EP2347237A1 - Evaluation du relief de la surface d'un pneumatique par stereovision active - Google Patents

Evaluation du relief de la surface d'un pneumatique par stereovision active

Info

Publication number
EP2347237A1
EP2347237A1 EP09744161A EP09744161A EP2347237A1 EP 2347237 A1 EP2347237 A1 EP 2347237A1 EP 09744161 A EP09744161 A EP 09744161A EP 09744161 A EP09744161 A EP 09744161A EP 2347237 A1 EP2347237 A1 EP 2347237A1
Authority
EP
European Patent Office
Prior art keywords
tire
cameras
image
fringe
acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09744161A
Other languages
German (de)
English (en)
Inventor
Alexandre Joly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Societe de Technologie Michelin SAS
Original Assignee
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Societe de Technologie Michelin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Michelin Recherche et Technique SA France, Societe de Technologie Michelin SAS filed Critical Michelin Recherche et Technique SA Switzerland
Publication of EP2347237A1 publication Critical patent/EP2347237A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/027Tyres using light, e.g. infrared, ultraviolet or holographic techniques

Definitions

  • the invention relates to the field of visual inspection of tires.
  • the invention is directed to the field of acquiring an image of the relief of the surface by stereoscopy.
  • This solution called passive stereoscopy, requires matching the images from the two acquisition means. Matches can be determined using feature elements of the image such as the presence of characteristic corners or contours. The coordinates of the surface are then calculated by triangulation by determining the angles of different views of the same point of the surface seen by the two cameras.
  • active acquisition techniques which consist in emitting an optical signal on the surface to be reconstructed as seen by cameras from different angles to facilitate matching. points of the surface ..
  • one of the most commonly used structured light projection algorithms is to illuminate the surface using a light formed from series of binary patterns composed of strips, alternating illuminated lines and non-illuminated lines. Simultaneously, the cameras acquire these series of successive images in which each of the points of the surface can be illuminated or unlit. It is then possible to reconstruct the alternations of the illuminated and unlit bands seen by the two cameras, to identify in a one-to-one way the bands of light to locate a point of the surface in a certain way, and to put the images of the two cameras in correspondences in order to reconstruct the relief image of the surface.
  • FIG. 1 illustrates the case of a conventional application in which a lighting means 20 projects a system of fringes on the tread, and in which stereoscopic cameras 10a and 10b are arranged so as to acquire the light. emitted (E) by the lighting means 20 and reflected (F) by the surface of the tire P.
  • the tire is mounted on the rim 30, a wheel 31 driven in rotation about the axis D by a carrier hub motorized 32
  • the cameras record the two stereoscopic images of an angular portion ⁇ of the surface of the tread.
  • the complete image of the tread will be obtained by rotating the tire one revolution around its axis of revolution D, and putting end to end the 2 * ⁇ / ⁇ shots taken by each of the stereoscopic cameras.
  • the implementation of the algorithm also requires successively projecting one after the other fringe systems S of the type of those shown in Figures 2, 3 and 3a.
  • the fringe systems alternate illuminated and unlit bands of known widths according to a pre-determined binary code (S1, S2, S3, S4) and are associated with encoding and decoding techniques to identify the fringes of the images projected and recorded by the cameras.
  • the stereoscopic cameras are successively acquiring images of the projection of each of the fringe systems, S1, S2, S3 and S4 on the tire surface.
  • the fringe system S1 corresponds to the first line.
  • the fringe system S2 corresponds to line 2
  • the fringe system S3 corresponds to line 3
  • the fringe system S4 corresponds to line 4.
  • the number of fringe systems that can be projected is of course not limiting.
  • a processing system decodes the images to associate at each point of the tire surface the successive lighting levels so as to remove the positioning uncertainties.
  • a first method is therefore to successively project each of the fringe systems on a tire portion and then repeat this operation on the successive angular sectors by rotating the tire about its axis.
  • a second method is to perform, for each system of fringes, shots on a complete turn of the tire and to make as many turns as fringe systems to project.
  • This device requires a large number of cameras and projectors that can interfere with each other and also has the disadvantage of generating many additional calculations to recalibrate the N images in relief of the surface with respect to other.
  • the device for acquiring the digital image in relief of the surface of a tire comprises: two color stereoscopic image acquisition cameras each comprising N primary image sensors of a color given primary, N being greater than or equal to two, and arranged to acquire the light emitted towards a given area of the tire surface by illumination means and reflected by the surface of said tire,
  • N lighting means projecting simultaneously in the same direction on said area of the tire surface, and each distinctly, a light whose wavelength corresponds to one of the primary colors of the cameras, according to a system of fringe alternating illuminated and unlit strips of given width.
  • each of the cameras makes a decision of the whole system of fringes simultaneously, and it matters little as will be seen later that a given point of the tire surface is considered to be illuminated in a fringe system and not lit in another.
  • the invention also has the advantage of reducing the operations of image registration and calibration of the cameras due to the simultaneity of the shots. Similarly, this acquisition mode makes it possible to overcome light interference from the lighting means.
  • FIG. 1 represents a schematic view of a conventional stereoscopic vision device
  • FIG. 2 represents a photographic view of the surface of a tread illuminated by means of a fringe system
  • FIG. 3a shows fringe systems structured according to a binary code
  • FIG. 4 represents a schematic view of the device according to the invention
  • FIG. 5 represents an example of distribution spectrum of the wavelengths of the primary colors used in a color camera
  • FIG. represents a schematic principle view of a color camera used in a stereoscopic image acquisition means according to the invention.
  • the device illustrated in FIG. 1 schematically represents a means 10 for acquiring a stereoscopic image formed by two cameras 10a and 10b, each equipped with an entrance objective. by which the reflected light F from a determined zone Z of the surface of the tire P to be examined, in this case the tread, enters. Said surface is illuminated by a lighting means 20 capable of projecting one or more fringe systems alternating illuminated strips and unlit strips on the tire surface seen by the lenses of the cameras.
  • Figure 2 is a photographic view of said zone Z of the tread of a tire P illuminated by a fringe system.
  • the light lines are parallel to each other and are preferably arranged in the circumferential direction.
  • the lines constituting the fringe system are arranged in the transverse direction, in the radial direction or form concentric circular line systems, in particular when one seeks to analyze the surface of the sidewall of a tire.
  • Figures 3a and 3b illustrate the case of fringe systems in which the width of the strips of the fringe system is inversely proportional to the number of strips.
  • the width of the strips of the fringe system S2 is equal to half the width of the strips of the fringe system S1; the width of the bands of the fringe system S3 is equal to half the width of the bands of the fringe system S2, and so on.
  • the widths (L 1 , L 2 , ... L N ) of the bands of each of the fringe systems (Si, S 2 , .. S N ) are multiples, modulo 2 n , of the bandwidth of the fringe system having the lowest bandwidth (L 4 ), n varying from 1 to (N-1), N being equal to 4 in the example of Figures 3a and 3b.
