EP2351085A2 - Procede de fabrication de cellules matricielles photosensibles dans l'infrarouge collees par adhesion moleculaire sur substrat optiquement transparent et capteur associe - Google Patents

Procede de fabrication de cellules matricielles photosensibles dans l'infrarouge collees par adhesion moleculaire sur substrat optiquement transparent et capteur associe

Info

Publication number
EP2351085A2
EP2351085A2 EP09797114A EP09797114A EP2351085A2 EP 2351085 A2 EP2351085 A2 EP 2351085A2 EP 09797114 A EP09797114 A EP 09797114A EP 09797114 A EP09797114 A EP 09797114A EP 2351085 A2 EP2351085 A2 EP 2351085A2
Authority
EP
European Patent Office
Prior art keywords
infrared
sensor
photodiodes
wafer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09797114A
Other languages
German (de)
English (en)
Inventor
Arnaud Cordat
Hervé Sik
Stéphane DEMIGUEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Francaise de Detecteurs Infrarouges SOFRADIR SAS
Original Assignee
Sagem Defense Securite SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem Defense Securite SA filed Critical Sagem Defense Securite SA
Publication of EP2351085A2 publication Critical patent/EP2351085A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/1465Infrared imagers of the hybrid type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14694The active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1032Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIBVI compounds, e.g. HgCdTe IR photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method of manufacturing infrared photosensitive matrix cells and the resulting component.
  • VI and in particular indium antimonide (InSb) have photodetection capabilities of the band of infrared wavelength of 3 to 5 ⁇ m very interesting for the development of infrared imaging sensors.
  • the manufacturing method comprises the following steps: Creation of the pixels in the form of a matrix of photodiodes in an InSb wafer with an initial thickness of about 650 ⁇ m and a diameter of about 75 mm (3 inches); depositing pure indium beads so that each photodiode is connected to one and only one indium ball; and, in parallel, creating the reading circuit on a silicon wafer, the reading circuit comprising contact zones according to a mirror matrix of the matrix of photodiodes; and deposit of pure indium beads; then the two slices having been processed, they are cut into matrices of photodiodes and reading circuits respectively which are assembled according to the so-called flip chip technique.
  • the "flip-chip" assembly technique is well known to those skilled in the art and will not be described in detail here.
  • glue is injected between the matrix of photodiodes and the reading circuit assembled and spaced about 10 microns.
  • the thickness of the slice of InSb is thinned to about 10 ⁇ m by mechanical polishing and / or chemical or any other technique.
  • This thickness allows good penetration of photons to the level of photodiodes without loss by recombination while limiting the effects of cross-talk by cross-scattering electrons / holes.
  • the thermal generation of electron / hole carriers prevents the InSb sensor from performing its photo detection function beyond a certain operating temperature. . Also the sensor must be cooled to a cryogenic temperature below 8OK.
  • the InSb layer must still be thinned within a range of 50 to 200 ⁇ m to account for the remaining free carrier uptake effects. At these thicknesses, breakage phenomena of the InSb layer continue to appear, although with a lower probability than for the components obtained according to the conventional method.
  • the constraints related to cooling can refer to the indium balls as happens in the case of matrices of infrared photodiodes based mercury-indium-tellurium material (HgCdTe) as described in patent FR 2 810 453.
  • HgCdTe mercury-indium-tellurium material
  • the epitaxial support slice HgCdTe is thinned or suppressed.
  • the support silicon wafer is replaced by a material such as gallium arsenide GaAs, germanium, or sapphire, whose thermal expansion is close to that of HgCdTe.
  • the robustness of this assembly against thermal variations is ensured by a method of bonding by molecular adhesion.
  • an object of the invention is an infrared radiation sensor manufacturing method comprising an infrared photodiode array formed in a first material and a read circuit formed in a second material.
  • the method comprises the steps of: - bonding by molecular adhesion of a wafer based on a first material on a wafer of material optically transparent to infrared radiation and having a coefficient of thermal expansion similar to that of the second material to more or less 20% close; thinning the thickness of the matrix based on the first material so that it is less than 25 ⁇ m; - Manufacture of sensitive photodiodes in the infrared on the slice based on the first material thus thinned; deposition of contact beads at infrared photodiodes; - Mounting the read circuit formed on the second material on the wafer based on the first material by flip chip technology.
