EP2371529A2 - Improved composite materials - Google Patents
Improved composite materials Download PDFInfo
- Publication number
- EP2371529A2 EP2371529A2 EP20110155080 EP11155080A EP2371529A2 EP 2371529 A2 EP2371529 A2 EP 2371529A2 EP 20110155080 EP20110155080 EP 20110155080 EP 11155080 A EP11155080 A EP 11155080A EP 2371529 A2 EP2371529 A2 EP 2371529A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- composite material
- particles
- resin
- material according
- prepreg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 138
- 230000001976 improved effect Effects 0.000 title description 9
- 239000002245 particle Substances 0.000 claims abstract description 121
- 239000002952 polymeric resin Substances 0.000 claims abstract description 56
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 56
- 230000002787 reinforcement Effects 0.000 claims abstract description 36
- 229920005989 resin Polymers 0.000 claims description 89
- 239000011347 resin Substances 0.000 claims description 89
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 67
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 55
- 239000004332 silver Substances 0.000 claims description 55
- 229910052709 silver Inorganic materials 0.000 claims description 55
- 229910052799 carbon Inorganic materials 0.000 claims description 54
- 229910052751 metal Inorganic materials 0.000 claims description 47
- 239000002184 metal Substances 0.000 claims description 47
- 239000010410 layer Substances 0.000 claims description 41
- 239000000835 fiber Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 28
- 239000011521 glass Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 14
- 239000007771 core particle Substances 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 239000002086 nanomaterial Substances 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 9
- 229910002804 graphite Inorganic materials 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229920001971 elastomer Polymers 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 229920001940 conductive polymer Polymers 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- 239000011258 core-shell material Substances 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 239000005060 rubber Substances 0.000 claims description 4
- 239000004411 aluminium Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000006229 carbon black Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 238000009616 inductively coupled plasma Methods 0.000 claims description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000002322 conducting polymer Substances 0.000 claims description 2
- 229910003472 fullerene Inorganic materials 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 239000013528 metallic particle Substances 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229920000767 polyaniline Polymers 0.000 claims description 2
- 229920000128 polypyrrole Polymers 0.000 claims description 2
- 229920000123 polythiophene Polymers 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 239000011135 tin Substances 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 239000013047 polymeric layer Substances 0.000 claims 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 31
- 239000000463 material Substances 0.000 description 31
- 238000001723 curing Methods 0.000 description 29
- 239000003795 chemical substances by application Substances 0.000 description 24
- 238000012360 testing method Methods 0.000 description 15
- 230000006378 damage Effects 0.000 description 12
- 239000010408 film Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 229920000647 polyepoxide Polymers 0.000 description 11
- 239000003822 epoxy resin Substances 0.000 description 10
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 10
- 239000004926 polymethyl methacrylate Substances 0.000 description 10
- 239000000523 sample Substances 0.000 description 9
- 239000011324 bead Substances 0.000 description 8
- -1 dendrites Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 229920001296 polysiloxane Polymers 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000004634 thermosetting polymer Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 230000032798 delamination Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 5
- 239000004721 Polyphenylene oxide Substances 0.000 description 5
- 229920001568 phenolic resin Polymers 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000004922 lacquer Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000012745 toughening agent Substances 0.000 description 4
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical class C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- HZHFFEYYPYZMNU-UHFFFAOYSA-K gadodiamide Chemical compound [Gd+3].CNC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC([O-])=O)CC(=O)NC HZHFFEYYPYZMNU-UHFFFAOYSA-K 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920006380 polyphenylene oxide Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 2
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 2
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 description 2
- KNDQHSIWLOJIGP-UHFFFAOYSA-N 826-62-0 Chemical compound C1C2C3C(=O)OC(=O)C3C1C=C2 KNDQHSIWLOJIGP-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000004643 cyanate ester Substances 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003192 poly(bis maleimide) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001470 polyketone Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000009732 tufting Methods 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- PPCUBWWPGYHEJE-UHFFFAOYSA-N (3-chlorophenyl)urea Chemical compound NC(=O)NC1=CC=CC(Cl)=C1 PPCUBWWPGYHEJE-UHFFFAOYSA-N 0.000 description 1
- LTVUCOSIZFEASK-MPXCPUAZSA-N (3ar,4s,7r,7as)-3a-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione Chemical compound C([C@H]1C=C2)[C@H]2[C@H]2[C@]1(C)C(=O)OC2=O LTVUCOSIZFEASK-MPXCPUAZSA-N 0.000 description 1
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical class NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 1
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- LZDOYVMSNJBLIM-UHFFFAOYSA-N 4-tert-butylphenol;formaldehyde Chemical compound O=C.CC(C)(C)C1=CC=C(O)C=C1 LZDOYVMSNJBLIM-UHFFFAOYSA-N 0.000 description 1
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 1
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000005510 Diuron Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 229920000491 Polyphenylsulfone Polymers 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000005387 chalcogenide glass Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- ZLSPCFYPYRYKNF-UHFFFAOYSA-N formaldehyde;4-octylphenol Chemical compound O=C.CCCCCCCCC1=CC=C(O)C=C1 ZLSPCFYPYRYKNF-UHFFFAOYSA-N 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000002678 macrocyclic compounds Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- BMLIZLVNXIYGCK-UHFFFAOYSA-N monuron Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C=C1 BMLIZLVNXIYGCK-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000090 poly(aryl ether) Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011208 reinforced composite material Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05F—STATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
- H05F3/00—Carrying-off electrostatic charges
- H05F3/02—Carrying-off electrostatic charges by means of earthing connections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/24—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/28—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/30—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
- B64D45/02—Lightning protectors; Static dischargers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/06—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/10—Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/243—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/249—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/02—Synthetic macromolecular particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/105—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/107—Ceramic
- B32B2264/108—Carbon, e.g. graphite particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/07—Parts immersed or impregnated in a matrix
- B32B2305/076—Prepregs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/202—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/206—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/212—Electromagnetic interference shielding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2571/00—Protective equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9265—Special properties
- Y10S428/929—Electrical contact feature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9265—Special properties
- Y10S428/931—Components of differing electric conductivity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49194—Assembling elongated conductors, e.g., splicing, etc.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/254—Polymeric or resinous material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/268—Monolayer with structurally defined element
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2016—Impregnation is confined to a plane disposed between both major fabric surfaces which are essentially free of impregnating material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2041—Two or more non-extruded coatings or impregnations
- Y10T442/2049—Each major face of the fabric has at least one coating or impregnation
- Y10T442/209—At least one coating or impregnation contains particulate material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2041—Two or more non-extruded coatings or impregnations
- Y10T442/2098—At least two coatings or impregnations of different chemical composition
- Y10T442/2107—At least one coating or impregnation contains particulate material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2041—Two or more non-extruded coatings or impregnations
- Y10T442/2098—At least two coatings or impregnations of different chemical composition
- Y10T442/2107—At least one coating or impregnation contains particulate material
- Y10T442/2115—At least one coating or impregnation functions to fix pigments or particles on the surface of a coating or impregnation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2041—Two or more non-extruded coatings or impregnations
- Y10T442/2123—At least one coating or impregnation contains particulate material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2418—Coating or impregnation increases electrical conductivity or anti-static quality
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2418—Coating or impregnation increases electrical conductivity or anti-static quality
- Y10T442/2426—Elemental carbon containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/659—Including an additional nonwoven fabric
- Y10T442/67—Multiple nonwoven fabric layers composed of the same inorganic strand or fiber material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/659—Including an additional nonwoven fabric
- Y10T442/673—Including particulate material other than fiber
Definitions
- the present invention relates to composite materials, and particularly, but not exclusively, to fibre reinforced composite materials.
- Composite materials are increasingly used in structural applications in many fields owing to their attractive mechanical properties and low weight in comparison to metals.
- Composites are known in the field to consist of layering of materials to provide a structurally advantageous laminate type material.
- electrical conductivity is one of the most obvious attributes of metals
- composite materials based on fibre reinforcements such as adhesive films, surfacing films, and pre-impregnated (prepreg) materials
- prepreg pre-impregnated
- composite materials usually consist of a reinforcement phase, generally comprising continuous or discontinuous fibres, and a matrix phase, generally a thermoset or thermoplastic polymer.
- a reinforcement phase generally comprising continuous or discontinuous fibres
- a matrix phase generally a thermoset or thermoplastic polymer.
- Most early first generation matrix polymers for the manufacture of composites were, by nature, brittle and it has therefore been necessary to develop more toughened versions.
- the composites materials used as primary structures in aerospace applications tend to be so-called second or third generation toughened materials.
- Second generation toughened composites represent an improvement over earlier first generation materials due to incorporation of toughening phases within the matrix material. This includes incorporation of metals in to the assembly via expanded foils, metal meshes, or interwoven wires. Typical metals which are used for this purpose include aluminium, bronze and copper. These composite materials can provide better electrical conductivity. However, they are generally heavy and have significantly degraded mechanical and aesthetic properties. These composites are usually found at the first one or two plies of the material, and therefore a poor overall surface finish often results.
- materials with carbon fibres do possess some electrical conductivity.
- the conductivity pathway is only in the direction of the fibres, with limited ability for dissipation of electrical current in directions orthogonal to the plane of the fibre reinforcement (z direction).
- Carbon reinforced materials often comprise an interleaf structure which results in inherently low conductivity in the z direction due to the electrical insulation properties of the interleaf. The result of such an arrangement can lead to disastrous effects when damaged by lightning as the electrical discharge can enter the interleaf, volatilise the resin therein, and cause mass delamination and penetration through the composite material.
- So-called third generation toughened composite materials are based on interleaf technology where resinous layers are alternated with fibre reinforced plies, and provide protection against impacts.
- these resin layers act as an electrical insulator and therefore electrical conductivity in the z direction of the material is poor (i.e. orthogonal to the direction of the fibres). Lightning strikes on the composite material can result in catastrophic failure of the component, with a hole being punched through a multiple ply laminate.
- the present invention therefore seeks to provide a composite material which has improved electrical conductivity properties in comparison to prior attempts as described herein, and has little or no additional weight compared to a standard composite material.
- the present invention also seeks to provide composite materials which have the improved electrical conductivity without detriment to the mechanical performance of the material.
- the present invention further seeks to provide a method of making the composite material having improved electrical conductivity properties.
- a further aim is to provide a lightning strike tolerant composite material which is convenient to manufacture, use, and repair.
- a composite material comprising;
- conductive particles for reducing an initial bulk resistivity of a constituent polymeric resin of a composite material, the composite material comprising a prepreg, said prepreg comprising said polymeric resin and at least one fibrous material, wherein the conductive particles are dispersed in the polymeric resin.
- references to a composite material include materials which comprise a fibre reinforcement, where the polymeric resin is in contact with the fibre but not impregnated in the fibre.
- the term composite material also includes an alternative arrangement in which the resin is partially embedded or partially impregnated in the fibre, commonly known in the art as prepreg.
- the prepreg may also have a fully impregnated fibrous reinforcement layer.
- the composite material may also include multilayered materials which have multiple fibre-rein-fibre layers.
- references to “interleaf structure” refers to the multi-layered material having a fibre-resin-fibre structure.
- the term “interleaf” refers to the polymeric resin which is present, and interleaved, between the fibre layers.
- References to “interleaf thickness” are to the average distance across the interleaf layer as measured from the uppermost surface of a lower fibre ply to a lowermost surface of an upper fibre ply. The interleaf thickness is therefore equivalent to the thickness of the interleaved polymeric resin layer, and references to interleaf thickness and polymeric resin thickness are interchangeable.
- interlayer interleaf resin layer
- fibre free layer refers to the polymeric resin layer.
- polymeric resin refers to a polymeric system.
- polymeric resin and "polymeric system” are used interchangeably in the present application, and are understood to refer to mixtures of chain lengths of resins having varying chain lengths.
- polymeric therefore includes an embodiment where the resins present are in the form of a resin mixture comprising resins having chain length greater than 3. The resulting polymeric resin when cured forms a crosslinked matrix of resin.
- Bulk resistivity refers to the measurement of the "bulk” or "volume” resistivity of a semi-conductive material. It can be seen that reference to an "initial bulk resistivity" relates to the bulk resistivity of a polymeric resin prior to addition of conducting particles.
- the value in Ohms-m is the inherent resistance of a given material.
- Ohms-m ( ⁇ m) is used for measuring the conductivity of a three dimensional material.
- the volume resistivity is only measured in the z-direction (through the composite material thickness). In every case it is referenced as the "volume” resistivity as the thickness is always taken into consideration in the calculation.
- the aim of the invention is achieved by incorporating into the interleaf region of the prepreg a low volume fraction of conducting particles at a level in itself wholly insufficient to impart electrical conductivity to the polymeric resin from which the prepreg is made.
- a further benefit of the invention is an improved thermal conductivity for the prepreg, leading to faster heat up times and better dissipation of the heat generated during the cure exotherm.
- a still further benefit is that the electrical resistance of the composite material is essentially unchanged with variation in temperature.
- resistivity and “conductivity” used herein refer to electrical resistivity and electrical conductivity respectively.
- particles refers to discrete three dimensional shaped additives which are distinct, treated as an individual units, and separable from other individual additives, but this does not preclude additives from being in contact with one another.
- the term embraces the shapes and sizes of electrically conductive particles described and defined herein.
- the term "aspect ratio" used herein is understood to refer to the ratio of the longest dimension to the shortest dimension of a three dimensional body. The term is applicable to additives of any shape and size as used herein. Where the term is used in relation to spherical or substantially spherical bodies, the relevant ratio would be that of the largest cross sectional diameter with the smallest cross sectional diameter of the spherical body. It will therefore be understood that a perfect sphere would have an aspect ration of 1:1.
- the aspect ratios as specified herein for electrically conductive particles are based on the dimensions of the particles after any metal coating has been applied.
- references to the size of the electrically conductive particles are to the largest cross sectional diameter of the particles.
- Suitable electrically conductive particles may include, by way of example, spheres, microspheres, dendrites, beads, powders, any other suitable three-dimensional additives, or any combination thereof.
- the conductive particles used in the present invention may comprise any suitable conducting particles. It will be understood that this would include any suitable conductive particles capable of reducing bulk resistivity and thereby facilitating electrical conductivity of the composite material.
- the electrically conductive particles may be selected from metal coated conducting particles, non-metallic conducting particles, or a combination thereof.
- the conductive particles are dispersed in the polymeric resin. It is envisaged that the term “dispersed” may include where the conductive particles are present substantially throughout the polymeric resin without being present in a substantially higher concentration in any part of the polymeric resin. Additionally, the term “dispersed” also includes the conductive particles being present in localised areas of polymeric resin if reduced bulk resistivity is only required in specific areas of the composite material.
- the metal coated conducting particles may comprise core particles which are substantially covered by a suitable metal.
- the core particles may be any suitable particles. Suitable particles, by way of example, include those formed from polymer, rubber, ceramic, glass, mineral, or refractory products such as fly ash.
- the polymer may be any suitable polymer which is a thermoplastic or thermosetting polymer.
- the terms 'thermoplastic polymer' and 'thermosetting polymer' are as characterised herein.
- the core particles formed from glass may be any of the types used for making solid or glass microspheres.
- Suitable silica containing glass particles include soda glass, borosilicate, and quartz.
- the glass may be substantially silica free.
- Suitable silica free glasses include, by way of example, chalcogenide glasses.
- the core particles may be porous or hollow or may themselves be a core-shell structure, for example core-shell polymer particles.
- the core particles may be first coated with an activating layer, adhesion promoting layer, primer layer, semiconducting layer or other layer prior to being metal coated.
- the core particles are preferably hollow particles formed from glass. Use of hollow core particles formed from glass may be advantageous in applications where weight reduction is of particular importance.
- Mixtures of the core particles may be used to obtain, for example, lower densities or other useful properties, for instance a proportion of hollow metal coated glass particles may be used with a proportion of metal coated rubber particles to obtain a toughened layer with a lower specific gravity.
- Metals suitable for coating the core particles include, by way of example, silver, gold, nickel, copper, tin, aluminium, platinum, palladium, and any other metals known to possess high electrical conductivity.
- Multiple layers of metal coatings may be used to coat the core particles, for example gold coated copper, or silver coated copper. Simultaneous deposition of metals is also possible, thereby producing mixed metal coatings.
- the metal coating may be carried out by any of the means known for coating particles.
- suitable coating processes include chemical vapour deposition, sputtering, electroplating, or electroless deposition.
- the metal may be present as bulk metal, porous metal, columnar, microcrystalline, fibrillar, dendritic, or any of the forms known in metal coating.
- the metal coating may be smooth, or may comprise surface irregularities such as fibrils, or bumps so as to increase the specific surface area and improve interfacial bonding.
- the metal coating may be subsequently treated with any of the agents known in the art for improving interfacial bonding with the polymeric resin, for example silanes, titanates, and zirconates.
- the electrical resistivity of the metal coating should be preferably less than 3 x 10 -5 ⁇ m, more preferably less than 1 x 10 -7 ⁇ m, and most preferably less than 3 x 10 -8 ⁇ m.
- the metal coated conducting particles may be of any suitable shape for example spherical, ellipsoidal, spheroidal, discoidal, dendritic, rods, discs, acicular, cuboid or polyhedral. Finely chopped or milled fibres may also be used, such as metal coated milled glass fibres.
- the particles may have well defined geometries or may be irregular in shape.
- the metal coated conducting particles should possess an aspect ratio of ⁇ 100, preferably ⁇ 10, and most preferably ⁇ 2.
- the metal coated conducting particle size distribution may be monodisperse or polydisperse.
- at least 90 % of the metal coated particles have a size within the range 0.3 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and most preferably between 5 ⁇ m and 40 ⁇ m.
- the electrically conductive particles may be non-metallic conducting particles. It will be understood that this would include any suitable non-metallic particles not having a metal coating, and capable of reducing bulk resistivity and thereby facilitating electrical conductivity of the composite material.
- Suitable non-metallic conducting particles include, by way of example, graphite flakes, graphite powders, graphite particles, graphene sheets, fullerenes, carbon black, intrinsically conducting polymers (ICPs - including polypyrrole, polythiophene, and polyaniline), charge transfer complexes, or any combination thereof.