  • Figure 3b shows a particular encoding proposed by Gray (Bell Laboratories, 1953) described for information by Hall, HoIt and Rusinkiewicz at the 2001 International Conference on Computer Imaging, or in the published article. by Rusinkiewicz, Hall-Holt and Levoy "real time 3D Model Acquisition" Proc. Of SIGGRAPH 02, volume 21, pages 438-446 of July 2002.
  • Gray Bell Laboratories, 1953
  • This particular encoding consists in illuminating the surface with the aid of luminous fringe systems whose width is also divided by two to each successive image, but in which, each border between two bands appears only once. This device makes it possible to reduce the errors of analysis likely to occur in the border zones.
  • the device according to the invention comprises a means for acquiring the stereoscopic image formed by two color cameras 13a and 13b.
  • this type of camera contains means capable of separating into a certain number of basic colors (R, G, B), the reflected light from the object of which it is sought to acquire the picture.
  • These separation means may be formed by sets of prisms, or by a filter consisting of colored cells of the primary colors, and better known as the Bayer filter. Their function is to separate the light according to a certain number of colors called basic colors or fundamental colors. In general, these filters separate the light according to the three basic colors, or fundamental colors, which are red (R) green (G) and blue (B). However it is also possible to make cameras with more than three colors fundamental. For example, there are cameras on the market with four basic colors, red (R), green (G), blue (B) and cyan.
  • the reflected light F from the object to be examined is therefore decomposed into as many monochrome images as basic colors or basic colors.
  • Each of these images is then directed to a specific sensor, formed by an assembly of light-sensitive photosites such as CCD or CMOS sensors able to transform the amount of light they receive into electrical current.
  • a specific sensor formed by an assembly of light-sensitive photosites such as CCD or CMOS sensors able to transform the amount of light they receive into electrical current.
  • One thus obtains as much image in level of gray as of basic colors.
  • the maximum resolution of a sensor is a function of the number of photosites to which the number of pixels forming the final image corresponds.
  • the invention consists in taking advantage of this mode of operation of the color cameras to obtain particular information concerning the raised image of the surface to be evaluated.
  • the N stereoscopic image acquisition means intended to acquire the 2 * N images of the tire surface illuminated by the N fringe systems are formed by the 2 * N primary image sensors of the two color cameras 13a and 13b.
  • the two sensors of the same primary color of each of the cameras forming a stereoscopic image acquisition means.
  • each of the lighting means according to a given fringes system illuminates the surface with a light whose wavelength corresponds to one of the primary colors of the cameras, so that the N fringe systems can to be seen simultaneously and distinctly by the primary color sensors of both cameras.
  • the maximum number N of fringes system that it will be possible to project on the surface corresponds to the number N of primary colors of the cameras.
  • Figure 6 shows the operation of one of the color cameras (13a) forming the means for acquiring stereoscopic images.
  • the operating details of the associated color camera 13b, in which the index a could be replaced by the index b, are identical, and are therefore not shown in the figures.
  • the light beam of incident light F enters the camera and comes illuminating reflective prisms, respectively 134a (134b), 135a (135b) and 136a (136b), which will separate the light according to the base colors and reflect the light so as to direct this light to brightness sensors placed in the camera , respectively 131a (131b), 132a (132b), 133a (133b), and able to form images of the surface.
  • These colors are the basic colors as shown in Figure 5, in which the blue color B substantially corresponds to a wavelength of 450 nm, the green color G at a wavelength of 550 nm and the red color R at a wavelength of 680 nm.
  • the lighting means (231) it is therefore sufficient to arrange for the lighting means (231) to emit a first system of fringes S1 at the wavelength of 450 nm corresponding to blue and alternating bands illuminated in blue and unlit strips for this system of fringes to be seen by the sensor 131a (131b) assigned to this color.
  • a second fringe system S2, different from the first, is emitted simultaneously by the lighting system (232) at a wavelength of 550 nm and will therefore be seen only by the sensor 132a (132b) dedicated to the green color. This fringe system alternates bands lit in green and unlit strips.
  • a third system of fringes S3 emitted by the lighting system (233) at the wavelength of 680 nm will be seen by the sensor 133a (133b) reserved for red, and alternating red bands and unlit strips.
  • the sensor 131 of the primary blue color of the camera 13a is associated with the sensor 131b (not shown) of the primary blue color of the camera 13b. These two sensors form a means of acquiring the stereoscopic image of the tire surface illuminated by the fringe system S1 emitted by the lighting means 231 corresponding to the blue.
  • the sensor 132a of the green primary color of the camera 13a is associated with the sensor 132b (not shown) of the green primary color of the camera 13b. These two sensors form a means of acquiring the stereoscopic image of the tire surface illuminated by the fringe system S2 emitted by the illumination means 232 corresponding to green.
  • the sensor 133a of the primary red color of the camera 13a is associated with the sensor 133b (not shown) of the primary color red of the camera 13b.
  • These two sensors form a means of acquiring the stereoscopic image of the surface of the tire illuminated by the fringe system S3 emitted by the lighting means 233 corresponding to the red.
  • the two color cameras 13a and 13b thus simultaneously see the three fringe systems, and the acquisition of the image of the entire surface of the tread lit by the three fringe systems can be performed in a single turn. of the tire around its axis of revolution D.
  • One and the same point of the tire surface can be illuminated simultaneously by two different colors, for example blue and green, and this point will be considered illuminated in the fringe systems S1 and S2, and as unlit in the system. fringes S3.
  • the lighting means 23 is formed of three lighting means 231, 232 and 233 able to illuminate each of them. tire surface according to a given system of fringes and at a given wavelength.
  • the means 231 will emit the first fringe system S1 at the wavelength corresponding to the blue (B)
  • the means 232 emits a second fringe system S2 at the wavelength corresponding to the green (G)
  • the mean 233 emits a third fringe system S3 at the wavelength corresponding to the red (R).
  • These three fringe systems are emitted simultaneously and directed towards the tire surface at the same given angle using semi-reflecting mirrors 234.
  • N + 1 additional acquisitions of the image of the tire surface to be evaluated so as to automatically determine the calibration thresholds for distinguishing the illuminated strips and the unlit strips.
  • N images by successively illuminating with the aid of each of the lighting means corresponding to each of the basic colors the entire surface of the tire and by removing the fringes, and an additional image by eliminating any illumination.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Dispositif d'acquisition de l'image numérique en relief de la surface d'un pneumatique P comprenant : deux caméras couleur d'acquisition d'images stéréoscopique (13a, 13b) comprenant chacune N capteurs d'image primaire (131a, 132a, 133a, 131b, 132b, 133b) d'une couleur primaire donnée (R, G, B), N étant supérieur ou égal à deux, et disposées de manière à acquérir la lumière émise (E) en direction d'une zone (Z) déterminée de la surface du pneumatique par des moyens d'éclairage (231, 232, 233) et réfléchie (F) par la surface dudit pneumatique, N moyens d'éclairage (231, 232, 233) projetant simultanément selon une même direction sur ladite zone (Z) de la surface du pneumatique, et chacun distinctement, une lumière dont la longueur d'onde correspond à l'une des couleurs primaire des caméras (R, G, B), selon un système de franges (S1, S2,.. SN) alternant des bandes éclairées et non éclairées de largeur (L1, L2,... LN) donnée.

