EP2371186A1 - Procédé de contrôle de l'usure d'au moins une des électrodes d'une torche à plasma - Google Patents

Procédé de contrôle de l'usure d'au moins une des électrodes d'une torche à plasma

Info

Publication number
EP2371186A1
EP2371186A1 EP09775220A EP09775220A EP2371186A1 EP 2371186 A1 EP2371186 A1 EP 2371186A1 EP 09775220 A EP09775220 A EP 09775220A EP 09775220 A EP09775220 A EP 09775220A EP 2371186 A1 EP2371186 A1 EP 2371186A1
Authority
EP
European Patent Office
Prior art keywords
electrode
arc
electrodes
magnetic field
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09775220A
Other languages
German (de)
English (en)
Other versions
EP2371186B1 (fr
Inventor
Ulysse Michon
Amélie HACALA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Europlasma SA
Original Assignee
Europlasma SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Europlasma SA filed Critical Europlasma SA
Priority to PL09775220T priority Critical patent/PL2371186T3/pl
Publication of EP2371186A1 publication Critical patent/EP2371186A1/fr
Application granted granted Critical
Publication of EP2371186B1 publication Critical patent/EP2371186B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3494Means for controlling discharge parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/40Details, e.g. electrodes, nozzles using applied magnetic fields, e.g. for focusing or rotating the arc