- ICPs intrinsically conducting polymers
- An example of a suitable combination of non-metallic conducting particles includes combinations of ICPs with carbon black and graphite particles.
- the non-metallic conducting particle size distribution may be monodisperse or polydisperse.
- at least 90 % of the non-metallic conducting particles have a size be within the range 0.3 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and most preferably between 5 ⁇ m and 40 ⁇ m.
- the electrically conductive particles have a size whereby at least 50% of the particles present in the polymeric resin have a size within 10 ⁇ m of the thickness of the polymeric resin layer. In other words the difference between the thickness of the resin layer and the size of the electrically conductive articles is less than 10 ⁇ m.
- the electrically conductive particles have a size whereby at least 50% of the particles present in the polymeric resin have a size within 5 ⁇ m of the thickness of the polymeric resin layer.
- the size of at least 50% of the electrically conductive particles is therefore such that they bridge across the interleaf thickness (polymeric resin layer), and the particles are in contact with an upper fibrous reinforcement ply and a lower fibrous reinforcement ply arranged about the polymeric resin layer.
- the electrically conductive particles may be present in the range 0.2 vol.% to 20 vol.% of the composite material. More preferably, the conducting particles are present in the range 0.4 vol.% to 15 vol.%. Most preferably, the conducting particles are present in the range 0.8 vol.% to 10 vol.%.
- the electrically conductive particles may be present in an amount of less than 10 vol.% of the polymeric resin layer.
- the preferred ranges of the electrically conductive particles are expressed in vol.% as the weight of the particles may exhibit a large variation due to variation in densities.
- the electrically conductive particles may be used alone or in any suitable combination.
- the benefits of the invention may be conferred due to the conductive particles (either metal coated or non-metallic) acting as electrical conductance bridges across the interleaf thickness (i.e. across the polymeric resin layer and between the layers of fibrous reinforcement), thereby connecting plies of fibrous reinforcement and improving the z directional electrical conductance.
- the conductive particles either metal coated or non-metallic acting as electrical conductance bridges across the interleaf thickness (i.e. across the polymeric resin layer and between the layers of fibrous reinforcement), thereby connecting plies of fibrous reinforcement and improving the z directional electrical conductance.
- electrically conductive particles with size substantially equal to the interleaf thickness advantageously allows for electrical conductance across the composite material (in the z plane) to be provided at relatively low loading levels. These low loading levels of electrically conductive particles are less than would be typically required to make the polymeric resin itself electrically conducting.
- the electrically conductive particles therefore facilitate electrical conductivity by lowering the bulk resistivity of the composite material.
- the composite material may also comprise carbon nano materials.
- the carbon nano materials may be selected from carbon nanotubes, and carbon nanofibres.
- the carbon nano materials may be any suitable carbon nanotubes or carbon nanofibres.
- the carbon nano materials may have a diameter in the range 10-500nm.
- Preferred carbon nano materials may have a diameter in the range 100 to 150nm.
- the carbon nanomaterials may preferably have a length in the range 1-10 ⁇ m.
- the carbon nano materials may provide additional electrically conducting pathways across the composite material (in the z plane) by further bridging across the interleaf.
- the fibrous reinforcements are arranged in the form of layers or plies comprising a number of fibre strands.
- the composite material comprises at least two fibrous reinforcement plies which are arranged either side of a polymeric resin layer. As well as providing electrical conductivity in the x and y planes of the material, the plies act as supporting layers to the structure of the material, and substantially contain the polymeric resin.
- the fibrous reinforcement of the prepreg may be selected from hybrid or mixed fibre systems which comprise synthetic or natural fibres, or a combination thereof.
- the fibrous reinforcement is electrically conductive, and therefore is formed from fibres which are electrically conductive.
- the fibrous reinforcement may preferably be selected from any suitable material such as metallised glass, carbon, graphite, metallised polymer fibres (with continuous or discontinuous metal layers), the polymer of which may be soluble or insoluble in the polymeric resin. Any combination of these fibres may be selected. Mixtures of these fibres with non-conducting fibres (such as fibreglass for example) may also be used.
- the fibrous reinforcement is most preferably formed substantially from carbon fibres.
- the fibrous reinforcement may comprise cracked (i.e. stretch-broken) or selectively discontinuous fibres, or continuous fibres. It is envisaged that use of cracked or selectively discontinuous fibres may facilitate lay-up of the cured composite material prior to being fully cured according to the invention, and improve its capability of being shaped.
- the fibrous reinforcement may be in the form of woven, non-crimped, non-woven, unidirectional, or multiaxial textile tapes or tows.
- the woven form is preferably selected from a plain, satin, or twill weave style.
- the non-crimped and multiaxial forms may have a number of plies and fibre orientations.
- Such styles and forms of fibrous reinforcement are well known in the composite reinforcement field, and are commercially available from a number of companies including Hexcel Reinforcements of Villeurbanne, France.
- the polymeric resin of the prepreg preferably comprises at least one thermoset or thermoplastic resin.
- thermoset resin includes any suitable material which is plastic and usually liquid, powder, or malleable prior to curing and designed to be moulded in to a final form.
- the thermoset resin may be any suitable thermoset resin. Once cured, a thermoset resin is not suitable for melting and remoulding.
- Suitable thermoset resin materials for the present invention include, but are not limited to, resins of phenol formaldehyde, urea-formaldehyde, 1,3,5-triazine-2,4,6-triamine (Melamine), bismaleimide, epoxy resins, vinyl ester resins, benzoxazine resins, phenolic resins, polyesters, unsaturated polyesters, cyanate ester resins, or any combination thereof.
- the thermoset resin is preferably selected from epoxide resins, cyanate ester resins, bismaleimide, vinyl ester, benzoxazine, and phenolic resins.
- thermoplastic resin includes any suitable material which is plastic or deformable, melts to a liquid when heated and freezes to a brittle, and forms a glassy state when cooled sufficiently. Once formed and cured, a thermoplastic resin is suitable for melting and re-moulding.
- Suitable thermoplastic polymers for use with the present invention include any of the following either alone or in combination: polyether sulphone (PES), polyether ethersulphone (PEES), polyphenyl sulphone, polysulphone, polyester, polymerisable macrocycles (e.g.
- liquid crystal polymers polyimide, polyetherimide, aramid, polyamide, polyester, polyketone, polyetheretherketone (PEEK), polyurethane, polyurea, polyarylether, polyarylsulphides, polycarbonates, polyphenylene oxide (PPO) and modified PPO, or any combination thereof.
- the polymeric epoxy resin preferably comprises at least one of bisphenol-A (BPA) diglycidyl ether and bisphenol-F (BPF) diglycidyl ether and derivatives thereof; tetraglycidyl derivative of 4,4'-diaminodiphenylmethane (TGDDM); triglycidyl derivative of aminophenols, and other glycidyl ethers and glycidyl amines well known in the art.
- BPA bisphenol-A
- BPF bisphenol-F
- TGDDM tetraglycidyl derivative of 4,4'-diaminodiphenylmethane
- the polymeric resin is applied to the fibrous reinforcement.
- the fibrous reinforcement may be fully or partially impregnated by the polymeric resin.
- the polymeric resin may be a separate layer which is proximal to, and in contact with, the fibrous reinforcement, but does not substantially impregnate said fibrous reinforcement.
- the composite material may include at least one curing agent.
- the curing agent may be substantially present in the polymeric resin. It is envisaged that the term "substantially present” means at least 90 wt.% of the curing agent, preferably 95 wt.% of the curing agent.
- the curing agents of the invention are those which facilitate the curing of the epoxy-functional compounds of the invention, and, particularly, facilitate the ring opening polymerisation of such epoxy compounds.
- such curing agents include those compounds which polymerise with the epoxy-functional compound or compounds, in the ring opening polymerisation thereof.
- Two or more such curing agents may be used in combination.
- Suitable curing agents include anhydrides, particularly polycarboxylic anhydrides, such as nadic anhydride (NA), methylnadic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, or trimellitic anhydride.
- NA nadic anhydride
- methylnadic anhydride methylnadic anhydride
- phthalic anhydride tetrahydrophthalic anhydride
- hexahydrophthalic anhydride methyltetrahydrophthalic anhydride
- methyltetrahydrophthalic anhydride methylhexahydrophthalic anhydride
- trimellitic anhydride trimellitic anhydride
- amines including aromatic amines, e.g. 1,3-diaminobenzene, 1,4-diaminobenzene, 4,4'-diaminodiphenylmethane, and the polyaminosulphones, such as 4,4'-diaminodiphenyl sulphone (4,4'-DDS), and 3,3'-diaminodiphenyl sulphone (3,3'-DDS).
- aromatic amines e.g. 1,3-diaminobenzene, 1,4-diaminobenzene, 4,4'-diaminodiphenylmethane
- polyaminosulphones such as 4,4'-diaminodiphenyl sulphone (4,4'-DDS), and 3,3'-diaminodiphenyl sulphone (3,3'-DDS).
- suitable curing agents may include phenol-formaldehyde resins, such as the phenol-formaldehyde resin having an average molecular weight of about 550-650, the p-t-butylphenol-formaldehyde resin having an average molecular weight of about 600-700, and the p-n-octylphenol-formaldehyde resin, having an average molecular weight of about 1200-1400.
- phenol-formaldehyde resins such as the phenol-formaldehyde resin having an average molecular weight of about 550-650, the p-t-butylphenol-formaldehyde resin having an average molecular weight of about 600-700, and the p-n-octylphenol-formaldehyde resin, having an average molecular weight of about 1200-1400.
- resins containing phenolic groups can be used, such as resorcinol based resins, and resins formed by cationic polymerisation, such as dicyclopentadiene - phenol copolymers.
- resins formed by cationic polymerisation such as dicyclopentadiene - phenol copolymers.
- Still additional suitable resins are melamine-formaldehyde resins, and urea-formaldehyde resins.
- compositions may be used as curing agents in the present invention.
- One such composition is AH-154, a dicyandiamide type formulation, available from Ajinomoto USA Inc.
- Others which are suitable include Ancamide 1284, which is a mixture of 4,4'-methylenedianiline and 1,3-benzenediamine; these formulations are available from Pacific Anchor Chemical, Performance Chemical Division, Air Products and Chemicals, Inc., Allentown, USA.
- the curing agent (s) is selected such that it provides curing of the resin component of the composite material when combined therewith at suitable temperatures.
- the amount of curing agent required to provide adequate curing of the resin component will vary depending upon a number of factors including the type of resin being cured, the desired curing temperature, and the curing time.
- Curing agents typically include cyanoguanidine, aromatic and aliphatic amines, acid anhydrides, Lewis Acids, substituted ureas, imidazoles and hydrazines. The particular amount of curing agent required for each particular situation may be determined by well-established routine experimentation.
- Exemplary preferred curing agents include 4,4'-diaminodiphenyl sulphone (4,4'-DDS) and 3,3'-diaminodiphenyl sulphone (3,3'-DDS).
- the curing agent if present, may be present in the range 45 wt.% to 2 wt.% of the composite material. More preferably, the curing agent may be present in the range 30 wt.% to 5 wt.%. Most preferably, the curing agent may be present in the range 25 wt.% to 5 wt.%.
- Accelerators are typically urones. Suitable accelerators, which may be used alone or in combination include N,N-dimethyl, N'-3,4-dichlorphenyl urea (Diuron), N'-3-chlorophenyl urea (Monuron), and preferably N,N-(4-methyl-m-phenylene bis[N',N'-dimethylurea] (TDI urone).
- Suitable accelerators which may be used alone or in combination include N,N-dimethyl, N'-3,4-dichlorphenyl urea (Diuron), N'-3-chlorophenyl urea (Monuron), and preferably N,N-(4-methyl-m-phenylene bis[N',N'-dimethylurea] (TDI urone).
- the composite material may also include additional ingredients such as performance enhancing or modifying agents.
- the performance enhancing or modifying agents may be selected from flexibilisers, toughening agents/particles, additional accelerators, core shell rubbers, flame retardants, wetting agents, pigments/dyes, flame retardants, plasticisers, UV absorbers, anti-fungal compounds, fillers, viscosity modifiers/flow control agents, tackifiers, stabilisers, and inhibitors.
- Toughening agents/particles may include, by way of example, any of the following either alone or in combination: polyamides, copolyamides, polyimides, aramids, polyketones, polyetheretherketones, polyarylene ethers, polyesters, polyurethanes, polysulphones, high performance hydrocarbon polymers, liquid crystal polymers, PTFE, elastomers, and segmented elastomers.
- Toughening agents/particles may be present in the range 45 wt.% to 0 wt.% of the composite material. More preferably, they may be present in the range 25 wt.% to 5 wt.%. Most preferably, they may be present in the range 15 wt.% to 10 wt.%.
- a suitable toughening agent/particle by way of example, is Sumikaexcel 5003P, which is commercially available from Sumitomo Chemicals of Tokyo, Japan.
- Alternatives to 5003P are Solvay polysulphone 105P, and Solvay 104P which are commercially available from Solvay of Brussels, Belgium.
- Suitable fillers may include, by way of example, any of the following either alone or in combination: silicas, aluminas, titania, glass, calcium carbonate, and calcium oxide.
- the composite material may comprise an additional polymeric resin which is at least one thermoset or thermoplastic resins as defined previously.
- the conducting particles may be suitably dispersed within the polymeric resin of the prepreg by conventional mixing or blending operations.
- the mixed resin containing all the necessary additives and the conducting particles can be incorporated into prepreg by any of the known methods, for example a so-called lacquer process, resin film process, extrusion, spraying, printing or other known methods.
- a lacquer process all the resin components are dissolved or dispersed in a solvent and the fibrous reinforcement is dipped in the solvent, and the solvent is then removed by heat.
- a resin film process the polymeric resin is cast as a continuous film, either from a lacquer or a hot melt resin, onto a substrate which has been treated with a release agent, and then the coated film is contacted against the fibrous reinforcement and, under the aid of heat and pressure, the resin film melts and flows into the fibres.
- a multiplicity of films may be used and one or both sides of the fibre layer may be impregnated in this way.
- the majority of the conducting particles will be "filtered" by the reinforcing fibres and thus will be substantially prevented from entering the fibrous reinforcement because the particle size is larger than the distance between the reinforcing fibres.
- Other processes such as spraying or printing would enable the conducting particles to be placed directly onto the fibrous reinforcement with very low penetration of the said particles between the fibres.
- metal coated hollow particles it may be necessary to utilise lower shear mixing equipment to reduce the deforming effect that mixing may produce on the conducting particles.
- the prepreg may be in the form of continuous tapes, towpregs, fabrics, webs, or chopped lengths of tapes, towpregs, fabrics, or webs.
- the prepreg may be an adhesive or surfacing film, and may additionally have embedded carriers in various forms both woven, knitted, and non-woven.
- Prepregs formulated according to the present invention may be fabricated into final components using any of the known methods, for example manual lay-up, automated tape lay-up (ATL), automated fibre placement, vacuum bagging, autoclave cure, out of autoclave cure, fluid assisted processing, pressure assisted processes, matched mould processes, simple press cure, press-clave cure, or continuous band pressing.
- ATL automated tape lay-up
- automated fibre placement vacuum bagging
- autoclave cure out of autoclave cure
- fluid assisted processing pressure assisted processes
- matched mould processes simple press cure, press-clave cure, or continuous band pressing.
- the composite material may be in an embodiment comprising a single ply of conductive fibrous reinforcement, which has applied on one side a polymeric resin layer comprising electrically conductive particles.
- the composite material may be manufactured in a single ply embodiment and subsequently be formed in to multiple layers to provide an interleaf structure by lay-up. The interleaf structure is therefore formed during lay-up where a fibre-resin-fibre configuration arises.
- the composite material may therefore comprise a single prepreg.
- the composite material may comprise a plurality of prepregs.
- the polymeric resin layer thickness of the prepreg is preferably in the range 1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and most preferably 5 ⁇ m to 50 ⁇ m.
- an assembly may be prepared using 12 plies of composite materials, and 4 plies of composite materials comprising conducting particles of the present invention, thus enhancing the conductivity of the final assembly.
- a laminate assembly could be prepared from 12 plies of composite materials, and composite material comprising conducting particles and with no carbon fibre reinforcement.
- an electrically isolating layer can be placed between the carbon fibre plies and the resin surface.
- a glass reinforced fibrous layer can be used as the isolating layer.
- a further benefit is that the composite material of the present invention, prior to being fully cured, is completely flexible and is suitable for automated tape lay up processes which are increasingly used in the manufacture of large composite structures in the aerospace industry.
- the composite material of the invention may be fully or partially cured using any suitable temperature, pressure, and time conditions known in the art.
- the composite material may be cured using a method selected from UV-visible radiation, microwave radiation, electron beam, gamma radiation, or other suitable thermal or non-thermal radiation.
- a method of making a cured composite material comprising the steps of the second aspect, and subsequently curing the composite material.
- the curing step of the fourth aspect may be using any known method. Particularly preferred are curing methods as described herein.
- a cured composite material which comprises a composite material according to the first aspect of the present invention, wherein the composite material is cured.
- the present invention when used for aerospace components, can be used for primary structure applications (i.e. those parts of the structure which are critical for maintaining the integrity of the airplane), as well as secondary structure applications.
- an aerospace article comprising the cured composite material of the fifth aspect.
- eat resin refers to the basic polymeric matrix resin, in the absence of reinforcing fibres, used for manufacturing prepreg.
- HexPly® M21 is an interleaved epoxy resin prepreg material available from Hexcel Composites, Duxford, Cambridge, United Kingdom.
- LY1556 is an epoxy resin available from Huntsman Advanced Materials, Duxford, Cambridge, United Kingdom.
- a neat epoxy resin sample of M21 was produced by blending all the components uniformly and curing in a thermostatically controlled oven at 180°C for 2 hours. As the sample of Example 1 did not comprise any conductive particles, it does not fall within the scope of the present invention, and is listed for comparative purposes. Surface resistivity was then measured for the cured resin plaque using a model 272 resistivity meter from Monroe Electronics by placing a circular electrode on the surface of the neat resin specimen a reading the measured and displayed value on the instrument panel. It is important that contact between the specimen and probe is good, and therefore neat resin samples should be flat, smooth and uniform. Results are shown in Table 1
- the surface resistivity is a measure of resistivity of thin films having uniform thickness. Surface resistivity is measured in ohms/square ( ⁇ /sq.), and it is equivalent to resistivity for two-dimensional systems. The term is therefore a measure of resistivity for a current passing along the surface, rather than through the material which is expressed as bulk resistivity. Surface resistivity is also referred to as sheet resistance. Table 1: Surface resistivity of M21 resin modified with conductive particles. Example Conductive additive Loading (vol.%) Loading (wt.