Description

EVALUATION DU RELIEF DE LA SURFACE D'UN PNEUMATIQUE PAR
STEREOVISION ACTIVE
[001] L'invention concerne le domaine du contrôle visuel des pneumatiques.
[002] Traditionnellement, ces contrôles font appel aux compétences d'un opérateur, lequel procède à l'inspection visuelle du pneumatique pour discerner les éventuels défauts apparents à la surface de ce dernier. Ces opérations sont longues et coûteuses, et c'est la raison pour laquelle les manufacturiers recherchent activement des moyens permettant d'assister l'opérateur.
[003] Dans ce contexte, il s'avère nécessaire de saisir une représentation numérique du relief de la surface du pneumatique à inspecter dans le but, après analyse et traitement, de comparer cette représentation numérique à une image de référence de la surface ou à des données issues d'un modèle. Cette représentation numérique de la surface est encore appelée image du relief de la surface.
[004] Plus particulièrement, l'invention s'adresse au domaine de l'acquisition d'une image du relief de la surface par stéréoscopie.
[005] Différentes méthodes d'acquisition d'image ont été divulguées dans le but de fournir des données aussi pertinentes que possible à un moyen de traitement numérique apte à comparer cette image avec une image de référence, afin de déterminer la conformité du pneumatique à analyser.
[006] Selon la technique de stéréovision classique, il est proposé d'utiliser deux caméras séparées et dédiées respectivement à l'acquisition des données relatives au relief ainsi qu'à l'acquisition des données relatives à l'apparence, telles que la couleur, le niveau de gris ou la brillance.
[007] Cette solution, dite de stéréoscopie passive, nécessite de mettre en correspondance les images provenant des deux moyens d'acquisition. Les correspondances peuvent être déterminées à l'aide d'éléments caractéristiques de l'image comme la présence de coins ou de contours caractéristiques. Les coordonnées de la surface sont alors calculées par triangulation en déterminant les angles de vues différents d'un même point de la surface vu par les deux caméras.
[008] Cependant, plusieurs hypothèses sont nécessaires pour que les algorithmes de calcul puissent s'exécuter de manière appropriée. En effet, des ambiguïtés peuvent apparaître lorsque la surface à évaluer présente des zones de réflexion ou de réfraction de la lumière. Dans ce cas, les algorithmes ne peuvent pas déterminer correctement les correspondances entre les pixels des deux caméras. De plus, contrairement au cerveau humain, ils n'ont pas une connaissance de la topographie ou du contexte de l'image à analyser. Il peut alors être nécessaire de faire intervenir un opérateur dans le processus d'analyse pour sélectionner les points à mettre en correspondance.
[009] Aussi, par opposition aux techniques optiques passives, il a été développé des techniques d'acquisition dites actives, qui consistent à émettre un signal optique sur la surface à reconstruire vue par des caméras selon des angles différents pour faciliter la mise en correspondance des points de la surface..
[0010] Ces méthodes consistent à éclairer la surface à l'aide de motifs lumineux connus, qui sont captés par les récepteurs optiques des caméras. La mise en correspondance des images enregistrées par les deux caméras stéréoscopiques est facilitée par la connaissance des éléments du motif, et les ambiguïtés évoquées précédemment sont alors levées lors de l'analyse.
[0011] Comme cela sera expliqué plus en détail par la suite, un des algorithmes de projection de lumière structurée les plus utilisé, consiste à éclairer la surface à l'aide d'une lumière formée de séries de motifs binaires composés de bandes, alternant des lignes illuminées et des lignes non illuminées. Simultanément, les caméras font l'acquisition de ces séries d'images successives dans lesquelles chacun des points de la surface peut être éclairé on non éclairé. Il est alors possible de reconstruire les alternances des bandes éclairées et non éclairées vues par les deux caméras, d'identifier de manière biunivoque les bandes de lumière pour localiser un point de la surface de manière certaine, et de mettre les images des deux caméras en correspondances afin de reconstituer l'image en relief de la surface.
[0012] En utilisant judicieusement ces algorithmes d'éclairage il est ainsi possible d'acquérir l'image de la surface d'un pneumatique en évitant les effets liés aux zones d'ombre lorsque le relief de la surface est fortement découpé, mais également de fournir les informations suffisantes permettant à un moyen de traitement d'image de distinguer les effets de brillance liés à des taches ou à des variations de couleur.
[0013] L'application des méthodes évoquées ci-dessus à l'évaluation du relief de la surface d'un pneumatique, peut faire l'objet de quelques adaptations lorsque l'on désire optimiser le cycle d'acquisition de l'image. En particulier lorsqu'on cherche à définir le relief de la bande de roulement.
[0014] La figure 1 illustre le cas d'une application classique dans lequel un moyen d'éclairage 20 projette un système de franges sur la bande de roulement, et dans lequel des caméras stéréoscopiques 10a et 10b sont disposées de manière à acquérir la lumière émise (E) par le moyen d'éclairage 20 et réfléchie (F) par la surface du pneumatique P. Le pneumatique est monté sur la jante 30, d'une roue 31 entraînée en rotation autour de l'axe D par un moyeu porteur motorisé 32
[0015] A chaque prise de vue, les caméras enregistrent les deux images stéréoscopiques d'une portion angulaire α de la surface de la bande de roulement. L'image complète de la bande de roulement sera obtenue en faisant tourner d'un tour complet le pneumatique autour de son axe de révolution D, et en mettant bout à bout les 2*π/α clichés pris par chacune des caméras stéréoscopiques.
[0016] La mise en œuvre de l'algorithme nécessite également de projeter successivement les uns après les autres des systèmes de franges S du type de celles qui sont illustrées aux figures 2, 3 et 3a. Les systèmes de franges font alterner des bandes éclairées et non éclairées de largeurs connues, selon un code binaire déterminé à l'avance (S1 , S2, S3, S4) et sont associés à des techniques d'encodage et de décodage permettant d'identifier les franges des images projetées et enregistrées par les caméras.
[0017] Les caméras stéréoscopiques font l'acquisition successive des images de la projection de chacun des systèmes de franges, S1 , S2, S3.puis S4 sur la surface du pneumatique.
[0018] En se référant aux figures 3a et 3b, le système de frange S1 correspond à la première ligne. Le système de franges S2 correspond à la ligne 2, le système de franges S3 correspond à la ligne 3, et le système de franges S4 correspond à la ligne 4. Le nombre de systèmes de frange qu'il est possible de projeter n'est bien sur pas limitatif.
[0019] Un système de traitement, selon des algorithmes connus et ne faisant pas partie de la présente description, décode les images pour associer à chaque point de la surface du pneumatique les niveaux d'éclairage successifs de manière à lever les incertitudes de positionnement.
[0020] Une première méthode consiste donc à projeter successivement chacun des systèmes de frange sur une portion de pneumatique puis de répéter cette opération sur les secteurs angulaires successifs en faisant tourner le pneumatique autour de son axe. Une deuxième méthode consiste à effectuer, pour chaque système de franges, les prises de vues sur un tour complet du pneumatique et à faire autant de tours que de systèmes de franges à projeter.
[0021] Quelle que soit la méthode choisie on observe que ces tours successifs sont fortement consommateurs de temps et pénalisent la rentabilité du système de contrôle. Ces solutions nécessitent également des moyens de codage et de synchronisation particulièrement précis.
[0022] Pour réduire ce temps d'acquisition il est alors possible, comme le propose la publication LJS 4175 862, de placer autant de dispositifs de projection de franges associés à des moyens d'acquisition d'images stéréoscopiques de l'image numérique en relief de la surface d'un pneumatique que le nombre N de système de franges à projeter.
