EP2362686B1 - Transducteur acoustique pour l'insertion dans une oreille - Google Patents

Transducteur acoustique pour l'insertion dans une oreille Download PDF

Info

Publication number
EP2362686B1
EP2362686B1 EP11001587.2A EP11001587A EP2362686B1 EP 2362686 B1 EP2362686 B1 EP 2362686B1 EP 11001587 A EP11001587 A EP 11001587A EP 2362686 B1 EP2362686 B1 EP 2362686B1
Authority
EP
European Patent Office
Prior art keywords
membrane structure
membrane
sound transducer
layer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11001587.2A
Other languages
German (de)
English (en)
Other versions
EP2362686A3 (fr
EP2362686A2 (fr
Inventor
Dominik Kaltenbacher
Armin Schäfer
Jonathan Schächtele
Hans-Peter Zenner
Erich Dr. Goll
Ernst Dalhoff
Paul Muralt
Janine Conde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2362686A2 publication Critical patent/EP2362686A2/fr
Publication of EP2362686A3 publication Critical patent/EP2362686A3/fr
Application granted granted Critical
Publication of EP2362686B1 publication Critical patent/EP2362686B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/005Piezoelectric transducers; Electrostrictive transducers using a piezoelectric polymer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the invention relates to a sound transducer for generating sound vibrations, which can be used in an ear and in particular can be used for an implantable hearing aid.
  • the sound transducer has at least one carrier layer and at least one piezoelectric layer, whereby a deflection is achieved via a bimorph principle, or a deflection can be detected by tapping a voltage.
  • the technical problem with hearing aid implants is the coupling of the implanted transducer to the auditory system of the middle and inner ear.
  • Current implants make a mechanical connection to the ossicles. This requires a healthy middle ear during implantation, which excludes patients with chronic otitis media and inoperable damage to the ankle chain from treatment.
  • a component is attached directly to the ossicles, which vibrates and amplifies the auditory ossicle movement via the direct mechanical coupling.
  • the oscillation of the attached to the ossicles component is, for example, electromagnetically by a moving between two coils iron core (eg AU 2009202560 A2 ) or by a permanent magnet oscillating in a magnetic field generated outside the middle ear (eg WO 0047138 A1 ) generated.
  • the WO 2005 / 006809A1 describes a piezoelectric vibrator wherein a piezoelectric vibrator is supported at a point near its center and can oscillate freely at the end.
  • the vibration generator has a piezoelectric oscillator, to which an input voltage is is put, a diaphragm to which oscillations of the vibrator are transmitted and connecting means, one end of which is fixed near the center of the piezoelectric vibrator and the other end is firmly connected to the diaphragm.
  • the JP 61 150499 A describes a way to absorb internal vibrations occurring in a vibrating piezoelectric diaphragm.
  • the diaphragm is provided with notches.
  • a problem with many prior art solutions is that they require a mastoidectomy, in particular to provide the transducer with electrical energy. Such procedures are relatively complex and usually can not be done on an outpatient basis carry out. To make matters worse, that the anatomical spaces that are available for implantation, are extremely small and the transducer therefore has to muster an extremely high energy density. In many solutions of the prior art also occur coupling losses and the coupling quality is poorly reproducible. Precisely because of this, however, the intervention for the insertion of a hearing aid is reserved for only a few specialists with expensive equipment, which is why these solutions are expensive and less widespread. In addition, existing actuators have a size that is suitable only in part of the patient to optimally couple to the desired anatomical structures such as the round window membrane, while a reduction of the existing sound transducer would lead to insufficient performance.
  • the object of the present invention is to specify a sound transducer which can be implanted with little effort, in particular without mastoidectomy, and at the same time achieves a high audiological quality.
  • a low variability of the audiological quality is desired.
  • the implantable sound transducer according to the invention is set up and suitable for generating and / or detecting sound vibrations and has at least one Membrane structure on.
  • the membrane structure of the sound transducer according to the invention is divided into at least one, two or more segments by at least one cut line in its planar extent.
  • Subdivision of the membrane surface means that the entire membrane, so both the support layer and the piezoelectric layers, and optionally electrode layers are divided by common cutting lines, so that the membrane is mechanically decoupled at the cutting line or lines, which means that two by a cutting line separate regions of the membrane structure are independently movable.
  • the subdivision or segmentation of the membrane surface thus means corresponding segmentation of the carrier layer and corresponding segmentation of the piezoelectric layers and optionally electrode layers.
  • a sound transducer placed in front of the round or oval window can also be implanted by an implanting surgeon via access via the external auditory canal and eardrum in a relatively short time, possibly even on an outpatient basis.
  • the membrane structure is designed so that the sound transducer on, in or in front of a round window or an oval window of an ear or a hearing can be arranged so that it covers this window at least partially or completely.
  • the sound transducer can be arranged so that vibrations of the membrane structure cause sound vibrations through the round or oval window.
  • the membrane structure is in direct contact with the membrane of the corresponding window.
  • the sound transducer and the membrane structure is designed so that the sound transducer in a niche in front of the oval or round window of an ear, i. the round window, as measured by the average of the population or the majority of the population, is recoverable.
  • the round window as measured by the average of the population or the majority of the population.
  • an acoustic coupling between the membrane structure and the corresponding window membrane on the one hand by introducing material between the membrane structure and the window membrane, both touching, are produced.
  • the membrane structure is arranged on the round or oval window in such a way that it directly contacts the membrane of the corresponding window, it is however possible for layers to passivate or seal the membrane structure to be arranged between the actual membrane structure and the corresponding window membrane are.
  • sound vibrations are understood to mean vibrations with frequencies that are perceptible by the human ear, ie vibrations between approximately 2 Hz and 20,000 to 30,000 Hz Sound vibrations are also suitable to excite sound waves in a medium, in particular air or perilymph.
  • Sound vibrations are advantageously generated by the round or oval window.
  • the membrane structure has at least one carrier layer and at least one piezo layer arranged on the carrier layer, which has at least one piezoelectric material.
  • the carrier layer and the piezoelectric layer form a bimorph structure and are therefore arranged and configured such that the membrane structure can be set into oscillation by applying a voltage, in particular an alternating voltage, to the piezoelectric layer and / or the voltages generated in the piezoelectric layer by oscillation of the membrane are detectable.
  • the carrier layer and the piezo layer can be arranged on or against one another with parallel layer planes and should be connected to one another directly or indirectly. Said cut lines preferably cut through all layers of the membrane structure.
  • the membrane structure designed so that it allows a maximum deflection of 1 to 5 microns, preferably 5 microns.
  • a maximum deflection of 1 to 5 microns preferably 5 microns.
  • the average energy equals half of the product of maximum force and maximum displacement, in this example 4 ⁇ 10 -8 J, to obtain the power. Converted to a space of eg 2 mm 3 is needed in this example, therefore, an energy density of 20 J / m 3 .
  • the segments can be designed, in particular with regard to their length, so that the impedance is optimal.
  • the membrane structure is particularly preferably designed in thin-film technology.