  • This method advantageously makes it possible to use different materials for the transparent material as for the manufacturing wafer of the photodiodes having the required characteristics, the selection being able to be done according to other criteria such as cost, ease of implementation, etc.
  • the optically transparent material is silicon in the case of the current reading circuits but can extend to other materials, especially if the technologies of these circuits were to evolve towards other media, such as GaAs or phosphide of indium (InP).
  • the infrared photodiodes can be formed in InSb or in a detector layer of gallium antimonide (GaSb) - indium arsenide (InAs) superlattices.
  • This method may also comprise a prior epitaxial growth step of an antimony-based layer adapted to the formation of infrared photodiodes, said growth being carried out on an InSb or GaSb-based epitaxial support, and the thickness of the epitaxial layer being such that the thickness thinning step removes the entire epitaxial support.
  • Another object of the invention is the sensor resulting from the above method and as described in claim 8.
  • FIGS. 1A to 1F are schematic views of a method according to a method embodiment of the invention
  • FIGS. 2A and 2B are schematic views of a variant of the method of FIG. 1.
  • a silicon wafer 5 is also polished so that its lower surface 7 is perfectly flat and non-rough.
  • the surfaces 3 and 7 are then brought into contact via the silicon oxide atoms, FIG. 1B.
  • the quality of the surfaces is then such that the contact is established at distances of less than a few nanometers.
  • the attractive forces called Van der Waals forces between the two surfaces are high enough to cause molecular adhesion.
  • a heating of the whole is achieved then to create covalent bonds to strengthen the strength of the bonding between the two slices.
  • the heating temperature is between 400 and 1000 ° C. It should be noted that the heating step may be replaced by special bonding conditions such as vacuum bonding, preliminary plasma surface treatment etc.
  • the InSb wafer 1 is thinned to a thickness ranging from 5 to 25 ⁇ m by polishing, FIG. 1C, the wafer 5 serving as a support layer.
  • infrared photodiodes 9 are manufactured, FIG ID, according to conventional methods of microelectronics.
  • indium balls 11 are deposited at the height of the photodiodes, FIG. 1E, and a reading circuit 13 in silicon technology is welded according to the flip-chip technique, FIG.
  • the infrared radiation sensor comprises a plurality of infrared photodiodes 9 implanted in an active layer of InSb 1. On a first face of this active layer is bonded, by molecular bonding, a silicon wafer 5 and on the second face, the photodiodes are in electrical contact with the reading circuit 13 via the indium welds 11.
  • the molecularly bonded wafer to the InSb layer must be transparent to the infrared to allow infrared radiation to reach the photodiodes.
  • Silicon has this property. Indeed, silicon has a cutoff wavelength of 1.1 microns which allows it to be transparent especially to infrared radiation of the MWIR (Middle Wave Infrared) 3-5 ⁇ m and LWIR (Long Wave Infrared) 8-12 ⁇ m bands, but also those of the SWIR (Short Wave Infrared) band 1-2.7 ⁇ m. In addition, it makes it possible to counter the effects of thermal expansion since the read circuit also has a silicon support.
  • MWIR Middle Wave Infrared
  • LWIR Long Wave Infrared
  • the silicon where is bonded by molecular adhesion InSb, is able to accompany the mechanical stresses provided by the silicon of the reading circuit while protecting this thin layer of InSb, the electrical circuit of the reading circuit itself and the electrical connection of the indium balls.
  • any material transparent to infrared radiation and having a coefficient of thermal expansion close to that of the silicon of the reading circuit is adapted to serve as a support layer.
  • a coefficient of expansion equal to plus or minus 20% close to that of silicon so that it does not create, of itself, mechanical stresses on the thin active layer of InSb, the electrical circuit of read circuit itself and the electrical connection of the indium balls.
  • FIG. 2A we do growing, in a preliminary step, by epitaxy a layer of InSb 20 on the slice of InSb 1 then serving epitaxial support. This epitaxial growth is carried out to form a 5 to 25 ⁇ m layer of epitaxial InSb in which the photodiodes are manufactured, FIG. 2B.
  • the advantage of the epitaxial layer is to be of very good crystalline quality and with a perfectly controlled intrinsic doping level thus allowing a very good production efficiency.
  • This prior step of epitaxy has the advantage of also allowing an enlargement of the materials used.
  • the epitaxial support wafer being totally sacrificed, it can be replaced by other materials allowing the growth of an active layer.
  • it may be based on GaSb, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