- a neat epoxy resin sample was produced in which LY1556 (50.0g) was added carbon nanofibres (150 nm diameter) as produced by Electrovac of Austria. Using a Flaktec Speedmixer the fibres were dispersed in the resin at 2500rpm for 15 minutes. Silver coated beads (20 ⁇ m) at 2.0 vol.%, carbon nanofibres (110nm) at 2.0 wt.%, and 4,4'-diaminodiphenylsulphone were added to the mixture and blended by stirring. The formulation was cured in a thermostatically controlled oven at 180°C for 2 hours. Surface resistivity was then measured for the cured plaque using a model 272 resistivity meter from Monroe Electronics. Results are summarised in Table 2.
- Table 2 Surface resistivity of composites comprising silver coated glass spheres and carbon nanofibres (CNF).
- CNF carbon nanofibres
- carbon composite refers to the basic matrix resin, in the presence of reinforcing carbon fibres, used for manufacturing prepreg.
- M21 resin was produced by blending the components in a Z-blade mixer (Winkworth Machinery Ltd, Reading, England). The resin was coated as a thin film on silicone release paper which was then impregnated on intermediate modulus IM7 carbon fibre available from (Hexcel Composites, Duxford, UK) at a resin weight of 35 % using a hot press to make a unidirectional prepreg. A five ply prepreg was laid up unidirectionally which was approximately 10cm by 10cm and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A z-direction electrical resistance value of the composite was determined first by gold sputtering a square on either side of a rectangular shaped sample in order to ensure low contact resistance.
- Resistivity was then measured by applying probes to the gold sputtered area of the specimens and using a power source (TT i EL302P Programmable 30V/2A Power Supply Unit, Thurlby Thandar Instruments, Cambridge, UK) that was capable of varying either voltage or current.
- TT i EL302P Programmable 30V/2A Power Supply Unit Thurlby Thandar Instruments, Cambridge, UK
- M21 resin was modified with silver coated glass spheres (20 ⁇ m) at a range of 0.8-2.4 vol.% of the resin and the components were blended in a Winkworth mixer.
- the resin was coated as a thin film on silicone release paper and was then impregnated on intermediate modulus IM7 carbon fibre at a resin weight of 35 % using a hot press to make a unidirectional prepreg.
- a five ply prepreg of approximately 10cm by 10cm was laid up unidirectionally and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours.
- a z-direction electrical resistance value was determined according to the method of Example 5. Results are summarised in Table 3. Table 3: Volume resistivity of carbon composite modified with silver coated glass spheres.
- Table 3 clearly show a decrease in z-direction volume resistivity when compared to a neat resin material of Example 6, and also reducing resistivity when the amount of silver coated glass spheres are increased in the material.
- M21 resin was modified with silver coated hollow glass spheres (20 ⁇ m) at a range of 2.5-10.0 vol.% of the resin, and the components were blended in a Winkworth mixer.
- the resin was coated as a thin film on silicone release paper and was then impregnated on intermediate modulus IM7 carbon fibre at a resin weight of 35 % using a hot press to make a unidirectional prepreg.
- a five ply prepreg of approximately 10cm by 10cm was laid up unidirectionally and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours.
- a z-direction electrical resistance value was determined according to the method of Example 6. Results are summarised in Table 4.
- Table 4 Volume resistivity of carbon composite modified with silver coated hollow glass spheres according to Example 8.
- M21 resin was modified with silver coated polymethylmethacrylate particles (20 ⁇ m) at a range of 2.5-10.0 vol.% of the resin.
- the resin was produced by blending the components in a Winkworth mixer. The resin was coated as a thin film on silicone release paper and was then impregnated on intermediate modulus IM7 carbon fibre at a resin weight of 35 % using a hot press to make a unidirectional prepreg. A five ply prepreg of approximately 10cm by 10cm was laid up unidirectionally and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A z-direction electrical resistance value was determined according to the method of Example 6. Results are summarised in Table 5.
- Table 5 Volume resistivity of carbon composite modified with silver coated PMMA spheres.
- Example Silver coated PMMA particles vol.%)
- Silver coated PMMA particles wt.%)
- M21 resin was modified with dendritic silver/copper (40 ⁇ m) at a loading of 0.30 vol.% of the resin.
- the resin was produced by blending the components in a Winkworth mixer. The resin was coated as a thin film on silicone release paper and was then impregnated on intermediate modulus IM7 carbon fibre at a resin weight of 35 % using a hot press to make a unidirectional prepreg. A five ply prepreg of approximately 10cm by 10cm was laid up unidirectionally and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A z-direction electrical resistance value was determined according to the method of Example 6. Results are summarised in Table 6.
- M21 resin was modified with silver coated glass beads (100 ⁇ m) at a loading of 1.0 vol.% of the resin.
- a prepreg and composite was produced according to example 9.
- Z-direction electrical resistance value was determined as per Example 6. Results are summarised in Table 6.
- M21 resin was modified with silver coated glass fibres (190 ⁇ m) at a loading of 1.25 wt.% of the resin.
- a prepreg and composite was produced according to example 9.
- Z-direction electrical resistance value was determined as per Example 6. Results are summarised in Table 6.
- Table 6 Volume resistivity of carbon composite modified with different conducting particles.
- Example 6 show a decrease in z-direction volume resistivity generally with increases in the amount of electrically conductive particles. Additionally, the results show a particularly good reduction in Example 11 where silver coated glass spheres are used which have a size substantially equal to the polymeric resin layer thickness.
- M21 prepreg was produced according to Example 12.
- a 6 ply quasi-isotropic (QI) laminate of approximate size 10cm x 10cm was prepared and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours.
- the glass transition temperature, Tg, of the composite was determined by dynamic thermal analysis from the storage modulus trace, E', to be 194.5°C.
- a square sample was cut from the cured panel and the z-direction resistivity measured as follows. To ensure good electrical contact, the appropriate parts of the composite were vacuum coated with gold in the vicinity where connection was to be made with the power supply. The resistivity was then determined by applying a current of 1 amp from the power supply and measuring the resulting voltage.
- Table 7 Volume resistivity of the composite of Example 16.
- M21 resin was modified with 20 ⁇ m silver coated glass beads at (2 vol.%, 5 wt.%) and prepreg was produced according to the method of Example 13.
- a 6 ply quasi-isotropic laminate of approximate size 10cm x 10cm was prepared and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours.
- the glass transition temperature (Tg) of the composite was determined as for Example 14 to be 196.0°C.
- Tg glass transition temperature
- a square sample was cut from the cured panel and the z-direction resistivity measured as for Example 13. Resistivity is significantly improved.
- Table 8 Volume resistivity of the composite of Example 14.
- M21 resin was modified with 20 ⁇ m silver coated glass beads at (2 vol.%, 5 wt.%) and carbon nanofibres (150 nm diameter) at 2 wt.% of the resin.
- Prepreg was produced according to Example 13.
- a 12 ply quasi-isotropic laminate of approximate size 10cm x 10cm was prepared and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours.
- the glass transition temperature (Tg) of the composite was determined as for Example 14 to be 196.5°C.
- Tg glass transition temperature
- a square sample was cut from the cured panel and the z-direction resistivity measured as for Example 13. Resistivity is significantly improved.
- Table 9 Volume resistivity of the composite of Example 15.
- M21 resin was produced using a Winkworth mixer and then filmed onto silicone release paper. This resin film was then impregnated onto unidirectional intermediate modulus carbon fibre, using a pilot scale UD prepregger, which produced a prepreg with an areal weight of 268g/m 2 at 35 wt.% of resin. Two six-ply prepregs were produced (lay up 0/90) which were approximately 60cm by 60cm and these were cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours.
- Zone 1A surfaces of the aeroplane for which there is a high probability of initial lightning flash attachment (entry or exit) with low probability of flash hang on, such as radomes and leading edges.
- Zone 1A also includes swept leaders attachment areas.
- the zone 1A test has three waveform components, high current component A (2x10 6 A, ⁇ 500 ⁇ s), intermediate current component B (average 2kA, ⁇ 5ms) and continuing current component C (200C, ⁇ ls). Both surfaces of the panels were abraded around the edges to ensure a good connection to the outer frame.
- the electrode was connected to the panel via a thin copper wire. The copper wire provides a path for the current and vaporises on test. It is needed as the voltage generated is not enough to break down the air.
- Figures 1 and 2 show a damaged panel of example 16 after simulated lightning strike.
- the panel 10 which does not comprise metal coated particles, showed severe damage on both upper surface 11 shown in Figure 1 , and lower surface 12 shown in Figure 2 .
- FIG. 1 An Ultrasonic c-scan 20 was also performed and is shown in Figure 3 .
- the Ultrasonic C-scan 20 of the damaged panel 10 shown in Figures 1 and 2 was performed using an R/D Tech Omniscan MX from Olympus.
- the scan 20 shows that the damage area for an unmodified panel 10 is very large.
- Table 10 Test parameters of lightning strike tests for Example 16.
- Table 11 Description of damaged area after lightning strike test Figure Description of Damage 1 ⁇ Upper surface; delamination and dry fibres. Unusual scorch mark on surface.
- the white area 21 of the c-scan 20 is where the delamination of the example 16 has occurred after the simulated lightning strike test. This shows the damaged area is large for the panel 10 of example 16 which comprises no metal coated particles.
- M21 resin was modified with silver coated glass spheres (2 vol.%, 5 wt.% of resin), blended using a Winkworth mixer and then filmed onto silicone release paper. This resin film was then impregnated onto unidirectional intermediate modulus carbon fibre which produced a prepreg with an areal weight of 268g/m 2 at 35 wt.% of resin. Two six-ply prepregs were produced (lay up 0/90) which were approximately 60cm by 60cm and were cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A lightning strike test was then carried out according to the method of Example 16.
- Figures 4 and 5 show a damaged panel 30 after simulated lightning strike.
- Figure 4 shows an upper surface 31 of the panel 30, and
- Figure 5 shows a lower surface 32 of the panel 30. It is clearly seen that the simulated lightning strike has not penetrated the composite panel 30 of the invention.
- An Ultrasonic c-scan 40 was carried out on the lightning struck panel 30 using an R/D Tech Omniscan MX from Olympus.
- the scan 40 is shown in Figure 6 .
- the scan 40 shows that the white area 41 of the modified panel 30 is reduced in comparison to the unmodified Example 16 of Figures 1 and 2 .
- Figure 7 shows a photomicrograph 50 of a polished cross section of the panel 30 shown in Figures 4 and 5 .
- the silver coated glass spheres 53 are clearly seen to be located in the resin interleaf 52, and are contacting the carbon plies 51.
- M21 resin was modified with silver coated glass spheres (2 vol.%, 5 wt.% of resin) and carbon nanofibre (150 nm diameter, 2 wt% of resin) blended using a Winkworth mixer and then filmed onto silicone release paper. This resin film was then impregnated onto unidirectional intermediate modulus carbon fibre which produced a prepreg with an areal weight of 268g/m 2 at 35 wt.% of resin. Two six-ply prepregs were produced (lay up 0/90) which were approximately 60cm by 60cm and were cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A lightning strike test was then carried out according to the method of Example 16.
- Figures 8 and 9 show a damaged panel 60 after simulated lightning strike.
- Figure 8 shows an upper surface 61 of the panel 60
- Figure 9 shows a lower surface 62 of the panel 60. It is clearly seen that the simulated lightning strike has not penetrated the composite panel 60 of the invention.
- An Ultrasonic c-scan 70 was carried out on the lightning struck panel 60 using an R/D Tech Omniscan MX from Olympus.
- the scan 70 is shown in Figure 10 .
- the scan 40 shows that the white area 41 of the modified panel 60 is reduced in comparison to the unmodified panel 10 of Figures 1 and 2 .
- the panel 60 with metal coated particles and carbon nanofibres has a much reduced damage area when compared to the Example 16 as shown in Figures 1 and 2 .
- Table 14 Test parameters of lightning strike tests for Example 18.
- Table 15 Description of damaged area after lightning strike test.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Laminated Bodies (AREA)
Abstract
Description
- The present invention relates to composite materials, and particularly, but not exclusively, to fibre reinforced composite materials.
- Composite materials are increasingly used in structural applications in many fields owing to their attractive mechanical properties and low weight in comparison to metals. Composites are known in the field to consist of layering of materials to provide a structurally advantageous laminate type material. However, whilst electrical conductivity is one of the most obvious attributes of metals, composite materials based on fibre reinforcements (such as adhesive films, surfacing films, and pre-impregnated (prepreg) materials), generally have much lower electrical conductivity.
- Conventional composite materials usually consist of a reinforcement phase, generally comprising continuous or discontinuous fibres, and a matrix phase, generally a thermoset or thermoplastic polymer. Most early first generation matrix polymers for the manufacture of composites were, by nature, brittle and it has therefore been necessary to develop more toughened versions. The composites materials used as primary structures in aerospace applications tend to be so-called second or third generation toughened materials.
- There is a particular need for composite materials which exhibit electrical conductivity for several applications. These applications include use for protection against lightning strikes, electrostatic dissipation (ESD), and electromagnetic interference (EMI). Prior composite materials, such as those based upon carbon fibres, are known to have some degree of electrical conductivity which is usually associated with the graphitic nature of the carbon filaments. However the level of electrical conductivity provided is insufficient for protecting the composite material from the damaging effects of, for example, a lightning strike.
- Second generation toughened composites represent an improvement over earlier first generation materials due to incorporation of toughening phases within the matrix material. This includes incorporation of metals in to the assembly via expanded foils, metal meshes, or interwoven wires. Typical metals which are used for this purpose include aluminium, bronze and copper. These composite materials can provide better electrical conductivity. However, they are generally heavy and have significantly degraded mechanical and aesthetic properties. These composites are usually found at the first one or two plies of the material, and therefore a poor overall surface finish often results.
- In the event of a lightning strike on second generation composites, damage is normally restricted to the surface protective layer. The energy of the lightning strike is typically sufficient to vaporise some of the metal and to bum a small hole in the mesh. Damage to the underlying composite may be minimal, being restricted to the top one or two plies. Nevertheless, after such a strike it would be necessary to cut out the damaged area and make good with fresh metal protection and, if required, fresh composite.
- As already mentioned, materials with carbon fibres do possess some electrical conductivity. However, the conductivity pathway is only in the direction of the fibres, with limited ability for dissipation of electrical current in directions orthogonal to the plane of the fibre reinforcement (z direction). Carbon reinforced materials often comprise an interleaf structure which results in inherently low conductivity in the z direction due to the electrical insulation properties of the interleaf. The result of such an arrangement can lead to disastrous effects when damaged by lightning as the electrical discharge can enter the interleaf, volatilise the resin therein, and cause mass delamination and penetration through the composite material.
- So-called third generation toughened composite materials are based on interleaf technology where resinous layers are alternated with fibre reinforced plies, and provide protection against impacts. However, these resin layers act as an electrical insulator and therefore electrical conductivity in the z direction of the material is poor (i.e. orthogonal to the direction of the fibres). Lightning strikes on the composite material can result in catastrophic failure of the component, with a hole being punched through a multiple ply laminate.
- The present invention therefore seeks to provide a composite material which has improved electrical conductivity properties in comparison to prior attempts as described herein, and has little or no additional weight compared to a standard composite material. The present invention also seeks to provide composite materials which have the improved electrical conductivity without detriment to the mechanical performance of the material. The present invention further seeks to provide a method of making the composite material having improved electrical conductivity properties.
- A further aim is to provide a lightning strike tolerant composite material which is convenient to manufacture, use, and repair.
- According to a first aspect of the present invention there is provided a composite material comprising;
- i) at least one prepreg, said prepreg comprising at least one polymeric resin and at least one fibrous reinforcement; and
- ii) conductive particles dispersed in the polymeric resin.
- According to a second aspect of the present invention there is provided a method of making a composite material comprising the steps of;
- i) providing at least one prepreg, said prepreg comprising at least one polymeric resin and at least one fibrous reinforcement; and
- ii) dispersing conductive particles the polymeric resin.
- According to a third aspect of the present invention there is provided the use of conductive particles for reducing an initial bulk resistivity of a constituent polymeric resin of a composite material, the composite material comprising a prepreg, said prepreg comprising said polymeric resin and at least one fibrous material, wherein the conductive particles are dispersed in the polymeric resin.
- Surprisingly, it has been found that use of conducting particles in a polymeric resin of a prepreg provide reduced bulk resistivity, thereby improving z directional electrical conductivity through the composite material. Additionally, it has been found that the conducting particles dispersed in the resin formulation, and subsequently prepregged, result in a prepreg having substantially similar handling characteristics in comparison with an equivalent unmodified prepreg.
- It is understood that references to a composite material include materials which comprise a fibre reinforcement, where the polymeric resin is in contact with the fibre but not impregnated in the fibre. The term composite material also includes an alternative arrangement in which the resin is partially embedded or partially impregnated in the fibre, commonly known in the art as prepreg. The prepreg may also have a fully impregnated fibrous reinforcement layer. The composite material may also include multilayered materials which have multiple fibre-rein-fibre layers.
- It is understood that references to "interleaf structure" refers to the multi-layered material having a fibre-resin-fibre structure. The term "interleaf" refers to the polymeric resin which is present, and interleaved, between the fibre layers. References to "interleaf thickness" are to the average distance across the interleaf layer as measured from the uppermost surface of a lower fibre ply to a lowermost surface of an upper fibre ply. The interleaf thickness is therefore equivalent to the thickness of the interleaved polymeric resin layer, and references to interleaf thickness and polymeric resin thickness are interchangeable.
- The terms interlayer, interleaf resin layer, and fibre free layer as used herein are all interchangeable, and refer to the polymeric resin layer.
- The term polymeric resin as used herein refers to a polymeric system.