  • Thin layers are advantageous because high fields are required to produce high energy densities while the applied voltages should be as low as possible due to the biological environment.
  • the required energy densities can be achieved in a thin-film membrane.
  • the piezoelectric layers can be produced according to the invention in thin-film technology.
  • piezo material is applied in the thickness of the piezo layer for a piezo layer of the membrane structure to be produced.
  • the application can be made via deposition techniques such as physical vapor deposition, chemical vapor deposition sputtering and others.
  • the piezo layers preferably have a thickness of ⁇ 20 ⁇ m, preferably ⁇ 10 ⁇ m, particularly preferably ⁇ 5 ⁇ m and / or ⁇ 0.2 ⁇ m, preferably ⁇ 1 ⁇ m, preferably ⁇ 1.5 ⁇ m, particularly preferably 2 2 ⁇ m.
  • the electrode layers preferably have a thickness of ⁇ 0.5 ⁇ m, preferably ⁇ 0.2 ⁇ m, more preferably ⁇ 0.1 ⁇ m and / or ⁇ 0.02 ⁇ m, preferably ⁇ 0.05 ⁇ m and particularly preferably ⁇ 0.08 ⁇ m ,
  • Thin layers of the transducer - both the silicon beam structure and the piezo layer (s) - ensure that only a small mass is set in motion when the beams are deflected.
  • the resonant frequency of the vibration system is in the upper range of the frequency range of human hearing for the described Aktorditionn. It is thus a uniform excitation of the round window over the entire human frequency range possible.
  • the generation of the mechanical vibrations of the transducer according to the invention is based on the principle of elastic deformation of a bending beam, wherein the membrane or segments of the membrane can be considered as a bending beam.
  • the piezoelectric layer (piezoelectric layer) can be shortened and / or extended by applying the voltage and the electric field that can be generated thereby.
  • mechanical stresses are generated, leading to an upward bending of the beam or the Membrane structure lead to a shortening piezoelectric layer and a corresponding downward movement with extending piezoelectric layer. Whether the piezo layer extends or shortens depends on the polarization direction of the piezoelectric layer and the direction of the applied voltage or the applied electric field.
  • the described carrier layer may carry a single layer of piezoelectric material.
  • the electrodes form further components of the layer structure.
  • a bottom electrode can be applied directly or above a barrier layer on the silicon substrate, whereas a top electrode can be located on the piezoelectric layer.
  • the polarization direction of the piezoelectric material is preferably perpendicular to the surface of the silicon structure.
  • the membrane structure has a circular or oval circumference.
  • the circumference of the membrane structure corresponds to the circumference of the round or oval window of an ear, so that the peripheral line of the membrane structure runs parallel to the circumference of the round or oval window when the sound transducer is implanted.
  • the transducer By a round or slightly oval shape of the transducer can be placed directly on the membrane of the round window. Since the round window membrane can be regarded as firmly clamped on its bony border and there shows no oscillation deflection, the maximum oscillation deflections occur in the geometric center of the membrane. If the transducer is now placed in the middle of the round window membrane, the maximum deflections of transducer and membrane are superimposed, so that a good audiological coupling and a large sound amplification potential is achieved by the transducer. An n-angular extent of the membrane structure with n preferably ⁇ 8 is also possible.
  • the cutting lines which divide the membrane surface into segments, extend radially from an edge of the membrane structure in the direction of a center of the membrane.
  • the cutting lines do not start right at the edge and do not reach to the center, it is also sufficient if the cutting lines from the vicinity of the edge to the vicinity of the center run. If, however, the cutting lines do not reach the center point, a free region should be present in the center, in which the cutting lines end, so that the mechanical decoupling of the segments at that end facing the center point is ensured.
  • the segments may in this case be designed such that they are cake-shaped, that is, have two edges extending at an angle to each other as side edges and an outer edge, which on the circumference of the Membrane structure runs parallel to this circumference.
  • the segments may be tapered or cut so as to give a free area around the center.
  • the segments can then be fixedly disposed on the outer edge at the edge of the membrane structure and be independent of each other at the side edges and optionally that the edge facing the center, so that they can swing freely around the outer edge. The largest deflection will normally occur at that end of the segment facing the center.
  • the number of segments is ⁇ 8.
  • the cutting lines can in this case run radially straight, so that the segments have straight radial edges.
  • the radially extending cutting lines are curved so that there are segments with non-straight radially extending edges.
  • segments may thereby be formed that extend in an arcuate, wave-shaped or along a zigzag line in the radial direction. Numerous other geometries are conceivable.
  • the membrane structure can be structured in a spiral shape by at least one cutting line.
  • the at least one cutting line runs in such a way that at least one spiral-shaped segment results, which preferably winds around a center of the membrane structure. It is also possible to provide a plurality of cutting lines, which divide the membrane structure so that there are two or more spiral-shaped segments, which are advantageous in each case to wind the center of the membrane structure and particularly preferably run into each other.
  • At least one first and at least one second electrode layer may be arranged on the membrane structure, wherein the at least one piezoelectric layer is arranged between the first and the second electrode layer.
  • the electrode layers preferably cover the piezo layer and are arranged with parallel layer planes on or on the piezo layer.
  • the first or second electrode layer is arranged between the carrier layer and the piezo layer, so that the piezo layer is arranged on one of the electrode layers on the carrier layer.
  • the piezoelectric layer and the electrode layers completely cover each other.
  • segmental structures allows for a higher deflection as compared to an unstructured membrane, as the beam elements, where separated by the cutting lines, e.g. in the center of the disc, free to deform and thus experience a constant bend in one direction only.
  • the deformation of a continuous membrane is characterized by a change in direction of the curvature, which leads to lower deflections.
  • the membrane structure has a plurality of piezoelectric layers arranged on one another with parallel surfaces, an electrode layer being arranged between each two adjacent piezoelectric layers. It is thus on the support layer alternately one electrode layer and a piezoelectric layer arranged. Electrode layers and piezo layers can be arranged directly on one another, connected to one another, or arranged one above the other via one or more intermediate layers. With this embodiment, vibrations can be generated with a particularly large force or power and detect vibrations particularly accurately.
  • electrodes with different electrical potential alternate with piezoelectric layers in the layer structure.
  • the silicon structure is first followed by a bottom electrode, followed by a first piezoelectric layer, an electrode with opposite potential, a second piezoelectric layer, an electrode with the potential of the bottom electrode, etc.
  • the poling direction of the individual piezoelectric layers can be perpendicular to the surface of the membrane structure, as in the single-layer converter, but it shows in the opposite direction for alternating piezoelectric layers.
  • the electrical field which builds up between the electrodes and the polarization direction alternating for the individual piezoelectric layers ensures a common change in length of the entire layer structure, which in turn causes a bending of the silicon structure.
  • the electrode layers are configured or contacted so that each two adjacent electrode layers can be charged with charge of different polarity.
  • an electric field can be generated in the piezoelectric layers, which runs in each case from one electrode layer to the adjacent electrode layer.
  • the piezoelectric layers can be particularly uniformly interspersed with electric fields.