Definitions

  • the present invention belongs to the field of plasma torches. More specifically, the invention relates to a method for controlling the wear of at least one of the electrodes of a non-transferred arc plasma torch.
  • a plasma torch is a system for transforming electrical energy into high density thermal energy.
  • An electric arc caused between two electrodes is typically implemented to provide the energy necessary for the ionization of a plasma gas.
  • Plasma torches are used in industry, for example, to make metal deposits or for welding, or to destroy certain products such as hazardous waste.
  • the non-transferred arc torches also called blown arc torches, comprise two electrodes between which is generated an electric arc that is maintained. These electrodes being contained in the plasma torch, the electric arc is confined inside thereof. In contact with this electric arc, the gas flow injected into the torch is heated to very high temperature and is ionized.
  • the gas thus heated flows through the open end of one of the electrodes, called the downstream electrode. Only gas ejected at high temperature, or plasma dart, is therefore visible outside the torch. While the plasma dart temperature is of the order of 5000 ° C., the temperature of the electric arc and, in particular, that of the arc feet, is typically of the order of 20,000 ° C.
  • This temperature being higher than the melting temperature of the electrodes, and whatever the material used to make these electrodes, the vaporization of the electrodes at the level of the arc feet is inevitable.
  • the electrodes are typically cooled, they are consumables that must be replaced after a shorter or shorter service time.
  • the longevity of the cooled electrodes can vary from a hundred hours for relatively low power torches to a thousand hours for high power plasma torches.
  • the lifetime of the electrodes depended on several parameters. It is thus possible to play on the shape of the electrodes and on the choice of their constituent material. Nevertheless, the plasma plummet being inoculated with metal particles resulting from the wear of the electrodes, the selected material (s) must be compatible with the envisaged applications for the plasma torch. In order to limit the average surface temperature of the electrodes, they can also be cooled, for example by putting in place a circulation of water, in general, demineralized.
  • This control of the position of the arc foot on the surface of the electrode can be achieved by injecting a variable flow of plasma gas.
  • such a control is then performed by the sole management of the regulator valve of arrival of the plasma gas. This management does not change the servitudes of the plasma torch.
  • this method is not very flexible since it is then imperative to limit the ranges of variations of the flow rate in order to prevent any exit of the electric arc foot from the working zone to the surface of the corresponding electrode.
  • excessive variations in flow rate prevent good arc stability within the plasma torch.
  • the control of the position of the arc foot on the surface of the electrode can also be achieved by the application of a fixed magnetic field with a mechanical mobility of the permanent magnet generating this magnetic field.
  • Such a control allows a distribution of wear on the surface of the electrode over a range of lengths related to the displacement amplitude of the permanent magnet.
  • this permanent magnet is completely independent of the operating points of the plasma torch, and when it reaches the end of the stroke, the wear is greatly accelerated on the fixing location of the arch foot because the latter then describes a simple rotation. Moreover, the speed of movement of this magnet is generally constant over a defined period of time.
  • the control of the position of the arc foot on the surface of the electrode can still be achieved by the application of a variable magnetic field.
  • Document FR 2 609 358 discloses a non-transferred arc plasma torch comprising a field coil surrounding the upstream electrode of the torch and an electrical circuit for supplying variable DC current to this coil so as to describe at the foot of the arc in contact with the upstream electrode a longitudinal stroke which is superimposed oscillation of the arc foot during this race. This method increases the number of degrees of freedom for controlling the position of the electric arcing feet.
  • this field coil technology in the form of slab is bulky (weight and dimensions), which makes it difficult to implement this type of torch in a constrained environment.
  • the objective of the present invention is therefore to provide a method for controlling the wear of at least one of the electrodes of a plasma torch which is simple in its design and in its operating mode, to optimize the position of the foot electric arc on the surface of this electrode and, therefore, the longevity of these electrodes.
  • the invention relates to a method for controlling the wear of at least one of the electrodes of a plasma torch, this torch comprising two electrodes having the same main axis between which an arc is established, these electrodes being separated by a chamber intended to receive a plasmagene gas, and at least one means for generating a magnetic field placed locally at the said at least one electrode whose wear is to be controlled, in which the arch foot is longitudinally scanned on a portion of the surface of this electrode from an initial position until said arch foot reaches a determined end position of said portion involving the change of this electrode, the longitudinal progression of this arch foot being determined by a function dependent at least the time, f (t) which is fixed.
  • At least the electrical energy consumed by this torch is measured as a function of time since the commissioning of the electrode, these measurements are recorded in a storage unit and determined from the temporal evolution. at least this electrical energy consumed on at least a part of these measurements, an adjustment variable ⁇ (t) of the function f (t) over a period of time ⁇ determined by the state of wear of this electrode .
  • Electrodes having a same main axis that these electrodes are coaxial or that the upstream electrode, marked with respect to the flow direction of the plasma, has the same main axis as the downstream electrode.
  • a set value of the current supplying the field coil corresponds to a given position of the arc foot on the upstream electrode.
  • this torch has a given configuration (geometry of the upstream electrode, electromagnetic characteristics of the field coil, etc.), it is possible to determine experimentally by methods known to those skilled in the art the representative curve of the position of the arc foot on the upstream electrode according to the intensity of the current applied to the field coil.
  • the operating speed of the torch may vary over time, the torch not working, for example, at full speed continuously.
  • the plasma torch can experience periods of standby or power variations over time depending on the applications envisaged for this torch.
  • the wear of the electrode for a set value of the arc current is then slowed down or, on the contrary, accelerated.
