:
  • the pump comprises a deflector disposed in the cavity, the deflector comprising a first portion tangent to the toothed wheel, a second portion tangent to the crown and two connecting portions between the first and the second portion, including a concave connecting portion and a convex connecting portion.
  • the baffle does not exhibit any particular symmetry compared to the "crescent" shapes used in pumps so far. This distinction saves weight and allows a certain latitude in the choice of the size of the pinion.
  • the deflector allows the flow to be broken in two;
  • the pump comprises a flange in which are arranged a fluid inlet and a fluid delivery orifice and optionally housings for bearings supporting the pinion and the toothed wheel in rotation.
  • flange is meant a circular cover which preferably has dimensions close to those of the crown. The flange is in contact with the crown and axially delimits the cavity.
  • the inlet and outlet orifices can be integrated into the crown as in document EP 1 396 639 A1, in particular when the number of teeth is small;
  • the pinion and possibly the concave connecting portion of the deflector is / are closer (s) to the inlet port than to the discharge port.
  • the flow of fluid is not disturbed by the rotation or the presence of the pinion.
  • the efficiency of the pump is lower if the pinion is positioned on the high-pressure side (discharge);
  • the flange inlet port follows the concave connecting portion of the deflector and / or the discharge port of the flange departs from the convex connecting portion of the deflector. This makes it possible to limit the risks of cavitation by offering progressivity in the pressure gradients undergone by the fluid.
  • An inlet port larger than a discharge port is preferred;
  • the inlet of the flange and the concave connecting portion of the deflector are arranged to direct the flow of fluid towards the toothed wheel and towards the ring to ensure a certain gradual increase in the pressure of the fluid.
  • the geometry of the flange and of the concave connecting portion means that the fluid is not encouraged to move towards the pinion when it is sucked into the pump, in order to prevent the rotation of the pinion from disturbing the flow of the pump. fluid;
  • the deflector is in one piece with the flange. This makes it possible to simplify the assembly of the pump by providing a single integral part.
  • the lack of fixing means improves the weight and compactness of the whole;
  • the pinion cooperates with the external teeth of the toothed wheel or the toothed wheel comprises internal teeth which cooperates with the pinion.
  • the internal toothing of the toothed wheel defines a secondary cavity.
  • the secondary cavity is geometrically a subspace of the cavity delimited by the crowned.
  • the secondary cavity can be traversed by the fluid or by another fluid, independently of the (main) cavity;
  • the flange comprises a secondary inlet port and a secondary discharge port which are fluidly connected to the secondary cavity.
  • the secondary cavity is independent of the main cavity;
  • the pump comprises an intake manifold, connected to the inlet port and to the secondary inlet port, and a delivery manifold, connected to the delivery port and to the secondary delivery port, the manifolds being fitted with valves allowing the fluid to pass as desired in one of the respective orifices or in the two respective orifices.
  • the two cavities can operate simultaneously or independently. There are therefore three possible flow levels for the pump for the same speed of rotation of the pinion;
  • the pinion is spaced from at least one of the intake or discharge ports. Indeed, it is not desirable for the pinion to intervene in the flow of the fluid and it may therefore be advantageous to keep it away from the inlet and discharge ports.
  • the toothed wheel can overlap the ports to help draw the flow of fluid from the inlet to the outlet;
  • the reduction ratio between the pinion and the toothed wheel is between 2 and 8, and is preferably between 2 and 4, the number of teeth of the pinion being between 4 and 12 and the number of teeth of the toothed wheel being between 16 and 30. Any integer value of teeth in these intervals can be chosen.
  • the subject of the invention is also a hydraulic system for a turbomachine, in particular for an aircraft turbojet engine, remarkable in that it comprises a pump as described above to ensure the circulation of a first fluid.
  • the system can ensure the circulation of a second fluid, sequentially or simultaneously with the first fluid, the first fluid flowing from the inlet port to the delivery port and the second fluid flowing from the secondary inlet port to the secondary delivery port.
  • the "pinion / toothed wheel” couple can function as a gear pump as such, encapsulated in the pump.
  • the ring gear may have external teeth and cooperate with another ring gear so that these rings also form a gear pump.
  • each object of the invention is also applicable to the other objects of the invention.
  • Each object of the invention can be combined with other objects, and the objects of the invention can also be combined with the embodiments of the description, which in addition can be combined with one another, in all technically possible combinations, unless the contrary is true. is not explicitly mentioned.
  • the reduction gear is naturally in a lubricant bath, whether the pumped fluid is oil or otherwise, because the heat is removed by the pumped fluid. There is therefore a self-lubrication of the pinion / toothed wheel couple.
  • Figure 1 shows a top view of a state of the art internal gear pump
  • Figure 2 shows a top view of a gear pump according to a first embodiment
  • FIG. 3 shows the flange alone, in this first embodiment
  • Figure 4 shows an isometric view of the pump
  • Figure 5 illustrates a top view of a gear pump according to a second embodiment
  • FIG. 6 describes the flange alone, in this second embodiment
  • FIG. 7 represents a front view of the pump according to the second embodiment
  • Figure 8 shows a front view of the pump according to the second embodiment provided with intake and discharge manifolds.
  • the terms “internal” (or “internal”) and “external” (or “external”) refer to a positioning relative to the axis of rotation of the respective parts (pinion, toothed wheel, ring gear ).
  • the axial direction is the direction along the axis of rotation of the ring gear, which is parallel to the axis of rotation of the pinion or toothed wheel.
  • the radial direction is perpendicular to the axis of rotation.
  • FIG. 1 shows a top view of a known internal gear pump 1, in which the top cover has been removed.
  • the pump 1 comprises a toothed wheel 2 whose external teeth 2.1 drives a ring gear 4 in rotation via the internal teeth 4.1 of the ring gear.
  • the toothed wheel 2 rotates on its axis 2.2 and the crown wheel on its axis 4.2.
  • a cavity 5 between the toothed wheel 2 and the crown wheel 4 allows a fluid to flow along a deflector 6 from an inlet port 7 to a discharge port 9 (arrows F).
  • the orifices 7, 9 are arranged in a flange 3 (behind the crown 4 in FIG. 1). They are shown in dotted lines in this figure to make the drawing easier to read, but are clearly visible in this view.