  • different signs of a voltage arising at the piezoelectric layer can be tapped in each case by adjacent electrode layers.
  • At least two band-shaped, ie elongate, electrodes forming a pair of electrodes may be arranged on the surface of the at least one piezoelectric layer or on the surface of the carrier layer so that they run parallel to the corresponding surface and preferably also parallel to each other.
  • the two electrodes of an electrode pair can each be charged with charge of different polarity, so that an electric field is formed between the electrodes of an electrode pair, which at least partially passes through the piezoelectric layer. If a plurality of pairs of electrodes is provided, an electric field can also form between electrodes of different polarity of adjacent pairs of electrodes, which penetrates the piezoelectric layer. In the case of vibration detection, different signs of the voltage below can be contacted accordingly by one electrode of the electrode pair.
  • the conductor track structures of the band-shaped electrodes may preferably have a rectangular cross-section.
  • a multiplicity of electrode pairs each with two electrodes which can be acted upon with different polarity, are so advantageous are arranged so that the electrodes of the plurality of electrode pairs are parallel to each other.
  • the electrode pairs should also be arranged so that in each case two adjacent electrodes with charge of different polarity can be acted upon. In this way, between each two adjacent electrodes forms an electric field passing through the piezoelectric layer.
  • a plurality of electrode pairs are provided, so are a plurality of electrodes on a surface of the piezoelectric layer or the carrier layer, which can be parallel to each other and can be arranged side by side with alternating polarity.
  • the polarity of the piezoelectric material is not distributed homogeneously over the entire piezoelectric layer in this case, but rather the polarization direction extends in a field-line fashion from the negative to the positive electrode. If, during operation of the converter, the comb-shaped electrodes are subjected to alternating electrical potential, an electric field is formed along the polarization direction of the piezoelectric material, along which the piezo material expands or shortens. As a result, the entire piezo layer is lengthened or shortened in the longitudinal direction of the beam, which leads to a downward bending or upward bending of the silicon structure.
  • the electrodes also extend parallel to the edge of the membrane structure.
  • the electrodes preferably form concentric circles around the center of the membrane structure. Accordingly, the electrodes are preferably oval in an oval membrane structure designed.
  • the electrodes can each extend along the entire circumference parallel to the circumference of the membrane structure or only on a part of the circumference, so that they have, for example, the shape of circular circumference sections.
  • Ribbon-shaped electrodes can be contacted particularly advantageously via common conductors, with a majority of the electrodes being contacted by a common conductor.
  • a plurality of the electrodes of one polarity may be connected to at least one first conductor and electrodes of the other polarity may be connected to at least one second conductor.
  • the electrodes of different polarity assigned to the different conductors can mesh with one another like a comb.
  • the common conductors may in this case intersect the electrodes of the polarity corresponding to them and run e.g. in the case of circular electrodes, particularly preferably radially.
  • the membrane structure can be designed in a multi-layered manner.
  • a plurality of piezo layers to be arranged one on top of another, in which case band-shaped electrodes can run between in each case two adjacent piezo layers.
  • the arrangement of the electrodes in this case corresponds to the arrangement described above on the surface of a piezoelectric layer.
  • the membrane structure has at least one piezoelectric layer which is penetrated by band-shaped electrodes or electrode pairs in one or more planes. In this case, the electrodes of the pairs of electrodes run inside the corresponding ones Piezo layer.
  • the various possibilities of arrangement here correspond to those of the above arrangement on the surface of the piezoelectric layer.
  • This variant of the sound transducer has over the previous solution to a thicker piezoelectric layer, which can be traversed by several layers of comb-shaped electrodes.
  • the polarization in the piezoelectric material in turn proceeds in a field-line fashion from the negative to the positive printed conductor electrodes.
  • an electric field is formed along the polarization direction, which leads to an expansion or shortening of the piezoelectric material along the field lines and to a downward bending or upward bending of the beam structure.
  • band-shaped electrodes may be arranged along the longitudinal direction of the segments.
  • an electrode pair is sufficient here.
  • the voltage with which the electrodes are applied is less than 3 volts, preferably less than 2 volts, particularly preferably less than 1.3 volts.
  • the piezoelectric effect in the range considered is proportional to the strength of the electric field which penetrates the material
  • very high fields can be produced by using very thin piezoelectric layers with a very small spacing of the electrodes (the electric field is calculated as a quotient in the homogeneous case applied voltage and distance of the electrodes) that the piezoelectric effect is sufficient to achieve the necessary for the excitation of the round window vibration deflections and forces.
  • the carrier layer may comprise or consist of silicon.
  • piezo materials are, inter alia, PbZr x Ti 1-x O 3 with preferably 0.45 ⁇ x ⁇ 0.59, more preferably with dopants of, for example La, Mg, Nb, Ta, Sr and the like, preferably with concentrations between 0.1 and 10%, in Question.
  • Other solid solutions with PbTiO 3 such as Pb (Mg 1/3 , Nb 2/3 ) O 3 , Pb (Sn 1/3 Nb 2/3 ) O 3 are also suitable.
  • Possible materials are also lead-free materials containing KNbO 3 , NaNbO 3 , doping with Li, Ta, etc., Bi-containing piezoelectric layers, Aurivilius phases with Ti, Ta, Nb, and also Perovskitphasen, such as BiFe 3 . Even classic thin-film materials such as AlN and ZnO are possible.
  • Silicon as a carrier material for the piezoelectric layers makes it possible to produce the disk-shaped structure and the cake-piece-shaped bending beam with the structuring techniques of microsystem technology.
  • Known and proven coating and etching processes for producing beams, electrodes and piezoelectric layer can be used, for example sol-gel techniques, sputtering, chem. Etching, ion etching, etc.
  • the methods of microsystem technology allow a parallelization of the manufacturing process; From a silicon wafer can be produced in a production passage a variety of transducers. This allows a cost-effective production.
  • the at least one piezoelectric layer preferably has a thickness of ⁇ 20 ⁇ m, preferably ⁇ 10 ⁇ m, more preferably ⁇ 5 ⁇ m and / or ⁇ 0.2 ⁇ m, preferably ⁇ 1 ⁇ m, preferably ⁇ 1.5 ⁇ m, particularly preferably 2 2 ⁇ m.
  • the electrode layers each preferably have a thickness of ⁇ 0.5 ⁇ m, preferably ⁇ 0.2 ⁇ m, more preferably ⁇ 0.1 ⁇ m and / or ⁇ 0.02 ⁇ m, preferably ⁇ 0.05 ⁇ m, particularly preferably ⁇ 0.08 microns.
  • the sound transducer in the round window of an ear can be arranged, the dimensions of which can be understood as those of the majority or average of the population in the scope of the present document.
  • the sound transducer according to the invention can be coupled directly by placing the membrane surface directly on a membrane of the round or oval window. Since the maximum vibration deflection of the transducer in the geometric center of the disk is superimposed on the maximum vibration of the diaphragm in the center of the round window, a good audiological coupling with a high sound amplification potential is possible.
  • the sound transducer may also have a plurality of membrane structures as described above.
  • these membrane structures are structured in the same way and arranged one above the other in parallel to one another such that identical segments of the structure or the cut lines of the membrane structures overlap one another. Identical segments are then coupled to one another such that a deflection and / or force application of one of the segments is transmitted to the adjacent segments.