  • the adjustment variable ⁇ (t) then makes it possible to take into account either the "supposed state" of the electrode as defined by the function f (t), but its actual state which depends on the actual stresses of the flare. plasma.
  • ⁇ (t) i ⁇ r (t)
  • the adjustment variable ⁇ (t) is a function of the form F (i (t), z (t)).
  • determining the adjustment variable ⁇ (t) can be performed by a computer that controls the control means of the position of the arch foot.
  • this computer controls the supply current of this coil.
  • the arc current is also measured as a function of time since the commissioning of the electrode
  • This measurement of the arc current advantageously allows a more precise determination of the adjustment variable ⁇ (t) of the function f (t).
  • P arc consumed by the torch it is possible to have arc currents that are different. - oscillating on itself, during the scanning, the foot of arc around an average position defined by the function f (t),
  • this adjustment variable ⁇ (t) is determined from the determination of the temporal evolution of the electrical energy consumed on the one hand, on the whole of the measurements and on the other hand, on the measurements obtained since a determined time interval T corresponding to a different operating regime of said torch,
  • said at least one means for generating a magnetic field is chosen from the group comprising a field coil, a permanent magnet and combinations of these elements.
  • this means for generating a magnetic field is a field coil, it will preferably be slab type for the upstream electrode. According to different variants, this coil may consist of:
  • the conducting wire may be solid or hollow, of square, rectangular or round section, of a single electrical conductor wire,
  • N> 2.
  • S> 8.
  • S is not necessarily identical for the N layers.
  • the coil may locally surround the electrode but the center of the coil is not necessarily bound to the center of the electrode along the axis of the torch.
  • the coil can be connected either in series with the electrode, or in parallel, that is to say without any electrical contact with the electrode.
  • the coil may be longer than the electrode, shorter or the same size as the electrode.
  • this field coil may be reduced (radial field loss).
  • This radial field loss can then be partially compensated by the addition, over all or part of the length of the field coil, of one or more permanent magnets. If this or these permanent magnets are cylindrical, they will be coaxial with one of the electrodes.
  • One or more other permanent magnets having fields different from the preceding ones may be positioned outside the field coil either upstream or downstream in order to locally modify the shape of the field.
  • said at least one means is moved to generate a magnetic field along this main axis so as to vary the position on this electrode of the foot of the electric arc generated between the electrodes, said at least one means is displaced to generate a magnetic field with a variable speed in time,
  • said at least one means is moved to generate a magnetic field with a speed varying gradually or in stages.
  • said at least one means is moved to generate a magnetic field on either side of a reference position, a movement of said at least one means for generating a magnetic field along said main axis is carried out, simultaneously or successively; and the application of variable DC current.
  • FIG. 1 is a sectional view of a non-transferred arc plasma torch in a particular embodiment of the invention
  • Figure 1 shows a non-transferred arc plasma torch according to a particular embodiment of the invention.
  • This torch comprises two tubular electrodes 1, 2 arranged collinearly along a main axis. These electrodes 1, 2 are cooled by a water cooling device (not shown) known from the state of the art and which will not be described in more detail here.
  • Electrodes 1, 2 are separated from each other by a chamber 3 for receiving a plasma gas.
  • a power supply system 4 connected to these two electrodes 1, 2 makes it possible to apply a potential difference between them causing a maintained electric arc.
  • the plasma gas which is supplied by a gas supply source 6 is forced into this chamber 3.
  • This plasmagenic gas is preferably introduced between the electrodes 1, 2 with a swirling motion, or else in a vortex, in order to ensure a sheathing by the gaseous fluid and stabilization of the electric arc.
  • this swirling movement ensures a natural rotational movement of the upstream and downstream arc feet on the surface of the corresponding electrodes.
  • the means for generating a magnetic field advantageously comprises a field coil 7 which is fed with a variable DC current 8.
  • variable DC current is meant a DC current whose intensity varies as a function of time.
  • This field coil 7 is here placed around the upstream electrode 1 to control the position of the upstream arc foot on the surface of this electrode.
  • the intensity I of this variable DC current comprises an intensity I 2 superimposed on an intensity,, I 2 being an oscillation such that I 2 ⁇ li, the variation of the intensity h being chosen from the group comprising linear variation , stepwise variation, exponential variation, logarithmic variation, variation according to a polynomial function, or a combination of these elements.
  • the plasma torch is fed with a variable DC current whose basic intensity varies in steps, each step having a duration of several hundred hours, the wear of the electrode then being "slices".
  • this intensity can vary linearly or according to a "curved" law such as exponential or polynomial.
  • Figure 2 shows the shape that can take intensity oscillation I 2 , which makes it possible to oscillate the foot of arc around an average position and therefore to limit the wear of the upstream electrode.
  • This oscillation may have a sinusoidal shape (Fig. 2a), a square shape (Fig. 2b) or a triangle shape (Fig. 2c).
  • the amplitude and frequency of this oscillation may vary over time depending on the electrical energy consumed by the plasma torch and the state of wear of the electrode. Typically, the amplitude will be all the more limited as the torch will be in an extreme operating range (low power, nominal power). The frequency of the wave will depend on the enthalpy of operation of the torch.
  • the shape of the wave will be selected according to the observation of the stability of the operating points of the torch. If the torch power varies discretely from one power to another and in a programmed manner, a square shape will be preferred.
  • the plasma torch comprises means 9 for moving said at least one means for generating a magnetic field 7 along the main axis so as to vary the position on the electrode whose wear is to be controlled. foot of the electric arc generated between these electrodes 1, 2.
  • These means 9 here comprise a worm rotated by a motor.
  • the field coil 7 is linked to this screw so that the setting rotation of the worm causes a translation of the field coil 7.
  • this motor may for example be an alternating motor.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