  • the deflector is of “crescent” shape, with a portion 6.2 tangent to the toothed wheel 2, a portion 6.4 tangent to the ring 4 and two convex portions 6.1, 6.3 connecting the portions 6.2 and 6.4 together.
  • a cover generally covers the pump to axially delimit the cavity 5, with the flange 3 and the teeth 4.1 of the crown 4.
  • FIG. 2 describes a pump according to a first embodiment of the invention.
  • the pump 10 comprises a toothed wheel 12 driving a ring 14 via their respective teeth 12.1, 14.1.
  • the toothed wheel rotates on its axis 12.2 and the ring gear 14 on its axis 14.2.
  • the internal toothing 14.1 of the crown 14 defines a cavity 15 in which a fluid can circulate from an inlet port 17 (arranged in a flange not shown in FIG. 2) to a discharge port 19 according to the arrows F.
  • a pinion 18 which rotates on its axis 18.2 and which drives the toothed wheel 12 in rotation, by its toothing 18.1 which cooperates with the toothing 12.1.
  • Pinion 18 can be driven by an electric motor, not shown and separate from the pump. Pinion 18 is spaced from inlet port 17 while toothed wheel 12 overhangs two ports 17 and 19.
  • the deflector 16 includes a concave portion 16.1 connecting between a portion 16.2 tangent to the toothed wheel 12 and a portion 16.4 tangent to the crown 14.
  • the concave connecting portion 16.1 can match the profile of the intake port 17.
  • the assembly is arranged so that the rotation of pinion 18 is not a brake on the flow F of the fluid.
  • pinion 18 has five teeth, toothed wheel 12 has twenty-six and crown 14 has thirty-six. It is understood that a person skilled in the art could vary the number of teeth of each of the elements involved.
  • the teeth 12.1, 14.1, 18.1 are shown as straight teeth but alternatively these can be of a different nature such as for example helical or chevron teeth.
  • the pump may comprise, behind the assembly of FIG. 2, a flange 20, an example of which is shown in FIG. 3.
  • This flange 20 has the general shape of a disc and comprises the inlet 17 and discharge 19 ports which open into the cavity (15 in FIG. 2). These orifices are intended to be coupled with inlet and discharge lines respectively.
  • the flange 20 comprises orifices 22, 24 which can accommodate the bearings respectively supporting the pinion 18 and the toothed wheel 12.
  • the deflector (16 in FIG. 2) can be mounted on the flange 20 or these two elements can be in one piece, possibly coming of matter.
  • Figure 4 shows an isometric view of the pump 10 according to the first embodiment.
  • a reduction ratio different from that of Figure 3 is shown, both between pinion 18 and toothed wheel 12 and between toothed wheel 12 and ring gear 14. This illustrates different possible designs for the pump. according to the invention.
  • a cover 30 (in exploded view) intended to come close. the cavity 15 opposite the flange 20.
  • the cover 30 may have a shape substantially similar to the flange 20.
  • one and / or the other of the orifices 17, 19 may optionally be located on the cover rather than on the flange 20.
  • the flange 20 and / or the cover 30 can be diametrically larger than the crown 14 and have a cylindrical shoulder in contact with the outside diameter of the crown 14.
  • Other options of design may feature an outer casing, an eccentric or a countersink in the flange.
  • a shaft 18.4 is shown below the flange 20 to materialize, for example, the output shaft of an electric motor which is integral in rotation with the pinion 18.
  • a journal 12.5 is shown above the toothed wheel 12. The latter can be received in a housing of the cover 30 provided for this purpose.
  • FIG. 5 represents a pump 110 according to a second embodiment of the invention.
  • the elements corresponding to the elements of the pump 10 of the first embodiment have reference numerals incremented by 100.
  • the pump comprises a crown 1 14 having internal teeth
  • a deflector 1 16 is arranged in the cavity 1 15 delimited by the internal teeth 1 14.1 of the ring 1 14.
  • the ring 1 14 is driven in rotation by the toothed wheel 1 12 via its external teeth 1 12.1.
  • the deflector 1 16 may be - as illustrated - substantially similar to the deflector 16 of the preceding figures, or may be crescent-shaped like the deflectors of pumps of the state of the art (see Figure 1).
  • a pinion 1 18 having an external toothing 1 18.1 and rotating on its axis
  • the pinion 1 18 is arranged in the cavity 1 15. More particularly, the pinion 1 18 is arranged in a secondary cavity 125 delimited by an internal toothing 1 12.3 of the toothed wheel 1 12 and the toothing 1 18.1 of the pinion 1 18 meshes with the toothing internal 1 12.3 of the toothed wheel.
  • a secondary deflector 126 can be arranged in the secondary cavity 125.
  • a secondary inlet port 127 and a secondary discharge port 129 can be arranged in the flange (120 see FIG. 6) to create a secondary flow of fluid pumping indicated by arrows F '.
  • the pinion 118 and the toothed wheel 118 operate like a conventional gear pump, except that it is encapsulated in another gear pump. There are therefore two “nesting” pumps which can be independent (see figure 7).
  • the pinion 1 18 is "on the left side" of the toothed wheel 1 12 and the axis 1 18.2 is adjacent to the axis 1 14.2.
  • the dimensions can easily be calculated so that the axis 1 18.2 coincides exactly with the axis 1 14.2. This centering of the masses can allow a reduction in vibrations.
  • the position of pinion 1 18 may be different and pinion 1 18 may be to the right of crescent 126.
  • FIG. 5 represents a secondary cavity and a secondary pump
  • the invention can also relate to an embodiment without this secondary pump, that is to say where the pinion 1 18 / wheel couple toothed 1 12 is a simple gear.
  • FIG. 6 represents the flange 120 of the second embodiment. This is identical to the flange 20 of Figure 3 with the difference that it accommodates the two secondary orifices 127, 129 and that only the housing 122 of the pinion 1 18 is shown, the housing of the bearing of the toothed wheel 1 12 is located in the cover 130.
  • FIGS 7 and 8 schematically illustrate two possible uses of the pump according to the second embodiment. These figures are front views in a direction perpendicular to axis 1 14.2.
  • the pipes 147, 148, 149, 150 are independent and can be connected to two different hydraulic circuits circulating two possibly different fluids.
  • an intake manifold 137 and a discharge manifold 139 are provided to connect the intake ports 1 17, 127 and the discharge ports 119, 129 together.
  • a respective pipe 147, 149 connects the collectors 137, 139 to the rest of the hydraulic circuit (not shown).
  • valves 140 can allow more flexible control of the pumping.
  • the valves 140 can respectively take an open state or a closed state, resulting in four states, including a state without fluid flow where all the valves are closed.
  • a first flow if the valves of the pipes 127 and 129 are open and the valves of the pipes 1 17 and 1 19 are closed
  • a second flow greater than the first flow if the valves of pipes 1 17 and 1 19 are open and the valves of the pipes 127 and 129 are closed
  • a third flow rate greater than the second flow rate if all the valves are open.
  • valves 140 take intermediate positions between the open position and the closed position, other flow rate values are also obtainable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