  • the membrane structures can be arranged one above the other so that when applying a voltage of a given polarity to the transducer all segments are deflected in the same direction.
  • the membrane structures are in this case the same orientation. In this case, a total force higher than that of a single membrane structure can be realized.
  • the membrane structures on one another in such a way that adjacent membrane structures are in each case oriented in the opposite direction, so that when a voltage of a given polarity is applied, adjacent membrane structures each deflect in different directions. In this case, a total deflection can be realized that is greater than that of a single membrane structure.
  • the embodiments of the invention may be specially adapted to the requirements of an implantable hearing aid with an audiological stimulation of the round or oval window in the middle ear.
  • the sound transducer is a sound generator. It is also possible to equip classic hearing aids, hearing aids that sit directly on the eardrum or other miniature speakers, such as headphones, with the transducer according to the invention.
  • the transducer is also used as a sensor can be used and allows to generate an electrical signal from a sound signal.
  • the transducer can therefore also be used as a microphone.
  • FIG. 1 shows the basic structure of a transducer according to the invention for the generation and / or detection of sound vibrations, which can be used in an ear.
  • a membrane structure having a piezo layer 2 and two electrode layers 3 and 4 is arranged on a carrier layer 1, for example a silicon layer 1.
  • the carrier layer 1 (elastic layer 1) can be, for example, about one to two times as thick as the piezoelectric layer.
  • a voltage can be applied between the electrode layers 3 and 4 by means of a voltage source 5 or a voltage can be detected by means of a suitable detector.
  • the first one of the electrode layers 3 is arranged on the carrier layer 1, on which then the piezoelectric layer 2 is arranged.
  • the second electrode layer 4 is arranged on the side of the piezoelectric layer 2 contacting the electrode layer 3, the second electrode layer 4 is arranged.
  • the electrode layers 3 and 4 are charged with opposite polarity, so that between the electrode layers 3 and 4, an electric field is created, which passes through the piezoelectric layer 2.
  • FIG. 1A shows the state of the transducer in the event that no voltage is applied.
  • the carrier layer 1, the piezoelectric layer 2 and the electrode layers 3 and 4 in this case extend in a plane, are therefore flat.
  • a voltage applied by means of the voltage source 5 between the electrode layers 3 and 4 so passes through an electric field, the piezoelectric layer 2.
  • the piezoelectric layer 2 is shortened thereby, whereby the entire membrane structure of the carrier layer 1, the electrode layers 3 and 4 and the piezoelectric layer in Direction of the piezo layer bends upwards.
  • the voltage 5 is reversed, the piezoelectric layer 2 expands and the membrane structure bends away from the piezoelectric layer 2.
  • an alternating voltage is applied to the voltage source 5, the membrane structure can be set in oscillation.
  • FIG. 2 shows a sound transducer according to the invention, which is designed circular, so that it is particularly favorable placed in front of the round window of an ear.
  • FIG. 2A a view of the sound transducer, so that one of the electrode layers 4 can be seen
  • FIG. 2B shows a top view of one of in FIG. 2A shown side opposite side, so that the carrier layer 1 to see
  • Figure 2C shows a top view, the in FIG. 2A shown corresponds to supervision, but here is the membrane structure in the deflected state.
  • FIGS. 2A and 2B show a sound transducer according to the invention with a circular membrane structure in the undeflected state, in which no voltage is applied to the electrode layers 3 and 4.
  • the membrane structure is divided in the example shown by section lines 7 in eight segments 9a, 9b.
  • the segments 9a, 9b are here cake piece-shaped and firmly connected to an edge 6 of the transducer.
  • the segments 9a, 9b are mechanically separated from each other at the cutting lines 7, so that they are movable relative to one another here.
  • a small opening 8 may be provided in which the cutting lines 7 terminate.
  • the cutting lines 7 run radially from the edge 6 in the direction of the center 8.
  • FIGS. 2A and 2B shows the in FIGS. 2A and 2B shown membrane structure in a state that occurs when, as in FIG. 1B , a voltage is applied between the electrode layers 3 and 4.
  • the segments 9a, 9b of the membrane structure bend here as bimorph bars in the direction of the electrode layer 4, in the example shown thus upwards.
  • the distance of the deflected segments from the plane in which the segments rest in the undeflected state increases in the direction of the center 8 and reaches its greatest value at those ends of the segments 9a, 9b facing the center.
  • the curvature of the segments 9a, 9b maintains its sign between edge 6 and middle 8 at.
  • the segments 9a, 9b bend in the direction of the carrier layer 1, ie in Figure 2C shown below.
  • the segments 9a, 9b can be set in vibration.
  • the membrane structure is segmented into segments 9a, 9b. This means that both the carrier layer 1 and the piezoelectric layer 2 and the electrode layers 3 and 4 are segmented into segments 9a, 9b in such a way that the carrier layer 1, the electrode layers 3 and 4 and the piezo layer 2 of a segment completely overlap each other ,
  • FIG. 3 shows two possible variants of a sound transducer in comparison.
  • the membrane structure is divided into segments 9a, 9b.
  • FIG. 3B there is an unsegmented membrane structure.
  • segmented embodiment allows this compared to the unstructured in FIG. 3B shown diaphragm a higher deflection, since the two elements 9a, 9b can deform freely in the center 8 of the circular membrane and therefore experience in the direction from the edge 6 to the center 8 a constant curvature in only one direction.
  • the deflection in the middle 8 is lower.
  • the curvature of the membrane changes from the edge 6 in the direction of the center 8 and changes its sign.
  • FIG. 3B facilitates the FIG. 3B a gas and liquid-tight closure of an opening by the sound transducer.
  • FIG. 4 shows a section through an inventive Sound transducer in which a piezoelectric layer 2 is arranged between an electrode layer 3 and an electrode layer 4.
  • the embodiment substantially corresponds to that in FIG FIG. 1 shown.
  • a voltage source 5 a voltage between the electrode layers 3 and 4 can be applied, which causes an electric field 10 passing through the piezoelectric layer 2, as can be seen in the magnification.
  • the electric field causes the piezo layer 2 to expand or contract, as a result of which the membrane structure bends with the carrier layer 1, the electrode layers 3 and 4 and the piezo layer 2. If an AC voltage is applied to the voltage source 5, the membrane structure can be set in vibration.
  • FIG. 5 shows a further embodiment of the present invention, in which on a support layer 1 now a plurality of piezoelectric layers 2a, 2b, 2c, 2d arranged between them electrode layers 3, 4 is arranged.
  • an electrode layer 4 is initially arranged on the carrier layer 1, on which then a piezoelectric layer 2a is arranged.
  • An electrode layer is then arranged on the piezoelectric layer 2 a with the polarity of the aforementioned negative-polarity electrode layer 3.
  • a further piezoelectric layer 2b is now arranged, on which in turn an electrode layer with opposite polarity to the electrode layer 3 is arranged.
  • a total of four piezoelectric layers and three electrode layers 4 of one polarity and two electrode layers 3 of the opposite polarity alternate.
  • an electric field 10 is formed which passes between the piezoelectric layer 2 a, 2 b, 2 c, 2 d located between the electrode layers 3, 4, so that it expands or contracts.
  • the direction of the electric field changes according to the changing polarity of the electrode layers for the adjacent piezoelectric layers 2a, 2b, 2c, 2d.
  • the entire membrane system with carrier layer 1 and all piezoelectric layers 2 and electrode layers 3 and 4 can be set in vibration.
  • FIG. 6 shows another embodiment of the present invention.
  • a piezoelectric layer 2 is arranged on a carrier layer 1, which directly contacts the carrier layer 1 in the example shown.
  • band-shaped electrodes 3, 4 with alternating polarity are now arranged next to one another and parallel to one another.