L'invention concerne un procédé de contrôle de l'usure d'au moins une des électrodes (1, 2) d'une torche à plasma comprenant deux électrodes (1, 2) ayant un même axe principal, ces électrodes (1, 2) étant séparées par une chambre (3) destinée à recevoir un gaz plasmagène, et au moins un moyen pour générer un champ magnétique (7) placé localement à ladite au moins une électrode dont on cherche à contrôler l'usure, dans lequel on fait balayer longitudinalement le pied d'arc sur une partie de la surface de l'électrode à partir d'une position initiale jusqu'à ce que ledit pied d'arc atteigne une position finale déterminée de ladite partie, la progression longitudinale dudit pied d'arc étant déterminée par une fonction dépendante au moins du temps, f(t) qui est fixée. Selon l'invention, on mesure au moins l'énergie électrique consommée par ladite torche en fonction du temps depuis la mise en service de ladite électrode (1, 2), on enregistre lesdites mesures dans une unité de stockage et on détermine à partir de l'évolution temporelle d'au moins ladite énergie électrique consommée sur au moins une partie desdites mesures, une variable d'ajustement ξ(t) de la fonction f(t) sur une période de temps Ʈ déterminée par l'état d'usure de ladite électrode (1, 2).

Description

Procédé de contrôle de l'usure d'au moins une des électrodes d'une torche à plasma
La présente invention appartient au domaine des torches à plasma. Plus précisément, l'invention concerne un procédé de contrôle de l'usure d'au moins une des électrodes d'une torche à plasma à arc non transféré.
Elle concerne encore une torche à plasma à arc non transféré pour la mise en œuvre de ce procédé.
Une torche à plasma est un système permettant la transformation d'une énergie électrique en énergie thermique de haute densité. Un arc électrique provoqué entre deux électrodes est typiquement mis en œuvre pour apporter l'énergie nécessaire à l'ionisation d'un gaz plasmagène. Les torches à plasma sont utilisées dans l'industrie, par exemple, pour effectuer des dépôts métalliques ou pour le soudage, ou encore pour détruire certains produits tels que des déchets dangereux.
Les torches à arc non transféré, encore appelées torches à arc soufflé, comprennent deux électrodes entre lesquelles est généré un arc électrique qui est entretenu. Ces électrodes étant contenues dans la torche à plasma, l'arc électrique est confiné à l'intérieur de celle-ci. Au contact de cet arc électrique, le flux de gaz injecté dans la torche est porté à très haute température et est ionisé.
Le gaz ainsi réchauffé s'écoule par l'extrémité ouverte de l'une des électrodes, dénommée électrode aval. Seul le gaz éjecté à haute température, ou dard plasma, est par conséquent visible à l'extérieur de la torche. Alors que la température du dard plasma est de l'ordre de 5 0000C, la température de l'arc électrique et, en particulier, celle des pieds d'arc, est typiquement de l'ordre de 20 0000C.
Cette température étant supérieure à la température de fusion des électrodes, et ce, quel que soit le matériau utilisé pour fabriquer ces électrodes, la vaporisation des électrodes au niveau des pieds d'arc est inévitable.
Bien que les électrodes soient typiquement refroidies, elles constituent des éléments consommables qui doivent être remplacées après un temps de service plus ou moins court.
La longévité des électrodes refroidies peut varier d'une centaine d'heures pour des torches de relativement faible puissance à un millier d'heures pour les torches à plasma de grande puissance.
Depuis de nombreuses années, des travaux de recherche sont, en conséquence, menés pour améliorer la durée de vie des électrodes des torches à plasma afin de rendre celles-ci compatibles avec les exigences industrielles.
Il a été tout d'abord observé que la durée de vie des électrodes dépendait de plusieurs paramètres. II est ainsi possible de jouer sur la forme des électrodes et sur le choix de leur matériau constitutif. Néanmoins, le dard plasma étant ensemencé de particules métalliques provenant de l'usure des électrodes, le ou les matériaux choisis doivent être compatibles avec les applications envisagées pour la torche à plasma. Afin de limiter la température moyenne de surface des électrodes, elles peuvent également être refroidies par exemple en mettant en place une circulation d'eau, en général, déminéralisée.
Il est possible également de limiter le courant d'arc pour une puissance de fonctionnement de torche donnée. En effet, au niveau des pieds d'arc, le flux de calories à évacuer augmente avec le courant fixé aux bornes des électrodes.
Ainsi, pour une puissance de torche donnée, la possibilité de réaliser cette puissance par un couple tension/courant favorisant la tension par rapport au courant est un élément majeur car l'usure des électrodes s'en trouve réduite. Toutefois, l'ensemble de ces paramètres relève de la conception propre d'une torche à plasma. Ces paramètres ne sont donc plus modifiables une fois la mise en service de cette torche opérée.
On a encore proposé de répartir l'érosion induite au pied de l'arc électrique sur la plus grande surface d'électrode possible. Par une telle méthode de contrôle de la position du pied d'arc électrique, on cherche à éviter que le pied d'arc reste attaché à un seul point de la surface de l'électrode entraînant une érosion très rapide de celle-ci.
Ce contrôle de la position du pied d'arc à la surface de l'électrode peut être réalisé par l'injection d'un débit variable de gaz plasmagène.
Avantageusement, un tel contrôle est alors réalisé par la seule gestion de la vanne de régulation d'arrivée du gaz plasmagène. Cette gestion n'apporte pas de modification aux servitudes de la torche à plasma.
Néanmoins, cette méthode est peu flexible car il est alors impératif de limiter les plages de variations du débit afin d'empêcher une éventuelle sortie du pied d'arc électrique de la zone de travail à la surface de l'électrode correspondante. De plus, de trop grandes variations de débit empêchent l'obtention d'une bonne stabilité de l'arc électrique à l'intérieur de la torche à plasma. Le contrôle de la position du pied d'arc à la surface de l'électrode peut également être réalisé par l'application d'un champ magnétique fixe avec une mobilité mécanique de l'aimant permanent générant ce champ magnétique.
Un tel contrôle permet une répartition de l'usure à la surface de l'électrode sur une plage de longueurs liée à l'amplitude de déplacement de l'aimant permanent.
Toutefois, le déplacement de cet aimant permanent est complètement indépendant des points de fonctionnement de la torche à plasma, et lorsqu'il arrive en bout de course, l'usure est largement accélérée sur le lieu de fixation du pied d'arc car ce dernier décrit alors une simple rotation. Par ailleurs, la vitesse de déplacement de cet aimant est généralement constante sur une plage de temps définie.
Le contrôle de la position du pied d'arc à la surface de l'électrode peut encore être réalisé par l'application d'un champ magnétique variable.
Le document FR 2 609 358 divulgue une torche à plasma à arc non transféré comprenant une bobine de champ entourant l'électrode amont de la torche et un circuit électrique permettant d'alimenter en courant continu variable cette bobine de manière à faire décrire au pied de l'arc en contact avec cette électrode amont une course longitudinale à laquelle se superpose une oscillation du pied d'arc au cours de cette course. Cette méthode permet d'augmenter le nombre de degrés de liberté pour le contrôle de la position des pieds d'arc électrique.
