EP2342365B1 - Process for manufacturing a beta-gamma tial-based alloy - Google Patents
Process for manufacturing a beta-gamma tial-based alloy Download PDFInfo
- Publication number
- EP2342365B1 EP2342365B1 EP10765988A EP10765988A EP2342365B1 EP 2342365 B1 EP2342365 B1 EP 2342365B1 EP 10765988 A EP10765988 A EP 10765988A EP 10765988 A EP10765988 A EP 10765988A EP 2342365 B1 EP2342365 B1 EP 2342365B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- base alloy
- electrode
- titanium
- tial base
- tial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 104
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 102
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000002844 melting Methods 0.000 claims abstract description 50
- 230000008018 melting Effects 0.000 claims abstract description 48
- 239000010936 titanium Substances 0.000 claims abstract description 45
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 35
- 229910010038 TiAl Inorganic materials 0.000 claims abstract description 13
- 238000010313 vacuum arc remelting Methods 0.000 claims abstract description 7
- 238000009826 distribution Methods 0.000 claims abstract 3
- 229910006281 γ-TiAl Inorganic materials 0.000 claims description 41
- 239000002131 composite material Substances 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 238000004512 die casting Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 238000005495 investment casting Methods 0.000 claims 1
- 239000012768 molten material Substances 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 238000000365 skull melting Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 239000000155 melt Substances 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 230000002950 deficient Effects 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910021362 Ti-Al intermetallic compound Inorganic materials 0.000 description 1
- 229910021325 alpha 2-Ti3Al Inorganic materials 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229910021324 titanium aluminide Inorganic materials 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1295—Refining, melting, remelting, working up of titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/20—Arc remelting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
Definitions
- the invention relates to a process for the production of ⁇ -TiAl base alloys by means of vacuum arc melting (VAR), which solidify completely or at least partially primarily via the ⁇ -phase.
- VAR vacuum arc melting
- Such target alloys will hereinafter be referred to as ⁇ - ⁇ -TiAl base alloy.
- the technical field of the present invention is the melt metallurgical production of ⁇ - ⁇ -TiAl alloys by means of vacuum arc melting (VAR).
- VAR vacuum arc melting
- the DE 195 81 384 T1 describes intermetallic TiAl compounds and processes for their preparation, wherein the alloy by heat treatment of an alloy having a Ti concentration of 42 to 48 atom%, an Al concentration of 44 to 47 atom%, a Nb concentration of 6 to 10 at.% And a Cr concentration of 1 to 3 at.% At a temperature in the range of 1300 to 1400 ° C.
- the DE 196 31 583 A1 discloses a method for producing an alloy TiAl-Nb product in which an alloy electrode is first prepared from the alloy components. The formation of the alloy electrode is carried out by pressing and / or sintering the alloy components to the electrode. The latter is melted off by an induction coil.
- a heat-resistant TiAl based alloy is known in which specific amounts of V and Cr are incorporated into a Ti-Al intermetallic compound for the purpose of improving heat resistance and ductility.
- a new generation of ⁇ -TiAl high performance materials has a structural design different from conventional TiAl alloys.
- ⁇ -stabilizing elements such as Cr, Cu, Hf, Mn, Mo, Nb, V, Ta and Zr is set a primary solidification path over the ⁇ -Ti phase. This results in very fine microstructure, in addition to lamellar ⁇ 2 / ⁇ colonies also contain globular ⁇ grains and globular ⁇ grains, sometimes including globular ⁇ 2 grains.
- a temperature field of melting temperature (about 1570 ° C.) at the bottom of the electrode extends to near room temperature at the electrode suspension through the material. Not far from the melt front, the critical temperature interval between 1000 and 1200 ° C is reached.
- the relatively poor ductility of the intermetallic material then leads in this zone to the fact that the stresses formed there discharge in the form of cracks, which in turn lead to the described chipping of unmelted pieces from the electrode.
- the present invention seeks to provide a method for producing a ⁇ -phase solidified ⁇ -TiAl base alloy - hereinafter referred to as ⁇ - ⁇ -TiAl base alloy - specify that Avoiding the cracking problem leads to a reliable production of such a target alloy.