  • electrodes of one polarity 3 alternate with the electrodes of the other polarity 4 in a sectional view.
  • the band-shaped electrodes 3 and 4 are shown in section and here have a substantial rectangular cross-section. The electrodes 3 and 4 are equidistant from each other.
  • an electric field 10 is now formed which extends from one of the electrodes 3 through the piezoelectric layer 2 to the adjacent electrode 4 of opposite polarity.
  • the electric field 10 by applying a voltage at the voltage source 5 between the electrodes 3 and 4 is formed, thus penetrating the piezoelectric layer 2. This thereby changes its length, so that the membrane structure with the carrier layer 1 and the piezoelectric layer 2 bends up or down.
  • the membrane structure may be supported by a frame 6 and be segmented or continuous.
  • FIG. 7 shows a further embodiment of the present invention, in which in turn a piezoelectric layer 2 is arranged on a carrier layer 1.
  • the piezoelectric layer 2 is again arranged directly on the carrier layer 1.
  • electrodes 3 and 4 are provided, which can be charged with different polarity when a voltage is applied.
  • the electrodes are designed in strip form and run parallel to each other in the longitudinal direction and parallel to the surface of the carrier layer 1 on the piezoelectric layer 2 FIG. 7
  • the electrodes 3 and 4 do not run on the surface of the piezoelectric layer 2 as shown in FIG FIG. 6 shown, but enforce the piezoelectric layer 2 in two planes. In each of the levels run in the same way as on the surface in FIG.
  • one electrode 3 of one polarity alternates with one electrode 4 of the other polarity in one plane.
  • electric fields 10 which extend between the electrodes 3 and 4 and pass through the piezoelectric layer 2 are formed.
  • the electrodes of the two planes shown above one another so that over an electrode of the lower level always one electrode of the upper level runs.
  • the electrodes running one above the other have the same polarity, so that the electric fields form predominantly between the electrodes of a plane.
  • the band-shaped electrodes 3 and 4 are arranged such that electrodes running one above the other always have a different polarity. Within a plane, the polarities can alternate.
  • FIG. 8 shows a plan view of a transducer according to the invention, in which the electrodes as in FIG. 6 or FIG. 7 are arranged.
  • the electrodes run on the surface shown. If the embodiment of those of FIG. 7 is, are within the piezoelectric layer below the electrodes shown 3 and 4 further electrodes 3 and 4 are arranged. The electrodes 3 and 4 then pass through the piezoelectric layer 2 in one or more planes.
  • the membrane shown in turn is circular and the electrodes are designed as concentric circular sections.
  • a plurality of electrodes 3 and 4 extend in a circle around the center 8 of the membrane, wherein the polarity of the electrodes 3 and 4 from the edge 6 in the direction of Center 8 alternates.
  • membrane is segmented into eight segments 9a, 9b, which are fixedly arranged on a common edge 6 and are mechanically decoupled from each other.
  • the plurality of electrodes 3 and 4 are in Figure 8A example shown contacted by conductors 11 and 12, which extend radially from the edge 6 in the direction of the center 8.
  • electrodes of one polarity 3 are always contacted by a conductor 11 and electrodes of the other polarity 4 by another conductor 12.
  • a plurality of electrodes 3 of the same polarity can always be contacted by a common conductor 11.
  • FIG. 8B shows a segment 9a in detail. It can be seen that the electrodes of one polarity 4 and those of the other polarity 3 engage in a comb-like manner and are contacted together at their one end by a common conductor 11 and 12, respectively.
  • the electrodes of one polarity 4 in this case run from their common conductor 12 in the direction of the conductor 11 of the other polarity, but end before they reach it, so that no electrical contact between electrodes 4 of one polarity and a conductor 11 of the other polarity is established.
  • electrodes 3 and 4 In the majority of the region between two conductors 11 and 12 of different polarity, electrodes 3 and 4 always run alternately in the radial direction, so that electrical fields can form between the electrodes as shown above, which penetrate the piezoelectric layer and thereby expand or contract the piezoelectric layer 2 can effect.
  • FIG. 9 shows a possible arrangement of an inventive Sound transducer 91 in one ear.
  • the sound transducer 91 has a main body 92, on which via an edge 6, the membrane system is arranged, of which only the carrier layer 1 is shown here.
  • the sound transducer 91 can be supplied from outside the ear or from the middle ear with electrical energy.
  • the sound transducer 91 is arranged in the round window 94, namely directly on the round window membrane 95. It would also be conceivable to arrange the sound transducer in front of the oval window, in front of which the stirrup 191 can be seen here.
  • the arrangement shown in front of the round window is particularly favorable, since here the sound transducer 91 can be used by a doctor in a relatively simple manner by the outer ear and the eardrum.
  • the membrane system is set in vibration, then the oscillation is transmitted directly to the round window membrane 95, whereby sound waves in the inner ear 96 can be generated.
  • Other possibilities of arranging a sound transducer 91 would be in other places in the ear, for example in front of the eardrum, similar to the round window membrane in the example shown, or as earphones in front of the external auditory canal.
  • the sound transducer 91 could also serve as a microphone.
  • the sound transducer 91 shown can also be coupled with any other sound sensors that enable its membrane structure to be activated.
  • the sound transducer can also be used in the external auditory canal as an earphone.
  • the external shape of sound transducer 91 and membrane structure are to be adapted to the anatomical environment.
  • FIG. 10 shows a transducer with six to achieve a large amplitude stacked transducers 102a, 102b, 102c, 102d, 102e, 102f, which respectively those in FIG. 3A correspond to shown transducers.
  • the same reference numerals correspond to those in FIG FIG. 3A used reference numerals.
  • two adjacent membrane structures for example 102a and 102b or 102b and 102c, are arranged reversed in relation to one another so that the membrane structures deflect in the opposite direction upon application of the same polarity for adjacent membrane structures.
  • an electrode 3 of a given polarity is oriented downwards in the case of a sound transducer 102c, then it is oriented upward in the case of the adjacent sound transducers 102b and 102d.
  • the electrode 4 of different polarity which is oriented upwards in the case of a sound transducer 102c, is also oriented downwards in the adjacent sound transducers 102b and 102d.
  • the individual segments of adjacent sound transducers are connected to each other via connecting means 101, so that a movement of a segment of a sound transducer causes a movement of the same segment of an adjacent sound transducer.
  • the segments of a sound transducer are connected only to the segments of a further adjacent sound transducer, namely that sound transducer to which the membrane structure faces.
  • Only one of the membrane structures preferably an outer membrane structure 102a or 102f, is firmly implanted into the transducer with respect to an ear.
  • the other membrane structures 102b, 102c, 102d, 102e are movable and are moved as the segments bend.
  • FIG. 11 shows a further construction of a sound transducer with several, here four, membrane structures 202a, 202b, 202c and 202d, as shown in FIG FIG. 3A are shown.
  • the membrane structures are in this case again arranged one above the other parallel to one another and oriented identically in this example.
  • Adjacent membrane structures are connected to one another via connection means 201, all membrane structures being connected to one another here.
  • a membrane structure 202b is thus connected to both adjacent membrane structures 202a and 202c.
  • the connection causes a force effect of a deflection of a membrane structure to be transferred to the adjacent membrane structures.
  • all membrane structures 202a, 202b, 202c, 202d are preferably fixed to an ear in which they are installed, so that the segments move relative to the ear. The embodiment shown, a vibration can be realized with a particularly large force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Neurosurgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Claims (14)