Pompe (10) à engrenage interne comprenant : une couronne (14) à denture interne (14.1) délimitant une cavité (15) et une roue dentée (12) disposée dans la cavité (15), la roue dentée (12) comprenant une denture externe (12.1) coopérant avec la denture interne (14.1) pour entraîner la couronne (14) en rotation. Un pignon (18) disposé dans ladite cavité (15) entraîne la roue dentée (12) en rotation et coopère avec la denture externe (12.1) de la roue dentée (12). Dans un mode de réalisation alternatif, la roue dentée comprend une denture interne qui coopère avec le pignon.

Description

Description
POMPE A ENGRENAGE
Domaine technique
L’invention concerne une pompe et plus particulièrement une pompe à engrenage interne utilisée pour faire circuler un fluide de lubrification dans un turboréacteur d’aéronef.
Technique antérieure
Une pompe à engrenage interne est généralement composée d’une couronne avec une denture interne coopérant avec une roue dentée agencée à l’intérieur de la couronne. La roue dentée entraîne la couronne en rotation et un fluide parcourt l’espace interne entre la roue dentée et la couronne.
Un exemple d’une telle pompe est divulgué dans le document EP 1 396 639 A1. Ce document décrit plus précisément une pompe dite « gerotor » dans laquelle la roue dentée comprend une dent de moins que la couronne, cette dernière disposant de lumières permettant le passage de fluide radialement à travers la couronne.
Lorsqu’on désire augmenter le débit de ce type de pompes, des dimensions de la pompe plus grandes peuvent être employées. Dans les deux cas, tenter d’augmenter le débit de la pompe se traduit par un plus grand encombrement de la pompe, ce qui n’est pas acceptable pour la conception de systèmes aéronautiques qui doivent demeurer légers, compacts et fiables.
L’utilisation d’un moteur électrique rajoute à l’encombrement car un couple important nécessite l’emploi d’un moteur électrique encombrant. Pour diminuer le couple nécessaire, il peut être utile de prévoir un réducteur entre le moteur électrique et la pompe mais ceci vient rajouter des pièces à l’ensemble : l’encombrement gagné par l’utilisation d’un moteur électrique plus petit est perdu par le réducteur entre la pompe et le moteur. Résumé de l'invention
Problème technique
L’invention a pour objectif de proposer une pompe à engrenage qui permet à la fois un couple d’entraînement réduit, un encombrement réduit et une moindre complexité.
Solution technique
L’invention a pour objet une pompe à engrenage interne préférentiellement apte à être utilisée dans un moteur d’aéronef, la pompe comprenant : une couronne à denture interne délimitant une cavité et une roue dentée disposée dans la cavité, la roue dentée comprenant une denture externe coopérant avec la denture interne pour entraîner la couronne en rotation, remarquable en ce qu’elle comprend un pignon disposé dans ladite cavité et entraînant la roue dentée en rotation.
En étant situé dans l’enceinte de la pompe, le pignon assure la compacité de l’ensemble.
Selon des modes avantageux de l’invention, la pompe peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement possibles :
- la pompe comprend un déflecteur disposé dans la cavité, le déflecteur comprenant une première portion tangente à la roue dentée, une deuxième portion tangente à la couronne et deux portions de liaison entre la première et la deuxième portion, dont une portion de liaison concave et une portion de liaison convexe. En d’autres termes, le déflecteur ne présente pas de symétrie particulière en comparaison des formes en « croissant » utilisées dans les pompes jusqu’à présent. Cette distinction permet un gain de poids et permet une certaine latitude dans le choix de la dimension du pignon. Le déflecteur permet de briser le flux en deux ;
- la pompe comprend un flasque dans lequel sont aménagés un orifice d’admission du fluide et un orifice de refoulement du fluide et éventuellement des logements pour des paliers supportant le pignon et la roue dentée en rotation. Par « flasque », on entend un couvercle circulaire qui a préférentiellement des dimensions voisines de celles de la couronne. Le flasque est au contact de la couronne et délimite axialement la cavité. Alternativement, les orifices d’admission et de refoulement peuvent être intégrés à la couronne comme dans le document EP 1 396 639 A1 , en particulier lorsque le nombre de dents est petit ;
- le pignon et éventuellement la portion de liaison concave du déflecteur est/sont plus proche(s) de l’orifice d’admission que de l’orifice de refoulement. Ainsi, au voisinage du refoulement (orifice plus petit qu’à l’admission), le flux du fluide n’est pas perturbé par la rotation ou la présence du pignon. De plus, le rendement de la pompe est moindre si le pignon est positionné du côté haute-pression (refoulement) ;
- l’orifice d’admission du flasque épouse la portion de liaison concave du déflecteur et/ou l’orifice de refoulement du flasque s’écarte de la portion de liaison convexe du déflecteur. Ceci permet de limiter les risques de cavitation en offrant une progressivité dans les gradients de pression subits par le fluide. Un orifice d’admission plus grand qu’un orifice de refoulement est préféré ;
- l’orifice d’admission du flasque et la portion de liaison concave du déflecteur sont agencés pour diriger le flux de fluide vers la roue dentée et vers la couronne pour assurer une certaine progressivité de la montée en pression du fluide. La géométrie du flasque et de la portion de liaison concave fait que le fluide n’est pas incité à se diriger vers le pignon lors de son aspiration dans la pompe, ceci afin d’éviter que la rotation du pignon ne perturbe l’écoulement du fluide ;