- the successive remelting steps during the vacuum arc melting are thus subdivided into the melting of a primary alloy in the first remelting steps, wherein a base melted electrode is produced from a conventional ⁇ -TiAl primary alloy, and the melting of the target alloy in the form of the desired ⁇ - ⁇ -TiAl-based alloy in the last remelting step.
- the primary alloy has a deficiency of titanium and / or a deficiency of ⁇ -stabilizing elements such as Nb, Mo, Cr, Mn, V, and Ta.
- the alloy is a defined amount of titanium and / or ⁇ in the preparation of the pressed base melt electrode deprived of stabilizing elements, so that an aluminum content of the primary alloy preferably between 45 at .-% (particularly preferably 45.5 at .-%) and 50 at .-% sets.
- the contents of aluminum and ⁇ -stabilizing elements are chosen so that the solidification path of the primary alloy is at least partially via the peritectic conversion. It is thus set a structure analogous to conventional TiAl alloys, which can be processed easily in the VAR oven.
- the target alloy is readjusted by the addition of the materials originally removed from the press electrode.
- these materials are welded as cladding to form a composite electrode firmly on the outer surface of the Abschmelzelektrode to safely exclude a solid state drop into the molten bath. It is also possible to accomplish this by a sheath insert of the deficient alloy content on the inside of the Umschmelzkokille the VAR furnace.
- the VAR furnace 1 has a copper crucible 4 with a bottom plate 5.
- a water jacket 6 with water inlet 7 and 8 water outlet is arranged.
- the copper crucible 4 is also closed at the top of a vacuum bell 9, passes through the top of a lifting bar 10 vertically displaceable. At this lifting bar 10 sits the holder 11, on which the actual electrode 2 is suspended.
- a DC voltage is applied between the copper crucible 4 and the lifting rod 10, due to which a high-current arc is ignited and maintained between the electrode 2 electrically connected to the lifting rod 10 and the copper crucible 4.
- the electrode 2 is successively remelted to ingot 3 under homogenization of the alloy components.
- the target composition of the ⁇ - ⁇ -TiAl alloy is Ti-43.5Al-4.0Nb-1.0Mo-0.1B (at.%) Or Ti-A128.6-Nb9.1-Mo2.3. B0.03 (m-%).
- the composition of the primary alloy for the base melt electrode is determined by a reduction of the titanium content to Ti - 45.93Al - 4.22Nb - 1.06Mo - 0.11B (at .-%).
- a ingot 3 of the primary alloy of 200 mm in diameter and 1.4 m in length is prepared from a press electrode 2 by 2-fold VAR melting as described above, without cracking problem.
- As starting materials for the production of the pressing electrode 2 titanium sponge pure aluminum and master alloys are used.
- the entire surface area of the ingot 3 becomes of the primary alloy Pure titanium sheet 15 with a thickness of 3 mm (mass 12 kg) wound and partially welded to the outer surface 16 of the ingot 3, as shown in Fig. 2 is shown.
- the upper edge 17 of the titanium sheet 15 is completely welded over the circumference of the ingot 3 with this.
- welding point 18 are set distributed over the lateral surface 16.
- the self-consumable electrode thus assembled is remelted as a composite electrode 19 in a final melting step in the VAR furnace 1 to a ingot 3 having a diameter of 280 mm and the composition of the target alloy.
- the target composition, the feeds used and the composition of the primary alloy correspond to Embodiment 1.
- an ingot 3 having a diameter of 140 mm and a length of 1.8 m is manufactured by simply VAR-melting press electrodes 2.
- the mass of the ingot is 115 kg.
- a sheet of pure titanium with the dimensions circumference 628 mm x height 880 mm x thickness 3 mm (mass 7.6 kg) in the inserted inner surface.
- the composition of the primary alloy ingot forming the base melt electrode 2 and the titanium sheet thus provide the target composition.
- the remelting takes place in the lined with the titanium sheet copper crucible 4 to an intermediate electrode such that the outer skin of the titanium sheet is not completely melted with and remains as a stable shell.
- an intermediate electrode such that the outer skin of the titanium sheet is not completely melted with and remains as a stable shell.
- cracking may occur, but due to the mechanical stabilization by the ductile outer shell, this does not lead to cracking Drop down of electrode material in the melt reservoir 14 lead.