[0023] De cette manière, il est possible de saisir les 2*N images de la surface complète d'un pneumatique éclairée par les N systèmes de frange, et issues des 2*N caméras stéréoscopiques, en faisant subir au pneumatique un seul tour autour de son axe de révolution.
[0024] Ce dispositif nécessite toutefois un grand nombre de caméras et de projecteurs pouvant interférer les uns avec les autres et présente de surcroît l'inconvénient de générer de nombreux calculs supplémentaires pour recaler les N images en relief de la surface les unes par rapport aux autres.
[0025] Le dispositif d'acquisition de l'image numérique en relief de la surface d'un pneumatique selon l'invention comprend : deux caméras couleur d'acquisition d'images stéréoscopique comprenant chacune N capteurs d'image primaire d'une couleur primaire donnée, N étant supérieur ou égal à deux, et disposées de manière à acquérir la lumière émise en direction d'une zone déterminée de la surface du pneumatique par des moyens d'éclairage et réfléchie par la surface dudit pneumatique,
N moyens d'éclairage projetant simultanément selon une même direction sur ladite zone de la surface du pneumatique, et chacun distinctement, une lumière dont la longueur d'onde correspond à l'une des couleurs primaire des caméras, selon un système de frange alternant des bandes éclairées et non éclairées de largeur donnée.
[0026] Pour un même secteur angulaire chacune des caméras effectue une prise de vue de l'ensemble des systèmes de franges simultanément, et il importe peu comme on le verra par la suite qu'un point donné de la surface du pneumatique soit considéré comme étant éclairé dans un système de frange et non éclairée dans un autre.
[0027] De la sorte, en un seul tour du pneumatique sur son axe, on obtient N paires d'image de la surface circonférentielle de la partie du pneumatique que l'on cherche à analyser, chaque paire provenant des deux capteurs d'une même couleur situés dans chacune des caméras couleur. Ces N paires d'images forment les N images stéréoscopiques des N systèmes de franges.
[0028] L'invention présente également l'avantage de réduire les opérations de recalage des images et de calibrage des caméras en raison de la simultanéité des prises de vues. De même, ce mode d'acquisition permet de s'affranchir des interférences lumineuses provenant des moyens d'éclairage.
[0029] La description qui suit permet de mieux comprendre le système d'acquisition selon l'invention et s'appuie sur les figures 1 à 6 dans lesquelles : - la figure 1 représente une vue schématique d'un dispositif de vision stéréoscopique conventionnel, la figure 2, représente une vue photographique de la surface d'une bande de roulement éclairée à l'aide d'un système de franges, la figure 3a représente des systèmes de franges structurés selon un code binaire, la figure 3b représente des systèmes de franges structurés selon un code dit de Gray, la figure 4 représente une vue schématique du dispositif selon l'invention, la figure 5 représente un exemple de spectre de répartition des longueurs d'onde des couleurs primaires utilisées dans une caméra couleur, la figure 6 représente une vue schématique de principe d'une caméra couleur utilisée dans un moyen d'acquisition d'image stéréoscopique selon l'invention.
[0030] Comme cela a été évoqué ci-dessus, le dispositif illustré par la figure 1 représente de manière schématique un moyen 10 d'acquisition d'une image stéréoscopique formé de deux caméras 10a et 10b équipées chacune d'un objectif d'entrée par lequel pénètre la lumière réfléchie F provenant d'une zone Z déterminée de la surface du pneumatique P à examiner, en l'espèce la bande de roulement. Ladite surface est éclairée par un moyen d'éclairage 20 apte à projeter un ou plusieurs systèmes de franges alternant des bandes éclairées et des bandes non éclairées sur la surface du pneumatique vue par les objectifs des caméras.
[0031] La figure 2 est une vue photographique de ladite zone Z de la bande de roulement d'un pneumatique P éclairée par un système de franges. Les raies de lumières sont parallèles entre elles et sont disposées préférentiellement dans le sens circonférentiel.
[0032] Dans le cadre de la mise en œuvre de l'invention, on peut également imaginer que les raies composant le système de franges soient disposées dans le sens transversal, dans le sens radial ou forment des systèmes de raies circulaires concentriques, en particulier lorsque l'on cherche à analyser la surface du flanc d'un pneumatique.
[0033] Les figures 3a et 3b illustrent le cas de systèmes de franges dans lesquels la largeur des bandes du système de franges est inversement proportionnelle au nombre de bandes. Ainsi, la largeur des bandes du système de franges S2 est égale à la moitié de la largeur des bandes du système de franges S1 ; la largeur des bandes du système de franges S3, est égale à la moitié de la largeur des bandes du système de franges S2, et ainsi de suite. En d'autres termes, les largeurs (L1, L2, ... LN) des bandes de chacun des systèmes de franges (Si, S2,.. SN) sont des multiples, modulo 2n, de la largeur de bande du système de franges ayant la largeur de bande la plus faible (L4), n variant de 1 à (N-1 ), N étant égal à 4 dans l'exemple des figures 3a et 3b.
[0034] Ainsi, plus le nombre N du rang du système de franges est élevé plus la largeur des bandes est faible, et plus la précision d'analyse est élevée. Mais plus les temps de saisie et de calcul sont importants. De plus, la largeur des franges est limitée par la résolution du capteur des caméras.
[0035] II s'avère parfois difficile de déterminer si un pixel observé par les caméras est illuminé ou non, en raison des inter-reflexions entre la surface à examiner et son environnement. De plus, l'encodage binaire souffre de l'accumulation d'erreurs aux frontières des bandes de lumière. On peut observer en effet que, dans un code binaire tel qu'illustré à la figure 3a, la frontière entre les raies 8 et 9 est présente dans tous les systèmes de franges.
[0036] La figure 3b montre un encodage particulier proposé par Gray (Laboratoires Bell, 1953) décrit à titre d'information par Hall, HoIt et Rusinkiewicz lors de la conférence internationale sur l'imagerie informatique en 2001 , ou dans l'article publié par Rusinkiewicz,Hall-Holt et Levoy « real time 3D model Acquisition » Proc. Of SIGGRAPH 02, volume 21 , pages 438-446 de juillet 2002. Cet encodage particulier, consiste à éclairer la surface à l'aide de systèmes de franges lumineuses dont la largeur est aussi divisée par deux à chaque image successive, mais dans lequel, chaque frontière entre deux bandes n'apparaît qu'une seule fois. Cet artifice permet de réduire les erreurs d'analyse susceptibles de se produire dans les zones frontières.
[0037] D'autres codes et d'autres algorithmes de reconstructions ont été proposés pour augmenter la fiabilité de la saisie et de l'analyse, tel que le code proposé par Hall, HoIt et Rusinkiewicz, mais il n'est pas dans l'esprit de la présente description de développer l'utilisation des ces différents moyens permettant de créer des images structurées, dont on retiendra essentiellement qu'ils consistent à éclairer la surface à évaluer à l'aide de systèmes de franges alternant des bandes éclairées et des bandes non éclairées selon un code donné.
[0038] Pour une meilleure exploitation des résultats, on s'arrange pour que les systèmes de franges projetés par chacun des moyens d'éclairage se superposent de telle sorte que les zones frontières soient alignées.
[0039] Le dispositif selon l'invention est illustré aux figures 4, 5 et 6.
[0040] Dans le cas de ce dispositif d'acquisition, on considère que le nombre de systèmes de franges à projeter pour obtenir la précision suffisante est faible. En pratique il a été considéré que la projection de trois ou quatre systèmes de franges s'avérait suffisant et l'invention a pour objet de tirer partie de cette situation.
[0041] Le dispositif selon l'invention comprend un moyen d'acquisition de l'image stéréoscopique formé par deux caméras couleurs 13a et 13b.
[0042] Selon les technologies couramment employées, ce type de caméra contient des moyens aptes à séparer en un certain nombre de couleurs de base (R, G, B), la lumière réfléchie provenant de l'objet dont on cherche à acquérir l'image.