Cependant, cette oscillation du pied d'arc reste toutefois limitée en excursion de la surface de l'électrode. Cette limitation de la surface vue par le pied d'arc ne permet pas d'optimiser l'érosion de l'électrode. De plus, cette solution est onéreuse et induit une consommation électrique qui vient s'ajouter à la consommation électrique de la torche à plasma. L'intérêt d'une telle technologie disparaît pour des torches à plasma ayant une puissance inférieure à 1 MW.
Par ailleurs, cette technologie de bobine de champ sous la forme de galette est encombrante (poids et dimensions), ce qui rend difficile la mise en œuvre de ce type de torche en milieu contraint.
Si ces systèmes de contrôle du déplacement du pied d'arc électrique ont permis d'allonger la durée opérationnelle des électrodes, ils peuvent encore être améliorés pour répartir au mieux l'usure de l'électrode. La brève longévité des électrodes constitue en effet un inconvénient notable pour certaines applications industrielles.
L'objectif de la présente invention est donc de proposer un procédé de contrôle de l'usure d'au moins une des électrodes d'une torche à plasma qui soit simple dans sa conception et dans son mode opératoire, pour optimiser la position du pied d'arc électrique à la surface de cette électrode et, par conséquent, la longévité de ces électrodes.
A cet effet, l'invention concerne un procédé de contrôle de l'usure d'au moins une des électrodes d'une torche à plasma, cette torche comprenant deux électrodes ayant un même axe principal entre lesquelles s'établit un arc, ces électrodes étant séparées par une chambre destinée à recevoir un gaz plasmagène, et au moins un moyen pour générer un champ magnétique placé localement à ladite au moins une électrode dont on cherche à contrôler l'usure, dans lequel on fait balayer longitudinalement le pied d'arc sur une partie de la surface de cette électrode à partir d'une position initiale jusqu'à ce que ledit pied d'arc atteigne une position finale déterminée de ladite partie impliquant le changement de cette électrode, la progression longitudinale de ce pied d'arc étant déterminée par une fonction dépendante au moins du temps, f(t) qui est fixée.
Selon l'invention, on mesure au moins l'énergie électrique consommée par cette torche en fonction du temps depuis la mise en service de l'électrode, on enregistre ces mesures dans une unité de stockage et on détermine à partir de l'évolution temporelle d'au moins cette énergie électrique consommée sur au moins une partie de ces mesures, une variable d'ajustement ξ(t) de la fonction f(t) sur une période de temps τ déterminée par l'état d'usure de cette électrode.
On entend par "depuis la mise en service de l'électrode" que ces mesures sont réalisées en temps réel ou à intervalles réguliers à partir d'une électrode neuve ou non. Dans ce dernier cas, les positions initiale et intermédiaire sont toutefois déterminables afin de pouvoir reprendre le contrôle de l'usure de l'électrode à la position où il s'était interrompu en cas de maintenance sur la torche à plasma par exemple.
On entend par "les électrodes ayant un même axe principal" que ces électrodes sont coaxiales ou encore que l'électrode amont, repérée par rapport au sens d'écoulement du plasma, a un même axe principal que l'électrode aval.
On entend par "localement" que le moyen pour générer un champ magnétique crée un champ magnétique au niveau de l'électrode dont on cherche à limiter l'usure, afin de provoquer le déplacement du pied d'arc à la surface de l'électrode considérée. A titre purement illustratif, la torche à plasma comporte une bobine de champ entourant l'électrode amont pour générer un champ magnétique local au niveau de cette électrode, cette bobine étant de plus fixe en position mais alimentée avec un courant continu variable i(t) (=f(t)).
On sait qu'à une valeur de consigne du courant alimentant la bobine de champ correspond une position donnée du pied d'arc sur l'électrode amont. Par ailleurs, cette torche ayant une configuration donnée (géométrie de l'électrode amont, caractéristiques électromagnétiques de la bobine de champ, ...), il est possible de déterminer expérimentalement par des méthodes connues de l'homme du métier la courbe représentative de la position du pied d'arc sur l'électrode amont en fonction de l'intensité du courant appliqué à la bobine de champ. Ainsi en ayant déterminée l'équation de cette courbe et en connaissant la loi i(t) (balayage alternatif régulier ou non, ondulé pulsatoire, ...) régissant la progression longitudinal du pied d'arc à la surface de l'électrode, l'homme du métier sait contrôler l'usure de l'électrode le balayage longitudinal du pied d'arc à la surface de l'électrode amont entre deux positions.
Toutefois, le régime de fonctionnement de la torche peut varier dans le temps, la torche ne fonctionnant pas, par exemple, à plein régime de manière continue. Au contraire, la torche à plasma peut connaître des périodes de mise en veille ou des variations de puissance dans le temps en fonction des applications envisagées pour cette torche.
L'usure de l'électrode pour une valeur de consigne du courant d'arc est alors ralentie ou au contraire accélérée.
La variable d'ajustement ξ(t) permet alors de prendre en compte non plus « l'état supposé » de l'électrode tel que défini par la fonction f(t) mais son état réel qui dépend des sollicitations réelles de la torche à plasma.
Si l'usure de l'électrode est, par exemple, faible pour une valeur de consigne de i(t) à l'instant t0 parce que la torche est en veille, on cherchera à maintenir le pied d'arc plus longtemps en la position de la surface de l'électrode correspondante de manière à allonger la durée de vie de cette électrode. Pour cela, on appliquera une variable d'ajustement, ou corrective, ξ(t) = ir(t) telle que le courant continu variable appliqué à la bobine de champ pour contrôler la position du pied d'arc est iB(t) = i(t) - icor(t) pendant une durée T déterminée non seulement par le temps pendant lequel la torche à plasma reste en état de veille mais également par le temps nécessaire pour atteindre un état d'usure nécessitant le passage à un autre point de la surface de l'électrode dont on cherche à contrôler l'usure.
Dans le cas où cette même bobine de champ est de plus déplacée mécaniquement en translation, alors la variable d'ajustement ξ(t) est une fonction de la forme F(i(t), z(t)).
Bien entendu, les opérations de détermination de la variable d'ajustement ξ(t) peuvent être réalisées par un calculateur qui pilote les moyens de contrôle de la position du pied d'arc. Dans le cas d'une bobine de champ, par exemple, ce calculateur pilote le courant d'alimentation de cette bobine. Dans différents modes de réalisation particuliers de ce procédé, chacun ayant ses avantages particuliers et susceptibles de nombreuses combinaisons techniques possibles:
- on mesure également le courant d'arc en fonction du temps depuis la mise en service de l'électrode,
Cette mesure du courant d'arc permet avantageusement une détermination plus précise de la variable d'ajustement ξ(t) de la fonction f(t). En effet, pour une même puissance électrique Parc consommée par la torche, on peut avoir des courants d'arc qui sont différents. - on fait osciller sur lui-même, pendant le balayage, le pied d'arc autour d'une position moyenne définie par la fonction f(t),
- on détermine cette variable d'ajustement ξ(t) à partir de la détermination de l'évolution temporelle de l'énergie électrique consommée d'une part, sur l'ensemble des mesures et d'autre part, sur les mesures obtenues depuis un intervalle de temps déterminé T correspondant à un régime de fonctionnement différent de ladite torche,
- ledit au moins un moyen pour générer un champ magnétique est choisi dans le groupe comprenant une bobine de champ, un aimant permanent et des combinaisons de ces éléments, Lorsque ce moyen pour générer un champ magnétique est une bobine de champ, elle sera préférentiellement de type galette pour l'électrode amont. Selon différentes variantes, cette bobine pourra être constituée :