- the target composition, the feeds used and the composition of the primary alloy correspond to the embodiment 1, also the production of the composite electrode 19.
- the last remelting takes place in a so-called VAR skull melter, ie a vacuum arc melting device with a water-cooled, tiltable copper crucible.
- the target material's molten alloy material is poured into permanent molds made of stainless steel, which are attached to a rotating casting wheel.
- the casting bodies produced by centrifugal casting are used as starting material for the production of components from the target alloy.
- a ⁇ - ⁇ -TiAl alloy according to U.S. Patent 6,669,791 has a composition (target alloy) of Ti - 43.0Al - 6.0V (at .-%) and Ti - A129.7 - V7.8 (m%).
- the composition of the primary alloy is determined by the complete reduction of the strongly ⁇ -stabilizing element vanadium to Ti - 45.75A1 (at .-%) or Ti - A132.2 (m -%).
- the starting materials used are titanium sponge, aluminum and vanadium.
- a base melt electrode 2 is conventionally produced as an ingot of the binary TiAl primary alloy with a diameter of 200 mm and a length of 1 m by double VAR melting (mass 126 kg).
- FIG. 3 shows, along the entire surface 16 of the base melt electrode 2 along axialaxialparallel eight vanadium rods 20 with a diameter of 16.7 mm and a length of 1 m (total mass 10.7 kg) each offset by 45 ° to each other and thus uniformly over the circumference of Electrode 2 distributed welded.
- the resulting composite electrode 19 'of the binary primary alloy and the welded vanadium rods 20 is remelted in the final third melting process to an ingot of target alloy with a diameter of 300 mm in the VAR furnace 1.
- the target composition of the ⁇ -TiAl alloy corresponds to that of Embodiment 1 (Ti - 43.5A1 - 4.0Nb - 1.0Mo - 0.1 B at .-%).
- the composition of the primary alloy is determined by a complete reduction of the molybdenum content and a partial reduction of the titanium content to Ti - 49.63A1 - 4.57Nb - 0.11 B (at .-%).
- a base melt electrode 2 having a diameter of 200 mm and a length of 1 m is produced by double VAR melting.
- the ingot mass is 126 kg.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von γ-TiAl Basislegierungen mittels Vakuum-lichtbogen-Schmelzen (VAR), die vollständig oder zumindest teilweise primär über die β-Phase erstarren. Derartige Ziellegierungen sollen im Folgenden als β-γ-TiAl-Basislegierung bezeichnet werden.The invention relates to a process for the production of γ-TiAl base alloys by means of vacuum arc melting (VAR), which solidify completely or at least partially primarily via the β-phase. Such target alloys will hereinafter be referred to as β-γ-TiAl base alloy.
Das technische Gebiet der vorliegenden Erfindung ist die schmelzmetallurgische Herstellung von β-γ-TiAl-Legierungen mittel Vakuum-Lichtbogen-Schmelzen (VAR). Ursprünglich werden dabei ausgehend von den Rohstoffen Titanschwamm, Aluminium sowie Legienmgselementen und Vorlegierungen kompakte Körper gepresst, in denen die gewünschten Legierungsbestandteile in der stöchiometrisch passenden Form vorliegen. Gegebenenfalls werden hierbei durch das spätere Schmelzen verursachte Abdampfverluste vorgehalten. Die Presskörper werden entweder direkt mittels Plasmaschmelzen zu sogenannten Ingots eingeschmolzen (PAM) oder zu selbstverzehrenden Elektroden zusammengebaut und zu Ingots abgeschmolzen (VAR). In beiden Fällen entstehen Materialien, deren chemische und strukturelle Homogenität für eine technische Verwendung ungeeignet ist und die demzufolge noch mindestens einmal umgeschmolzen werden müssen (s.
Aus der
- (i) Herstellung von Elektroden durch übliches Vennischen und Verpressen der ausgewählten Ausgangsstoffe,
- (ii) mindestens einmaliges Umschmelzen der in Stufe (i) erhaltenen Elektroden durch ein übliches schmelzmetallurgisches Verfahren,
- (iii) induktives Abschmelzen der in Stufe (i) oder (ii) erhaltenen Elektroden in einer Hochfrequenz-Spule,
- (iv) Homogenisieren der in Stufe (iii) erhaltenen Schmelze in einem Kaltwandinduktionstiegel und
- (v) Abziehen der Schmelze unter Kühlung aus dem Kaltwandinduktionstiegel von Stufe (iv) in Form von Blöcken mit frei einstellbarem Durchmesser.