L'invention concerne un procédé de fabrication de capteur de rayonnement infrarouge, ledit capteur comportant un réseau de photodiodes infrarouge formé dans un premier matériau et un circuit de lecture formé dans un second matériau, ledit procédé qui comporte les étapes de : collage par adhésion moléculaire d'une tranche (1) à base du premier matériau sur une tranche (5) de matériau cristallin optiquement transparent aux rayonnements infrarouges et ayant un coefficient de dilatation thermique similaire à celui du second matériau à plus ou moins 20% près; amincissement de l'épaisseur de la tranche à base du premier matériau de telle sorte que celle-ci soit inférieure à 25μm; fabrication de photodiodes sensibles dans l'infrarouge (9) sur la tranche à base du premier matériau ainsi amincie; dépôt de billes de contact (11) au niveau des photodiodes infrarouges; montage du circuit de lecture (13) sur la tranche à base du premier matériau par la technologie de puce retournée.

Description

PROCEDE DE FABRICATION DE CELLULES MATRICIELLES
PHOTOSENSIBLES DANS L' INFRAROUGE COLLEES PAR ADHESION
MOLECULAIRE SUR SUBSTRAT OPTIQUEMENT TRANSPARENT ET
CAPTEUR ASSOCIE.
Domaine technique
La présente invention concerne un procédé de fabrication de cellules matricielles photosensibles dans l'infrarouge et du composant résultant. Technique antérieure
Certains matériaux semi-conducteurs III-V ou II-
VI et en particulier 1 'antimoniure d'indium (InSb) ont des capacités de photo détection de la bande de longueur d'onde infrarouge de 3 à 5 μm très intéressante pour le développement de capteurs d'imagerie infrarouge.
Actuellement ces capteurs se composent d'une tranche (« wafer ») d'InSb sur laquelle ont été fabriquées les cellules matricielles photosensibles et d'une tranche de silicium ou de matériaux équivalents servant de base à la technologie CMOS sur laquelle sont fabriqués les circuits de lecture.
Le procédé de fabrication comporte les étapes suivantes : - Création des pixels sous forme d'une matrice de photodiodes dans une tranche d'InSb d'épaisseur initiale d'environ 650μm et de diamètre d'environ 75 mm (3 pouces) ; dépôt de billes d'indium pur de telle sorte que chaque photodiode soit connectée à une et une seule bille d'indium ; et, en parallèle création du circuit de lecture sur une tranche de silicium, le circuit de lecture comportant des zones de contact selon une matrice en miroir de la matrice des photodiodes ; et dépôt de billes d'indium pur ; puis les deux tranches ayant été traitées, elles sont découpées en matrices de photodiodes et de circuits de lecture respectivement qui sont assemblés selon la technique dite de puce retournée (« flip chip ») . La technique d'assemblage « flip-chip » est bien connue de l'homme du métier et ne sera pas donc décrite en détail ici .
Pour assurer la rigidité et la solidité mécanique de l'ensemble, ainsi que sa protection chimique, de la colle est injectée entre la matrice de photodiodes et le circuit de lecture assemblés et espacés d'environ 10 μm.
Puis l'épaisseur de la tranche d'InSb est amincie à environ lOμm par polissage mécanique ou/et chimique ou toute autre technique.
Cette épaisseur permet une bonne pénétration des photons jusqu'au niveau des photodiodes sans perte par recombinaison tout en limitant les effets de diaphonie (« cross-talk ») par diffusion transversale des électrons/trous .
Après cet amincissement, un antireflet est ajouté sur la couche d'InSb.
Du fait de la petite largeur de bande interdite (« band gap ») de l'InSb, la génération thermique de porteurs électrons/trous empêche le capteur InSb d'assurer sa fonction de photo détection au-delà d'une certaine température de fonctionnement. Aussi le capteur doit être refroidi à une température cryogénique inférieure à 8OK.
La différence de coefficient de dilatation entre le silicium et l'InSb fait que, lors du passage de la température ambiante à une température cryogénique, des contraintes mécaniques s'exercent sur la matrice d'InSb et, comme celle-ci est très fine, des fractures cristallines apparaissent pouvant aller jusqu'à la casse de la matrice.
Il a été constaté que si l'épaisseur de la matrice InSb est maintenue à 650μm, celle-ci devient suffisamment résistante pour que les contraintes mécaniques liées au refroidissement ne génèrent pas de rupture .
Aussi, pour résoudre ce problème de fragilité, il a été proposé de modifier le dopage de la tranche d'InSb pour qu'elle soit transparente aux rayonnements infrarouges par effet MOSS-BURSTEIN.
Cependant, cela nécessite alors de faire croitre une couche d'InSb par épitaxie, cette couche étant moins dopée pour y fabriquer les photodiodes. Enfin, la couche d'InSb doit quand même être amincie dans une fourchette de 50 à 200 μm pour tenir compte des effets d'absorption par porteurs libres subsistants. À ces épaisseurs, des phénomènes de casse de la couche InSb continuent d'apparaître, bien qu'avec une probabilité plus faible que pour les composants obtenus selon le procédé classique.
Dans le cas d'une épaisseur d'InSb importante, les contraintes liées au refroidissement peuvent se reporter sur les billes d'indium comme cela se produit dans le cas des matrices de photodiodes infrarouge à base du matériau mercure-indium-tellure (HgCdTe) tel que décrit dans le brevet FR 2 810 453.