- The term "polymeric resin" and "polymeric system" are used interchangeably in the present application, and are understood to refer to mixtures of chain lengths of resins having varying chain lengths. The term polymeric therefore includes an embodiment where the resins present are in the form of a resin mixture comprising resins having chain length greater than 3. The resulting polymeric resin when cured forms a crosslinked matrix of resin.
- Bulk resistivity refers to the measurement of the "bulk" or "volume" resistivity of a semi-conductive material. It can be seen that reference to an "initial bulk resistivity" relates to the bulk resistivity of a polymeric resin prior to addition of conducting particles. The value in Ohms-m is the inherent resistance of a given material. Ohms-m (Ωm) is used for measuring the conductivity of a three dimensional material. The bulk electrical resistivity p of a material is usually defined by the following:
where; - p is the static resistivity (measured in ohm metres),
- R is the electrical resistance of a uniform specimen of the material (measured in ohms),
- l is the length of the specimen (measured in metres)
- A is the cross-sectional area of the specimen (measured in square metres)
- In the present invention, the volume resistivity is only measured in the z-direction (through the composite material thickness). In every case it is referenced as the "volume" resistivity as the thickness is always taken into consideration in the calculation.
- The aim of the invention is achieved by incorporating into the interleaf region of the prepreg a low volume fraction of conducting particles at a level in itself wholly insufficient to impart electrical conductivity to the polymeric resin from which the prepreg is made.
- Furthermore, it has been found that addition of conducting particles, such as carbon particles or silver coated glass spheres, to the composite material reduces bulk resistivity and therefore provides electrical conductance levels which exceed those that might have been reasonably expected.
- A further benefit of the invention is an improved thermal conductivity for the prepreg, leading to faster heat up times and better dissipation of the heat generated during the cure exotherm. A still further benefit is that the electrical resistance of the composite material is essentially unchanged with variation in temperature.
- The reduction in bulk resistivity and improvement in conductivity results in improved lightning strike performance. This improvement achieved by the present invention is therefore surprising in view of the low levels of electrically conductive particles employed, and the high electrical resistivity normally exhibited by the interleaf resin itself.
- It is envisaged that the terms "resistivity" and "conductivity" used herein refer to electrical resistivity and electrical conductivity respectively.
- As used herein, the term "particles" refers to discrete three dimensional shaped additives which are distinct, treated as an individual units, and separable from other individual additives, but this does not preclude additives from being in contact with one another. The term embraces the shapes and sizes of electrically conductive particles described and defined herein.
- The term "aspect ratio" used herein is understood to refer to the ratio of the longest dimension to the shortest dimension of a three dimensional body. The term is applicable to additives of any shape and size as used herein. Where the term is used in relation to spherical or substantially spherical bodies, the relevant ratio would be that of the largest cross sectional diameter with the smallest cross sectional diameter of the spherical body. It will therefore be understood that a perfect sphere would have an aspect ration of 1:1. The aspect ratios as specified herein for electrically conductive particles are based on the dimensions of the particles after any metal coating has been applied.
- References to the size of the electrically conductive particles are to the largest cross sectional diameter of the particles.
- Suitable electrically conductive particles may include, by way of example, spheres, microspheres, dendrites, beads, powders, any other suitable three-dimensional additives, or any combination thereof.
- The conductive particles used in the present invention may comprise any suitable conducting particles. It will be understood that this would include any suitable conductive particles capable of reducing bulk resistivity and thereby facilitating electrical conductivity of the composite material.
- The electrically conductive particles may be selected from metal coated conducting particles, non-metallic conducting particles, or a combination thereof.
- The conductive particles are dispersed in the polymeric resin. It is envisaged that the term "dispersed" may include where the conductive particles are present substantially throughout the polymeric resin without being present in a substantially higher concentration in any part of the polymeric resin. Additionally, the term "dispersed" also includes the conductive particles being present in localised areas of polymeric resin if reduced bulk resistivity is only required in specific areas of the composite material.
- The metal coated conducting particles may comprise core particles which are substantially covered by a suitable metal.
- The core particles may be any suitable particles. Suitable particles, by way of example, include those formed from polymer, rubber, ceramic, glass, mineral, or refractory products such as fly ash.
- The polymer may be any suitable polymer which is a thermoplastic or thermosetting polymer. The terms 'thermoplastic polymer' and 'thermosetting polymer' are as characterised herein.
- The core particles formed from glass may be any of the types used for making solid or glass microspheres.
- Examples of suitable silica containing glass particles include soda glass, borosilicate, and quartz. Alternatively, the glass may be substantially silica free. Suitable silica free glasses include, by way of example, chalcogenide glasses.
- The core particles may be porous or hollow or may themselves be a core-shell structure, for example core-shell polymer particles. The core particles may be first coated with an activating layer, adhesion promoting layer, primer layer, semiconducting layer or other layer prior to being metal coated.
- The core particles are preferably hollow particles formed from glass. Use of hollow core particles formed from glass may be advantageous in applications where weight reduction is of particular importance.
- Mixtures of the core particles may be used to obtain, for example, lower densities or other useful properties, for instance a proportion of hollow metal coated glass particles may be used with a proportion of metal coated rubber particles to obtain a toughened layer with a lower specific gravity.
- Metals suitable for coating the core particles include, by way of example, silver, gold, nickel, copper, tin, aluminium, platinum, palladium, and any other metals known to possess high electrical conductivity.
- Multiple layers of metal coatings may be used to coat the core particles, for example gold coated copper, or silver coated copper. Simultaneous deposition of metals is also possible, thereby producing mixed metal coatings.
- The metal coating may be carried out by any of the means known for coating particles. Examples of suitable coating processes include chemical vapour deposition, sputtering, electroplating, or electroless deposition.
- The metal may be present as bulk metal, porous metal, columnar, microcrystalline, fibrillar, dendritic, or any of the forms known in metal coating. The metal coating may be smooth, or may comprise surface irregularities such as fibrils, or bumps so as to increase the specific surface area and improve interfacial bonding.
- The metal coating may be subsequently treated with any of the agents known in the art for improving interfacial bonding with the polymeric resin, for example silanes, titanates, and zirconates.
- The electrical resistivity of the metal coating should be preferably less than 3 x 10-5 Ωm, more preferably less than 1 x 10-7 Ωm, and most preferably less than 3 x 10-8 Ωm.
- The metal coated conducting particles may be of any suitable shape for example spherical, ellipsoidal, spheroidal, discoidal, dendritic, rods, discs, acicular, cuboid or polyhedral. Finely chopped or milled fibres may also be used, such as metal coated milled glass fibres. The particles may have well defined geometries or may be irregular in shape.
- The metal coated conducting particles should possess an aspect ratio of <100, preferably <10, and most preferably <2.
- The metal coated conducting particle size distribution may be monodisperse or polydisperse. Preferably, at least 90 % of the metal coated particles have a size within the range 0.3 µm to 100 µm, more preferably 1 µm to 50 µm, and most preferably between 5 µm and 40 µm.
- The electrically conductive particles may be non-metallic conducting particles. It will be understood that this would include any suitable non-metallic particles not having a metal coating, and capable of reducing bulk resistivity and thereby facilitating electrical conductivity of the composite material.
- Suitable non-metallic conducting particles include, by way of example, graphite flakes, graphite powders, graphite particles, graphene sheets, fullerenes, carbon black, intrinsically conducting polymers (ICPs - including polypyrrole, polythiophene, and polyaniline), charge transfer complexes, or any combination thereof.
- An example of a suitable combination of non-metallic conducting particles includes combinations of ICPs with carbon black and graphite particles.
- The non-metallic conducting particle size distribution may be monodisperse or polydisperse. Preferably, at least 90 % of the non-metallic conducting particles have a size be within the range 0.3 µm to 100 µm, more preferably 1 µm to 50 µm, and most preferably between 5 µm and 40 µm.
- The electrically conductive particles have a size whereby at least 50% of the particles present in the polymeric resin have a size within 10 µm of the thickness of the polymeric resin layer. In other words the difference between the thickness of the resin layer and the size of the electrically conductive articles is less than 10 µm. Preferably the electrically conductive particles have a size whereby at least 50% of the particles present in the polymeric resin have a size within 5 µm of the thickness of the polymeric resin layer.
- The size of at least 50% of the electrically conductive particles is therefore such that they bridge across the interleaf thickness (polymeric resin layer), and the particles are in contact with an upper fibrous reinforcement ply and a lower fibrous reinforcement ply arranged about the polymeric resin layer.
- The electrically conductive particles may be present in the range 0.2 vol.% to 20 vol.% of the composite material. More preferably, the conducting particles are present in the range 0.4 vol.% to 15 vol.%. Most preferably, the conducting particles are present in the range 0.8 vol.% to 10 vol.%.
- In an alternative embodiment, the electrically conductive particles may be present in an amount of less than 10 vol.% of the polymeric resin layer.
- It can be seen that the preferred ranges of the electrically conductive particles are expressed in vol.% as the weight of the particles may exhibit a large variation due to variation in densities.
- The electrically conductive particles may be used alone or in any suitable combination.
- Without wishing to be unduly bound by theory, it has been found that the benefits of the invention may be conferred due to the conductive particles (either metal coated or non-metallic) acting as electrical conductance bridges across the interleaf thickness (i.e. across the polymeric resin layer and between the layers of fibrous reinforcement), thereby connecting plies of fibrous reinforcement and improving the z directional electrical conductance.
- It has also been found that use of electrically conductive particles with size substantially equal to the interleaf thickness advantageously allows for electrical conductance across the composite material (in the z plane) to be provided at relatively low loading levels. These low loading levels of electrically conductive particles are less than would be typically required to make the polymeric resin itself electrically conducting.
- The electrically conductive particles therefore facilitate electrical conductivity by lowering the bulk resistivity of the composite material.
- The composite material may also comprise carbon nano materials. The carbon nano materials may be selected from carbon nanotubes, and carbon nanofibres. The carbon nano materials may be any suitable carbon nanotubes or carbon nanofibres.
- The carbon nano materials may have a diameter in the range 10-500nm. Preferred carbon nano materials may have a diameter in the range 100 to 150nm.
- The carbon nanomaterials may preferably have a length in the range 1-10 µm.
- The carbon nano materials may provide additional electrically conducting pathways across the composite material (in the z plane) by further bridging across the interleaf. The fibrous reinforcements are arranged in the form of layers or plies comprising a number of fibre strands. The composite material comprises at least two fibrous reinforcement plies which are arranged either side of a polymeric resin layer. As well as providing electrical conductivity in the x and y planes of the material, the plies act as supporting layers to the structure of the material, and substantially contain the polymeric resin.
- The fibrous reinforcement of the prepreg may be selected from hybrid or mixed fibre systems which comprise synthetic or natural fibres, or a combination thereof. The fibrous reinforcement is electrically conductive, and therefore is formed from fibres which are electrically conductive.
- The fibrous reinforcement may preferably be selected from any suitable material such as metallised glass, carbon, graphite, metallised polymer fibres (with continuous or discontinuous metal layers), the polymer of which may be soluble or insoluble in the polymeric resin. Any combination of these fibres may be selected. Mixtures of these fibres with non-conducting fibres (such as fibreglass for example) may also be used.
- The fibrous reinforcement is most preferably formed substantially from carbon fibres.
- The fibrous reinforcement may comprise cracked (i.e. stretch-broken) or selectively discontinuous fibres, or continuous fibres. It is envisaged that use of cracked or selectively discontinuous fibres may facilitate lay-up of the cured composite material prior to being fully cured according to the invention, and improve its capability of being shaped.
- The fibrous reinforcement may be in the form of woven, non-crimped, non-woven, unidirectional, or multiaxial textile tapes or tows.
- The woven form is preferably selected from a plain, satin, or twill weave style. The non-crimped and multiaxial forms may have a number of plies and fibre orientations.
- Such styles and forms of fibrous reinforcement are well known in the composite reinforcement field, and are commercially available from a number of companies including Hexcel Reinforcements of Villeurbanne, France.
- The polymeric resin of the prepreg preferably comprises at least one thermoset or thermoplastic resin.
- The term 'thermoset resin' includes any suitable material which is plastic and usually liquid, powder, or malleable prior to curing and designed to be moulded in to a final form. The thermoset resin may be any suitable thermoset resin. Once cured, a thermoset resin is not suitable for melting and remoulding. Suitable thermoset resin materials for the present invention include, but are not limited to, resins of phenol formaldehyde, urea-formaldehyde, 1,3,5-triazine-2,4,6-triamine (Melamine), bismaleimide, epoxy resins, vinyl ester resins, benzoxazine resins, phenolic resins, polyesters, unsaturated polyesters, cyanate ester resins, or any combination thereof. The thermoset resin is preferably selected from epoxide resins, cyanate ester resins, bismaleimide, vinyl ester, benzoxazine, and phenolic resins.
- The term 'thermoplastic resin' includes any suitable material which is plastic or deformable, melts to a liquid when heated and freezes to a brittle, and forms a glassy state when cooled sufficiently. Once formed and cured, a thermoplastic resin is suitable for melting and re-moulding. Suitable thermoplastic polymers for use with the present invention include any of the following either alone or in combination: polyether sulphone (PES), polyether ethersulphone (PEES), polyphenyl sulphone, polysulphone, polyester, polymerisable macrocycles (e.g. cyclic butylene terephthalate), liquid crystal polymers, polyimide, polyetherimide, aramid, polyamide, polyester, polyketone, polyetheretherketone (PEEK), polyurethane, polyurea, polyarylether, polyarylsulphides, polycarbonates, polyphenylene oxide (PPO) and modified PPO, or any combination thereof.
- The polymeric epoxy resin preferably comprises at least one of bisphenol-A (BPA) diglycidyl ether and bisphenol-F (BPF) diglycidyl ether and derivatives thereof; tetraglycidyl derivative of 4,4'-diaminodiphenylmethane (TGDDM); triglycidyl derivative of aminophenols, and other glycidyl ethers and glycidyl amines well known in the art.
- The polymeric resin is applied to the fibrous reinforcement. The fibrous reinforcement may be fully or partially impregnated by the polymeric resin. In an alternative embodiment, the polymeric resin may be a separate layer which is proximal to, and in contact with, the fibrous reinforcement, but does not substantially impregnate said fibrous reinforcement.
- The composite material may include at least one curing agent. The curing agent may be substantially present in the polymeric resin. It is envisaged that the term "substantially present" means at least 90 wt.% of the curing agent, preferably 95 wt.% of the curing agent.
- For epoxy resins, the curing agents of the invention are those which facilitate the curing of the epoxy-functional compounds of the invention, and, particularly, facilitate the ring opening polymerisation of such epoxy compounds. In a particularly preferred embodiment, such curing agents include those compounds which polymerise with the epoxy-functional compound or compounds, in the ring opening polymerisation thereof.
- Two or more such curing agents may be used in combination.
- Suitable curing agents include anhydrides, particularly polycarboxylic anhydrides, such as nadic anhydride (NA), methylnadic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, or trimellitic anhydride.
- Further suitable curing agents are the amines, including aromatic amines, e.g. 1,3-diaminobenzene, 1,4-diaminobenzene, 4,4'-diaminodiphenylmethane, and the polyaminosulphones, such as 4,4'-diaminodiphenyl sulphone (4,4'-DDS), and 3,3'-diaminodiphenyl sulphone (3,3'-DDS).
- Also, suitable curing agents may include phenol-formaldehyde resins, such as the phenol-formaldehyde resin having an average molecular weight of about 550-650, the p-t-butylphenol-formaldehyde resin having an average molecular weight of about 600-700, and the p-n-octylphenol-formaldehyde resin, having an average molecular weight of about 1200-1400.
- Yet further suitable resins containing phenolic groups can be used, such as resorcinol based resins, and resins formed by cationic polymerisation, such as dicyclopentadiene - phenol copolymers. Still additional suitable resins are melamine-formaldehyde resins, and urea-formaldehyde resins.
- Different commercially available compositions may be used as curing agents in the present invention. One such composition is AH-154, a dicyandiamide type formulation, available from Ajinomoto USA Inc. Others which are suitable include Ancamide 1284, which is a mixture of 4,4'-methylenedianiline and 1,3-benzenediamine; these formulations are available from Pacific Anchor Chemical, Performance Chemical Division, Air Products and Chemicals, Inc., Allentown, USA.
- The curing agent (s) is selected such that it provides curing of the resin component of the composite material when combined therewith at suitable temperatures. The amount of curing agent required to provide adequate curing of the resin component will vary depending upon a number of factors including the type of resin being cured, the desired curing temperature, and the curing time. Curing agents typically include cyanoguanidine, aromatic and aliphatic amines, acid anhydrides, Lewis Acids, substituted ureas, imidazoles and hydrazines. The particular amount of curing agent required for each particular situation may be determined by well-established routine experimentation.
- Exemplary preferred curing agents include 4,4'-diaminodiphenyl sulphone (4,4'-DDS) and 3,3'-diaminodiphenyl sulphone (3,3'-DDS).
- The curing agent, if present, may be present in the range 45 wt.% to 2 wt.% of the composite material. More preferably, the curing agent may be present in the
range 30 wt.% to 5 wt.%. Most preferably, the curing agent may be present in the range 25 wt.% to 5 wt.%. - Accelerators, if present, are typically urones. Suitable accelerators, which may be used alone or in combination include N,N-dimethyl, N'-3,4-dichlorphenyl urea (Diuron), N'-3-chlorophenyl urea (Monuron), and preferably N,N-(4-methyl-m-phenylene bis[N',N'-dimethylurea] (TDI urone).
- The composite material may also include additional ingredients such as performance enhancing or modifying agents. The performance enhancing or modifying agents, by way of example, may be selected from flexibilisers, toughening agents/particles, additional accelerators, core shell rubbers, flame retardants, wetting agents, pigments/dyes, flame retardants, plasticisers, UV absorbers, anti-fungal compounds, fillers, viscosity modifiers/flow control agents, tackifiers, stabilisers, and inhibitors.
- Toughening agents/particles may include, by way of example, any of the following either alone or in combination: polyamides, copolyamides, polyimides, aramids, polyketones, polyetheretherketones, polyarylene ethers, polyesters, polyurethanes, polysulphones, high performance hydrocarbon polymers, liquid crystal polymers, PTFE, elastomers, and segmented elastomers.