- d'un enroulement métallique coaxial à l'électrode. Le fil conducteur peut être plein ou creux, de section carrée, rectangulaire ou ronde, - d'un fil de conducteur électrique unique,
- de plusieurs conducteurs électriques non liés physiquement entre eux de manière permanente, c'est-à-dire la bobine pourra également être segmentée,
- d'un nombre de couches N>= 2. Chaque couche est alors constituée par un nombre de spires S>= 8. S n'est pas forcément identique pour les N couches.
La bobine peut entourer localement l'électrode mais le centre de la bobine n'est pas forcément lié au centre de l'électrode selon l'axe de la torche. Alternativement, la bobine peut être raccordée soit en série avec l'électrode, soit en parallèle, c'est-à-dire sans aucun contact électrique avec l'électrode. La bobine peut encore être plus longue que l'électrode, plus courte ou de même dimension que l'électrode.
Pour des raisons de compacité, le diamètre de cette bobine de champ pourra être diminué (perte de champ radial). Cette perte de champ radial pourra alors être compensée partiellement par l'adjonction, sur tout ou une partie de la longueur de la bobine de champ, d'un ou plusieurs aimants permanents. Si ce ou ces aimants permanents sont de forme cylindrique, ils seront alors coaxiaux à l'une des électrodes.
Un ou plusieurs autres aimants permanents ayant des champs différents des précédents peuvent être positionnés en dehors de la bobine de champ soit en amont, soit en aval afin de modifier localement la forme du champ.
- on déplace ledit au moins un moyen pour générer un champ magnétique le long de cet axe principal de manière à varier la position sur cette électrode du pied de l'arc électrique généré entre les électrodes, - on déplace ledit au moins un moyen pour générer un champ magnétique avec une vitesse variable dans le temps,
- on déplace ledit au moins un moyen pour générer un champ magnétique avec une vitesse variant progressivement ou par paliers.
- on déplace ledit au moins un moyen pour générer un champ magnétique de part et d'autre d'une position de référence, on réalise, simultanément ou successivement, un déplacement dudit au moins un moyen pour générer un champ magnétique le long dudit axe principal et l'application du courant continu variable.
Ces moyens pour contrôler l'usure de l'électrode peuvent donc agir ensemble pour conjuguer leurs effets.
L'invention sera décrite plus en détail en référence aux dessins annexés dans lesquels:
- la figure 1 est une vue en coupe d'une torche à plasma à arc non transféré dans un mode de réalisation particulier de l'invention; - la figure 2 montre schématiquement la composante d'intensité I2 superposée à une intensité h de base, I2 étant une oscillation telle que I2<li et I = h + I2 étant le courant continu variable appliqué à ladite bobine de l'électrode amont de la Figure 1 ; La Figure 1 montre une torche à plasma à arc non transféré selon un mode de réalisation particulier de l'invention. Cette torche comporte deux électrodes tubulaires 1 , 2 disposées colinéairement le long d'un axe principal. Ces électrodes 1 , 2 sont refroidies par un dispositif de refroidissement à l'eau (non représenté) connu de l'état de l'art et qui ne sera pas décrit plus en détail ici.
Ces électrodes 1 , 2 sont séparées l'une de l'autre par une chambre 3 destinée à recevoir un gaz plasmagène.
Un système d'alimentation en énergie 4 relié à ces deux électrodes 1 , 2 permet d'appliquer une différence de potentiel entre elles provoquant un arc électrique 5 entretenu.
On mesure le courant d'arc larc et la tension d'arc Uarc afin de déterminer la puissance électrique consommée Parc = larc x Uarc.
Le gaz plasmagène qui est fourni par une source d'alimentation en gaz 6 est forcé dans cette chambre 3. Ce gaz plasmagène est de préférence introduit entre les électrodes 1 , 2 avec un mouvement tourbillonnant, ou encore en vortex, afin d'assurer un gainage par le fluide gazeux et une stabilisation de l'arc électrique.
D'autre part, ce mouvement tourbillonnant assure un mouvement naturel de rotation des pieds d'arc amont et aval sur la surface des électrodes correspondantes.
Le moyen pour générer un champ magnétique comprend avantageusement une bobine de champ 7 que l'on alimente avec un courant continu variable 8. On entend par « courant continu variable », un courant continu dont l'intensité varie en fonction du temps.
Cette bobine de champ 7 est ici placée autour de l'électrode amont 1 afin de contrôler la position du pied d'arc amont à la surface de cette électrode.
De préférence, l'intensité I de ce courant continu variable comprend une intensité I2 superposée à une intensité ^, I2 étant une oscillation telle que I2<li, la variation de l'intensité h étant choisie dans le groupe comprenant variation linéaire, variation par paliers, variation exponentielle, variation logarithmique, variation suivant une fonction polynomiale ou une combinaison de ces éléments. A titre purement illustratif, la torche à plasma est alimentée avec un courant continu variable dont l'intensité de base varie par paliers, chaque palier ayant une durée de plusieurs centaines d'heures, l'usure de l'électrode se faisant alors par « tranches ». Alternativement, cette intensité peut varier de manière linéaire ou selon une loi « courbe » telle qu'exponentielle ou polynômiale.
La Figure 2 montre la forme que peut prendre l'oscillation d'intensité I2, laquelle permet de faire osciller le pied d'arc autour d'une position moyenne et par conséquent de limiter l'usure de l'électrode amont. Cette oscillation peut avoir une forme de sinusoïde (Fig. 2a), de carré (Fig. 2b) ou encore de triangle (Fig. 2c).
L'amplitude et la fréquence de cette oscillation peuvent varier dans le temps selon l'énergie électrique consommée par la torche à plasma et de l'état d'usure de l'électrode. Typiquement, l'amplitude sera d'autant plus limitée que la torche sera dans une plage de fonctionnement extrême (basse puissance, puissance nominale). La fréquence de l'onde dépendra de l'enthalpie de fonctionnement de la torche.
La forme de l'onde sera sélectionnée selon l'observation de la stabilité des points de fonctionnement de la torche. Si la puissance torche varie de manière discrète d'une puissance à l'autre et de manière programmée, une forme carrée sera préférée.
Compte tenu que le courant moyen que la bobine de champ, lorsqu'il arrive à son maximum, ne parvient pas à repousser suffisamment l'arc électrique vers l'aval de la torche, il reste du cuivre non vu par les pieds d'arc. II sera donc avantageux de mettre en mouvement la bobine de champ en la faisant se déplacer. Ce déplacement permet donc de baisser la valeur du courant moyen de la bobine de champ et d'appliquer de nouvelles lois de croissance du courant moyen ainsi que de formes d'ondulation.
Pour cela, la torche à plasma comporte des moyens 9 pour déplacer ledit au moins un moyen pour générer un champ magnétique 7 le long de l'axe principal de manière à varier la position sur l'électrode dont on cherche à contrôler l'usure du pied de l'arc électrique généré entre ces électrodes 1 , 2.
Ces moyens 9 comprennent ici une vis sans fin entraînée en rotation par un moteur. La bobine de champ 7 est liée à cette vis de sorte que la mise en rotation de la vis sans fin entraîne une translation de la bobine de champ 7.
Dans l'hypothèse où on souhaitera déplacer ledit au moins un moyen pour générer un champ magnétique de part et d'autre d'une position de référence, ce moteur pourra par exemple être un moteur alternatif.
Avantageusement, on pourra également de manière connue moduler l'injection d'un gaz plasmagène secondaire 10 afin de contrôler la position du pied d'arc.