Dans ce document, la tranche support à l 'épitaxie HgCdTe est amincie, voire supprimée. Cependant, les contraintes mécano-thermiques pouvant aboutir à la rupture sont compensées au niveau du circuit de lecture. La tranche silicium support est remplacée par un matériau tel que l'arséniure de gallium GaAs, le germanium, ou le saphir, dont la dilatation thermique est proche de celle de l'HgCdTe. La robustesse de cet assemblage face aux variations thermiques est assurée par un procédé de collage par adhésion moléculaire.
Une autre solution pour contourner les problèmes de rupture sur les couches fines d'InSb consiste à coller un support optiquement transparent tel que décrit dans le brevet EP 0 485 115. Les contraintes mécano-thermiques sont en effet minimisées car le procédé de fabrication décrit permet d'aboutir à une matrice composée d'îlots de photodiodes séparées physiquement et interconnectées via une grille de métallisation . Cependant, ce procédé de fabrication reste très complexe et le composant résultant souffre d'une diminution du rendement quantique du fait d'un facteur de remplissage réduit par la grille de métallisation . De plus, ce procédé ne résoud pas les contraintes mécano-thermiques dans le cas classique d'une matrice de photodiodes présentes sur la même tranche d'InSb. Exposé de l'invention II serait donc particulièrement avantageux d'avoir un procédé de fabrication de capteurs d'image infrarouge qui soit peu coûteux et dont les composants obtenus aient une bonne résistance aux contraintes mécaniques générées par la mise à basse température. Aussi, un objet de l'invention est un procédé de fabrication de capteur de rayonnement infrarouge comportant un réseau de photodiodes infrarouge formé dans un premier matériau et un circuit de lecture formé dans un second matériau. Le procédé comporte les étapes de : - collage par adhésion moléculaire d'une tranche à base de premier matériau sur une tranche de matériau optiquement transparent aux rayonnements infrarouges et ayant un coefficient de dilatation thermique similaire à celui du second matériau à plus ou moins 20% près ; amincissement de l'épaisseur de la matrice à base de premier matériau de telle sorte que celle-ci soit inférieure à 25μm ; - fabrication de photodiodes sensibles dans l'infrarouge sur la tranche à base de premier matériau ainsi amincie ; dépôt de billes de contact au niveau des photodiodes infrarouges ; - montage du circuit de lecture formé sur le second matériau sur la tranche à base de premier matériau par la technologie de puce retournée.
Ce procédé permet avantageusement d'utiliser différents matériaux pour le matériau transparent comme pour la tranche de fabrication des photodiodes ayant les caractéristiques requises, la sélection pouvant se faire selon d'autres critères tels que le coût, la facilité de mise en œuvre, etc.
Le matériau optiquement transparent est du silicium dans le cas des circuits de lecture actuel mais peu s'étendre à d'autres matériaux, surtout si les technologies de ces circuits venaient à évoluer vers d'autres support, tels qu'en GaAs ou en phosphure d' indium ( InP) . Les photodiodes infrarouges peuvent être formées dans de l'InSb ou dans une couche détectrice en superréseaux d ' antimoniure de gallium (GaSb) - arséniure d' indium ( InAs) .
Ce procédé peut aussi comporter une étape préalable de croissance épitaxiale d'une couche à base d'antimoine adaptée à la formation des photodiodes infrarouges, ladite croissance étant réalisée sur un support épitaxial à base de InSb ou de GaSb, et l'épaisseur de la couche épitaxiale étant telle que l'étape d'amincissement d'épaisseur élimine la totalité du support épitaxial.
Un autre objet de l'invention est le capteur résultant du procédé ci-dessus et tel que décrit dans la revendication 8.
Description sommaire des dessins
L'invention sera mieux comprise à la lecture de la description qui suit, donnée uniquement à titre d'exemple, et faite en référence aux figures en annexe dans lesquelles : les figures IA à IF sont des vues schématiques d'un procédé selon un mode de réalisation de l'invention ; et les figures 2A et 2B sont des vues schématiques d'une variante du procédé de la figure 1. Manières de réaliser l'invention
Dans les figures et la description, une même référence est utilisée pour désigner un élément identique ou similaire. En référence à la figure IA, une tranche d'InSb
1 a sa surface supérieure 3 polie de façon à obtenir une surface parfaitement plane et non rugueuse et recouverte d'une fine couche d'oxyde de silicium 4.
En parallèle, une tranche de silicium 5 est également polie pour que sa surface inférieure 7 soit parfaitement plane et non rugueuse.
Les surfaces 3 et 7 sont alors mises en contact par l'intermédiaire des atomes d'oxyde de silicium, figure IB. La qualité des surfaces est alors telle que le contact s'établit à des distances inférieures à quelques nanomètres. Les forces attractives dites forces de Van der Waals entre les deux surfaces sont suffisamment élevées pour provoquer une adhérence moléculaire. Classiquement, un chauffage de l'ensemble est réalisé alors pour créer des liaisons covalentes permettant de renforcer la solidité du collage entre les deux tranches. Suivant les matériaux utilisés, la température de chauffage est comprise entre 400 et 10000C. Il est à noter que l'étape de chauffage peut être remplacée par des conditions de collage particulières comme un collage sous vide, un traitement de surface préliminaire par plasma, etc.