- Toughening agents/particles, if present, may be present in the range 45 wt.% to 0 wt.% of the composite material. More preferably, they may be present in the range 25 wt.% to 5 wt.%. Most preferably, they may be present in the range 15 wt.% to 10 wt.%.
- A suitable toughening agent/particle, by way of example, is Sumikaexcel 5003P, which is commercially available from Sumitomo Chemicals of Tokyo, Japan. Alternatives to 5003P are Solvay polysulphone 105P, and Solvay 104P which are commercially available from Solvay of Brussels, Belgium.
- Suitable fillers may include, by way of example, any of the following either alone or in combination: silicas, aluminas, titania, glass, calcium carbonate, and calcium oxide.
- The composite material may comprise an additional polymeric resin which is at least one thermoset or thermoplastic resins as defined previously.
- Whilst it is desirable that the majority of electrically conductive particles are located within the polymeric resin of the composite material, it is not generally detrimental if a small percentage of such particles are distributed within the fibrous reinforcement. The conducting particles may be suitably dispersed within the polymeric resin of the prepreg by conventional mixing or blending operations.
- The mixed resin containing all the necessary additives and the conducting particles can be incorporated into prepreg by any of the known methods, for example a so-called lacquer process, resin film process, extrusion, spraying, printing or other known methods.
- In a lacquer process all the resin components are dissolved or dispersed in a solvent and the fibrous reinforcement is dipped in the solvent, and the solvent is then removed by heat. In a resin film process the polymeric resin is cast as a continuous film, either from a lacquer or a hot melt resin, onto a substrate which has been treated with a release agent, and then the coated film is contacted against the fibrous reinforcement and, under the aid of heat and pressure, the resin film melts and flows into the fibres. A multiplicity of films may be used and one or both sides of the fibre layer may be impregnated in this way.
- If the prepreg is made by a film or lacquer process, the majority of the conducting particles will be "filtered" by the reinforcing fibres and thus will be substantially prevented from entering the fibrous reinforcement because the particle size is larger than the distance between the reinforcing fibres. Other processes such as spraying or printing would enable the conducting particles to be placed directly onto the fibrous reinforcement with very low penetration of the said particles between the fibres. When metal coated hollow particles are used, it may be necessary to utilise lower shear mixing equipment to reduce the deforming effect that mixing may produce on the conducting particles.
- The prepreg may be in the form of continuous tapes, towpregs, fabrics, webs, or chopped lengths of tapes, towpregs, fabrics, or webs. The prepreg may be an adhesive or surfacing film, and may additionally have embedded carriers in various forms both woven, knitted, and non-woven.
- Prepregs formulated according to the present invention may be fabricated into final components using any of the known methods, for example manual lay-up, automated tape lay-up (ATL), automated fibre placement, vacuum bagging, autoclave cure, out of autoclave cure, fluid assisted processing, pressure assisted processes, matched mould processes, simple press cure, press-clave cure, or continuous band pressing.
- The composite material may be in an embodiment comprising a single ply of conductive fibrous reinforcement, which has applied on one side a polymeric resin layer comprising electrically conductive particles. The composite material may be manufactured in a single ply embodiment and subsequently be formed in to multiple layers to provide an interleaf structure by lay-up. The interleaf structure is therefore formed during lay-up where a fibre-resin-fibre configuration arises.
- The composite material may therefore comprise a single prepreg. Alternatively, the composite material may comprise a plurality of prepregs.
- The polymeric resin layer thickness of the prepreg is preferably in the range 1 µm to 100 µm, more preferably 1 µm to 50 µm, and most preferably 5 µm to 50 µm.
- Multiple layers of conductive composite materials may be used. Thus, by way of example, an assembly may be prepared using 12 plies of composite materials, and 4 plies of composite materials comprising conducting particles of the present invention, thus enhancing the conductivity of the final assembly. As a further example, a laminate assembly could be prepared from 12 plies of composite materials, and composite material comprising conducting particles and with no carbon fibre reinforcement. Optionally, where a composite material of the present invention is used, an electrically isolating layer can be placed between the carbon fibre plies and the resin surface. For example, a glass reinforced fibrous layer can be used as the isolating layer. It is understood that there are many possible assemblies that could be used, and those described herein are by way of example only.
- A further benefit is that the composite material of the present invention, prior to being fully cured, is completely flexible and is suitable for automated tape lay up processes which are increasingly used in the manufacture of large composite structures in the aerospace industry.
- The composite material of the invention may be fully or partially cured using any suitable temperature, pressure, and time conditions known in the art.
- The composite material may be cured using a method selected from UV-visible radiation, microwave radiation, electron beam, gamma radiation, or other suitable thermal or non-thermal radiation.
- Thus, according to a fourth aspect of the present invention there is provided a method of making a cured composite material comprising the steps of the second aspect, and subsequently curing the composite material.
- The curing step of the fourth aspect may be using any known method. Particularly preferred are curing methods as described herein.
- Thus according to a fifth aspect of the present invention there is provided a cured composite material which comprises a composite material according to the first aspect of the present invention, wherein the composite material is cured.
- Whilst most of the following discussion concentrates on lightning strike protection, it will readily be seen that there are many potential applications for a composite material exhibiting reduced bulk resistivity and highly electrically conductivity. Thus, the level of conductivity achieved by the present invention will make the resulting composite materials suitable for use in electromagnetic shielding, electrostatic protection, current return, and other applications where enhanced electrical conductivity is necessary.
- Furthermore, although much of the discussion centres around aerospace components, it is also possible to apply the present invention to lightning strike and other electrical management problems in wind turbines, buildings, marine craft, trains, automobiles and other areas of concern.
- It is envisaged that the present invention, when used for aerospace components, can be used for primary structure applications (i.e. those parts of the structure which are critical for maintaining the integrity of the airplane), as well as secondary structure applications.
- Thus, according to a sixth aspect of the present invention there is provided a process for making an aerospace article formed from a cured composite material comprising the steps of:
- making a cured composite material in accordance with the method of the fourth aspect
- using the cured composite material to produce an aerospace article by a known method.
- Thus, according to a seventh aspect of the present invention there is provided an aerospace article comprising the cured composite material of the fifth aspect.
- All of the features described herein may be combined with any of the above aspects, in any combination.
- In order that the present invention may be more readily understood, reference will now be made, by way of example, to the following description and accompanying drawings, in which;
- Figure 1
- is a photograph of an upper surface of a damaged panel after a simulated lightning strike;
- Figure 2
- is a photograph of a lower surface of the damaged panel of
Figure 1 after a simulated lightning strike; - Figure 3
- is an ultrasonic C-scan of the damaged panel of
Figures 1 and 2 ; - Figure 4
- is a photograph of an upper surface of a damaged panel of the present invention after a simulated lightning strike;
- Figure 5
- is a photograph of a lower surface of the damaged panel of
Figure 4 of the present invention after a simulated lightning strike; - Figure 6
- is an ultrasonic C-scan of the damaged panel of
Figures 4 and5 ; - Figure 7
- is a micrograph of a polished cross-section of the panel of
Figures 4 and5 ; - Figure 8
- is a photograph of an upper surface of a damaged panel of the present invention after a simulated lightning strike;
- Figure 9
- is a photograph of a lower surface of the damaged panel of
Figure 8 of the present invention after a simulated lightning strike; and - Figures 10
- is an ultrasonic C-scan of the damaged panel of
Figures 8 and9 . - In the following examples, "neat resin" refers to the basic polymeric matrix resin, in the absence of reinforcing fibres, used for manufacturing prepreg.
- HexPly® M21 is an interleaved epoxy resin prepreg material available from Hexcel Composites, Duxford, Cambridge, United Kingdom.
- LY1556 is an epoxy resin available from Huntsman Advanced Materials, Duxford, Cambridge, United Kingdom.
- It will be understood that all tests and physical properties listed have been determined at atmospheric pressure and room temperature (i.e. 20°C), unless otherwise stated herein, or unless otherwise stated in the referenced test methods and procedures.
- A neat epoxy resin sample of M21 was produced by blending all the components uniformly and curing in a thermostatically controlled oven at 180°C for 2 hours. As the sample of Example 1 did not comprise any conductive particles, it does not fall within the scope of the present invention, and is listed for comparative purposes. Surface resistivity was then measured for the cured resin plaque using a model 272 resistivity meter from Monroe Electronics by placing a circular electrode on the surface of the neat resin specimen a reading the measured and displayed value on the instrument panel. It is important that contact between the specimen and probe is good, and therefore neat resin samples should be flat, smooth and uniform. Results are shown in Table 1
- Samples of resin (M21) comprising silver coated solid glass spheres (size 20µm) present at the following levels:
2-1 1.0 vol.% (equivalent to 2.5 wt.%) 2-2 2.0 vol.% (equivalent to 5.0 wt.%) 2-3 3.0 vol.% (equivalent to 7.5 wt.%) 2-4 4.0 vol.% (equivalent to 10.0 wt.%) - Samples of resin (M21) comprising silver coated polymethylmethacrylate (PMMA) particles (size 20µm) present at the following levels:
3-1 2.5 vol.% (equivalent to 2.5 wt.%) 3-2 5.0 vol.% (equivalent to 5.0 wt.%) 3-3 7.5 vol.% (equivalent to 7.5 wt.%) 3-4 10.0 vol.% (equivalent to 10.0 wt.%) - Samples of resin (M21) comprising silver coated hollow glass spheres (size 20µm) present at the following levels:
4-1 2.5 vol.% (equivalent to 2.5 wt.%) 4-2 5.0 vol.% (equivalent to 5.0 wt.%) 4-3 7.5 vol.% (equivalent to 7.5 wt.%) 4-4 10.0 vol.% (equivalent to 10.0 wt.%) - The surface resistivity is a measure of resistivity of thin films having uniform thickness. Surface resistivity is measured in ohms/square (Ω/sq.), and it is equivalent to resistivity for two-dimensional systems. The term is therefore a measure of resistivity for a current passing along the surface, rather than through the material which is expressed as bulk resistivity. Surface resistivity is also referred to as sheet resistance.
Table 1: Surface resistivity of M21 resin modified with conductive particles. Example Conductive additive Loading (vol.%) Loading (wt. %) Surface Resistivity (Ω/square) 1 No additive 0 0 2.0 x 1012 2-1 Silver coated solid glass spheres 1.0 2.5 3.4 x 1012 2-2 Silver coated solid glass spheres 2.0 5.0 3.0 x 1012 2-3 Silver coated solid glass spheres 3.0 7.5 2.5 x 1012 2-4 Silver coated solid glass spheres 4.0 10.0 2.6 x 1012 3-1 Silver coated PMMA particles 2.5 2.5 2.4 x 1012 3-2 Silver coated PMMA particles 5.0 5.0 3.0 x 1012 3-3 Silver coated PMMA particles 7.5 7.5 1.8 x 1012 3-4 Silver coated PMMA particles 10.0 10.0 1.7 x 1012 4-1 Silver coated hollow glass spheres 2.5 2.5 2.7 x 1012 4-2 Silver coated hollow glass spheres 5.0 5.0 2.8 x 1012 4-3 Silver coated hollow glass spheres 7.5 7.5 1.8 x 1012 4-4 Silver coated hollow glass spheres 10.0 10.0 1.9 x 1012 - These results demonstrate that addition of conductive silver particles at 10 vol. % or lower has an effect on the surface resistivity of cured neat epoxy resins, and generally improves conductivity of the composite material.
- A neat epoxy resin sample was produced in which LY1556 (50.0g) was added carbon nanofibres (150 nm diameter) as produced by Electrovac of Austria. Using a Flaktec Speedmixer the fibres were dispersed in the resin at 2500rpm for 15 minutes. Silver coated beads (20 µm) at 2.0 vol.%, carbon nanofibres (110nm) at 2.0 wt.%, and 4,4'-diaminodiphenylsulphone were added to the mixture and blended by stirring. The formulation was cured in a thermostatically controlled oven at 180°C for 2 hours. Surface resistivity was then measured for the cured plaque using a model 272 resistivity meter from Monroe Electronics. Results are summarised in Table 2.
Table 2: Surface resistivity of composites comprising silver coated glass spheres and carbon nanofibres (CNF). Example 110 nm CNFs (wt. %) Silver solid glass spheres (vol. %) Silver coated glass spheres (wt. %) Surface Resistivity (Ω/square) 1 - - - 2 x 10122-2 - 2.0 5.0 3.0 x 1012 5 2 2.0 5.0 4.7 x 102 - These results show that the combination of carbon nanofibres with silver coated glass spheres further lowers the surface resistivity of the epoxy resin when compared to an epoxy resin that contains only the silver coated solid glass spheres.
- In the following examples, "carbon composite" refers to the basic matrix resin, in the presence of reinforcing carbon fibres, used for manufacturing prepreg.
- M21 resin was produced by blending the components in a Z-blade mixer (Winkworth Machinery Ltd, Reading, England). The resin was coated as a thin film on silicone release paper which was then impregnated on intermediate modulus IM7 carbon fibre available from (Hexcel Composites, Duxford, UK) at a resin weight of 35 % using a hot press to make a unidirectional prepreg. A five ply prepreg was laid up unidirectionally which was approximately 10cm by 10cm and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A z-direction electrical resistance value of the composite was determined first by gold sputtering a square on either side of a rectangular shaped sample in order to ensure low contact resistance. Resistivity was then measured by applying probes to the gold sputtered area of the specimens and using a power source (TTi EL302P Programmable 30V/2A Power Supply Unit, Thurlby Thandar Instruments, Cambridge, UK) that was capable of varying either voltage or current.
- M21 resin was modified with silver coated glass spheres (20 µm) at a range of 0.8-2.4 vol.% of the resin and the components were blended in a Winkworth mixer. The resin was coated as a thin film on silicone release paper and was then impregnated on intermediate modulus IM7 carbon fibre at a resin weight of 35 % using a hot press to make a unidirectional prepreg. A five ply prepreg of approximately 10cm by 10cm was laid up unidirectionally and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A z-direction electrical resistance value was determined according to the method of Example 5. Results are summarised in Table 3.
Table 3: Volume resistivity of carbon composite modified with silver coated glass spheres. Example Silver coated glass spheres (vol.%) Silver coated glass spheres (wt.%) Z-direction volume resistivity (Ωm) 6 - - 3.66 7-1 0.8 2 2.13 7-2 1.6 4 1.89 7-3 2.4 6 1.75 - The results in Table 3 clearly show a decrease in z-direction volume resistivity when compared to a neat resin material of Example 6, and also reducing resistivity when the amount of silver coated glass spheres are increased in the material.
- M21 resin was modified with silver coated hollow glass spheres (20 µm) at a range of 2.5-10.0 vol.% of the resin, and the components were blended in a Winkworth mixer. The resin was coated as a thin film on silicone release paper and was then impregnated on intermediate modulus IM7 carbon fibre at a resin weight of 35 % using a hot press to make a unidirectional prepreg. A five ply prepreg of approximately 10cm by 10cm was laid up unidirectionally and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A z-direction electrical resistance value was determined according to the method of Example 6. Results are summarised in Table 4.
Table 4: Volume resistivity of carbon composite modified with silver coated hollow glass spheres according to Example 8. Example Silver coated hollow glass spheres (vol.%) Silver coated hollow glass spheres (wt.%) Z-direction volume resistivity (Ωm) 8-1 2.5 2.5 0.116 8-2 5.0 5.0 0.064 8-3 7.5 7.5 0.032 8-4 10.0 10.0 0.019 - The results in Table 4 clearly show a decrease in z-direction volume resistivity with increases in the amount of silver coated glass spheres in the material.
- M21 resin was modified with silver coated polymethylmethacrylate particles (20 µm) at a range of 2.5-10.0 vol.% of the resin. The resin was produced by blending the components in a Winkworth mixer. The resin was coated as a thin film on silicone release paper and was then impregnated on intermediate modulus IM7 carbon fibre at a resin weight of 35 % using a hot press to make a unidirectional prepreg. A five ply prepreg of approximately 10cm by 10cm was laid up unidirectionally and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A z-direction electrical resistance value was determined according to the method of Example 6. Results are summarised in Table 5.
Table 5: Volume resistivity of carbon composite modified with silver coated PMMA spheres. Example Silver coated PMMA particles (vol.%) Silver coated PMMA particles (wt.%) Z-direction volume resistivity (Ωm) 9-1 2.5 2.5 0.567 9-2 5.0 5.0 0.103 9-3 7.5 7.5 0.110 9-4 10.0 10.0 0.052 - The results in Table 5 clearly show a decrease in z-direction volume resistivity with increases in the amount of silver coated glass spheres in the material.
- M21 resin was modified with dendritic silver/copper (40 µm) at a loading of 0.30 vol.% of the resin. The resin was produced by blending the components in a Winkworth mixer. The resin was coated as a thin film on silicone release paper and was then impregnated on intermediate modulus IM7 carbon fibre at a resin weight of 35 % using a hot press to make a unidirectional prepreg. A five ply prepreg of approximately 10cm by 10cm was laid up unidirectionally and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A z-direction electrical resistance value was determined according to the method of Example 6. Results are summarised in Table 6.
- M21 resin was modified with silver coated glass beads (100 µm) at a loading of 1.0 vol.% of the resin. A prepreg and composite was produced according to example 9. Z-direction electrical resistance value was determined as per Example 6. Results are summarised in Table 6.
- M21 resin was modified with silver coated glass fibres (190 µm) at a loading of 1.25 wt.% of the resin. A prepreg and composite was produced according to example 9. Z-direction electrical resistance value was determined as per Example 6. Results are summarised in Table 6.
Table 6: Volume resistivity of carbon composite modified with different conducting particles. Example Conducting particle Particles (vol.%) Particles (wt. %) Z-direction volume resistivity (Ωm) 10 Dendritic silver/copper (40µm) 0.30 2.5 12.26 11 Silver coated glass beads (100µm) 1.0 2.5 1.10 12 Silver coated glass fibres (190µm) 1.25 2.5 2.89 - The results in Table 6 show a decrease in z-direction volume resistivity generally with increases in the amount of electrically conductive particles. Additionally, the results show a particularly good reduction in Example 11 where silver coated glass spheres are used which have a size substantially equal to the polymeric resin layer thickness.