- le déflecteur est monobloc avec le flasque. Ceci permet de simplifier le montage de la pompe en prévoyant une seule pièce venue de matière. L’absence de moyen de fixation améliore le poids et la compacité de l’ensemble ;
- le pignon coopère avec la denture externe de la roue dentée ou la roue dentée comprend une denture interne qui coopère avec le pignon. Ces deux alternatives offrent différentes possibilités en termes d’agencement du pignon dans la pompe ;
- la denture interne de la roue dentée délimite une cavité secondaire. La cavité secondaire est géométriquement un sous espace de la cavité délimitée par la couronne. La cavité secondaire peut être parcourue par le fluide ou par un autre fluide, indépendamment de la cavité (principale) ;
- le flasque comprend un orifice d’admission secondaire et un orifice de refoulement secondaire qui sont fluidiquement reliés à la cavité secondaire. Ainsi, dans un mode de réalisation avantageux, la cavité secondaire est indépendante de la cavité principale ;
- la pompe comprend un collecteur d’admission, relié à l’orifice d’admission et à l’orifice d’admission secondaire, et un collecteur de refoulement, relié à l’orifice de refoulement et à l’orifice de refoulement secondaire, les collecteurs étant munis de vannes permettant le passage du fluide au choix dans un des orifices respectifs ou dans les deux orifices respectifs. Par cet agencement, les deux cavités peuvent fonctionner simultanément ou indépendamment. Il y a donc trois niveaux de débits possibles pour la pompe pour une même vitesse de rotation du pignon ;
- vu dans un plan perpendiculaire à l’axe de rotation de la couronne, le pignon est à distance d’au moins un des orifices d’admission ou de refoulement. En effet, il n’est pas souhaitable que le pignon intervienne dans l’écoulement du fluide et il peut donc être avantageux de le tenir à distance des orifices d’admission et de refoulement. La roue dentée quant à elle peut chevaucher les orifices pour aider à aspirer le flux de fluide de l’admission vers le refoulement ;
- le rapport de réduction entre le pignon et la roue dentée est compris entre 2 et 8, et est préférentiellement compris entre 2 et 4, le nombre de dents du pignon étant compris entre 4 et 12 et le nombre de dents de la roue dentée étant compris entre 16 et 30. Toute valeur entière de dents dans ces intervalles pouvant être choisie.
L’invention a également pour objet un système hydraulique pour une turbomachine, notamment pour un turboréacteur d’aéronef, remarquable en ce qu’il comprend une pompe telle que décrit ci-dessus pour assurer la mise en circulation d’un premier fluide.
Avantageusement, lorsque la pompe comprend une cavité secondaire, le système peut assurer la circulation d’un second fluide, séquentiellement ou simultanément au premier fluide, le premier fluide circulant de l’orifice d’admission vers l’orifice de refoulement et le second fluide circulant de l’orifice d’admission secondaire vers l’orifice de refoulement secondaire. Ainsi, le couple « pignon/roue dentée » peut fonctionner comme une pompe à engrenage en tant que telle, encapsulée dans la pompe. Alternativement, ou en complément, la couronne peut disposer d’une denture externe et coopérer avec une autre couronne pour que ces couronnes forment également une pompe à engrenage.
De manière générale, les modes avantageux de chaque objet de l’invention sont également applicables aux autres objets de l’invention. Chaque objet de l’invention est combinable aux autres objets, et les objets de l’invention sont également combinables aux modes de réalisation de la description, qui en plus sont combinables entre eux, selon toutes les combinaisons techniquement possibles, à moins que le contraire ne soit explicitement mentionné.
Avantages apportés
Par l’intégration d’un pignon réducteur dans l’enceinte de la pompe, il est possible de gagner en compacité et en poids de l’ensemble de la pompe, tout en garantissant le couple délivré par la roue dentée pour le pompage du fluide. En particulier, la dimension axiale (par rapport à l’axe de rotation de la couronne) peut être réduite. Il y a moins de pièces et un poids moindre en comparaison d’une pompe avec un pignon de réducteur à l’extérieur de la pompe.
De plus, l’engrenage réducteur se trouve naturellement dans un bain de lubrifiant, que le fluide pompé soit de l’huile ou autre, car la chaleur est évacuée par le fluide pompé. Il y a donc une autolubrification du couple pignon/roue dentée.
Brève description des dessins
La figure 1 représente une vue de dessus d’une pompe à engrenage interne de l’état de l’art ;
La figure 2 représente une vue de dessus d’une pompe à engrenage selon un premier mode de réalisation ;
La figure 3 montre le flasque seul, dans ce premier mode de réalisation ; La figure 4 représente une vue isométrique de la pompe ;
La figure 5 illustre une vue de dessus d’une pompe à engrenage selon un second mode de réalisation ;
La figure 6 décrit le flasque seul, dans ce second mode de réalisation ;
La figure 7 représente une vue de face de la pompe selon le second mode de réalisation ;
La figure 8 montre une vue de face de la pompe selon le second mode de réalisation munie de collecteurs d’admission et de refoulement.