- (i) preparation of electrodes by conventional Vennisch and compression of the selected starting materials,
- (ii) at least one remelting of the electrodes obtained in step (i) by a conventional melt metallurgical process,
- (iii) inductive melting of the electrodes obtained in step (i) or (ii) in a high-frequency coil,
- (iv) homogenizing the melt obtained in step (iii) in a cold wall induction crucible and
- (v) withdrawing the melt under cooling from the cold wall induction crucible of step (iv) in the form of blocks of freely adjustable diameter.
Die
Die
Aus der
Die
Übliches Verfahren zum Umschmelzen ist das Vakuum-Lichtbogen-Schmelzen mit selbstverzehrender Elektrode, da die Anlagen zum PlasmaSchmelzen in der Regel nicht für die Zuführung von kompakten Ingots als Ausgangsmaterial ausgelegt sind. Im Falle von herkömmlichen, zweiphasig in Form lamellarer Kolonien aus der α2-Ti3Al-Phase und der γ-TiAl-Phase aufgebauten γ-TiAγ-Basislegierungen geschieht das Umschmelzen im Vakuum-Lichtbogen-Schmelzofen (VAR-Ofen) problemlos und führt zum gewünschten Ergebnis (s.
Eine neue Generation von γ-TiAl-Hochleistungswerkstoffen, z.B. die so bezeichneten TNM®-Legierungen der Anmelderin, besitzt einen von herkömmlichen TiAl-Legierungen abweichenden strukturellen Aufbau. Insbesondere aufgrund der Absenkung des Aluminium-Gehaltes auf üblicherweise 40 at.-% bis 45,5 Atom-%, aber auch aufgrund des Zulegierens von β-stabilisierenden Elementen wie beispielsweise Cr, Cu, Hf, Mn, Mo, Nb, V, Ta und Zr wird ein primärer Erstarrungspfad über die β-Ti-Phase eingestellt. Es entstehen dadurch sehr feine Gefüge, die neben lamellaren α2/γ-Kolonien auch globulare β-Körner und globulare γ-Körner, mitunter auch globulare α2-Körner enthalten. Werkstoffe mit derartigen Gefügen besitzen entscheidende Vorteile bezüglich der thermo-mechanischen Eigenschaften und der Prozessierbarkeit mittels Umformtechnologien (s.
Nachteilig ist, dass es beim erneuten Umschmelzen von Elektroden aus diesem Material im VAR-Ofen zu Rissbildungen kommt, deren Resultat häufig das Abplatzen von Bestandteilen der selbstverzehrenden Legierungselektrode aus der Erstschmelzzone ist. Diese abgeplatzten Teile fallen in das Schmelzbad und werden darin nicht mehr vollständig wieder aufgeschmolzen. Dadurch entstehen strukturelle Defekte im Ingot, wodurch das Ingotmaterial unbrauchbar wird. Das Umschmelzen im VAR-Ofen ist unter diesen Verhältnissen nicht mehr technisch reproduzierbar möglich.The disadvantage is that cracking occurs again during the remelting of electrodes from this material in the VAR furnace, the result of which is frequently the flaking off of constituents of the self-consumable alloy electrode from the primary melting zone. These chipped parts fall into the molten bath and are no longer completely remelted therein. This causes structural defects in the ingot, making the ingot material unusable. Remelting in the VAR furnace is no longer technically reproducible under these conditions.