[0043] Ces moyens de séparation peuvent être formés par des jeux de prismes, ou encore par un filtre constitué de cellules colorées des couleurs primaires, et plus connu sous l'appellation de filtre de Bayer. Ils ont pour fonction de séparer la lumière selon un certain de nombre de couleurs dites couleurs de base ou couleurs fondamentales. En règle générale, ces filtres séparent la lumière selon les trois couleurs de base, ou couleurs fondamentales, que sont le rouge (R) le vert (G) et le bleu (B). Toutefois il est également possible, de réaliser des caméras comprenant plus de trois couleurs fondamentales. A titre d'exemple il existe sur le marché des caméras comprenant quatre couleurs de base, le rouge (R), le vert (G), le bleu (B) et le cyan.
[0044] La lumière réfléchie F provenant de l'objet à examiner est donc décomposée en autant d'images monochromes que de couleurs de base ou de couleur fondamentales. Chacune de ces images est alors dirigée vers un capteur spécifique, formé par un assemblage de photosites sensibles à la lumière tels que des capteurs CCD ou CMOS aptes à transformer la quantité de lumière qu'ils reçoivent en courant électrique. On obtient donc autant d'image en niveau de gris que de couleurs de base. La résolution maximale d'un capteur est fonction du nombre de photosites auquel correspond le nombre de pixels formant l'image finale.
[0045] L'invention consiste à tirer partie de ce mode de fonctionnement des caméras couleur pour obtenir des informations particulières concernant l'image en relief de la surface à évaluer.
[0046] A cet effet, et en référence à la figure 4, les N moyens d'acquisition d'image stéréoscopiques destinés à acquérir les 2*N images de la surface du pneumatique éclairées par les N systèmes de franges, sont formés par les 2*N capteurs d'image primaire des deux caméras couleur 13a et 13b. Les deux capteurs d'une même couleur primaire donnée de chacune des caméras formant un moyen d'acquisition d'image stéréoscopique.
[0047] II suffit alors que chacun des moyens d'éclairages selon un système de franges donné éclaire la surface avec une lumière dont la longueur d'onde correspond à l'une des couleurs primaire des caméras, pour que les N systèmes de franges puissent être vus simultanément et de manière distincte par les capteurs de couleur primaires des deux caméras.
[0048] Le nombre maximum N de système de franges qu'il sera alors possible de projeter sur la surface correspond au nombre N de couleurs primaires des caméras.
[0049] La figure 6 permet de visualiser le fonctionnement d'une des caméras couleur (13a) formant le moyen d'acquisition des images stéréoscopiques. Les détails de fonctionnement de la caméra couleur associée 13b, dans lesquelles l'indice a pourrait être remplacé par l'indice b, sont identiques, et ne sont donc pas représentés dans les figures.
[0050] Le rayon lumineux de lumière incidente F pénètre dans la caméra et vient éclairer des prismes réfléchissants, respectivement 134a (134b), 135a (135b) et 136a (136b), qui vont séparer la lumière selon les couleurs de base et réfléchir la lumière de manière à orienter cette lumière vers des capteurs de luminosité placés dans la caméra, respectivement 131 a (131 b), 132a (132b), 133a (133b), et aptes à former des images de la surface.
[0051] Ces couleurs sont les couleurs de base telles que représentées à la figure 5, dans laquelle la couleur bleue B correspond sensiblement à une longueur d'onde de 450 nm, la couleur verte G à une longueur d'onde de 550nm et la couleur rouge R à une longueur d'onde de 680 nm.
[0052] II suffit donc de s'arranger pour que le moyen d'éclairage (231 ) émette un premier système de franges S1 à la longueur d'onde de 450nm correspondant au bleu et alternant des bandes éclairées en bleu et des bandes non éclairées pour que ce système de franges soit vu par le capteur 131 a (131 b) affecté à cette couleur. Un second système de franges S2, différent du premier, est émis simultanément par le système d'éclairage (232) à une longueur d'onde de 550nm et sera donc vu uniquement par le capteur 132a (132b) dédié à la couleur verte. Ce système de frange alterne des bandes éclairées en vert et des bandes non éclairées. Un troisième système de franges S3 émis par le système d'éclairage (233) à la longueur d'onde de 680 nm sera vu par le capteur 133a (133b) réservé au rouge, et alternera des bandes rouges et des bandes non éclairées.
[0053] Ainsi, avec seulement deux caméras couleur, et en recueillant séparément les images issues des trois capteurs de chacune des caméras couleur, on peut obtenir les images stéréoscopiques de trois systèmes de franges différents S1 , S2 et S3 émis simultanément par le moyen d'éclairage selon des longueurs d'ondes différentes correspondant aux couleurs de base des caméras.
[0054] Le capteur 131 a de la couleur primaire bleue de la caméra 13a est associé au capteur 131 b (non représenté) de la couleur primaire bleue de la caméra 13b. Ces deux capteurs forment un moyen d'acquisition de l'image stéréoscopique de la surface du pneumatique éclairée par le système de franges S1 émis par le moyen d'éclairage 231 correspondant au bleu. Le capteur 132a de la couleur primaire verte de la caméra 13a est associé au capteur 132b (non représenté) de la couleur primaire verte de la caméra 13b. Ces deux capteurs forment un moyen d'acquisition de l'image stéréoscopique de la surface du pneumatique éclairée par le système de franges S2 émis par le moyen d'éclairage 232 correspondant au vert. Enfin, le capteur 133a de la couleur primaire rouge de la caméra 13a est associé au capteur 133b (non représenté) de la couleur primaire rouge de la caméra 13b. Ces deux capteurs forment un moyen d'acquisition de l'image stéréoscopique de la surface du pneumatique éclairée par le système de frange S3 émis par le moyen d'éclairage 233 correspondant au rouge.
[0055] Les deux caméras couleurs 13a et 13b voient donc simultanément les trois systèmes de franges, et l'acquisition de l'image de la surface complète de la bande de roulement éclairée par les trois systèmes de franges peut être réalisée en un seul tour du pneumatique autour de son axe de révolution D.
[0056] Un même point de la surface du pneumatique peut être éclairé simultanément par deux couleurs différentes par exemple le bleu et le vert, et ce point sera considéré comme éclairé dans les systèmes de franges S1 et S2, et comme non éclairé dans le système de franges S3.
[0057] De manière à éviter les distorsions liées à la projection de la lumière sur la surface du pneumatique à des angles différents, le moyen d'éclairage 23 est formé de trois moyens d'éclairage 231 , 232 et 233 aptes à éclairer chacun la surface du pneumatique selon un système de franges donné et à une longueur d'onde donnée. Ainsi, le moyen 231 va émettre le premier système de franges S1 à la longueur d'onde correspondant au bleu (B), le moyen 232 émet un second système de franges S2 à la longueur d'onde correspondant au vert (G) et le moyen 233 émet un troisième système de franges S3 à la longueur d'onde correspondant au rouge (R). Ces trois systèmes de franges sont émis simultanément et dirigé vers la surface du pneumatique selon un même angle donné à l'aide de miroirs semi réfléchissants 234.
[0058] De manière à limiter les effets parasites liés aux longueurs d'onde correspondant au proche infrarouge, il s'avère avantageux de placer un filtre sur l'objectif de la caméra apte à limiter l'entrée des rayons lumineux d'une longueur d'onde supérieure à 750nm. D'autres filtres passe bande peuvent être également ajoutés, de manière à empêcher l'entrée de lumières de longueurs d'ondes parasites. Aussi, de manière plus générale on cherchera à filtrer le passage des rayons lumineux dont la longueur d'onde est différente de celles utilisées par les éclairages choisis.
[0059] Lors de la mise en œuvre d'un dispositif d'acquisition d'images stéréoscopiques selon l'invention tel que décrit ci-dessus, il peut s'avérer intéressant, de réaliser N+1 acquisitions supplémentaires de l'image de la surface du pneumatique à évaluer de manière à déterminer de manière automatique les seuils de calibrage permettant de distinguer les bandes éclairées et les bandes non éclairées. A cet effet on réalise N images en éclairant successivement à l'aide de chacun des moyens d'éclairage correspondant à chacune des couleurs de base toute la surface du pneumatique et en supprimant les franges, et une image supplémentaire en supprimant tout éclairage.