Les deux tranches étant collées ensemble, la tranche InSb 1 est amincie jusqu'à une épaisseur allant de 5 à 25 μm par polissage, figure IC, la tranche de silicium 5 servant de couche de support.
Dans la couche amincie d'InSb, des photodiodes infrarouges 9 sont fabriquées, figure ID, selon les procédés classiques de micro-électronique.
Puis toujours selon les procédés habituels bien connus, des billes d'indium 11 sont déposées à la hauteur des photodiodes, figure IE, et un circuit de lecture 13 en technologie silicium est soudée selon la technique de puce retournée, figure IF.
Ainsi, le capteur de rayonnement infrarouge comporte une pluralité de photodiodes infrarouges 9 implantées dans une couche active d'InSb 1. Sur une première face de cette couche active est collée, par collage moléculaire, une tranche de silicium 5 et sur la seconde face, les photodiodes sont en contact électrique avec le circuit de lecture 13 via les soudures d'indium 11.
On constate que dans cette structure, la tranche collée par collage moléculaire à la couche d'InSb doit être transparente à l'infrarouge pour permettre au rayonnement infrarouge de parvenir jusqu'aux photodiodes.
Or, le silicium a cette propriété. En effet, le silicium présente une longueur d'onde de coupure de 1,1 μm ce qui lui permet d'être transparent notamment aux rayonnements infrarouges des bandes MWIR (Middle Wave Infrared) 3-5 μm et LWIR (Long Wave Infrared) 8-12 μm, mais également à ceux de la bande SWIR (Short Wave Infrared) 1-2,7 μm. De plus, il permet de contrer les effets de la dilatation thermique puisque le circuit de lecture possède aussi un support en silicium.
Ainsi, lors de la descente en température à 77K du composant, le silicium, où est collé par adhésion moléculaire l'InSb, est capable d'accompagner les contraintes mécaniques apportées par le silicium du circuit de lecture tout en protégeant cette fine couche d'InSb, le circuit électrique du circuit de lecture lui- même et la connexion électrique des billes d'indium.
On conçoit que tout matériau transparent au rayonnement infrarouge et ayant un coefficient de dilatation thermique voisin de celui du silicium du circuit de lecture est adapté pour servir de couche de support. Par similaire, on entend un coefficient de dilatation égal à plus ou moins 20 % près à celui du silicium afin qu'il ne crée pas, de lui-même, des contraintes mécaniques sur la fine couche active d'InSb, le circuit électrique du circuit de lecture lui-même et la connexion électrique des billes d'indium. L'utilisation d'un matériau identique pour le support du circuit de lecture et pour la couche support transparente des photodiodes, à savoir le silicium, permet une minimisation des contraintes mécaniques.
Il est à noter que si le circuit de lecture devait être implanté sur un matériau différent du silicium comme, par exemple, le GaAs pour, par exemple, des raisons de rapidité de commutation, le matériau de la couche transparente pourrait être également du GaAs qui est transparent aux longueurs d'onde infrarouge considérées . Dans une variante du procédé, fig. 2A, on fait croitre, dans une étape préliminaire, par épitaxie une couche d'InSb 20 sur la tranche d'InSb 1 servant alors de support épitaxial. Cette croissance épitaxiale est réalisée pour former une couche de 5 à 25 μm d'InSb épitaxiée dans laquelle les photodiodes sont fabriquées, fig. 2B.
L'avantage de la couche épitaxiée est d'être de très bonne qualité cristalline et avec un niveau de dopage intrinsèque parfaitement contrôlé permettant ainsi un très bon rendement de fabrication.
Lors de l'étape d'amincissement d'épaisseur, il est alors possible d'éliminer totalement la tranche de support épitaxial en ne gardant que la couche épitaxiée.
Cette étape préalable d'épitaxie a l'avantage de permettre également un élargissement des matériaux utilisés .
Ainsi la tranche de support épitaxial étant totalement sacrifiée, elle peut être remplacée par d'autres matériaux permettant la croissance d'une couche active. Ainsi, celle-ci peut être à base de GaSb, par exemple .
Il est également possible, pour éviter des dislocations de désaccord de paramètre de maille, de déposer sur le support épitaxial une couche tampon pour servir de support de croissance à la couche épitaxiée active .
Celle-ci peut alors être composée d'InSb mais aussi d'autres matériaux à base d'antimoine connus pour leur capacité à détecter plus de bandes infrarouges, par exemple, un super-réseau à base de GaSb/InAs.
Il est également possible d'utiliser des matériaux de type mercure-cadmium-tellure HgCdTe.
On a ainsi décrit un procédé de fabrication de capteurs infrarouges ainsi que le produit résultant de ce procédé permettant de répondre aux contraintes de fiabilité posées par l'utilisation à des températures cryogéniques .