Als Ursache für das störende Abplatzverhalten werden massive Phasenumwandlungen im Temperaturbereich zwischen der eutektoiden Temperatur und der Phasengrenztemperatur zum β-Einphasengebiet angesehen. Durch die unterschiedlichen linearen Ausdehnungskoeffizienten der verschiedenen Phasenbestandteile kommt es insbesondere bei Phasenumwandlungen zu sprungartigen Veränderungen des integralen linearen Wärmeausdehnungskoeffizienten der Legierung und als Folge davon zu inneren Spannungen, die die Festigkeit des Materials im gegebenen Temperaturbereich übersteigen.As a cause for the disturbing chipping behavior massive phase transformations in the temperature range between the eutectoid temperature and the phase boundary temperature to the β-phase phase are considered. Due to the different linear expansion coefficients of the various phase components, in particular during phase transformations, sudden changes in the integral linear thermal expansion coefficient of the alloy and, as a consequence thereof, internal stresses which exceed the strength of the material in the given temperature range occur.
Entsprechende Dilatometermessungen an einer TNM®-B1-Legierung (Ti - 43,5A1 - 4,0Nb - 1,0Mo - 0,1B at.-%) zeigen, dass sich der lineare Ausdehnungskoeffizient einer entsprechenden Legierungsprobe im Temperaturintervall zwischen 1.000 °C und 1.200°C von 9 x 10-6 auf 40 x 10-6 K-1 mehr als vervierfacht. Dieses Verhalten ist in der beigefügten
Während des VAR-Schmelzens zieht sich bezogen auf die Länge der selbstverzehrenden Elektrode ein Temperaturfeld von Schmelztemperatur (ca. 1570 °C) an der Elektrodenunterseite bis nahezu Raumtemperatur an der Elektrodenaufhängung durch das Material. Unweit der Schmelzfront wird das kritische Temperaturintervall zwischen 1000 und 1200 °C erreicht. Die relativ schlechte Duktilität des intermetallischen Werkstoffes führt dann in dieser Zone dazu, dass sich die dort bildenden Spannungen in Form von Rissen entladen, die wiederum zu dem geschilderten Abplatzen von ungeschmolzenen Stücken von der Elektrode führen.During VAR melting, based on the length of the consumable electrode, a temperature field of melting temperature (about 1570 ° C.) at the bottom of the electrode extends to near room temperature at the electrode suspension through the material. Not far from the melt front, the critical temperature interval between 1000 and 1200 ° C is reached. The relatively poor ductility of the intermetallic material then leads in this zone to the fact that the stresses formed there discharge in the form of cracks, which in turn lead to the described chipping of unmelted pieces from the electrode.
Ausgehend von dieser geschilderten Problematik des Standes der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung einer über die β-Phase erstarrenden γ-TiAl-Basislegierung - im Folgenden kurz als β-γ-TiAl-Basislegierung bezeichnet - anzugeben, dass unter Umgehung der Rissbildungsproblematik zu einer zuverlässigen Produktion einer solchen Ziellegierung führt.Based on this described problem of the prior art, the present invention seeks to provide a method for producing a β-phase solidified γ-TiAl base alloy - hereinafter referred to as β-γ-TiAl base alloy - specify that Avoiding the cracking problem leads to a reliable production of such a target alloy.
Diese Aufgabe wird durch die im Patentanspruch 1 angegebenen Verfahrensschritte wie folgt gelöst:
- Erschmelzen einer Basisschmelzelektrode einer herkömmlichen γ-TiAl-Primärlegierung mit einem defizitären Gehalt an Titan und/oder an mindestens einem β-stabilisierenden Element gegenüber der herzustellenden β-γ-TiAl-Basislegierung in mindestens einem ersten Vakuum-Lichtbogen-Umschmelzschritt,
- Zuordnen einer dem defizitären Gehalt des Titans und/oder β-stabilisierenden Elements entsprechenden Menge an Titan und/oder β-stabilisierendem Element zur Basisschmelzelektrode in gleichmäßiger Verteilung über deren Länge und Umfang, und
- Zulegieren der zugeordneten Menge des Titans und/oder β-stabilisierenden Elements in die Basisschmelzelektrode zur Bildung der homogenen β-γ-TiAl-Basislegierung in einem letzten Vakuum-Lichtbogen-Schmelzschritt.
- Melting a base melt electrode of a conventional γ-TiAl primary alloy with a deficient content of titanium and / or on at least one β-stabilizing element in relation to the β-γ-TiAl base alloy to be produced in at least one first vacuum arc remelting step,
- Assigning to the deficient content of the titanium and / or β-stabilizing element corresponding amount of titanium and / or β-stabilizing element to the base melt electrode in a uniform distribution over the length and circumference, and
- Alloying the associated amount of the titanium and / or β stabilizing element in the base melt electrode to form the homogeneous β-γ-TiAl base alloy in a final vacuum arc melting step.