Claims

REVENDICATIONS
1 ) Dispositif d'acquisition de l'image numérique en relief de la surface d'un pneumatique P comprenant : deux caméras couleur d'acquisition d'images stéréoscopique (13a, 13b) comprenant chacune N capteurs d'image primaire (131a, 132a, 133a, 131 b, 132b, 133b) d'une couleur primaire donnée (R, G, B), N étant supérieur ou égal à deux, et disposées de manière à acquérir la lumière émise (E) en direction d'une zone (Z) déterminée de la surface du pneumatique par des moyens d'éclairage
(231 , 232, 233) et réfléchie (F) par la surface dudit pneumatique,
N moyens d'éclairage (231 , 232, 233) projetant simultanément selon une même direction sur ladite zone (Z) de la surface du pneumatique, et chacun distinctement, une lumière dont la longueur d'onde correspond à l'une des couleurs primaire des caméras (R, G, B), selon un système de franges (S1, S2,..
SN) alternant des bandes éclairées et non éclairées de largeur (L1, L2, . .. LN) donnée.
2) Dispositif d'acquisition selon la revendication 1 dans lequel les systèmes de franges (Si, S2,.. SN) émis par lesdits moyens d'éclairage (231 , 232, 233) ont des frontières qui se superposent.
3) Dispositif d'acquisition selon la revendication 2, lequel les largeurs (L1, L2, . .. LN) des bandes de chacun des systèmes de franges (S1, S2,.. SN) sont des multiples, modulo 2", de la largeur des bandes du système de franges ayant la largeur de bande la plus faible (L1), n variant de 1 à (N-1 ).
4) Dispositif d'acquisition selon l'une des revendications 1 à 3 comprenant des moyens de maintien (30, 31 ) et de mise en rotation (32) du pneumatique (P) par rapport aux caméras stéréoscopiques et aux moyens d'éclairage.
5) Dispositif d'acquisition selon l'une des revendications 1 à 4 comprenant des moyens de traitement numérique dans lesquels sont programmés des algorithmes aptes à analyser les 2*N images de la surface du pneumatique (P) de manière à déterminer le relief numérique de ladite surface.
6) Dispositif selon la revendication 1 , dans lequel chacune des caméras couleur (13a, 13b) comprend des moyens (134a, 135a, 136a) de séparation des faisceaux entrant (F) en chacune des N couleurs primaires (R, G, B), de manière à diriger le faisceau lumineux sur autant de capteurs (131a, 132a, 133a, 131 b, 132b, 133b) aptes à définir une image primaire en niveau de gris de la surface du pneumatique,
7) Dispositif d'acquisition selon la revendication 1 , dans lequel les couleurs primaires sont le rouge (R), le vert (G) et le bleu (B).
8) Dispositif d'acquisition selon la revendication 1 , dans lequel les couleurs primaires sont le rouge (R), le vert (G), le bleu (B) et le cyan.
9) Procédé d'acquisition de l'image numérique en relief de la surface d'un pneumatique à l'aide d'un dispositif selon l'une des revendications 1 à 8 dans lequel on procède à l'acquisition de 2*N images de ladite surface éclairée selon les N systèmes de franges (S-i, S2,.. SN) émis par les N moyens d'éclairage caractérisé en ce que les 2*N images correspondantes à chacun des capteurs (131 a, 132a, 133a, 131 b, 132b, 133b) sont acquises simultanément en faisant effectuer au pneumatique un tour complet autour de son axe de révolution.
10) Procédé d'acquisition selon la revendication 9 dans lequel on procède à l'acquisition de N +1 images supplémentaires comprenant N image dans lesquelles on éclaire toute la surface du pneumatique à l'aide successivement de chacun des N moyens d'éclairage correspondant à une couleur de base et en supprimant les franges, et une image supplémentaire dans laquelle on supprime tout éclairage, de manière à calibrer les seuils de détection de chacun des capteurs (131 a, 132a, 133a, 131 b,
132b, 133b).
EP09744161A 2008-11-07 2009-11-03 Evaluation du relief de la surface d'un pneumatique par stereovision active Withdrawn EP2347237A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0857564A FR2938330A1 (fr) 2008-11-07 2008-11-07 Evaluation du relief de la surface d'un pneumatique par stereovision active
PCT/EP2009/064481 WO2010052196A1 (fr) 2008-11-07 2009-11-03 Evaluation du relief de la surface d'un pneumatique par stereovision active

Publications (1)

Publication Number Publication Date
EP2347237A1 true EP2347237A1 (fr) 2011-07-27

Family

ID=40791580

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09744161A Withdrawn EP2347237A1 (fr) 2008-11-07 2009-11-03 Evaluation du relief de la surface d'un pneumatique par stereovision active

Country Status (7)

Country Link
US (1) US9239274B2 (fr)
EP (1) EP2347237A1 (fr)
JP (1) JP2012508370A (fr)
CN (1) CN102203578A (fr)
BR (1) BRPI0921581A2 (fr)
FR (1) FR2938330A1 (fr)
WO (1) WO2010052196A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5882730B2 (ja) * 2011-12-28 2016-03-09 株式会社ブリヂストン 外観検査装置及び外観検査方法