- M21 prepreg was produced according to Example 12. A 6 ply quasi-isotropic (QI) laminate of approximate size 10cm x 10cm was prepared and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. The glass transition temperature, Tg, of the composite was determined by dynamic thermal analysis from the storage modulus trace, E', to be 194.5°C. A square sample was cut from the cured panel and the z-direction resistivity measured as follows. To ensure good electrical contact, the appropriate parts of the composite were vacuum coated with gold in the vicinity where connection was to be made with the power supply. The resistivity was then determined by applying a current of 1 amp from the power supply and measuring the resulting voltage.
Table 7: Volume resistivity of the composite of Example 16. Direction Lay up and size Z -direction Volume Resistivity (Ωm) z QI (3.9cm x 3.9cm x 0..16cm) 19.70 - M21 resin was modified with 20 µm silver coated glass beads at (2 vol.%, 5 wt.%) and prepreg was produced according to the method of Example 13. A 6 ply quasi-isotropic laminate of approximate size 10cm x 10cm was prepared and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. The glass transition temperature (Tg) of the composite was determined as for Example 14 to be 196.0°C. Thus the addition of the silver coated beads does not have a deleterious effect on the Tg. A square sample was cut from the cured panel and the z-direction resistivity measured as for Example 13. Resistivity is significantly improved.
Table 8: Volume resistivity of the composite of Example 14. Direction Lay up and size Z -direction Volume Resistivity (Ωm) z QI (3.8cm x 3.8cm x 0.16cm) 0.024 - M21 resin was modified with 20 µm silver coated glass beads at (2 vol.%, 5 wt.%) and carbon nanofibres (150 nm diameter) at 2 wt.% of the resin. Prepreg was produced according to Example 13. A 12 ply quasi-isotropic laminate of approximate size 10cm x 10cm was prepared and cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. The glass transition temperature (Tg) of the composite was determined as for Example 14 to be 196.5°C. Thus the addition of the silver coated beads has not had a deleterious effect on the Tg. A square sample was cut from the cured panel and the z-direction resistivity measured as for Example 13. Resistivity is significantly improved.
Table 9: Volume resistivity of the composite of Example 15. Direction Lay up and size Z-direction Volume Resistivity (Ωm) z QI (3.8cm x 3.8cm x 0.16cm) 0.023 - M21 resin was produced using a Winkworth mixer and then filmed onto silicone release paper. This resin film was then impregnated onto unidirectional intermediate modulus carbon fibre, using a pilot scale UD prepregger, which produced a prepreg with an areal weight of 268g/m2 at 35 wt.% of resin. Two six-ply prepregs were produced (lay up 0/90) which were approximately 60cm by 60cm and these were cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours.
- The panels were tested to Zone 1A; surfaces of the aeroplane for which there is a high probability of initial lightning flash attachment (entry or exit) with low probability of flash hang on, such as radomes and leading edges. Zone 1A also includes swept leaders attachment areas. The zone 1A test has three waveform components, high current component A (2x106A, <500µs), intermediate current component B (average 2kA, <5ms) and continuing current component C (200C, <ls). Both surfaces of the panels were abraded around the edges to ensure a good connection to the outer frame. The electrode was connected to the panel via a thin copper wire. The copper wire provides a path for the current and vaporises on test. It is needed as the voltage generated is not enough to break down the air.
-
Figures 1 and 2 show a damaged panel of example 16 after simulated lightning strike. Thepanel 10, which does not comprise metal coated particles, showed severe damage on bothupper surface 11 shown inFigure 1 , andlower surface 12 shown inFigure 2 . - An Ultrasonic c-
scan 20 was also performed and is shown inFigure 3 . The Ultrasonic C-scan 20 of the damagedpanel 10 shown inFigures 1 and 2 was performed using an R/D Tech Omniscan MX from Olympus. Thescan 20 shows that the damage area for anunmodified panel 10 is very large.Table 10: Test parameters of lightning strike tests for Example 16. Figure A Component Current, I (kA) Action Integral, AI (106A2s) B Component current, I (kA) C Component Charge, Q 1 191.7 2.04 1.74 31.3 2 191.7 2.04 1.72 24.3 Table 11: Description of damaged area after lightning strike test Figure Description of Damage 1 ■ Upper surface; delamination and dry fibres. Unusual scorch mark on surface. 330mm x 250mm ■ Bottom surface; delamination and dry fibres. 420mm x 230mm. Hole through panel. 2 ■ Upper surface; delamination and dry fibres. 280mm x 270mm. ■ Bottom surface; delamination and dry fibres. 510mm x 180mm - The
white area 21 of the c-scan 20 is where the delamination of the example 16 has occurred after the simulated lightning strike test. This shows the damaged area is large for thepanel 10 of example 16 which comprises no metal coated particles. - M21 resin was modified with silver coated glass spheres (2 vol.%, 5 wt.% of resin), blended using a Winkworth mixer and then filmed onto silicone release paper. This resin film was then impregnated onto unidirectional intermediate modulus carbon fibre which produced a prepreg with an areal weight of 268g/m2 at 35 wt.% of resin. Two six-ply prepregs were produced (lay up 0/90) which were approximately 60cm by 60cm and were cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A lightning strike test was then carried out according to the method of Example 16.
-
Figures 4 and5 show adamaged panel 30 after simulated lightning strike.Figure 4 shows anupper surface 31 of thepanel 30, andFigure 5 shows alower surface 32 of thepanel 30. It is clearly seen that the simulated lightning strike has not penetrated thecomposite panel 30 of the invention. - An Ultrasonic c-
scan 40 was carried out on the lightning struckpanel 30 using an R/D Tech Omniscan MX from Olympus. Thescan 40 is shown inFigure 6 . Thescan 40 shows that thewhite area 41 of the modifiedpanel 30 is reduced in comparison to the unmodified Example 16 ofFigures 1 and 2 . - Therefore, the
panel 30 with metal coated particles has a much reduced damage area when compared to the comparative example panel as shown inFigures 1 and 2 .Table 12: Test parameters of lightning strike tests for Example 17. Figures A Component Current, I (kA) Action Integral, AI (106 A2s) B Component current, I (kA) C Component Charge, Q 4 197.1 2.20 1.74 25.0 5 195.7 2.10 1.75 29.3 Table 13: Description of damaged area after lightning strike test. Figures Description of Damage 4 No visible damage to inner skin, split & tufted over 280 x 240mm on outer skin 5 No visible damage to inner skin, split & tufted over 280 x 220mm on outer skin -
Figure 7 shows aphotomicrograph 50 of a polished cross section of thepanel 30 shown inFigures 4 and5 . The silver coatedglass spheres 53 are clearly seen to be located in theresin interleaf 52, and are contacting the carbon plies 51. - M21 resin was modified with silver coated glass spheres (2 vol.%, 5 wt.% of resin) and carbon nanofibre (150 nm diameter, 2 wt% of resin) blended using a Winkworth mixer and then filmed onto silicone release paper. This resin film was then impregnated onto unidirectional intermediate modulus carbon fibre which produced a prepreg with an areal weight of 268g/m2 at 35 wt.% of resin. Two six-ply prepregs were produced (lay up 0/90) which were approximately 60cm by 60cm and were cured on a vacuum table at a pressure of 7 bar at 177°C for 2 hours. A lightning strike test was then carried out according to the method of Example 16.
-
Figures 8 and9 show adamaged panel 60 after simulated lightning strike.Figure 8 shows anupper surface 61 of thepanel 60, andFigure 9 shows alower surface 62 of thepanel 60. It is clearly seen that the simulated lightning strike has not penetrated thecomposite panel 60 of the invention. - An Ultrasonic c-
scan 70 was carried out on the lightning struckpanel 60 using an R/D Tech Omniscan MX from Olympus. Thescan 70 is shown inFigure 10 . Thescan 40 shows that thewhite area 41 of the modifiedpanel 60 is reduced in comparison to theunmodified panel 10 ofFigures 1 and 2 . - Therefore, the
panel 60 with metal coated particles and carbon nanofibres has a much reduced damage area when compared to the Example 16 as shown inFigures 1 and 2 .Table 14: Test parameters of lightning strike tests for Example 18. Figures A Component Current, I (kA) Action Integral, AI (10 6 A2s) B Component current, I (kA) C Component Charge, Q 8 198.4 2.20 1.74 25.0 9 197.1 2.10 1.75 29.3 Table 15: Description of damaged area after lightning strike test. Figures Description of Damage 8 No visible damage to inner skin, 300mm split, tufting over 300x200mm on outer skin. 9 No visible damage to inner skin, 300mm split, tufting over 200x200mm on outer skin. - It is therefore shown that use of electrically conductive particles in a polymeric resin of a composite material provides for reduced resistivity. This reduced resistivity provides improved performance of the composite material during lightning strikes as shown in Examples 16 to 18.
- It is to be understood that the invention is not to be limited to the details of the above embodiments, which are described by way of example only. Many variations are possible.
Claims (19)
- A composite material comprising;i) at least one prepreg, said prepreg comprising at least one polymeric resin and at least one electrically conductive fibrous reinforcement; andii) electrically conductive particles dispersed in the polymeric resin;wherein the polymeric resin is present as a polymeric resin layer on one side of the prepreg, and when laid onto another such prepreg, produces a polymeric resin interleaf layer comprising electrically conductive particles, wherein the conductive particles act as electrical conductance bridges across the interleaf thickness thereby connecting plies of fibrous reinforcement and improving the z-directional electrical conductance and wherein the electrically conductive particles are present at a level insufficient to impart electrical conductivity to the resin.
- A composite material according to claim 1, wherein the polymeric layer has a thickness of from 1 to 100 micrometres, preferably from 1 to 50 micrometres, more preferably from 5 to 50 micrometres.
- A composite material according to claim 1 or claim 2, wherein the electrically conductive particles comprise metal coated conducting particles or non-metallic conducting particles.
- A composite material according to claim 3, wherein the metal coated conducting particles comprise core particles which are substantially covered by a suitable metal.
- A composite material according to either of claims 3 or 4, wherein the metal coated conducting particles have an aspect ratio of <100.
- A composite material according to any of claims 3 to 5, wherein at least 90 % of the metal coated conducting particles or non-metallic particles have a size in the range 0.3 µm to 100 µm, preferably from 1 µm to 50 µm, more preferably from 5 µm to 40 µm.
- A composite material according to any of claim 4 to 6, wherein the core particles are selected from polymer, rubber, ceramic, glass, mineral, or refractory products.
- A composite material according to claims 4 to 7, wherein the core particles are porous, hollow, or have a core-shell structure.
- A composite material according to any of claims 4 to 8, wherein metals suitable for coating the core particles include silver, gold, nickel, copper, tin, aluminium, platinum, or palladium.
- A composite material according to any of claims 3 to 9, wherein the electrical resistivity of the metal coating is less than 3 x 10-5 Ωm.
- A composite material according to claim 3, wherein non-metallic conducting particles are selected from graphite flakes, graphite powders, graphite particles, graphene sheets, fullerenes, carbon black, intrinsically conducting polymers (ICPs - including polypyrrole, polythiophene, polyaniline), charge transfer complexes, or any combination thereof.
- A composite material to claim 1, wherein the electrically conductive particles comprise carbon particles.
- A composite material according to any preceding claim, wherein the composite material comprises carbon nano materials.
- A composite material according to claim 13, wherein the carbon nano materials are selected from carbon nanofibres, carbon nanotubes, or a combination thereof.
- A composite material according to any preceding claim, wherein the electrically conductive particles are present in the range 0.2 vol.% to 20 vol.%, preferably 0.4 vol.% to 15 vol.% , more preferably 0.8 to 10 vol.% of the composite material.
- A composite material according to any one of the preceding claims, which comprises from 5 to 45 wt% toughening particles, preferably 5 to 25 wt%, more preferably from 10 to 15 wt%.
- A composite material obtainable by the process of laying up a plurality of composite material according to any one of the preceding claims, wherein the polymeric resin layer becomes an interleaf layer between adjacent fibre layers.
- A cured composite material, which comprises a composite material according to any one of the preceding claims wherein the composite material is cured.
- An aerospace article comprising the cured composite material of claim 18.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0622060A GB0622060D0 (en) | 2006-11-06 | 2006-11-06 | Improved composite materials |
EP07824456.3A EP2069138B1 (en) | 2006-11-06 | 2007-11-06 | Improved composite materials |
PCT/GB2007/004220 WO2008056123A1 (en) | 2006-11-06 | 2007-11-06 | Improved composite materials |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07824456.3A Division EP2069138B1 (en) | 2006-11-06 | 2007-11-06 | Improved composite materials |
EP07824456.3A Division-Into EP2069138B1 (en) | 2006-11-06 | 2007-11-06 | Improved composite materials |
EP07824456.3 Division | 2007-11-06 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2371529A2 true EP2371529A2 (en) | 2011-10-05 |
EP2371529A3 EP2371529A3 (en) | 2013-05-01 |
EP2371529B1 EP2371529B1 (en) | 2023-06-14 |
Family
ID=37547393
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11175471.9A Active EP2540491B1 (en) | 2006-11-06 | 2007-11-06 | Improved composite materials |
EP20110155097 Withdrawn EP2371532A3 (en) | 2006-11-06 | 2007-11-06 | Improved Composite Materials |
EP11155080.2A Active EP2371529B1 (en) | 2006-11-06 | 2007-11-06 | Improved composite materials |
EP20110155084 Withdrawn EP2371530A3 (en) | 2006-11-06 | 2007-11-06 | Improved composite materials |
EP20110155092 Withdrawn EP2371531A3 (en) | 2006-11-06 | 2007-11-06 | Improved Composite Materials |
EP07824456.3A Active EP2069138B1 (en) | 2006-11-06 | 2007-11-06 | Improved composite materials |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11175471.9A Active EP2540491B1 (en) | 2006-11-06 | 2007-11-06 | Improved composite materials |
EP20110155097 Withdrawn EP2371532A3 (en) | 2006-11-06 | 2007-11-06 | Improved Composite Materials |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20110155084 Withdrawn EP2371530A3 (en) | 2006-11-06 | 2007-11-06 | Improved composite materials |
EP20110155092 Withdrawn EP2371531A3 (en) | 2006-11-06 | 2007-11-06 | Improved Composite Materials |
EP07824456.3A Active EP2069138B1 (en) | 2006-11-06 | 2007-11-06 | Improved composite materials |
Country Status (7)
Country | Link |
---|---|
US (5) | US8980770B2 (en) |
EP (6) | EP2540491B1 (en) |
JP (5) | JP4971457B2 (en) |
CN (4) | CN105479830B (en) |
ES (3) | ES2952708T3 (en) |
GB (1) | GB0622060D0 (en) |
WO (1) | WO2008056123A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3042305A1 (en) * | 2015-10-13 | 2017-04-14 | Arkema France | METHOD FOR MANUFACTURING CONDUCTIVE COMPOSITE MATERIAL AND COMPOSITE MATERIAL THUS OBTAINED |
Families Citing this family (153)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9586699B1 (en) | 1999-08-16 | 2017-03-07 | Smart Drilling And Completion, Inc. | Methods and apparatus for monitoring and fixing holes in composite aircraft |
WO2008048705A2 (en) | 2006-03-10 | 2008-04-24 | Goodrich Corporation | Low density lightning strike protection for use in airplanes |
JP4969363B2 (en) | 2006-08-07 | 2012-07-04 | 東レ株式会社 | Prepreg and carbon fiber reinforced composites |
GB2473226A (en) * | 2009-09-04 | 2011-03-09 | Hexcel Composites Ltd | Composite materials |
GB0622060D0 (en) * | 2006-11-06 | 2006-12-13 | Hexcel Composites Ltd | Improved composite materials |
EP2468499A1 (en) | 2010-12-21 | 2012-06-27 | Hexcel Composites Limited | Improvements in composite materials |
US20100086737A1 (en) * | 2007-02-26 | 2010-04-08 | Hexcel Composites Limited | Surface finish for composite materials |