Claims

REVENDICATIONS
1. Procédé de contrôle de l'usure d'au moins une des électrodes (1 ,2) d'une torche à plasma, ladite torche comprenant deux électrodes (1 ,2) ayant un même axe principal entre lesquelles s'établit un arc (5), ces électrodes (1 ,2) étant séparées par une chambre (3) destinée à recevoir un gaz plasmagène, et au moins un moyen pour générer un champ magnétique (7) placé localement à ladite au moins une électrode (1 , 2) dont on cherche à contrôler l'usure, dans lequel on fait balayer longitudinalement ledit pied d'arc sur une partie de la surface de ladite électrode (1 , 2) à partir d'une position initiale jusqu'à ce que ledit pied d'arc atteigne une position finale déterminée de ladite partie impliquant le changement de ladite électrode, la progression longitudinale dudit pied d'arc étant déterminée par une fonction dépendante au moins du temps, f(t) qui est fixée, caractérisé en ce qu'on mesure au moins l'énergie électrique consommée par ladite torche en fonction du temps depuis la mise en service de ladite électrode (1 , 2), on enregistre lesdites mesures dans une unité de stockage et on détermine à partir de l'évolution temporelle d'au moins ladite énergie électrique consommée sur au moins une partie desdites mesures, une variable d'ajustement ξ(t) de la fonction f(t) sur une période de temps τ déterminée par l'état d'usure de ladite électrode.
2. Procédé selon la revendication 1 , caractérisé en ce qu'on mesure également ledit courant d'arc en fonction du temps depuis la mise en service de ladite électrode (1 , 2).
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on fait osciller sur lui-même, pendant le balayage, ledit pied d'arc autour d'une position moyenne définie par la fonction f(t).
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on réalise lesdites mesures en temps réel ou à intervalles de temps réguliers.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on détermine ladite variable d'ajustement ξ(t) à partir de la détermination de l'évolution temporelle de ladite énergie électrique consommée d'une part, sur l'ensemble desdites mesures et d'autre part, sur les mesures obtenues depuis un intervalle de temps déterminé T correspondant à un régime de fonctionnement différent de ladite torche.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit au moins un moyen pour générer un champ magnétique (7) est choisi dans le groupe comprenant une bobine de champ, un aimant permanent et des combinaisons de ces éléments.
7. Procédé selon la revendication 6, caractérisé en ce que ledit moyen pour générer un champ magnétique (7) comprenant une bobine de champ, on alimente ladite bobine avec un courant continu variable (8).
8. Procédé selon la revendication 7, caractérisé en ce que l'intensité I dudit courant continu variable comprenant une intensité I2 superposée à une intensité est choisie dans le groupe comprenant variation linéaire, variation par paliers, variation exponentielle, variation logarithmique, variation suivant une fonction polynomiale ou une combinaison de ces éléments.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'on déplace ledit au moins un moyen pour générer un champ magnétique (7) le long dudit axe principal de manière à varier la position sur ladite électrode du pied de l'arc électrique généré entre lesdites électrodes (1 ,2).
10. Procédé selon la revendication 9, caractérisé en ce qu'on déplace ledit au moins un moyen pour générer un champ magnétique (7) avec une vitesse variable dans le temps.
11. Procédé selon la revendication 10, caractérisé en ce qu'on déplace ledit au moins un moyen pour générer un champ magnétique (7) avec une vitesse variant progressivement ou par paliers.
12. Procédé selon la revendication 10 ou 11 , caractérisé en ce qu'on déplace ledit au moins un moyen pour générer un champ magnétique (7) de part et d'autre d'une position de référence.
13. Procédé selon l'une des revendications 7 à 12, caractérisé en ce qu'on réalise, simultanément ou successivement, un déplacement dudit au moins un moyen pour générer un champ magnétique (7) le long dudit axe principal et l'application du courant continu variable.
14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'on module l'injection d'un gaz plasmagène secondaire (10) afin de contrôler la position du pied d'arc.
EP09775220A 2008-12-19 2009-12-17 Procédé de contrôle de l'usure d'au moins une des électrodes d'une torche à plasma Active EP2371186B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09775220T PL2371186T3 (pl) 2008-12-19 2009-12-17 Sposób kontrolowania zużycia co najmniej jednej z elektrod palnika plazmowego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858823A FR2940584B1 (fr) 2008-12-19 2008-12-19 Procede de controle de l'usure d'au moins une des electrodes d'une torche a plasma
PCT/EP2009/067418 WO2010070051A1 (fr) 2008-12-19 2009-12-17 Procédé de contrôle de l'usure d'au moins une des électrodes d'une torche à plasma

Publications (2)

Publication Number Publication Date
EP2371186A1 true EP2371186A1 (fr) 2011-10-05
EP2371186B1 EP2371186B1 (fr) 2013-01-16

Family

ID=40823067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09775220A Active EP2371186B1 (fr) 2008-12-19 2009-12-17 Procédé de contrôle de l'usure d'au moins une des électrodes d'une torche à plasma

Country Status (7)

Country Link
US (1) US8502109B2 (fr)
EP (1) EP2371186B1 (fr)
JP (1) JP5591823B2 (fr)
CA (1) CA2745984C (fr)
FR (1) FR2940584B1 (fr)
PL (1) PL2371186T3 (fr)
WO (1) WO2010070051A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852693B2 (en) 2011-05-19 2014-10-07 Liquipel Ip Llc Coated electronic devices and associated methods
EA031345B1 (ru) * 2013-09-30 2018-12-28 Минтек Измерение электрических параметров дуговой печи постоянного тока
KR101629683B1 (ko) * 2015-03-27 2016-06-14 한국수력원자력 주식회사 역극성/정극성 동작이 가능한 구조의 플라즈마 토치
US10616988B2 (en) 2017-06-20 2020-04-07 The Esab Group Inc. Electromechanical linearly actuated electrode
CN113905499B (zh) * 2021-08-30 2024-05-03 中国航天空气动力技术研究院 一种气动-磁场扫描管状电弧等离子加热器及使用方法
CN114245557B (zh) * 2021-12-24 2024-03-19 中国航天空气动力技术研究院 等离子体发生器电弧弧根电流密度测量系统及测量方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376211A (en) * 1965-04-19 1968-04-02 Phillips Petroleum Co Method and apparatus for performing chemical reactions by means of an electric arc
CA1248185A (fr) 1985-06-07 1989-01-03 Michel G. Drouet Methode et systeme de controle de l'erosion des electrodes d'une torche a plasma
US4780591A (en) * 1986-06-13 1988-10-25 The Perkin-Elmer Corporation Plasma gun with adjustable cathode
FR2609358B1 (fr) * 1987-01-07 1991-11-29 Electricite De France Torche a plasma a pied d'arc amont mobile longitudinalement et procede pour maitriser son deplacement
NO176300C (no) * 1991-12-12 1995-03-08 Kvaerner Eng Anordning ved plasmabrenner for kjemiske prosesser
JPH07211486A (ja) * 1994-01-24 1995-08-11 Nippon Steel Corp プラズマトーチの溶損の調整方法
FR2735941B1 (fr) 1995-06-23 1997-09-19 Aerospatiale Torche a plasma a bobine electromagnetique de deplacement du pied d'arc independante et integree
FR2763466B1 (fr) * 1997-05-14 1999-08-06 Aerospatiale Systeme de regulation et de pilotage d'une torche a plasma
NL1023491C2 (nl) * 2003-05-21 2004-11-24 Otb Groep B V Cascadebron.
US7608797B2 (en) * 2004-06-22 2009-10-27 Vladimir Belashchenko High velocity thermal spray apparatus
JP2006097917A (ja) * 2004-09-28 2006-04-13 Hitachi Metals Ltd プラズマ式溶融炉の制御方法
US7750265B2 (en) * 2004-11-24 2010-07-06 Vladimir Belashchenko Multi-electrode plasma system and method for thermal spraying