US9291527B2 (en) * 2012-07-25 2016-03-22 TIREAUDIT.COM, Inc. System and method for analysis of surface features
JP5781481B2 (ja) * 2012-09-04 2015-09-24 株式会社神戸製鋼所 タイヤ形状検査方法、及びタイヤ形状検査装置
MX352132B (es) * 2012-11-15 2017-11-08 Android Ind Llc Sistema y método para determinar la uniformidad de un neumático..
JP5923054B2 (ja) * 2013-04-08 2016-05-24 株式会社神戸製鋼所 形状検査装置
US10063837B2 (en) * 2013-07-25 2018-08-28 TIREAUDIT.COM, Inc. System and method for analysis of surface features
GB201318824D0 (en) * 2013-10-24 2013-12-11 Wheelright Ltd Tyre condition analysis
JP6386304B2 (ja) * 2014-08-29 2018-09-05 東洋ゴム工業株式会社 タイヤ踏面の接地面挙動測定装置、及びタイヤ踏面の接地面挙動測定方法
FR3030066B1 (fr) * 2014-12-16 2017-12-22 Commissariat Energie Atomique Projecteur de lumiere structuree et scanner tridimensionnel comportant un tel projecteur
BR112017013291B1 (pt) 2014-12-22 2022-05-03 Pirelli Tyre S.P.A. Aparelho para verificar pneus em uma linha de produção de pneu
WO2016103103A1 (fr) * 2014-12-22 2016-06-30 Pirelli Tyre S.P.A. Procédé et appareil pour contrôler des pneus dans une chaîne de production
RU2640673C1 (ru) * 2014-12-22 2018-01-11 Пирелли Тайр С.П.А. Способ и устройство для детектирования дефектов на шинах в процессе производства шин
US10602118B2 (en) * 2015-12-02 2020-03-24 Purdue Research Foundation Method and system for multi-wavelength depth encoding for three dimensional range geometry compression
WO2017103814A1 (fr) 2015-12-16 2017-06-22 Pirelli Tyre S.P.A. Dispositif et procédé pour l'analyse de pneus
KR20180093920A (ko) 2015-12-16 2018-08-22 피렐리 타이어 소시에떼 퍼 아찌오니 타이어를 검사하는 기기 및 방법
RU2722984C2 (ru) 2015-12-28 2020-06-05 Пирелли Тайр С.П.А. Установка и способ контроля шин
EP3397938B1 (fr) 2015-12-28 2019-08-28 Pirelli Tyre S.p.A. Appareil de controle de pneus
US10789773B2 (en) 2016-03-04 2020-09-29 TIREAUDIT.COM, Inc. Mesh registration system and method for diagnosing tread wear
US11472234B2 (en) 2016-03-04 2022-10-18 TIREAUDIT.COM, Inc. Mesh registration system and method for diagnosing tread wear
ITUA20162722A1 (it) * 2016-04-19 2017-10-19 Butler Eng And Marketing S P A Dispositivo e metodo per l'analisi e il rilevamento di caratteristiche geometriche di un oggetto
ITUA20163534A1 (it) 2016-05-18 2017-11-18 Pirelli Metodo e linea di controllo di pneumatici per ruote di veicoli
WO2018020415A1 (fr) * 2016-07-26 2018-02-01 Pirelli Tyre S.P.A. Procédé et station de contrôle de pneus pour des roues de véhicule
JP6805722B2 (ja) * 2016-10-25 2020-12-23 住友ゴム工業株式会社 トレッド形状測定方法及びトレッド形状測定装置
CN113714147A (zh) * 2021-09-23 2021-11-30 青岛中导辰远智能科技有限公司 一种轮胎外观的视觉检测系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175862A (en) * 1975-08-27 1979-11-27 Solid Photography Inc. Arrangement for sensing the geometric characteristics of an object
US4653104A (en) * 1984-09-24 1987-03-24 Westinghouse Electric Corp. Optical three-dimensional digital data acquisition system
JPS6232406A (ja) 1985-08-05 1987-02-12 Nec Corp 光コネクタの端末構造
JPH0726828B2 (ja) 1986-04-18 1995-03-29 株式会社トプコン 形状測定装置
US5561526A (en) * 1994-05-26 1996-10-01 Lockheed Missiles & Space Company, Inc. Three-dimensional measurement device and system
DE19511534C2 (de) * 1995-03-29 1998-01-22 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Erfassung von 3D-Fehlstellen bei der automatischen Inspektion von Oberflächen mit Hilfe farbtüchtiger Bildauswertungssysteme
JP3525964B2 (ja) 1995-07-05 2004-05-10 株式会社エフ・エフ・シー 物体の三次元形状計測方法
JP4514007B2 (ja) 1999-12-28 2010-07-28 株式会社ブリヂストン 被検体の外観形状検査方法及び装置
CA2306515A1 (fr) * 2000-04-25 2001-10-25 Inspeck Inc. Vision stereo internet, numerisation 3d et camera de saisie de mouvement
FR2808326B1 (fr) * 2000-04-27 2002-07-12 Commissariat Energie Atomique Procede de mesurage d'un objet tridimentionnel, ou d'un ensemble d'objets
US6750873B1 (en) * 2000-06-27 2004-06-15 International Business Machines Corporation High quality texture reconstruction from multiple scans
KR100406843B1 (ko) * 2001-04-06 2003-11-21 (주) 인텍플러스 색정보를 이용한 실시간 3차원 표면형상 측정방법 및 장치
JP2003240521A (ja) 2002-02-21 2003-08-27 Bridgestone Corp 被検体の外観・形状検査方法とその装置、及び、被検体の外観・形状検出装置
US7103212B2 (en) * 2002-11-22 2006-09-05 Strider Labs, Inc. Acquisition of three-dimensional images by an active stereo technique using locally unique patterns
US7349104B2 (en) 2003-10-23 2008-03-25 Technest Holdings, Inc. System and a method for three-dimensional imaging systems
JP4679073B2 (ja) * 2004-05-18 2011-04-27 株式会社ブリヂストン タイヤ凹凸図形の検査方法、および、タイヤ凹凸図形検査装置
JP2007085836A (ja) 2005-09-21 2007-04-05 Bridgestone Corp 三次元形状測定システム、三次元形状測定方法、及び、撮影装置の設置状態補正方法
FR2897303B1 (fr) * 2006-02-15 2009-11-13 Michelin Soc Tech Ensemble de roue et de pneumatique et procede de mesure en dynamique de parametres topologiques de la surface interne de la partie pertinente de pneumatique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010052196A1 *