Claims

REVENDICATIONS
1. Procédé de fabrication de capteur de rayonnement infrarouge, ledit capteur comportant un réseau de photodiodes infrarouge formé dans un premier matériau et un circuit de lecture formé dans un second matériau, ledit procédé comportant les étapes de : - collage par adhésion moléculaire d'une tranche (1) à base du premier matériau sur une tranche (5) de matériau optiquement transparent aux rayonnements infrarouges et ayant un coefficient de dilatation thermique similaire à celui du second matériau à plus ou moins 20% près ; amincissement de l'épaisseur de la tranche à base du premier matériau de telle sorte que celle-ci soit inférieure à 25μm ; fabrication de photodiodes sensibles dans l'infrarouge (9) sur la tranche à base du premier matériau ainsi amincie ; dépôt de billes de contact (11) au niveau des photodiodes infrarouges ; montage du circuit de lecture (13) formé sur le second matériau sur la tranche à base du premier matériau par la technologie de puce retournée.
2. Procédé selon la revendication 1, caractérisé en ce que le matériau transparent est identique au second matériau.
3. Procédé selon la revendication 2, caractérisé en ce que le second matériau est du silicium Si.
4. Procédé selon la revendication 1, caractérisé en ce que le premier matériau est à base d'antimoine.
5. Procédé selon la revendication 4, caractérisé en ce que les photodiodes infrarouges sont formées dans de 1 ' antimoniure d'indium ou dans une couche détectrice en superréseaux d'antimoniure de gallium - arséniure d' indium.
6. Procédé selon la revendication 4, caractérisé en ce qu'il comporte l'étape préalable de croissance épitaxiale d'une couche à base d'antimoine adaptée à la formation des photodiodes infrarouges, ladite croissance étant réalisée sur un support épitaxial à base de d'antimoniure d'indium ou d'antimoniure de gallium, et l'épaisseur de la couche épitaxiale étant telle que l'étape d'amincissement d'épaisseur élimine la totalité du support épitaxial.
7. Procédé selon la revendication 1, caractérisé en ce que le premier matériau est à base de mercure- cadmium-tellure HgCdTe
8. Capteur de rayonnement infrarouge comportant une pluralité de photodiodes infrarouges (9) dans une couche active (1) formée dans un premier matériau, ladite couche active ayant une première face et une seconde face et chaque photodiode étant en contact sur la seconde face avec un circuit de lecture formé dans un second matériau (13) via une connexion conductrice (11) et recevant le rayonnement infrarouge via la première face, caractérisé en ce qu'une tranche (5) de matériau optiquement transparent au rayonnement infrarouge est collé par adhésion moléculaire sur ladite première face, ledit matériau optiquement transparent ayant un coefficient de dilatation thermique similaire à celui du second matériau à plus ou moins 20%.
9. Capteur selon la revendication 8, caractérisé en ce que le matériau transparent est identique au second matériau .
10. Capteur selon la revendication 9, caractérisé en ce que le second matériau est du silicium Si.
11. Capteur selon la revendication 8, caractérisé en ce que le premier matériau est à base d'antimoine .
12. Capteur selon la revendication 11, caractérisé en ce que la couche active est composée d'antimoniure d'indium ou d'un super-réseau d'antimoniure de gallium-arséniure d'indium.
13. Capteur selon la revendication 8, caractérisé en ce que la couche active est une couche créée par croissance épitaxiale.
14. Capteur selon la revendication 8, caractérisé en ce que le premier matériau est à base de mercure- cadmium-tellure HgCdTe.