Description des modes de réalisation
Dans la description qui va suivre, les termes « interne » (ou « intérieur ») et « externe » (ou « extérieur ») renvoient à un positionnement par rapport à l’axe de rotation des pièces respectives (pignon, roue dentée, couronne). La direction axiale correspond à la direction le long de l’axe de rotation de la couronne, qui est parallèle à l’axe de rotation du pignon ou de la roue dentée. La direction radiale est perpendiculaire à l’axe de rotation.
Les figures représentent les éléments de manière schématique, notamment sans les éléments d’étanchéité de la cavité interne de la pompe.
La figure 1 représente une vue de dessus d’une pompe à engrenage interne 1 connue, dans laquelle le couvercle supérieur a été retiré. La pompe 1 comprend une roue dentée 2 dont la denture externe 2.1 entraîne une couronne 4 en rotation via la denture interne 4.1 de la couronne. La roue dentée 2 tourne sur son axe 2.2 et la couronne sur son axe 4.2. Une cavité 5 entre la roue dentée 2 et la couronne 4 permet à un fluide de circuler le long d’un déflecteur 6 depuis un orifice d’admission 7 jusqu’à un orifice de refoulement 9 (flèches F). Les orifices 7, 9 sont aménagés dans un flasque 3 (derrière la couronne 4 sur la figure 1 ). Ils sont représentés en pointillés sur cette figure pour faciliter la lecture du dessin mais sont bien visibles sur cette vue. Lorsque la roue dentée 2 et la couronne 4 tournent, une dépression est créée au niveau de l’orifice d’admission 7 et le fluide est aspiré dans la cavité 5 pour être dirigé, le long du déflecteur vers l’orifice de refoulement 9. Le déflecteur est de forme « en croissant », avec une portion 6.2 tangente à la roue dentée 2, une portion 6.4 tangente à la couronne 4 et deux portions convexes 6.1 , 6.3 reliant les portions 6.2 et 6.4 entre elles. Un couvercle vient généralement recouvrir la pompe pour délimiter axialement la cavité 5, avec le flasque 3 et la denture 4.1 de la couronne 4.
La figure 2 décrit une pompe selon un premier mode de réalisation de l’invention. Les éléments correspondants à ceux de la pompe connue de la figure 1 sont incrémentés de 10. Ainsi, la pompe 10 comprend une roue dentée 12 entraînant une couronne 14 via leurs dentures respectives 12.1 , 14.1 . La roue dentée tourne sur son axe 12.2 et la couronne 14 sur son axe 14.2. La denture interne 14.1 de la couronne 14 délimite une cavité 15 dans la quelle peut circuler un fluide depuis un orifice d’admission 17 (aménagé dans un flasque non représenté sur la figure 2) vers un orifice de refoulement 19 selon les flèches F. Dans la cavité 15 est agencé un pignon 18 qui tourne sur son axe 18.2 et qui entraîne la roue dentée 12 en rotation, par sa denture 18.1 qui coopère avec la denture 12.1 . Le pignon 18 peut être entraîné par un moteur électrique non représenté et distinct de la pompe. Le pignon 18 est à distance de l’orifice d’admission 17 alors que la roue dentée 12 surplombe les deux orifices 17 et 19.
Le déflecteur 16 comprend une portion concave 16.1 de liaison entre une portion 16.2 tangente à la roue dentée 12 et une portion 16.4 tangente à la couronne 14. La portion de liaison concave 16.1 peut épouser le profil de l’orifice d’admission 17.
L’ensemble est agencé de sorte à ce que la rotation du pignon 18 ne soit pas un frein à l’écoulement F du fluide.
Dans l’exemple illustré, le pignon 18 a cinq dents, la roue dentée 12 en a vingt- six et la couronne 14 en a trente-six. Il est entendu que l’homme du métier pourrait faire varier le nombre de dents de chacun des éléments en jeu. Les dentures 12.1 , 14.1 , 18.1 sont représentées comme des dentures droites mais alternativement celles-ci peuvent être de nature différente comme par exemple des dentures hélicoïdales ou en chevron.
La pompe peut comprendre, derrière l’ensemble de la figure 2, un flasque 20 dont un exemple est représenté en figure 3. Ce flasque 20 a la forme générale d’un disque et comprend les orifices d’admission 17 et de refoulement 19 qui débouchent sur la cavité (15 sur la figure 2). Ces orifices sont destinés à être couplés avec des conduites d’admission et de refoulement respectivement. Le flasque 20 comprend des orifices 22, 24 pouvant accueillir les paliers supportant respectivement le pignon 18 et la roue dentée 12. Le déflecteur (16 sur la figure 2) peut être monté sur le flasque 20 ou ces deux éléments peuvent être monoblocs, éventuellement venus de matière.
La figure 4 représente une vue isométrique de la pompe 10 selon le premier mode de réalisation. Sur la figure 4, un rapport de réduction différent de celui de la figure 3 est illustré, à la fois entre le pignon 18 et la roue dentée 12 et entre la roue dentée 12 et la couronne 14. Ceci illustre différentes conceptions possibles pour la pompe selon l’invention.
On retrouve sur la figure 4 le flasque 20 supportant la couronne 14, la roue dentée 12 et le pignon 18. À l’opposé du flasque 20 par rapport à la couronne 14 se trouve un couvercle 30 (en vue éclatée) destiné à venir refermer la cavité 15 à l’opposé du flasque 20. Le couvercle 30 peut avoir une forme sensiblement similaire au flasque 20. Dans un mode de réalisation non illustré, l’un et/ou l’autre des orifices 17, 19 peut éventuellement se trouver sur le couvercle plutôt que sur le flasque 20. Le flasque 20 et/ou le couvercle 30 peuvent être diamétralement plus grand que la couronne 14 et disposer d’un épaulement cylindrique au contact du diamètre extérieur de la couronne 14. D’autres options de conception peuvent présenter un carter externe, un excentrique ou un lamage dans le flasque.