Also Published As

Publication number Publication date
US9239274B2 (en) 2016-01-19
US20120007956A1 (en) 2012-01-12
CN102203578A (zh) 2011-09-28
FR2938330A1 (fr) 2010-05-14
JP2012508370A (ja) 2012-04-05
WO2010052196A1 (fr) 2010-05-14
BRPI0921581A2 (pt) 2016-04-26

Similar Documents

Publication Publication Date Title
EP2347237A1 (fr) Evaluation du relief de la surface d'un pneumatique par stereovision active
EP2225608B1 (fr) Dispositif d'evaluation de la surface d'un pneumatique
EP2630464B1 (fr) Methode d'identification et de limitation des motifs de base formant la sculpture de la bande de roulement d'un pneumatique
BE1022486B1 (fr) Un systeme d'appareil de prise de vues tof et une methode pour mesurer une distance avec le systeme
EP1989582B1 (fr) Procede et dispositif d'identification et de calibration de systemes optiques panoramiques
WO2017017385A1 (fr) Méthode de vérification d'une caractéristique géométrique et d'une caracteristique optique d'une lentille ophtalmique detouree et dispositif associe
FR2941067A1 (fr) Controle de defauts optiques dans un systeme de capture d'images
FR2976090A3 (fr) Procede d'acquisition selective de l'image tridimensionnelle de la surface d'un pneumatique par stereovision active et passive
WO2020109486A9 (fr) Procede et systeme pour mesurer une surface d'un objet comprenant des structures differentes par interferometrie a faible coherence
WO2007057578A1 (fr) Procede et systeme de reconstruction de surfaces d'objets par imagerie de polarisat! on
EP3833999B1 (fr) Système de caractérisation optique d'une zone d'intérêt d'un objet
CA2778676A1 (fr) Dispositif et procede de compensation de relief d'images hyper-spectrales
FR3021783A1 (fr) Procede de validation de l'authenticite d'un element du corps humain
EP2732401B1 (fr) Dispositif et procede d'imagerie pour produire une image de marquages routiers
FR2688911A1 (fr) Procede de creation de la signature d'un objet represente sur une image numerique, du type consistant a definir au moins un calibre dimensionnel caracteristique dudit objet, et procede correspondant de verification de la signature d'un objet.
FR3088160A1 (fr) Capteur d'image pour la reconnaissance optique de code(s)
FR2836575A1 (fr) Procede de mesure de la localisation d'un objet par detection de phase
FR2915008A1 (fr) Procede de detection du caractere vivant d'une zone corporelle et dispositif optique pour la mise en oeuvre de ce procede
FR3134179A1 (fr) Procédé et système de caractérisation d’un objectif optique pour la correction d’aberrations optiques introduites par ledit objectif optique dans une image.
WO2023187170A1 (fr) Procédé de correction d'aberrations optiques introduites par un objectif optique dans une image, appareil et système mettant en œuvre un tel procédé
FR3098962A1 (fr) Système de détection d’une particularité hyperspectrale
EP4078512A1 (fr) Dispositif d'analyse d'un ensemble de particules alimentaires et procédé associé
FR3118255A1 (fr) Acquisition et traitement d’images, perfectionnés, de capillaires à la base de l’ongle
WO2006072689A1 (fr) Procede de verification de la validite d’un oeil
FR2692060A1 (fr) Dispositif de traitement d'images du type extracteur de contour et senseur de terre comprenant un tel extracteur.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120103