  1. Transducteur acoustique (91) pour l'insertion dans une oreille, avec lequel des vibrations acoustiques peuvent être produites, présentant :
    au moins une structure de membrane, la structure de membrane présentant au moins une couche porteuse (1) et au moins une couche piézo-électrique (2) disposée sur la couche porteuse (1), présentant au moins un matériau piézo-électrique, de telle sorte que, par l'application d'une tension à la couche piézo-électrique (2), des vibrations de la structure de membrane peuvent être produites, la structure de membrane étant, dans une surface de la structure de membrane, divisée en au moins un, deux segments (9a, 9b) ou davantage par au moins une ligne de coupe (7) séparant toutes les couches de la structure de membrane, de telle sorte que la membrane est découplée mécaniquement sur la ligne de coupe (7),
    caractérisé en ce que
    le transducteur acoustique (91) est un générateur acoustique implantable pour un appareil auditif, avec lequel des vibrations acoustiques peuvent être produites au moyen des vibrations de la structure de membrane, la structure de membrane au moins au nombre de un étant constituée de telle sorte qu'elle peut être disposée dans ou sur une fenêtre ronde (94) ou une fenêtre ovale d'une oreille et/ou dans une niche de fenêtre ronde d'une oreille en recouvrant la fenêtre (94) correspondante au moins partiellement ou complètement de telle sorte que des vibrations de la structure de membrane provoquent des vibrations acoustiques à travers la fenêtre(94) ronde ou ovale, le transducteur acoustique (91) pouvant être posé directement sur la membrane de la fenêtre correspondante.
  2. Transducteur acoustique selon la revendication précédente,
    la structure de membrane pouvant être disposée en contact direct ou par le biais de tissus conjonctifs avec une membrane (95) de la fenêtre correspondante.
  3. Transducteur acoustique (91) selon la revendication précédente,
    caractérisé en ce que la structure de membrane est circulaire, elliptique ou avec n angles, où n est de préférence ≥ 8, et les lignes de coupe (7) sont placées de façon radiale à partir d'un bord de la structure de membrane en direction d'un point central (8) de la structure de membrane, de telle sorte que au moins deux segments (9a, 9b) sont formés, qui sont respectivement disposés de façon fixe avec une arête large sur le bord de la structure de membrane et qui sont mobiles avec un côté, tourné vers le point central (8), qui est en face de l'arête large.
  4. Transducteur acoustique selon l'une des revendications 1 ou 2,
    caractérisé en ce que la structure de membrane est circulaire, elliptique ou avec n angles, où n est de préférence ≥ 8, et au moins une des lignes de coupe (7) structure la structure de membrane en au moins un segment placé sous forme spiralée autour d'un point central (8) de la structure de membrane.
  5. Transducteur acoustique selon l'une des revendications précédentes,
    caractérisé en ce que la structure de membrane présente au moins une première couche d'électrode (3) et au moins une deuxième couche d'électrode (4), la couche piézo-électrique (2) au moins au nombre de un étant disposée entre la première couche d'électrode (3) et la deuxième couche d'électrode (4), et la première couche d'électrode (3) ou la deuxième couche d'électrode (4) étant de préférence disposée entre la couche porteuse (1) et la couche piézo-électrique (2).
  6. Transducteur acoustique selon l'une des revendications précédentes,
    caractérisé en ce que la structure de membrane présente une pluralité de couches piézo-électriques (2a, 2b, 2c, 2d) disposées les unes sur les autres avec des faces parallèles, une couche d'électrode (3, 4) étant disposée entre respectivement deux couches piézo-électriques (2a, 2b, 2c, 2d) voisines, respectivement deux couches d'électrode (3, 4) voisines pouvant être alimentées avec une charge de polarité différente de telle sorte qu'un champ électrique se constitue d'une couche d'électrode à l'autre entre respectivement deux couches d'électrode (3, 4) voisines, et les couches piézo-électriques (2a, 2b, 2c, 2d) touchant de préférence les couches d'électrode (3, 4) correspondantes.
  7. Transducteur acoustique selon l'une des revendications 1 à 3,
    caractérisé par une ou plusieurs paires de couches d'électrodes avec respectivement au moins deux électrode (3, 4) en forme de bande, les électrode (3, 4) en forme de bande des paires d'électrodes étant disposées respectivement parallèlement entre elles et parallèlement à une surface de la couche piézo-électrique au moins au nombre de un de telle sorte que respectivement deux électrodes (3, 4) placées au voisinage l'une de l'autre peuvent être alimentées avec une charge de polarité différente de telle sorte que, entre respectivement deux électrodes (3, 4) placées au voisinage l'une de l'autre, il se constitue un champ électrique traversant la couche piézo-électrique (2), les électrodes (3, 4) de plusieurs ou de toutes les paires d'électrodes étant de préférence parallèles entre elles.
  8. Transducteur acoustique selon la revendication 7,
    caractérisé en ce que la structure de membrane a un périmètre circulaire, elliptique ou avec n angles, où n est de préférence ≥ 8, et les électrodes (3, 4) en forme de bande sont constituées en tant que segments de cercle concentriques autour d'un point central (8) de la structure de membrane ou sont constituées entre respectivement deux lignes de coupe (7) radiales voisines de façon rectiligne et tangente à un cercle autour du point central (8) de la structure de membrane.
  9. Transducteur acoustique selon la revendication 7 ou 8,
    caractérisé en ce que des électrodes (3, 4) de même polarité sont en contact avec respectivement au moins un conducteur commun qui est parallèle à la surface de la couche piézo-électrique (2), le conducteur étant de préférence placé dans une direction radiale.
  10. Transducteur acoustique selon les revendications 7 à 9,
    caractérisé en ce que les électrodes (3, 4) sont disposées, de préférence directement, sur un côté supérieur de la couche piézo-électrique (2) éloigné de la couche porteuse (1).
  11. Transducteur acoustique selon les revendications 7 à 10,
    caractérisé en ce que la structure de membrane présente une pluralité de couches piézo-électriques (2a, 2b, 2c, 2d) disposées les unes sur les autres, les paires d'électrodes (3, 4) étant disposées dans un ou plusieurs plans entre respectivement deux couches piézo-électriques (2a, 2b, 2c, 2d) voisines, les paires d'électrodes (3, 4) traversant la couche piézo-électrique dans un ou au moins deux plans parallèles à la couche piézo-électrique, et des électrodes de la même paire d'électrodes étant de préférence disposées dans le même plan
  12. Transducteur acoustique selon l'une des revendications précédentes,
    caractérisé en ce que les électrodes (3, 4) et/ou la structure de membrane sont encapsulées de façon étanche aux liquides et/ou électriquement isolée de telle sorte qu'elles n'entrent pas en contact avec un liquide entourant le transducteur acoustique.
  13. Transducteur acoustique selon l'une des revendications précédentes,
    caractérisé en ce que la au moins une couche piézo-électrique (2) a une épaisseur ≤ 20 µm, de préférence ≤ 10 µm, de façon particulièrement préférée ≤ 5 µm et/ou ≥ 0,2 µm, de préférence ≥ 1 µm, préférablement ≥ 1,5 µm, de façon particulièrement préférée = 2 µm et/ou en ce que la au moins une couche d'électrode a une épaisseur ≤ 0,5 µm, de préférence ≤ 0,2 µm, de façon particulièrement préférée ≤ 0,1 µm et/ou ≥ 0,02 µm, de préférence ≥ 0,05 µm, de façon particulièrement préférée ≥ 0,08 µm et/ou en ce qu'un diamètre de la structure de membrane est ≤ 4 mm, de préférence ≤ 3 mm, de façon particulièrement préférée ≤ 2 mm et/ou ≥ 0,2 mm, de préférence ≥ 0,5 mm, préférablement ≥ 1 mm, de façon particulièrement préférée égal à 1,5 mm.
  14. Transducteur acoustique selon l'une des revendications précédentes, avec au moins deux des structures de membrane qui sont structurées de façon identique et qui sont disposées parallèlement entre elles l'une au-dessus de l'autre de telle sorte que des segments (9a, 9b) identiques sont placés l'un au-dessus de l'autre, des segments (9a, 9b) identiques de toutes ou de respectivement deux structures de membrane voisines étant raccordés les uns aux autres de telle sorte qu'une déviation ou un exercice de force se transmet d'un segment au segment (9a, 9b) voisin, des segments (9a, 9b) de préférence identiques de structures de membrane voisines étant, lors de l'application d'une tension avec une polarité donnée au transducteur acoustique, déviés dans la même direction ou dans des directions opposées.
EP11001587.2A 2010-02-26 2011-02-25 Transducteur acoustique pour l'insertion dans une oreille Active EP2362686B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010009453A DE102010009453A1 (de) 2010-02-26 2010-02-26 Schallwandler zum Einsetzen in ein Ohr