Un arbre 18.4 est représenté en-dessous du flasque 20 pour matérialiser, par exemple, l’arbre de sortie d’un moteur électrique qui est solidaire en rotation du pignon 18.
Un tourillon 12.5 est représenté au-dessus de la roue dentée 12. Celui-ci peut être reçu dans un logement du couvercle 30 prévu à cet effet.
La figure 5 représente une pompe 110 selon un second mode de réalisation de l’invention. Les éléments correspondants aux éléments de la pompe 10 du premier mode de réalisation ont des numéros de référence incrémentés de 100. Ainsi, la pompe comprend une couronne 1 14 disposant d’une denture interne
1 14.1 et tournant sur son axe 1 14.2. Un déflecteur 1 16 est agencé dans la cavité 1 15 délimitée par la denture interne 1 14.1 de la couronne 1 14. La couronne 1 14 est entraînée en rotation par la roue dentée 1 12 via sa denture externe 1 12.1 .
Le déflecteur 1 16 peut être - comme illustré - sensiblement similaire au déflecteur 16 des figures précédentes, ou peut être de forme en croissant comme les déflecteurs des pompes de l’état de l’art (voir figure 1 ).
Un pignon 1 18 disposant d’une denture externe 1 18.1 et tournant sur son axe
1 18.2 est agencé dans la cavité 1 15. Plus particulièrement, le pignon 1 18 est agencé dans une cavité secondaire 125 délimitée par une denture interne 1 12.3 de la roue dentée 1 12 et la denture 1 18.1 du pignon 1 18 engrène avec la denture interne 1 12.3 de la roue dentée.
Dans un mode avantageux, un déflecteur secondaire 126 peut être disposé dans la cavité secondaire 125. Un orifice d’admission secondaire 127 et un orifice de refoulement secondaire 129 peuvent être agencés dans le flasque (120 voir figure 6) pour créer un flux secondaire de pompage de fluide indiqué par les flèches F’. Ainsi, le pignon 1 18 et la roue dentée 1 12 fonctionnent comme une pompe à engrenage classique, sauf qu’elle est encapsulée dans une autre pompe à engrenage. Il y a donc deux pompes « gigognes » qui peuvent être indépendantes (voir la figure 7).
Dans l’exemple illustré sur la figure 5, le pignon 1 18 est « du côté gauche » de la roue dentée 1 12 et l’axe 1 18.2 est voisin de l’axe 1 14.2. Les dimensions (diamètres et dentures des éléments en jeu) peuvent aisément être calculées pour que l’axe 1 18.2 coïncide exactement avec l’axe 1 14.2. Ce centrage des masses peut permettre un amoindrissement des vibrations. Alternativement, la position du pignon 1 18 peut être différente et le pignon 1 18 peut être à droite du croissant 126.
Dans le premier mode de réalisation, le choix de conception de la denture 18.1 du pignon 18 est contrainte par la denture de la couronne 14 et de la roue dentée 12. Ce n’est pas le cas dans ce second mode de réalisation, car les dentures 1 12.1 et 1 12.3 sont indépendantes et peuvent être différentes. Cela facilite la conception et peut potentiellement éviter des vibrations. Il est à noter que bien que la figure 5 représente une cavité secondaire et une pompe secondaire, l’invention peut également porter sur un mode de réalisation sans cette pompe secondaire, c’est-à-dire où le couple pignon 1 18 / roue dentée 1 12 est un simple engrenage.
La figure 6 représente le flasque 120 du second mode de réalisation. Celui-ci est identique au flasque 20 de la figure 3 à la différence qu’il accueille les deux orifices secondaires 127, 129 et que seul le logement 122 du pignon 1 18 est représenté, le logement du palier de la roue dentée 1 12 se trouvant dans le couvercle 130.
Les figures 7 et 8 illustrent schématiquement deux utilisations possibles de la pompe selon le second mode de réalisation. Ces figures sont des vues de face selon une direction perpendiculaire à l’axe 1 14.2.
On y voit le couvercle 130 qui renferme la cavité délimitée par la couronne 1 14 et le flasque 120. Les orifices 1 17, 1 19, 127, 129 du flasque 120 sont connectés à des conduites 147, 148, 149, 150.
Sur la figure 7, les conduites 147, 148, 149, 150 sont indépendantes et peuvent être reliées à deux circuits hydrauliques différents faisant circuler deux fluides éventuellement différents.
Sur la figure 8, un collecteur d’admission 137 et un collecteur de refoulement 139 sont prévus pour connecter les orifices d’admission 1 17, 127 et les orifices de refoulement 1 19, 129 entre eux. Une conduite respective 147, 149 relie les collecteurs 137, 139 au reste du circuit hydraulique (non représenté).
Illustrées en figure 8 mais aussi aménageables dans les conduites de la figure 7, des vannes 140 peuvent permettre une commande plus flexible du pompage.
Par exemple, en rapport avec la figure 8, les vannes 140 peuvent respectivement prendre un état ouvert ou un état fermé, résultant en quatre états, dont un état sans débit de fluide où toutes les vannes sont fermées. Pour une même rotation du pignon 1 18, il est donc possible d’obtenir trois débits de fluide différents : un premier débit si les vannes des conduites 127 et 129 sont ouvertes et les vannes des conduites 1 17 et 1 19 sont fermées ; un deuxième débit, supérieur au premier débit si les vannes des conduites 1 17 et 1 19 sont ouvertes et les vannes des conduites 127 et 129 sont fermées ; et enfin un troisième débit supérieur au deuxième débit si toutes les vannes sont ouvertes.
Si les vannes 140 prennent des positions intermédiaires entre la position ouverte et la position fermée, d’autres valeurs de débits sont également obtenables.