US7906287B2 (en) | 2007-05-14 | 2011-03-15 | Insight Genetics, Inc. | Methods of screening nucleic acids for single nucleotide variations |
GB2464539B (en) | 2008-10-20 | 2014-01-08 | Hexcel Composites Ltd | Composite Materials with Improved Sandability |
EP2070974B1 (en) * | 2007-12-10 | 2014-02-12 | The Boeing Company | Metal impregnated composites and methods of making |
US20110020134A1 (en) * | 2007-12-20 | 2011-01-27 | Vestas Wind Systems A/S | Lightning receptors comprising carbon nanotubes |
GB0805640D0 (en) * | 2008-03-28 | 2008-04-30 | Hexcel Composites Ltd | Improved composite materials |
GB2464085A (en) * | 2008-06-07 | 2010-04-07 | Hexcel Composites Ltd | Improved Conductivity of Resin Materials and Composite Materials |
US20090309260A1 (en) * | 2008-06-12 | 2009-12-17 | Kenneth Herbert Keuchel | Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure |
GB0817591D0 (en) | 2008-09-26 | 2008-11-05 | Hexcel Composites Ltd | Improvements in composite materials |
KR101078079B1 (en) * | 2008-12-10 | 2011-10-28 | 엘에스전선 주식회사 | Conductive Paste Containing Silver-Decorated Carbon Nanotubes |
EP2202336A1 (en) * | 2008-12-12 | 2010-06-30 | Eads Construcciones Aeronauticas S.A. | Method for producing nanofibres of epoxy resin for composite laminates of aeronautical structures to improve their electromagnetic characteristics |
US8399773B2 (en) * | 2009-01-27 | 2013-03-19 | Shocking Technologies, Inc. | Substrates having voltage switchable dielectric materials |
JP2010194749A (en) * | 2009-02-23 | 2010-09-09 | Mitsubishi Heavy Ind Ltd | Method for producing resin-base composite material |
US20100239848A1 (en) * | 2009-03-20 | 2010-09-23 | Jerome Le Corvec | Film and Prepreg with Nanoparticles, Processes of Making Thereof, and Reinforced Component Made Therewith |
PL2419333T3 (en) | 2009-04-17 | 2016-07-29 | 3M Innovative Properties Co | Lightning protection sheet with patterned conductor |
PT2650210T (en) | 2009-04-17 | 2018-05-10 | 3M Innovative Properties Co | Lightning protection sheet with patterned discriminator |
US8663506B2 (en) * | 2009-05-04 | 2014-03-04 | Laird Technologies, Inc. | Process for uniform and higher loading of metallic fillers into a polymer matrix using a highly porous host material |
CN102803406B (en) * | 2009-06-12 | 2015-10-14 | 洛德公司 | Prevent substrate by the method for being struck by lightning |
GB2471319A (en) * | 2009-06-26 | 2010-12-29 | Hexcel Composites Ltd | Manufacturing composite materials containing conductive fibres |
GB2471318A (en) * | 2009-06-26 | 2010-12-29 | Hexcel Composites Ltd | Conductive prepreg |
US20110014834A1 (en) * | 2009-07-15 | 2011-01-20 | Beijing Institute of Aeronautical Materials, AVIC I | Prefabricated Fabric for Liquid Molding Composite Material and Preparation Method Thereof |
US8299159B2 (en) * | 2009-08-17 | 2012-10-30 | Laird Technologies, Inc. | Highly thermally-conductive moldable thermoplastic composites and compositions |
WO2011022188A2 (en) * | 2009-08-17 | 2011-02-24 | Laird Technologies, Inc. | Formation of high electrical conductivity polymer composites with multiple fillers |
DE102009054427B4 (en) * | 2009-11-25 | 2014-02-13 | Kme Germany Ag & Co. Kg | Method for applying mixtures of carbon and metal particles to a substrate, substrate obtainable by the method and its use |
JP5474506B2 (en) * | 2009-11-26 | 2014-04-16 | Jx日鉱日石エネルギー株式会社 | Carbon fiber reinforced plastic molded body and method for producing the same |
US9273398B2 (en) * | 2010-01-16 | 2016-03-01 | Nanoridge Materials, Inc. | Metallized nanotubes |
US20110177322A1 (en) * | 2010-01-16 | 2011-07-21 | Douglas Charles Ogrin | Ceramic articles and methods |
WO2011109695A1 (en) * | 2010-03-05 | 2011-09-09 | Texas Heart Institute | Ets2 and mesp1 generate cardiac progenitors from fibroblasts |
GB2478749A (en) * | 2010-03-17 | 2011-09-21 | Hexcel Composites Ltd | Composite materials of reduced electrical resistance |
US9139732B2 (en) | 2010-03-23 | 2015-09-22 | Solvay Sa | Polymer compositions comprising semi-aromatic polyamides and graphene materials |
GB2478984A (en) | 2010-03-26 | 2011-09-28 | Hexcel Composites Ltd | Curable composite material |
EP2571756B1 (en) | 2010-05-17 | 2018-05-16 | Pepperl+Fuchs Gmbh | Radome |
US9868265B2 (en) | 2010-05-27 | 2018-01-16 | Hexcel Composites, Limited | Structured thermoplastic in composite interleaves |
DK2390498T3 (en) * | 2010-05-27 | 2017-05-01 | Siemens Ag | Wind turbine blade with coating for lightning protection and method for producing the wind turbine blade |
GB201010445D0 (en) | 2010-06-22 | 2010-08-04 | Hexcel Composites Ltd | Improvements in composite materials |
DK2595805T3 (en) | 2010-07-20 | 2017-05-01 | Hexcel Composites Ltd | IMPROVED COMPOSITION MATERIAL |
TW201219447A (en) | 2010-10-12 | 2012-05-16 | Solvay | Polymer compositions comprising poly(arylether ketone)s and graphene materials |
CA2817201C (en) * | 2010-11-09 | 2017-11-07 | Cytec Technology Corp. | Compatible carrier for secondary toughening |
US9840338B2 (en) | 2010-12-03 | 2017-12-12 | The Boeing Company | Electric charge dissipation system for aircraft |
US9802714B2 (en) * | 2010-12-03 | 2017-10-31 | The Boeing Company | Electric charge dissipation system for aircraft |
EP2675610A1 (en) * | 2010-12-31 | 2013-12-25 | Cytec Technology Corp. | Method of fabricating a composite structure with a conductive surface |
CN102040761A (en) * | 2011-01-14 | 2011-05-04 | 华南理工大学 | High-heat-conductivity composite material and preparation method thereof |
WO2012100178A1 (en) * | 2011-01-20 | 2012-07-26 | William Marsh Rice University | Graphene-based thin films in heat circuits and methods of making the same |
JP5716192B2 (en) * | 2011-01-27 | 2015-05-13 | 福井県 | Forms for objects other than flying objects or windmills |
JP5716190B2 (en) * | 2011-01-27 | 2015-05-13 | 福井県 | Forms for flying objects or windmills |
JP5716193B2 (en) * | 2011-01-27 | 2015-05-13 | 福井県 | Prepreg sheets for objects other than flying objects or windmills |
JP5716191B2 (en) * | 2011-01-27 | 2015-05-13 | 福井県 | Prepreg seat for flying object or windmill |
JP5900327B2 (en) | 2011-03-17 | 2016-04-06 | 東レ株式会社 | Prepreg, prepreg manufacturing method and carbon fiber reinforced composite material manufacturing method |
US8668864B2 (en) | 2011-05-31 | 2014-03-11 | MRA Systems Inc. | Polymer composite materials and processes therefor |
EP2749160A2 (en) | 2011-08-25 | 2014-07-02 | Lord Corporation | Lightning strike protection system |
GB201116472D0 (en) * | 2011-09-23 | 2011-11-09 | Hexcel Composites Ltd | Conductive composite structure or laminate |
US9426878B2 (en) * | 2011-10-25 | 2016-08-23 | 3M Innovative Properties Company | Nonwoven adhesive tapes and articles therefrom |
GB201121304D0 (en) | 2011-12-12 | 2012-01-25 | Hexcel Composites Ltd | Improved composite materials |
EP2607411A1 (en) * | 2011-12-22 | 2013-06-26 | Hexcel Composites Ltd. | Improvements in or relating to fibre reinforced materials |
CN104039652B (en) * | 2012-01-04 | 2018-01-12 | 波音公司 | Charge dissipation system for aircraft |
JPWO2013129142A1 (en) * | 2012-02-29 | 2015-07-30 | 日本バルカー工業株式会社 | Porous resin sheet for piezoelectric element and method for producing the same |
GB2503864B (en) | 2012-03-08 | 2014-09-03 | Hexcel Composites Ltd | Composite material for automated lay-up |
WO2013146335A1 (en) | 2012-03-26 | 2013-10-03 | 三菱重工業株式会社 | Fuel tank, main wing, aircraft fuselage, aircraft, and mobile body |
RU2594417C2 (en) * | 2012-03-27 | 2016-08-20 | Мицубиси Хеви Индастрис, Лтд. | Structural material for structures |
EP2831323A4 (en) | 2012-03-30 | 2015-11-04 | Univ Washington Ct Commerciali | Composites incorporating a conductive polymer nanofiber network |
GB201206885D0 (en) * | 2012-04-19 | 2012-06-06 | Cytec Tech Corp | Composite materials |
DE102012206968A1 (en) * | 2012-04-26 | 2013-10-31 | Wacker Chemie Ag | Silicone composition with protection against harmful substances |
US10035322B2 (en) * | 2012-06-12 | 2018-07-31 | Guill Tool & Engineering Co., Inc. | Microlayer coextrusion of electrical end products |
US9174413B2 (en) | 2012-06-14 | 2015-11-03 | International Business Machines Corporation | Graphene based structures and methods for shielding electromagnetic radiation |
US9413075B2 (en) * | 2012-06-14 | 2016-08-09 | Globalfoundries Inc. | Graphene based structures and methods for broadband electromagnetic radiation absorption at the microwave and terahertz frequencies |
GB201307898D0 (en) * | 2012-06-14 | 2013-06-12 | Hexcel Composites Ltd | Improvements in composite materials |
GB2504957A (en) * | 2012-08-14 | 2014-02-19 | Henkel Ag & Co Kgaa | Curable compositions comprising composite particles |
CN105164192B (en) | 2012-09-26 | 2018-11-09 | 帝人株式会社 | Prepreg and its manufacturing method |
JP5852255B2 (en) * | 2012-10-09 | 2016-02-03 | 三菱重工業株式会社 | Structural materials, fuel tanks, main wings and aircraft |
US20150259589A1 (en) * | 2012-11-21 | 2015-09-17 | Takagi Chemicals, Inc. | Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article |
US10102939B2 (en) | 2013-01-28 | 2018-10-16 | The Boeing Company | Conductive fiber reinforced polymer composition |
US8998124B2 (en) * | 2013-03-07 | 2015-04-07 | Bell Helicopter Textron Inc. | Aircraft with electrically conductive nanocoating |
US9352829B2 (en) | 2013-03-07 | 2016-05-31 | Bell Helicopter Textron Inc. | Aircraft with protective nanocoating |
JP6071686B2 (en) | 2013-03-26 | 2017-02-01 | 三菱重工業株式会社 | Fuel tank, main wing, aircraft fuselage, aircraft and mobile |
JP6113544B2 (en) | 2013-03-26 | 2017-04-12 | 三菱重工業株式会社 | Fuel tank, main wing, aircraft fuselage, aircraft and mobile |
KR101455834B1 (en) * | 2013-04-01 | 2014-11-03 | 채경남 | Smart composite using piezo-resistance property of grapene |
EP2808361A1 (en) | 2013-05-28 | 2014-12-03 | Allnex Belgium, S.A. | Composite Composition containing a Polycyclic Ether Polyol |
FR3006235B1 (en) * | 2013-05-30 | 2015-11-20 | Hexcel Reinforcements | MULTILAYER ELEMENT COMPRISING A REINFORCING MATERIAL ASSOCIATED WITH A SUPPORT LAYER BY ELECTROSTATIC CONNECTION |
EP2821436A1 (en) | 2013-07-01 | 2015-01-07 | Allnex Belgium, S.A. | Transparent composite composition |
EP3029089B1 (en) * | 2013-08-01 | 2018-05-30 | Teijin Limited | Fiber-reinforced composite material and method for producing same |
US10785900B2 (en) * | 2013-11-15 | 2020-09-22 | 3M Innovative Properties Company | Electrically conductive article containing shaped particles and methods of making same |
GB201322093D0 (en) * | 2013-12-13 | 2014-01-29 | Cytec Ind Inc | Compositive materials with electrically conductive and delamination resistant properties |
GB2522841B (en) * | 2013-12-20 | 2018-08-15 | Hexcel Composites Ltd | Composite structure |
US9622483B2 (en) | 2014-02-19 | 2017-04-18 | Corning Incorporated | Antimicrobial glass compositions, glasses and polymeric articles incorporating the same |
US11039620B2 (en) | 2014-02-19 | 2021-06-22 | Corning Incorporated | Antimicrobial glass compositions, glasses and polymeric articles incorporating the same |
US11039621B2 (en) | 2014-02-19 | 2021-06-22 | Corning Incorporated | Antimicrobial glass compositions, glasses and polymeric articles incorporating the same |
CN103833002A (en) * | 2014-02-24 | 2014-06-04 | 中国石油大学(华东) | Coordination polymer and carbon nanotube composite material, preparation method and application in gas adsorption aspect |
US10597503B2 (en) | 2014-03-24 | 2020-03-24 | Toray Industries, Inc. | Prepreg and fiber reinforced composite material |
CN103965569A (en) * | 2014-04-23 | 2014-08-06 | 浙江大学 | Method for preparing nanometer modified compound conductive plastic |
US10544274B2 (en) * | 2014-07-28 | 2020-01-28 | Toho Tenax Co., Ltd. | Prepreg and fiber-reinforced composite material |
JP6469988B2 (en) * | 2014-07-30 | 2019-02-13 | 三菱航空機株式会社 | Aircraft antenna cover and aircraft |
US9845142B2 (en) * | 2014-08-15 | 2017-12-19 | The Boeing Company | Conductive thermoplastic ground plane for use in an aircraft |
RU2702556C2 (en) * | 2014-09-22 | 2019-10-08 | Сайтек Индастриз Инк. | Composite materials with high specific electric conductivity in z-direction |
RU2625858C2 (en) * | 2015-04-23 | 2017-07-19 | Александр Валерьевич Чичварин | Polymer composition |
CN106317772A (en) * | 2015-07-10 | 2017-01-11 | 深圳光启高等理工研究院 | Antistatic composite material and preparation method thereof |
KR20180040597A (en) * | 2015-08-10 | 2018-04-20 | 사이텍 인더스트리스 인코포레이티드 | Prepreg materials capable of providing lightning protection and ultrafine corrosion resistance |
JP6679870B2 (en) * | 2015-10-05 | 2020-04-15 | 三菱マテリアル株式会社 | Heat dissipation sheet |
AU2016354491B2 (en) * | 2015-11-12 | 2022-03-03 | Cytec Industries Inc. | Hybrid veil as interlayer in composite materials |
ES2954423T3 (en) | 2015-11-30 | 2023-11-22 | Cytec Ind Inc | Cladding materials for composite structures |
GB2544981A (en) * | 2015-12-01 | 2017-06-07 | Tallinn Univ Of Tech | A composite shielding material and a process of making the same |
CN105504630A (en) * | 2015-12-09 | 2016-04-20 | 无锡普瑞明思机械制造有限公司 | Mechanical seal friction pair material |
US10556991B2 (en) * | 2015-12-15 | 2020-02-11 | 3M Innovative Properties Company | Benzoxazine and phthalonitrile resin blends |
GB201522539D0 (en) | 2015-12-21 | 2016-02-03 | Hexcel Composites Ltd | Improvements in or relating to electrically conducting materials |
US20170190851A1 (en) * | 2015-12-30 | 2017-07-06 | Sikorsky Aircraft Corporation | Composite core structure and method |
JP6519492B2 (en) * | 2016-01-29 | 2019-05-29 | 東レ株式会社 | Prepreg and fiber reinforced composite materials |
JP6854591B2 (en) * | 2016-04-12 | 2021-04-07 | 帝人株式会社 | Manufacturing method of prepreg, reinforcing fiber, fiber reinforced composite material, and prepreg |
EP3444089B1 (en) * | 2016-04-13 | 2024-02-28 | Teijin Limited | Prepreg, fiber-reinforced composite material and surface-modified reinforcing fibers |
CN109315074B (en) * | 2016-06-23 | 2022-03-01 | 东丽株式会社 | Housing and method for manufacturing housing |
WO2018042701A1 (en) * | 2016-08-30 | 2018-03-08 | 日立化成株式会社 | Adhesive composition |
DE102016116735A1 (en) | 2016-09-07 | 2018-03-08 | Michael Steidle | Flat structures, in particular textile fabrics |
US11350511B2 (en) | 2016-11-07 | 2022-05-31 | Hj3 Composite Technologies, Llc | Fiber reinforced systems with electrostatic dissipation |
CN106479349A (en) * | 2016-11-10 | 2017-03-08 | 无锡市明盛强力风机有限公司 | A kind of electromagnetic screen coating |
FR3061132B1 (en) * | 2016-12-27 | 2023-11-03 | Airbus Operations Sas | STRUCTURE FOR AIRCRAFT PROPULSIVE ASSEMBLY, ASSOCIATED SYSTEM AND PROPULSION ASSEMBLY |
KR101913494B1 (en) * | 2017-02-08 | 2018-10-30 | 도레이첨단소재 주식회사 | Manufacturing method and device of carbon fiber sheet molding compound |
CN106837682A (en) * | 2017-03-14 | 2017-06-13 | 上海电气风电集团有限公司 | A kind of wind turbine blade with lightning protection deicing function |
CN108623998A (en) * | 2017-03-23 | 2018-10-09 | 洛阳尖端技术研究院 | A kind of absorbing material and preparation method |
CN106926545B (en) * | 2017-03-24 | 2019-02-12 | 欧森迈(武汉)新型材料有限公司 | A kind of antimagnetic plate of improved suction wave |
CN108929518B (en) * | 2017-05-26 | 2022-11-25 | 洛阳尖端技术研究院 | Epoxy resin wave-absorbing composite material and preparation method thereof |
US10801836B2 (en) | 2017-06-13 | 2020-10-13 | The Boeing Company | Composite parts that facilitate ultrasonic imaging of layer boundaries |
US11225942B2 (en) * | 2017-07-05 | 2022-01-18 | General Electric Company | Enhanced through-thickness resin infusion for a wind turbine composite laminate |
CN207040147U (en) * | 2017-07-11 | 2018-02-23 | 苏州城邦达力材料科技有限公司 | A kind of electromagnetic shielding film of novel metalloid system and products thereof |
KR20190015652A (en) * | 2017-08-03 | 2019-02-14 | (주)트러스 | Conductive adhesive tape using compressible conductive powder and manufacturing method thereof |
CN107825810B (en) * | 2017-09-04 | 2019-10-08 | 中航复材(北京)科技有限公司 | A kind of lightweight lightning Protection superficial layer and its preparation and application |
CN107573647B (en) * | 2017-10-18 | 2019-11-15 | 江西增孚新材料科技有限公司 | A kind of preparation method of conductive nano composite material |
US20210017427A1 (en) * | 2017-12-28 | 2021-01-21 | Hitachi Chemical Company, Ltd. | Adhesive film |
CN108517105A (en) * | 2018-05-18 | 2018-09-11 | 宁波沸柴机器人科技有限公司 | A kind of environmental protection and energy saving PBT films and its production technology |
EP3847216A4 (en) * | 2018-09-03 | 2022-06-15 | Petroliam Nasional Berhad | A reinforced polymeric material and a method of manufacturing a reinforced polymeric material |
CN111070722B (en) * | 2018-10-19 | 2021-10-22 | 哈尔滨工业大学 | Preparation method of lightning protection composite material based on heat insulation and insulation mechanism |
CN113195215B (en) * | 2018-12-21 | 2024-01-19 | 3M创新有限公司 | Fiber reinforced composite lay-up |
CN111423692B (en) * | 2019-01-10 | 2022-11-29 | 山东非金属材料研究所 | Conductive composite material and preparation method thereof |