Publications (3)

Publication Number Publication Date
EP2362686A2 EP2362686A2 (fr) 2011-08-31
EP2362686A3 EP2362686A3 (fr) 2012-01-04
EP2362686B1 true EP2362686B1 (fr) 2016-08-03

Family

ID=44069919

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11001587.2A Active EP2362686B1 (fr) 2010-02-26 2011-02-25 Transducteur acoustique pour l'insertion dans une oreille

Country Status (4)

Country Link
US (2) US9497556B2 (fr)
EP (1) EP2362686B1 (fr)
DE (1) DE102010009453A1 (fr)
DK (1) DK2362686T3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111034223A (zh) * 2017-05-26 2020-04-17 弗劳恩霍夫应用研究促进协会 微机械声音换能器

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009049320A1 (fr) 2007-10-12 2009-04-16 Earlens Corporation Système et procédé multifonction pour une audition et une communication intégrées avec gestion de l'annulation du bruit et de la contre-réaction
EP2301261B1 (fr) 2008-06-17 2019-02-06 Earlens Corporation Dispositifs d'audition électromécaniques optiques dotés de composants d'alimentation et de signal séparés
BRPI0919266A2 (pt) 2008-09-22 2017-05-30 SoundBeam LLC dispositivo e método para transmitir um sinal de áudio para um usuário, métodos para fabricar um dispositivo para transmitir um sinal de áudio para o usuário, e para fornecer um dispositivo de áudio a um usuário, e, dispositivo e método para transmitir um som para um usuário tendo um tímpano
DE102010009453A1 (de) * 2010-02-26 2011-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schallwandler zum Einsetzen in ein Ohr
DK2656639T3 (da) 2010-12-20 2020-06-29 Earlens Corp Anatomisk tilpasset øregangshøreapparat
KR20140038397A (ko) * 2011-03-31 2014-03-28 베이커-컬링, 인코퍼레이티드. 간극 제어 구조를 구비한 음향 변환기 및 음향 변환기를 제조하는 방법
US9031266B2 (en) * 2011-10-11 2015-05-12 Infineon Technologies Ag Electrostatic loudspeaker with membrane performing out-of-plane displacement
CN102595276A (zh) * 2012-02-28 2012-07-18 王宜蓉 一种振动体消振装置
EP2713196A1 (fr) 2012-09-27 2014-04-02 poLight AS Lentille variuable compenant actionneurs piézoélectriques disposés avec une configuration d'électrodes interdigitées
DE102013114771B4 (de) * 2013-12-23 2018-06-28 Eberhard Karls Universität Tübingen Medizinische Fakultät In den Gehörgang einbringbare Hörhilfe und Hörhilfe-System
US10034103B2 (en) 2014-03-18 2018-07-24 Earlens Corporation High fidelity and reduced feedback contact hearing apparatus and methods
WO2016011044A1 (fr) 2014-07-14 2016-01-21 Earlens Corporation Limitation de crête et polarisation coulissante pour dispositifs auditifs optiques
WO2016048936A1 (fr) * 2014-09-23 2016-03-31 Med-El Elektromedizinische Geraete Gmbh Système de prothèse auditive électro-mécanique hybride
EP3201122B1 (fr) * 2014-10-02 2022-12-28 InvenSense, Inc. Transducteurs ultrasoniques micro-usinés ayant une structure de membrane à fentes
US9924276B2 (en) 2014-11-26 2018-03-20 Earlens Corporation Adjustable venting for hearing instruments
US20160165020A1 (en) * 2014-12-04 2016-06-09 Plastoform Industries Limited Pair of integrated wireless earphone for a mobile communication device
DE102015101482B3 (de) * 2015-02-02 2016-05-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektroakustisches Implantat
JP6976252B2 (ja) 2015-09-14 2021-12-08 ウィング アコースティックス リミテッド オーディオ・トランスデューサにおける、又はオーディオ・トランスデューサに関する改良
US20170095202A1 (en) 2015-10-02 2017-04-06 Earlens Corporation Drug delivery customized ear canal apparatus
US11229927B2 (en) * 2015-10-21 2022-01-25 Agency For Science, Technology And Research Ultrasound transducer and method of forming ihe same
WO2017116791A1 (fr) 2015-12-30 2017-07-06 Earlens Corporation Systèmes, appareil et procédés auditifs reposant sur la lumière
US11350226B2 (en) 2015-12-30 2022-05-31 Earlens Corporation Charging protocol for rechargeable hearing systems
US10492010B2 (en) 2015-12-30 2019-11-26 Earlens Corporations Damping in contact hearing systems
JP6648821B2 (ja) * 2016-04-15 2020-02-14 第一精工株式会社 スピーカシステム
EP3510796A4 (fr) 2016-09-09 2020-04-29 Earlens Corporation Systèmes, appareil et procédés auditifs de contact
WO2018093733A1 (fr) 2016-11-15 2018-05-24 Earlens Corporation Procédure d'impression améliorée
US20180352348A1 (en) * 2017-06-06 2018-12-06 Sonitus Technologies Inc. Bone conduction device
KR102452952B1 (ko) * 2017-12-06 2022-10-12 삼성전자주식회사 방향성 음향 센서 및 이를 포함하는 전자 장치
WO2019173470A1 (fr) 2018-03-07 2019-09-12 Earlens Corporation Dispositif auditif de contact et matériaux de structure de rétention
WO2019199680A1 (fr) 2018-04-09 2019-10-17 Earlens Corporation Filtre dynamique
DE102018207922A1 (de) * 2018-05-18 2019-11-21 Vibrosonic Gmbh Mehrteiliges, tief im Gehörgang platziertes Trommelfell-Kontakt-Hörgerät
DK3579578T3 (da) * 2018-06-07 2022-05-02 Sonion Nederland Bv Miniaturelydgiver
DE102018220731B3 (de) 2018-11-30 2020-06-04 Med-El Elektromedizinische Geräte GmbH Elektroakustischer Wandler zur Implantation in ein Ohr, Verfahren zur Herstellung eines solchen und Cochlea-Implantatsystem
EP3675522A1 (fr) * 2018-12-28 2020-07-01 Sonion Nederland B.V. Haut-parleur miniature essentiellement sans fuite acoustique
DE102019201273A1 (de) 2019-01-31 2020-08-06 Vibrosonic Gmbh Vibrationsmodul zum Auflegen auf ein Trommelfell
EP3733311A1 (fr) 2019-05-02 2020-11-04 Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO Actionnement de structures piézoélectriques à l'aide de films minces ferroélectriques ayant plusieurs éléments
DE102019116080A1 (de) 2019-06-13 2020-12-17 USound GmbH MEMS-Schallwandler mit einer aus Polymer ausgebildeten Membran
WO2021124611A1 (fr) * 2019-12-17 2021-06-24 株式会社村田製作所 Transducteur
EP4082961A4 (fr) * 2019-12-25 2023-10-25 Denso Corporation Élément piézoélectrique, dispositif piézoélectrique et procédé de fabrication d'élément piézoélectrique
US11202138B2 (en) * 2020-03-05 2021-12-14 Facebook Technologies, Llc Miniature high performance MEMS piezoelectric transducer for in-ear applications
CN115428175A (zh) * 2020-04-30 2022-12-02 株式会社村田制作所 压电装置
US11399228B2 (en) 2020-07-11 2022-07-26 xMEMS Labs, Inc. Acoustic transducer, wearable sound device and manufacturing method of acoustic transducer
US11884535B2 (en) 2020-07-11 2024-01-30 xMEMS Labs, Inc. Device, package structure and manufacturing method of device
US11972749B2 (en) 2020-07-11 2024-04-30 xMEMS Labs, Inc. Wearable sound device
US11323797B2 (en) * 2020-07-11 2022-05-03 xMEMS Labs, Inc. Acoustic transducer, wearable sound device and manufacturing method of acoustic transducer
DE102021130035A1 (de) * 2021-11-17 2023-05-17 USound GmbH MEMS-Schallwandler mit einer gekrümmten Kontur eines Kragarmelements
WO2023150154A1 (fr) * 2022-02-03 2023-08-10 Massachusetts Institute Of Technology Microphone piézoélectrique entièrement différentiel et système amplificateur pour implants cochléaires et autres dispositifs auditifs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH494513A (de) * 1968-01-08 1970-07-31 Philips Nv Piezoelektrische Membran und Verfahren zu deren Herstellung
WO2007023164A1 (fr) * 2005-08-22 2007-03-01 3Win N.V. Ensemble combine comprenant un actionneur de vibrateur et un dispositif implantable