Die aufeinanderfolgenden Umschmelzschritte während des Vakuum-Lichtbogen-Schmelzens werden also unterteilt in das Schmelzen einer Primär-Legierung in den ersten Umschmelzschritten, wobei eine Basisschmelzelektrode aus einer herkömmlichen γ-TiAl-Primärlegierung hergestellt wird, und das Schmelzen der Ziellegierung in Form der gewünschten β-γ-TiAl-Basislegierung im jeweils letzten Umschmelzschritt. Die Primärlegierung besitzt ein Defizit an Titan und/oder ein Defizit an β-stabilisierenden Elementen wie z.B. Nb, Mo, Cr, Mn, V, und Ta. Dabei wird der Legierung beim Herstellen der gepressten Basisschmelzelektrode eine definierte Menge an Titan und/oder β-stabilisierenden Elementen entzogen, so dass sich ein Aluminium-Gehalt der Primärlegierung vorzugsweise zwischen 45 at.-% (besonders bevorzugt 45,5 at.-%) und 50 at.-% einstellt. Die Gehalte an Aluminium und an β-stabilisierenden Elementen werden so gewählt, dass der Erstarrungsweg der Primärlegierung zumindest teilweise über die peritektische Umwandlung erfolgt. Es wird damit ein Gefüge analog zu konventionellen TiAl Legierungen eingestellt, das sich problemlos im VAR-Ofen prozessieren lässt.The successive remelting steps during the vacuum arc melting are thus subdivided into the melting of a primary alloy in the first remelting steps, wherein a base melted electrode is produced from a conventional γ-TiAl primary alloy, and the melting of the target alloy in the form of the desired β- γ-TiAl-based alloy in the last remelting step. The primary alloy has a deficiency of titanium and / or a deficiency of β-stabilizing elements such as Nb, Mo, Cr, Mn, V, and Ta. In this case, the alloy is a defined amount of titanium and / or β in the preparation of the pressed base melt electrode deprived of stabilizing elements, so that an aluminum content of the primary alloy preferably between 45 at .-% (particularly preferably 45.5 at .-%) and 50 at .-% sets. The contents of aluminum and β-stabilizing elements are chosen so that the solidification path of the primary alloy is at least partially via the peritectic conversion. It is thus set a structure analogous to conventional TiAl alloys, which can be processed easily in the VAR oven.
Im letzten Schmelzschritt wird durch die Zugabe der ursprünglich der Presselektrode entzogenen Materialien die Ziellegierung wieder eingestellt. Vorzugsweise werden diese Materialien als Mantel unter Bildung einer Komposit-Elektrode fest auf die Mantelfläche der Abschmelzelektrode aufgeschweißt, um ein Abfallen im festen Zustand in das Schmelzbad sicher auszuschließen. Auch ist es möglich, dies durch eine Manteleinlage des defizitären Legierungsanteils an der Innenseite der Umschmelzkokille des VAR-Ofens zu bewerkstelligen.In the last melting step, the target alloy is readjusted by the addition of the materials originally removed from the press electrode. Preferably, these materials are welded as cladding to form a composite electrode firmly on the outer surface of the Abschmelzelektrode to safely exclude a solid state drop into the molten bath. It is also possible to accomplish this by a sheath insert of the deficient alloy content on the inside of the Umschmelzkokille the VAR furnace.
Überraschenderweise zeigt sich, dass sich bei geeigneter Auswahl und geeignet gleichverteiltem Anbringen der defizitären Legierungsbestandteile auf der Elektrodenmantelfläche keine negativen Folgen für die lokale chemische Homogenität des entstehenden Ingots der herzustellenden β-γ-TiAl-Basislegierung als Ziellegierung ergeben.Surprisingly, it has been found that, with a suitable selection and suitably evenly distributed attachment of the deficient alloy constituents on the electrode jacket surface, there are no negative consequences for the local chemical homogeneity of the resulting ingot of the produced β-γ-TiAl base alloy as target alloy.