CN111943721B (en) * | 2019-05-17 | 2023-06-02 | 深圳光启高端装备技术研发有限公司 | Preparation method and application of high-temperature-resistant wave-absorbing composite material |
CN110144064B (en) * | 2019-05-28 | 2021-08-13 | 广东工业大学 | Bio-based reinforcing material, bio-based composite material and preparation method thereof |
JP7252067B2 (en) * | 2019-06-12 | 2023-04-04 | 株式会社日立産機システム | Sliding material |
CN110539895B (en) * | 2019-07-26 | 2022-08-30 | 国营芜湖机械厂 | Method for repairing damage of aluminum-sprayed layer on outer surface of composite structure of airplane |
US11155058B2 (en) | 2019-10-21 | 2021-10-26 | Transhield, Inc. | Laminated fabrics and protective covers with post-industrial and/or post-consumer content and methods of making laminated fabrics and protective covers with post-industrial and/or post consumer content |
EP3819920A1 (en) * | 2019-11-05 | 2021-05-12 | Siemens Aktiengesellschaft | Device for compensating voltage in square-wave voltages for an electromotor |
CN110791093B (en) * | 2019-11-07 | 2022-04-05 | 福建和盛塑业有限公司 | Electromagnetic shielding and flame-retardant polyimide material for nonmetal electric energy metering box and preparation method thereof |
CN111393639A (en) * | 2020-03-20 | 2020-07-10 | 浙江大学 | Efficient wave-absorbing material and preparation method thereof |
CN111841165A (en) * | 2020-06-22 | 2020-10-30 | 上海工程技术大学 | Manufacturing method of antibacterial and sterilizing air filtering material |
JP7524904B2 (en) | 2020-06-30 | 2024-07-30 | 東レ株式会社 | Fiber-reinforced composite material and method for producing prepreg |
RU206065U1 (en) * | 2020-08-10 | 2021-08-18 | Михаил Алексеевич Попов | THERMOPLASTIC TAPE-SHAPED BARRIER PROPERTIES |
DE102020133857A1 (en) | 2020-12-16 | 2022-06-23 | Airbus Operations Gmbh | Coating material for a lightning-prone object |
US20220363600A1 (en) * | 2021-05-13 | 2022-11-17 | Cambria Company Llc | Metallic stone slabs, systems, and methods |
GB2621380A (en) | 2022-08-11 | 2024-02-14 | Hexcel Composites Ltd | A resin layer for use in composite materials |
CN115384133A (en) * | 2022-09-22 | 2022-11-25 | 中国航空制造技术研究院 | Synergistic lightning-strike-resistant composite material and preparation method thereof |
GB2623775A (en) | 2022-10-26 | 2024-05-01 | Hexcel Composites Ltd | Improved unidirectional prepregs |
WO2024107851A1 (en) * | 2022-11-16 | 2024-05-23 | Cambria Company Llc | Metallic stone slabs, systems, and methods |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1212186A (en) | 1966-11-18 | 1970-11-11 | Atomic Energy Authority Uk | Improvements in or relating to plastics compositions |
US4162496A (en) | 1967-04-03 | 1979-07-24 | Rockwell International Corporation | Reactive sheets |
GB2205275B (en) * | 1981-08-11 | 1989-06-28 | Plessey Co Ltd | Composite materials. |
US4556591A (en) * | 1981-09-25 | 1985-12-03 | The Boeing Company | Conductive bonded/bolted joint seals for composite aircraft |
JPS58166050A (en) * | 1982-03-26 | 1983-10-01 | 株式会社富士電機総合研究所 | Manufacture of composite conductive resin sheet |
US4973514A (en) * | 1984-06-11 | 1990-11-27 | The Dow Chemical Company | EMI shielding composites |
JPS61283650A (en) | 1985-06-11 | 1986-12-13 | Sumitomo Bakelite Co Ltd | Thermosetting resin composition for laminated sheet |
EP0274899B1 (en) * | 1986-12-25 | 1994-02-09 | Toray Industries, Inc. | Highly tough composite materials |
JPS63166534A (en) * | 1986-12-27 | 1988-07-09 | トヨタ自動車株式会社 | Welding improved type vibration-damping laminated steel plate |
JPS63209829A (en) * | 1987-02-26 | 1988-08-31 | 日本鋼管株式会社 | Resistance weldable resin laminated steel plate and manufacture thereof |
ATE254683T1 (en) * | 1988-01-28 | 2003-12-15 | Hyperion Catalysis Int | CARBON FIBRILLES |
DE3826469A1 (en) * | 1988-08-04 | 1990-02-08 | Roehm Gmbh | HARD FOAM AS A CORE MATERIAL FOR LAYING MATERIALS |
US5240761A (en) | 1988-08-29 | 1993-08-31 | Minnesota Mining And Manufacturing Company | Electrically conductive adhesive tape |
US4957801A (en) * | 1989-05-17 | 1990-09-18 | American Cyanamid Company | Advance composites with thermoplastic particles at the interface between layers |
JPH0611802B2 (en) * | 1989-08-25 | 1994-02-16 | 新日鐵化学株式会社 | Prepreg manufacturing method |
US5068061A (en) * | 1989-12-08 | 1991-11-26 | The Dow Chemical Company | Electroconductive polymers containing carbonaceous fibers |
DE69027295T2 (en) | 1990-01-19 | 1997-01-23 | Minnesota Mining & Mfg | Thermosetting composition |
JPH053828A (en) | 1991-06-25 | 1993-01-14 | Matsushita Electric Works Ltd | Rotary coat hanger |
US5370921A (en) * | 1991-07-11 | 1994-12-06 | The Dexter Corporation | Lightning strike composite and process |
US5413847A (en) * | 1992-03-30 | 1995-05-09 | Toray Industries, Inc. | Prepreg and composite |
JPH06207033A (en) * | 1993-01-13 | 1994-07-26 | Petoca:Kk | Conductive prepreg |
JPH06283650A (en) | 1993-03-26 | 1994-10-07 | Ibiden Co Ltd | Semiconductor device |
JP2603053B2 (en) | 1993-10-29 | 1997-04-23 | 松下電器産業株式会社 | Conductor paste composition for filling via holes, double-sided and multilayer printed circuit boards using the same, and method for producing the same |
US5652042A (en) | 1993-10-29 | 1997-07-29 | Matsushita Electric Industrial Co., Ltd. | Conductive paste compound for via hole filling, printed circuit board which uses the conductive paste |
US5620795A (en) | 1993-11-10 | 1997-04-15 | Minnesota Mining And Manufacturing Company | Adhesives containing electrically conductive agents |
JPH07192733A (en) | 1993-12-27 | 1995-07-28 | Shin Etsu Polymer Co Ltd | Current collecting electrode plate of solid polymer electrolyte fuel cell |
JPH0831231A (en) | 1994-07-19 | 1996-02-02 | Shin Etsu Polymer Co Ltd | Conductive mold |
JPH0834864A (en) * | 1994-07-22 | 1996-02-06 | Nippon Steel Chem Co Ltd | Impact-resistant prepreg |
US5985431A (en) * | 1994-12-02 | 1999-11-16 | Toray Industries, Inc. | Prepreg, and a fiber reinforced composite material |
JPH0966574A (en) * | 1995-08-30 | 1997-03-11 | Pentel Kk | Base material with conductivity |
EP0885704B1 (en) * | 1996-12-18 | 2003-08-06 | Toray Industries, Inc. | Carbon fiber prepreg and method of production thereof |
US5853882A (en) | 1997-08-26 | 1998-12-29 | Mcdonnell Douglas Corporation | Compositive prepreg ply having tailored electrical properties and method of fabrication thereof |
US6043169A (en) | 1997-09-04 | 2000-03-28 | Johns Manville International, Inc. | Nonwoven RF reflecting mats and method of making |
US5962348A (en) | 1998-03-05 | 1999-10-05 | Xc Associates | Method of making thermal core material and material so made |
WO1999061239A1 (en) | 1998-05-26 | 1999-12-02 | Takeda Chemical Industries, Ltd. | Material for molding thermosetting resin sheet, production process, and molded product |
US6265333B1 (en) * | 1998-06-02 | 2001-07-24 | Board Of Regents, University Of Nebraska-Lincoln | Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces |
JP2000164226A (en) * | 1998-11-27 | 2000-06-16 | Mitsubishi Plastics Ind Ltd | Manufacture of separator for fuel cell |
JP2000223373A (en) | 1999-02-03 | 2000-08-11 | Nec Corp | Polarizing electrode, manufacture thereof, electric double layer capacitor using the same and manufacture thereof |
AU4419800A (en) * | 1999-05-20 | 2000-12-12 | Electrotextiles Company Limited | Detector constructed from fabric |
WO2001027190A1 (en) * | 1999-10-13 | 2001-04-19 | Toray Industries, Inc. | Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material |
EP1275759A4 (en) * | 2000-04-12 | 2005-03-30 | Showa Denko Kk | Fine carbon fiber and process for producing the same, and conductive material comprising the same |
JP2001316655A (en) | 2000-04-28 | 2001-11-16 | Matsushita Electric Ind Co Ltd | Electrically conductive adhesive and its preparation process |
JP4429473B2 (en) | 2000-05-08 | 2010-03-10 | 住友ゴム工業株式会社 | Waterproof floor |
JP3633450B2 (en) | 2000-07-05 | 2005-03-30 | 松下電器産業株式会社 | Signal processing device |
JP3600124B2 (en) | 2000-07-10 | 2004-12-08 | 有限会社サンコー | Paving road cutting equipment |
JP4474767B2 (en) * | 2000-11-17 | 2010-06-09 | Jsr株式会社 | Anisotropic conductive sheet |
CN1314533C (en) * | 2000-11-30 | 2007-05-09 | 北京有色金属研究总院 | Composite foam metal and its preparing process |
JP2002290024A (en) | 2001-03-23 | 2002-10-04 | Seiko Epson Corp | Flux application method and flux applicator |
JP2002290094A (en) | 2001-03-27 | 2002-10-04 | Toray Ind Inc | Electromagnetic wave shielding material and its molding |
US6583201B2 (en) | 2001-04-25 | 2003-06-24 | National Starch And Chemical Investment Holding Corporation | Conductive materials with electrical stability for use in electronics devices |
WO2002088225A1 (en) * | 2001-04-30 | 2002-11-07 | Georgia Tech Research Corporation | High dielectric polymer composites and methods of preparation thereof |
ATE544819T1 (en) * | 2001-12-05 | 2012-02-15 | Isola Laminate Systems Corp | PREPREG AND COMPOSITION OF EPOXY RESIN(S), SMA COPOLYMER(S) AND BISMALEIMIDE-TRIAZINE RESIN(S) |
JP4196567B2 (en) * | 2002-02-14 | 2008-12-17 | 東レ株式会社 | Carbon fiber reinforced resin composition, molding material and molded article thereof |
RU2217320C1 (en) | 2002-03-14 | 2003-11-27 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Multilayer lightning-protective coating |
JP2004027017A (en) | 2002-06-25 | 2004-01-29 | Inoac Corp | Conductive resin composition |
US7431981B2 (en) * | 2002-11-04 | 2008-10-07 | The Boeing Company | Polymer composite structure reinforced with shape memory alloy and method of manufacturing same |
US6989197B2 (en) * | 2002-11-04 | 2006-01-24 | The Boeing Company | Polymer composite structure reinforced with shape memory alloy and method of manufacturing same |
JP2004185884A (en) | 2002-12-02 | 2004-07-02 | Tamura Kaken Co Ltd | Conductive paste and electronic circuit product |
US7108806B2 (en) * | 2003-02-28 | 2006-09-19 | National Starch And Chemical Investment Holding Corporation | Conductive materials with electrical stability and good impact resistance for use in electronics devices |
JP5335174B2 (en) | 2003-05-13 | 2013-11-06 | 昭和電工株式会社 | Porous body, manufacturing method thereof, and composite material using porous body |
WO2004101664A2 (en) | 2003-05-13 | 2004-11-25 | Showa Denko K.K. | Porous body, production method thereof and composite material using the porous body |
RU2263581C2 (en) | 2003-12-30 | 2005-11-10 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Multilayer lightning-protection coating |
WO2005096442A1 (en) * | 2004-03-30 | 2005-10-13 | Tokai Rubber Industries, Ltd. | Anisotropic conductive film and manufacturing method thereof |
US20060062985A1 (en) * | 2004-04-26 | 2006-03-23 | Karandikar Prashant G | Nanotube-containing composite bodies, and methods for making same |
JP2006022130A (en) | 2004-07-06 | 2006-01-26 | Idemitsu Kosan Co Ltd | Thermoconductive resin composition and method for producing the same |
DE05819580T1 (en) * | 2004-09-01 | 2008-04-24 | Bell Helicopter Textron, Inc., Fort Worth | Press-formed parts with an embedded conductor layer and manufacturing method therefor |
US20060062977A1 (en) * | 2004-09-22 | 2006-03-23 | Sigler David R | Bonded lightweight structural sheet |
US20060292375A1 (en) * | 2005-06-28 | 2006-12-28 | Martin Cary J | Resin compositions with high thermoplatic loading |
JP4965832B2 (en) * | 2005-08-26 | 2012-07-04 | パナソニック株式会社 | Manufacturing method of fuel cell separator and fuel cell separator |
WO2008048705A2 (en) * | 2006-03-10 | 2008-04-24 | Goodrich Corporation | Low density lightning strike protection for use in airplanes |
JP2008002202A (en) | 2006-06-23 | 2008-01-10 | Toa Harbor Works Co Ltd | Underground position detector |
JP4969363B2 (en) * | 2006-08-07 | 2012-07-04 | 東レ株式会社 | Prepreg and carbon fiber reinforced composites |
GB0622060D0 (en) * | 2006-11-06 | 2006-12-13 | Hexcel Composites Ltd | Improved composite materials |
JP2008230237A (en) * | 2007-02-22 | 2008-10-02 | Toray Ind Inc | Composite structure |
GB0805640D0 (en) * | 2008-03-28 | 2008-04-30 | Hexcel Composites Ltd | Improved composite materials |
-
2006
- 2006-11-06 GB GB0622060A patent/GB0622060D0/en not_active Ceased
-
2007
- 2007-11-06 ES ES11155080T patent/ES2952708T3/en active Active
- 2007-11-06 EP EP11175471.9A patent/EP2540491B1/en active Active
- 2007-11-06 EP EP20110155097 patent/EP2371532A3/en not_active Withdrawn
- 2007-11-06 JP JP2009535128A patent/JP4971457B2/en active Active
- 2007-11-06 EP EP11155080.2A patent/EP2371529B1/en active Active
- 2007-11-06 EP EP20110155084 patent/EP2371530A3/en not_active Withdrawn
- 2007-11-06 ES ES07824456T patent/ES2874484T3/en active Active
- 2007-11-06 WO PCT/GB2007/004220 patent/WO2008056123A1/en active Application Filing
- 2007-11-06 CN CN201610009617.9A patent/CN105479830B/en active Active
- 2007-11-06 CN CN2007800412870A patent/CN101588919B/en active Active
- 2007-11-06 EP EP20110155092 patent/EP2371531A3/en not_active Withdrawn
- 2007-11-06 ES ES11175471T patent/ES2959472T3/en active Active
- 2007-11-06 EP EP07824456.3A patent/EP2069138B1/en active Active
- 2007-11-06 CN CN201310069108.1A patent/CN103144385B/en active Active
- 2007-11-06 CN CN201711043229.3A patent/CN107584843B/en active Active
-
2008
- 2008-08-05 US US12/221,635 patent/US8980770B2/en active Active
-
2010
- 2010-12-20 US US12/972,868 patent/US8980771B2/en active Active
- 2010-12-20 US US12/972,830 patent/US8105964B2/en active Active
- 2010-12-22 US US12/975,881 patent/US8263503B2/en active Active
-
2011
- 2011-04-13 JP JP2011088803A patent/JP5606986B2/en active Active
-
2014
- 2014-08-27 JP JP2014172402A patent/JP5736081B2/en active Active
-
2015
- 2015-02-05 US US14/614,448 patent/US9603229B2/en active Active
- 2015-04-17 JP JP2015084674A patent/JP6027643B2/en active Active
-
2016
- 2016-10-14 JP JP2016202668A patent/JP6339148B2/en active Active
Non-Patent Citations (1)
Title |
---|
None |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3042305A1 (en) * | 2015-10-13 | 2017-04-14 | Arkema France | METHOD FOR MANUFACTURING CONDUCTIVE COMPOSITE MATERIAL AND COMPOSITE MATERIAL THUS OBTAINED |
WO2017064423A1 (en) * | 2015-10-13 | 2017-04-20 | Arkema France | Method for producing a composite conductive material and composite material obtained in this way |
US11059263B2 (en) | 2015-10-13 | 2021-07-13 | Arkema France | Method for producing a composite conductive material and composite material obtained in this way |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2540491B1 (en) | Improved composite materials | |
EP2271486B1 (en) | Improved composite materials | |
US20130330514A1 (en) | Composite materials | |
US20150210039A1 (en) | Composite materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110218 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2069138 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B32B 5/22 20060101AFI20130327BHEP Ipc: B82Y 30/00 20110101ALI20130327BHEP Ipc: C08J 5/06 20060101ALI20130327BHEP Ipc: C08J 5/04 20060101ALI20130327BHEP Ipc: C08J 5/10 20060101ALI20130327BHEP Ipc: C08J 5/00 20060101ALI20130327BHEP Ipc: B32B 5/30 20060101ALI20130327BHEP Ipc: B32B 5/28 20060101ALI20130327BHEP Ipc: C08J 5/24 20060101ALI20130327BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200124 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230208 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2069138 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230414 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007061686 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1578945 Country of ref document: AT Kind code of ref document: T Effective date: 20230715 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2952708 Country of ref document: ES Kind code of ref document: T3 Effective date: 20231103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602007061686 Country of ref document: DE Representative=s name: KRAUS & LEDERER PARTGMBB, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231212 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231016 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231014 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231026 Year of fee payment: 17 Ref country code: DE Payment date: 20231017 Year of fee payment: 17 Ref country code: AT Payment date: 20231025 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007061686 Country of ref document: DE Ref country code: AT Ref legal event code: UEP Ref document number: 1578945 Country of ref document: AT Kind code of ref document: T Effective date: 20230614 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
26N | No opposition filed |
Effective date: 20240315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230614 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231106 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231106 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240912 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240909 Year of fee payment: 18 |