EP09797114A 2008-11-27 2009-11-27 Procede de fabrication de cellules matricielles photosensibles dans l'infrarouge collees par adhesion moleculaire sur substrat optiquement transparent et capteur associe Withdrawn EP2351085A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858073A FR2938973B1 (fr) 2008-11-27 2008-11-27 Cellules matricielles photosensibles dans l'infrarouge a base d'antimoniure sur substrat optiquement transparent et procede de fabrication associe
PCT/FR2009/052328 WO2010061151A2 (fr) 2008-11-27 2009-11-27 Procede de fabrication de cellules matricielles photosensibles dans l'infrarouge collees par adhesion moleculaire sur substrat optiquement transparent et capteur associe

Publications (1)

Publication Number Publication Date
EP2351085A2 true EP2351085A2 (fr) 2011-08-03

Family

ID=40937344

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09797114A Withdrawn EP2351085A2 (fr) 2008-11-27 2009-11-27 Procede de fabrication de cellules matricielles photosensibles dans l'infrarouge collees par adhesion moleculaire sur substrat optiquement transparent et capteur associe

Country Status (5)

Country Link
US (1) US20110233609A1 (fr)
EP (1) EP2351085A2 (fr)
FR (1) FR2938973B1 (fr)
IL (1) IL213085A (fr)
WO (1) WO2010061151A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9918023B2 (en) 2010-04-23 2018-03-13 Flir Systems, Inc. Segmented focal plane array architecture
JP5486541B2 (ja) * 2011-03-31 2014-05-07 浜松ホトニクス株式会社 フォトダイオードアレイモジュール及びその製造方法
FR2990565B1 (fr) 2012-05-09 2016-10-28 Commissariat Energie Atomique Procede de realisation de detecteurs infrarouges
US10020343B2 (en) 2015-09-25 2018-07-10 Flir Systems, Inc. Wafer-level back-end fabrication systems and methods
RU2703497C1 (ru) * 2019-01-14 2019-10-17 Акционерное общество "НПО "Орион" Многоэлементный фотоприемник
FR3114819B1 (fr) * 2020-10-06 2023-07-14 Pesci Raphael Alliage pour brasure utilisation dans un detecteur d'un tel alliage
CN114477075B (zh) * 2022-01-25 2022-10-28 北京智创芯源科技有限公司 一种片上集成微纳结构的加工方法、红外探测器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227656A (en) * 1990-11-06 1993-07-13 Cincinnati Electronics Corporation Electro-optical detector array
US5264699A (en) * 1991-02-20 1993-11-23 Amber Engineering, Inc. Infrared detector hybrid array with improved thermal cycle reliability and method for making same
JPH0513667A (ja) * 1991-07-04 1993-01-22 Fujitsu Ltd 半導体装置
US6133570A (en) * 1994-03-15 2000-10-17 Lockheed Martin Corporation Semiconductor photovoltaic diffractive resonant optical cavity infrared detector
US5672545A (en) * 1994-08-08 1997-09-30 Santa Barbara Research Center Thermally matched flip-chip detector assembly and method
DE19513678C2 (de) * 1995-04-11 2002-03-14 Aeg Infrarot Module Gmbh Detektoranordnung bestehend aus mehreren Submodulen
JP2671859B2 (ja) * 1995-04-14 1997-11-05 日本電気株式会社 赤外線検出素子及びその製造方法
US5846850A (en) * 1995-09-05 1998-12-08 Raytheon Ti Systems, Inc. Double sided interdiffusion process and structure for a double layer heterojunction focal plane array
US6417514B1 (en) * 2000-02-10 2002-07-09 Raytheon Company Sensor/support system having a stabilization structure affixed to a side of a platform oppositely disposed from a sensor assembly
FR2810453B1 (fr) * 2000-06-15 2002-11-15 Sofradir Detecteur de rayonnements electromagnetiques, et notamment de rayonnements infrarouges, et procede pour la realisation d'un tel detecteur
US6864552B2 (en) * 2003-01-21 2005-03-08 Mp Technologies, Llc Focal plane arrays in type II-superlattices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010061151A2 *