Claims

Revendications
1. Pompe (10, 110) à engrenage interne préférentiellement apte à être utilisée dans un moteur d’aéronef, la pompe (10, 110) comprenant :
- une couronne (14, 114) à denture interne (14.1 , 114.1 ) délimitant une cavité (15, 115) et
- une roue dentée (12, 112) disposée dans la cavité (15, 115), la roue dentée (12, 112) comprenant une denture externe (12.1 , 112.1 ) coopérant avec la denture interne (14.1 , 114.1 ) pour entraîner la couronne (14, 114) en rotation, caractérisée en ce qu’elle comprend un pignon (18, 118) disposé dans ladite cavité (15, 115) et entraînant la roue dentée (12, 112) en rotation.
2. Pompe (10, 110) selon la revendication 1 , caractérisée en ce qu’elle comprend un déflecteur (16, 116) disposé dans la cavité (15, 115), le déflecteur (16, 116) comprenant une première portion (16.2, 116.2) tangente à la roue dentée (12, 112), une deuxième portion (16.4, 116.4) tangente à la couronne (14, 114) et deux portions de liaison (16.1 , 116.1 , 16.3, 116.3) entre la première (16.2, 116.2) et la deuxième portion (16.4, 116.4), dont une portion de liaison concave (16.1 , 116.1 ) et une portion de liaison convexe (16.3, 116.3).
3. Pompe (10, 110) selon la revendication 1 ou 2, caractérisée en ce qu’elle comprend un flasque (20, 120) dans lequel sont aménagés un orifice d’admission (17, 117) du fluide et un orifice de refoulement (19, 119) du fluide et éventuellement des logements (22, 24, 122, 124) pour des paliers supportant le pignon (18, 118) et la roue dentée (12, 112) en rotation.
4. Pompe (10, 110) selon la revendication 3, caractérisée en ce que le pignon (18, 118) et éventuellement la portion de liaison concave (16.1 , 116.1 ) du déflecteur (16, 116) est/sont plus proche(s) de l’orifice d’admission (17, 117) que de l’orifice de refoulement (19, 119).
5. Pompe (10, 110) selon la revendication 3 ou 4 en combinaison de la revendication 2, caractérisée en ce que l’orifice d’admission (17, 117) du flasque (20, 120) épouse la portion de liaison concave (16.1 , 116.1 ) du déflecteur (16, 116) et/ou l’orifice de refoulement (19, 119) du flasque (20, 120) s’écarte de la portion de liaison convexe (16.3, 1 16.3) du déflecteur (16, 1 16).
6. Pompe (10, 1 10) selon l’une des revendications 3 à 5 en combinaison de la revendication 2, caractérisée en ce que le déflecteur (16, 1 16) est monobloc avec le flasque (20, 120).
7. Pompe (10) selon l’une des revendications 1 à 6, caractérisée en ce que le pignon (18) coopère avec la denture externe (12.1 ) de la roue dentée (12).
8. Pompe (1 10) selon l’une des revendications 1 à 6, caractérisée en ce que la roue dentée (1 12) comprend une denture interne (1 12.3) qui coopère avec le pignon (18).
9. Pompe (1 10) selon la revendication précédente, caractérisée en ce que la denture interne (1 12.3) de la roue dentée (1 12) délimite une cavité secondaire (125).
10. Pompe (1 10) selon la revendication précédente en combinaison de la revendication 3, caractérisée en ce que le flasque (120) comprend un orifice d’admission secondaire (127) et un orifice de refoulement secondaire (129) qui sont fluidiquement reliés à la cavité secondaire (125).
1 1 . Pompe (1 10) selon la revendication précédente, caractérisée en ce qu’elle comprend un collecteur d’admission (137), relié à l’orifice d’admission (1 17) et à l’orifice d’admission secondaire (127, et un collecteur de refoulement (139), relié à l’orifice de refoulement (1 19) et à l’orifice de refoulement secondaire (129), les collecteurs (137, 139) étant munis de vannes (140) permettant le passage du fluide au choix dans un des orifices respectifs (1 17, 1 19, 127, 129) ou dans les deux orifices respectifs (1 17, 1 19, 127, 129).
12. Pompe (10, 1 10) selon l’une des revendications précédentes en combinaison de la revendication 3, caractérisée en ce que vu dans un plan perpendiculaire à l’axe de rotation (14.2, 1 14.2) de la couronne (14, 1 14), le pignon (18, 1 18) est à distance d’au moins un des orifices d’admission (17, 1 17) ou de refoulement (19, 1 19).
13. Pompe (10, 1 10) selon l’une des revendications précédentes, caractérisée en ce que le rapport de réduction entre le pignon (18, 1 18) et la roue dentée (12, 112) est compris entre 2 et 8, et est préférentiellement compris entre 2 et 6, le nombre de dents du pignon (18, 118) étant compris entre 4 et 12 et le nombre de dents de la roue dentée (12, 112) étant compris entre 16 et 30.
14. Système hydraulique pour une turbomachine, notamment pour un turboréacteur d’aéronef, caractérisé en ce qu’il comprend une pompe (10,
110) selon l’une des revendications 1 à 13 pour assurer la mise en circulation d’un premier fluide.
15. Système selon la revendication 14 avec une pompe (110) selon la revendication 10, caractérisé en ce qu’il assure la circulation d’un second fluide, alternativement ou simultanément au premier fluide, le premier fluide circulant de l’orifice d’admission (117) vers l’orifice de refoulement (119) et le second fluide circulant de l’orifice d’admission secondaire (127) vers l’orifice de refoulement secondaire (129).
PCT/EP2020/070456 2019-07-22 2020-07-20 Pompe a engrenage WO2021013797A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/624,741 US11739750B2 (en) 2019-07-22 2020-07-20 Gear pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BEBE2019/5478 2019-07-22
BE20195478A BE1027453B1 (fr) 2019-07-22 2019-07-22 Pompe a engrenage