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1875A (en) * 1840-12-01 Improvement in the mode of heating buildings by means of an apparatus consisting of
US2386279A (en) * 1942-07-21 1945-10-09 Raymond W Tibbetts Piezoelectric device
USRE23813E (en) 1947-12-26 1954-04-20 Piezoelectric transducer and method for producing same
US2900536A (en) 1954-11-18 1959-08-18 Astatic Corp Design of electro-mechanical transducer elements
NL261168A (fr) 1960-03-07
JPS61150499A (ja) 1984-12-24 1986-07-09 Sawafuji Dainameka Kk 分割形圧電振動板
JP2886588B2 (ja) * 1989-07-11 1999-04-26 日本碍子株式会社 圧電/電歪アクチュエータ
DE4104358A1 (de) 1991-02-13 1992-08-20 Implex Gmbh Implantierbares hoergeraet zur anregung des innenohres
DE4135408A1 (de) * 1991-10-26 1993-04-29 Man Nutzfahrzeuge Ag Verfahren zur umwandlung elektrischer energie in mechanische schwingungen, sowie vorrichtungen zur durchfuehrung dieses verfahrens
US5729077A (en) 1995-12-15 1998-03-17 The Penn State Research Foundation Metal-electroactive ceramic composite transducer
USH1875H (en) 1996-07-22 2000-10-03 Microtronic A/S Electroacoustic transducer
US5899847A (en) * 1996-08-07 1999-05-04 St. Croix Medical, Inc. Implantable middle-ear hearing assist system using piezoelectric transducer film
FR2788176B1 (fr) * 1998-12-30 2001-05-25 Thomson Csf Dispositif a ondes acoustiques guidees dans une fine couche de materiau piezo-electrique collee par une colle moleculaire sur un substrat porteur et procede de fabrication
US6277148B1 (en) 1999-02-11 2001-08-21 Soundtec, Inc. Middle ear magnet implant, attachment device and method, and test instrument and method
DE10046938A1 (de) * 2000-09-21 2002-04-25 Implex Ag Hearing Technology I Mindestens teilimplantierbares Hörsystem mit direkter mechanischer Stimulation eines lymphatischen Raums des Innenohres
US7646544B2 (en) * 2005-05-14 2010-01-12 Batchko Robert G Fluidic optical devices
JP2004532743A (ja) * 2000-10-25 2004-10-28 ワシントン ステート ユニバーシティ リサーチ ファウンデーション 圧電マイクロトランスデューサ、その使用法および製造法
US7273447B2 (en) 2004-04-09 2007-09-25 Otologics, Llc Implantable hearing aid transducer retention apparatus
US7275292B2 (en) * 2003-03-07 2007-10-02 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Method for fabricating an acoustical resonator on a substrate
CA2725847C (fr) * 2003-06-26 2011-10-18 Med-El Elektromedizinische Geraete Gmbh Installation et methode reduisant l'effet des champs magnetiques sur un transducteur magnetique
WO2005006809A1 (fr) 2003-07-09 2005-01-20 Shimada Manufacturing Co., Ltd. Generateur piezoelectrique de vibrations et dispositif de transmission de sons vibratoires
US7442164B2 (en) * 2003-07-23 2008-10-28 Med-El Elektro-Medizinische Gerate Gesellschaft M.B.H. Totally implantable hearing prosthesis
KR100610192B1 (ko) * 2004-10-27 2006-08-09 경북대학교 산학협력단 압전형 진동자
JP5309626B2 (ja) * 2007-03-14 2013-10-09 株式会社ニコン 振動アクチュエータ、振動子の製造方法及び振動アクチュエータの製造方法
US8042916B2 (en) * 2007-03-31 2011-10-25 Micropoint Biosciences, Inc. Micromachined fluid ejector array
DE102010009453A1 (de) * 2010-02-26 2011-09-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schallwandler zum Einsetzen in ein Ohr

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH494513A (de) * 1968-01-08 1970-07-31 Philips Nv Piezoelektrische Membran und Verfahren zu deren Herstellung
WO2007023164A1 (fr) * 2005-08-22 2007-03-01 3Win N.V. Ensemble combine comprenant un actionneur de vibrateur et un dispositif implantable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111034223A (zh) * 2017-05-26 2020-04-17 弗劳恩霍夫应用研究促进协会 微机械声音换能器

Also Published As

Publication number Publication date
US20120053393A1 (en) 2012-03-01
DK2362686T3 (en) 2016-12-05
EP2362686A3 (fr) 2012-01-04
US20170094417A1 (en) 2017-03-30
DE102010009453A1 (de) 2011-09-01
US9497556B2 (en) 2016-11-15
EP2362686A2 (fr) 2011-08-31
US10206045B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
EP2362686B1 (fr) Transducteur acoustique pour l'insertion dans une oreille
EP3254474B1 (fr) Implant électroacoustique
DE102012220819B4 (de) Schallwandler mit einer ersten und einer zweiten menge von ineinandergreifenden kammfingern
EP2297798B1 (fr) Procédé d'accord d'une fréquence de résonance d'un composant piézoélectrique
EP2126992B1 (fr) Composant piézoélectrique
DE602005006419T2 (de) Elektroakustischer Wandler für Hochfrequenzanwendungen
DE19922148C2 (de) Piezoelektrisches akustisches Bauteil
EP0984665B1 (fr) Dispositif transducteur pour prothèse auditive partiellement ou totalement implantée
DE102009014770A1 (de) Schwingungserzeuger
DE102016116763A1 (de) Vorrichtung zur Erzeugung einer haptischen Rückmeldung
EP3087760A1 (fr) Transducteur acoustique microélectromécanique avec couche intermédiaire réfléchissant l'énergie acoustique
DE2719172A1 (de) Elektro-mechanischer umformer
DE3607048A1 (de) Piezoelektrischer schallgeber
EP2144715A1 (fr) Batterie de convertisseurs ultrasoniques pour applications dans des fluides gazeux
DE112017004098T5 (de) Elektrostatischer Wandler
DE102018220731B3 (de) Elektroakustischer Wandler zur Implantation in ein Ohr, Verfahren zur Herstellung eines solchen und Cochlea-Implantatsystem
WO2020157296A1 (fr) Module vibratoire à poser sur un tympan
DE102013105557B4 (de) Piezoelektrischer Aktor
DE102008049788A1 (de) Ultraschallwandler mit mindestens einem vollaktiven, monolithischen Piezoelement, Verfahren zum selektiven Kontaktieren von Innenelektroden des Ultraschallwandlers durch Abtrag von Elektrodenmaterial und Verwendung des Utraschallwandlers
DE102004056200A1 (de) Elektroakustischer Wandler
WO2016048936A1 (fr) Système de prothèse auditive électro-mécanique hybride
EP4058400A1 (fr) Composant mems comprenant un élément mobile dans le plan et procédé pour faire fonctionner ce composant
EP3386650B1 (fr) Ensemble transducteur acoustique comprenant deux éléments de jonction disposés parallèlement et procédé de fabrication d'un ensemble transducteur acoustique comprenant deux éléments de jonction disposés parallèlement
DE10013673C2 (de) Mikromechanischer elektroakustischer Wandler
DE112021000854T5 (de) Wandler und elektronische vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KALTENBACHER, DOMINIK

Inventor name: MURALT, PAUL

Inventor name: SCHAEFER, ARMIN

Inventor name: DALHOFF, ERNST

Inventor name: GOLL, ERICH

Inventor name: SCHAECHTELE, JONATHAN

Inventor name: ZENNER, HANS-PETER

Inventor name: CONDE, JANINE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 17/00 20060101ALI20111128BHEP

Ipc: H04R 25/00 20060101AFI20111128BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GOLL, ERICH DR.,

Inventor name: KALTENBACHER, DOMINIK

Inventor name: MURALT, PAUL

Inventor name: SCHAECHTELE, JONATHAN

Inventor name: DALHOFF, ERNST

Inventor name: SCHAEFER, ARMIN

Inventor name: ZENNER, HANS-PETER

Inventor name: CONDE, JANINE

17P Request for examination filed

Effective date: 20120626

17Q First examination report despatched

Effective date: 20150213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151021

INTG Intention to grant announced

Effective date: 20160210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 818008

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010280

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20161128

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160803

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161103

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010280

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011010280

Country of ref document: DE

Representative=s name: PFENNING, MEINIG & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011010280

Country of ref document: DE

Owner name: VIBROSONIC GMBH, DE

Free format text: FORMER OWNER: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 818008

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170225

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180709 AND 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: VIBROSONIC GMBH, DE

Effective date: 20181009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 13

Ref country code: DK

Payment date: 20230220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230216

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240222

Year of fee payment: 14

Ref country code: GB

Payment date: 20240219

Year of fee payment: 14

Ref country code: CH

Payment date: 20240301

Year of fee payment: 14