Also Published As

Publication number Publication date
IL213085A (en) 2016-03-31
IL213085A0 (en) 2011-07-31
WO2010061151A2 (fr) 2010-06-03
FR2938973B1 (fr) 2011-03-04
US20110233609A1 (en) 2011-09-29
FR2938973A1 (fr) 2010-05-28
WO2010061151A3 (fr) 2011-11-17

Similar Documents

Publication Publication Date Title
EP3660930B1 (fr) Procédé de fabrication d'une matrice de photodiodes à base de germanium et à faible courant d'obscurité
WO2010061151A2 (fr) Procede de fabrication de cellules matricielles photosensibles dans l'infrarouge collees par adhesion moleculaire sur substrat optiquement transparent et capteur associe
EP0994503B1 (fr) Procédé de fabrication d'une structure comportant une couche mince de matériau composée de zones conductrices et de zones isolantes
FR2690279A1 (fr) Composant photovoltaïque multispectral.
EP3657556B1 (fr) Procede de fabrication d'au moins une photodiode planaire passivee a courant d'obscurite reduit
EP3806167B1 (fr) Procede de fabrication d'au moins une photodiode planaire contrainte en tension
EP1774588B1 (fr) Assemblage par adhesion moleculaire de deux substrats
EP3012876A1 (fr) Procede de fabrication d'une photodiode a faible bruit
FR2990565A1 (fr) Procede de realisation de detecteurs infrarouges
FR3061802B1 (fr) Substrat pour capteur d'image de type face avant et procede de fabrication d'un tel substrat
FR2837625A1 (fr) Dispositif photovoltaique multi-jonctions a cellules independantes sans effet d'ombrage et procede de realisation d'un tel dispositif
EP2432033A2 (fr) Détecteur bispectral multicouche à photodiodes
EP3563426B1 (fr) Procede de realisation d'un dispositif optoelectronique comportant une etape de gravure de la face arriere du substrat de croissance
FR3064398B1 (fr) Structure de type semi-conducteur sur isolant, notamment pour un capteur d'image de type face avant, et procede de fabrication d'une telle structure
WO2018007529A1 (fr) Procédé de fabrication de photodétecteur comprenant un empilement de couches superposées
EP3568868A1 (fr) Substrat pour capteur d'image de type face avant et procédé de fabrication d'un tel substrat
WO2019096794A1 (fr) Systeme optique/electronique hybride ameliore
EP3903341B1 (fr) Procede de fabrication d'un substrat pour un capteur d'image de type face avant
FR3091026A1 (fr) procede de fabrication d’une pluralité de diodes à partir d’un substrat de lecture
EP4020600A1 (fr) Procédé de mise en courbure collective de composants microélectroniques
EP3811411A1 (fr) Capteur d'image de type face avant et procede de fabrication d'un tel capteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110519

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

R17D Deferred search report published (corrected)

Effective date: 20111117

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOFRADIR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150602