Publications (1)

Publication Number Publication Date
WO2021013797A1 true WO2021013797A1 (fr) 2021-01-28

Family

ID=67659779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/070456 WO2021013797A1 (fr) 2019-07-22 2020-07-20 Pompe a engrenage

Country Status (3)

Country Link
US (1) US11739750B2 (fr)
BE (1) BE1027453B1 (fr)
WO (1) WO2021013797A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193667A (ja) * 2000-01-12 2001-07-17 Kanzaki Kokyukoki Mfg Co Ltd ギ ア
EP1396639A1 (fr) 2002-09-03 2004-03-10 Techspace Aero S.A. Pompe volumétrique rotative à gerotor
US20170211572A1 (en) * 2016-01-26 2017-07-27 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Wuerzburg Oil pump

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1496737A (en) * 1922-06-03 1924-06-03 Viking Pump Company Rotary pump, motor, or engine
US2399008A (en) * 1942-08-22 1946-04-23 Gen Electric Hydraulic gear of the positive displacement type
US3115791A (en) * 1962-07-03 1963-12-31 Dean Peter Payne Two-speed power transmission
US3166018A (en) * 1963-11-08 1965-01-19 Jr Cresswell E Stedman Fluid pump body and gear set
US3528345A (en) * 1968-02-12 1970-09-15 Houdaille Industries Inc Long travel rotary actuator/damper
AT382690B (de) * 1984-12-14 1987-03-25 Voest Alpine Ag Innenzahnradpumpe
CH682836A5 (de) * 1990-02-19 1993-11-30 Bucher Maschf Gmbh Innenzahnrad-Maschine.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193667A (ja) * 2000-01-12 2001-07-17 Kanzaki Kokyukoki Mfg Co Ltd ギ ア
EP1396639A1 (fr) 2002-09-03 2004-03-10 Techspace Aero S.A. Pompe volumétrique rotative à gerotor
US20170211572A1 (en) * 2016-01-26 2017-07-27 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Wuerzburg Oil pump

Also Published As

Publication number Publication date
BE1027453B1 (fr) 2021-02-22
US11739750B2 (en) 2023-08-29
BE1027453A1 (fr) 2021-02-15
US20220243725A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
EP1803938A1 (fr) Groupe motopompe hautement intégré à moteur électrique
FR2721978A1 (fr) Pompe de regeneration a plage de fonctionnement etendue
FR2908844A1 (fr) Pompe a palettes a deplacement variable
EP1208317A1 (fr) Ensemble d'entrainement pour vehicule avec transmission variable en continu
EP3456933A1 (fr) Groupe de lubrification pour turbomachine, turbomachine et procédé de fabrication d'une groupe de lubrification
EP4048897B1 (fr) Turbomachine munie d'une pompe electromagnetique a flux magnetique axial
BE1027453B1 (fr) Pompe a engrenage
EP0736691B1 (fr) Pompe volumétrique rotative à gerotor à alimentation radiale
EP0494008B1 (fr) Turbopompe à gavage intégré en flux axial
FR2941019A1 (fr) Pompe a dispositif d'equilibrage axial
FR2992693A1 (fr) Pompe a engrenage interne double
FR2726608A1 (fr) Pompe a vide munie d'un dispositif de demultiplication a engrenages epicycloidal
WO2021152230A1 (fr) Circuit d'alimentation en carburant d'un moteur d'aeronef
FR2865775A1 (fr) Unite de transfert de carburant pour alimenter un moteur a combustion interne
WO2017137701A1 (fr) Systeme de mise en rotation d'une soufflante d'un turboreacteur
FR3106630A1 (fr) Pompe à vide sèche
EP0344059B1 (fr) Dispositif tournant à engrenages pour la circulation d'un liquide
BE1030413B1 (fr) Pompe de fluide pour turbomachine d'aéronef, circuit de lubrification et turbomachine d'aéronef
EP3475572B1 (fr) Pompe a fluide motorisee
FR3118650A1 (fr) Etage de pompage et pompe à vide sèche
BE870198A (fr) Elements en volute complementaires, notamment pour pompes a liquides
EP1431524A1 (fr) Agencement d'une pompe sur un moteur à combustion interne
EP4048868A1 (fr) Pompe volumetrique
FR2776342A1 (fr) Pompe centrifuge a amorcage automatique
BE1027697A1 (fr) Pompe volumétrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20740337

Country of ref document: EP

Kind code of ref document: A1