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010070051A1 *

Also Published As

Publication number Publication date
CA2745984C (fr) 2017-07-25
FR2940584B1 (fr) 2011-01-14
US20110284504A1 (en) 2011-11-24
FR2940584A1 (fr) 2010-06-25
PL2371186T3 (pl) 2013-06-28
US8502109B2 (en) 2013-08-06
JP2012514290A (ja) 2012-06-21
WO2010070051A1 (fr) 2010-06-24
JP5591823B2 (ja) 2014-09-17
CA2745984A1 (fr) 2010-06-24
EP2371186B1 (fr) 2013-01-16

Similar Documents

Publication Publication Date Title
EP2371186B1 (fr) Procédé de contrôle de l&#39;usure d&#39;au moins une des électrodes d&#39;une torche à plasma
EP2283283A2 (fr) Dispositif de generation de flux thermique a materiau magnetocalorique
FR2823949A1 (fr) Procede et dispositif de generation de lumiere dans l&#39;extreme ultraviolet notamment pour la lithographie
EP2307702B1 (fr) Pilotage de l&#39;alimentation electrique d&#39;une bougie d&#39;allumage d&#39;un moteur a combustion interne
FR2786359A1 (fr) Tube a neutrons hermetique
EP1799488A1 (fr) Procede et dispositif pour alimenter en courant electrique un vehicule a moteur electrique
CA2800290C (fr) Cyclotron apte a accelerer au moins deux types de particules
FR2946790A1 (fr) Contact pour ampoule a vide a moyenne tension a coupure d&#39;arc amelioree, ampoule a vide et disjoncteur, tel qu&#39;un disjoncteur sectionneur d&#39;alternateur associes.
FR2689423A1 (fr) Dispositif et procédé permettant le nettoyage par faisceau laser de la paroi intérieure de tubes.
EP0277845A1 (fr) Torche à plasma à pied d&#39;arc amont mobile longitudinalement et procédé pour maitriser son déplacement
FR3050488A1 (fr) Actionneur rotatif utilisant des fils d’alliage a memoire de forme en traction
CA2687070A1 (fr) Actionneur electromagnetique a reluctance variable
FR2955628A1 (fr) Procede et dispositif de modulation du debit massique d&#39;un ecoulement de gaz
CA2523850C (fr) Eclateur, et notamment eclateur a haute tension
EP2377373B1 (fr) Procédé de génération d&#39;un flux de plasma
FR2573931A1 (fr) Generateur laser a flux gazeux et procede de fonctionnement de ce generateur
EP0690660B1 (fr) Dispositif et procédé de chauffage d&#39;un liquide ionique en écoulement
WO2003019735A1 (fr) Dispositif de transmission electrique de systemes rotatifs
FR2902868A1 (fr) Interrupteur thermique a gaz a element d&#39;echange thermique mobile
FR2884741A1 (fr) Procede de soudage de canalisations metalliques du type pipeline et son dispositif de mise en oeuvre
EP2368279A1 (fr) Procede d&#39;etablissement accelere d&#39;un gradient de temperature dans un element magnetocalorioue et generateur thermique magnetocalorioue mettant en uvre ledit procede
FR2796218A1 (fr) Dispositif et procede pour generer des variations controlees intenses et breves de pression magnetique au sein d&#39;un echantillon de materiau solide
FR2972845A1 (fr) Procede de fabrication d&#39;un fusible, methode de mise en oeuvre de ce procede, et fusible equipe de moyens de controle de l&#39;environnement electromagnetique
FR3013241A1 (fr) Procede de traitement de la surface d&#39;une paroi dans un appareil de protection electrique et appareil comportant au moins une paroi traitee selon ce procede
FR2836592A1 (fr) Resistor en materiau carbone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 594452

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009012867

Country of ref document: DE

Effective date: 20130314

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 594452

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130116

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130516

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130427

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130416

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 14029

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130516

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

26N No opposition filed

Effective date: 20131017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009012867

Country of ref document: DE

Effective date: 20131017

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131217

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20191204

Year of fee payment: 11

Ref country code: HU

Payment date: 20191216

Year of fee payment: 11

Ref country code: CZ

Payment date: 20191210

Year of fee payment: 11

Ref country code: BG

Payment date: 20191218

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191227

Year of fee payment: 11

Ref country code: DE

Payment date: 20191223

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009012867

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201217

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 14029

Country of ref document: SK

Effective date: 20201217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201218

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231121

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231127

Year of fee payment: 15

Ref country code: BE

Payment date: 20231212

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 15