Weitere bevorzugte Ausführungsformen des erfindungsgemäßen Herstellungsverfahrens sind in weiteren Unteransprüchen angegeben, deren Einzelheiten und Merkmale sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der beigefügten Zeichnungen ergeben. Es zeigen:
- Fig.1
- eine Prinzipskizze eines Vakuum-Lichtbogen-Schmelzofens,
- Fig. 2
- eine perspektivische Ansicht einer Komposit-Elektrode in einer ersten Ausführungsform,
- Fig. 3
- eine perspektivische Ansicht einer Komposit-Elektrode in einer zweiten Ausführungsform und
- Fig. 4
- ein Diagramm des linearen Ausdehnungskoeffizienten als Funktion der Temperatur einer TNM®-B1-Legierung.
- Fig.1
- a schematic diagram of a vacuum arc melting furnace,
- Fig. 2
- a perspective view of a composite electrode in a first embodiment,
- Fig. 3
- a perspective view of a composite electrode in a second embodiment and
- Fig. 4
- a graph of the linear expansion coefficient as a function of the temperature of a TNM®-B1 alloy.
Anhand von
Über eine Gleichstromversorgung 12 wird zwischen Kupfertiegel 4 und Hebestange 10 eine Gleichspannung angelegt, aufgrund derer ein Hochstrom-Lichtbogen zwischen der mit der Hebestange 10 elektrisch verbundenen Elektrode 2 und dem Kupfertiegel 4 gezündet und aufrecht erhalten wird. Dieser führt zum Abschmelzen der Elektrode 2, wobei sich das abgeschmolzene Legierungsmaterial im Kupfertiegel 4 sammelt und dort erstarrt. In einem kontinuierlichen Prozess, bei dem zwischen der sich selbst verzehrenden Elektrode 2 über den Elektrodenlichtbogenspalt 13 der Lichtbogen zum geschmolzenen Reservoir 14 an der Oberseite des Ingots 3 läuft, wird die Elektrode 2 sukzessive zum Ingot 3 unter Homogenisierung der Legierungsbestandteile umgeschmolzen.Via a
Dieser Vorgang kann mit im Durchmesser jeweils größeren Schmelztiegeln 4 mehrfach wiederholt werden, wobei der Ingot des einen Umschmelzschrittes zur Elektrode des nächsten Umschmelzschrittes wird. Damit wird der Homogenisierungsgrad der herzustellenden Ingots mit jedem Umschmelzschritt verbessert.This process can be repeated several times with larger diameter crucibles 4, wherein the ingot of a remelting step to the electrode of the next Umschmelzschrittes. Thus, the degree of homogenization of the ingots to be produced is improved with each remelting step.
Im Folgenden werden nun verschiedene Ausführungsbeispiele zur Herstellung einer β-γ-TiAl-Basislegierung beschrieben:Various embodiments for producing a β-γ-TiAl base alloy will now be described below:
Die Zielzusammensetzung der β-γ-TiAl-Legierung ist Ti - 43,5Al - 4,0Nb - 1,0Mo - 0,1B (at.-%) bzw. Ti - A128,6 - Nb9,1 - Mo2,3 - B0,03 (m-%). Die Zusammensetzung der Primärlegierung für die Basisschmelzelektrode wird durch eine Reduktion des Titangehaltes auf Ti - 45,93Al- 4,22Nb - 1,06Mo - 0,11B (at.-%) festgelegt. Zunächst wird konventionell aus einer Presselektrode 2 ein Ingot 3 der Primärlegierung mit 200 mm Durchmesser und einer Länge von 1,4 m durch 2-faches VAR-Schmelzen wie oben beschrieben hergestellt, ohne dass eine Rissproblematik auftritt. Als Einsatzmaterialien für die Herstellung der Presselektrode 2 werden Titan-Schwamm, Rein-Aluminium und Vorlegierungen verwendet.The target composition of the β-γ-TiAl alloy is Ti-43.5Al-4.0Nb-1.0Mo-0.1B (at.%) Or Ti-A128.6-Nb9.1-Mo2.3. B0.03 (m-%). The composition of the primary alloy for the base melt electrode is determined by a reduction of the titanium content to Ti - 45.93Al - 4.22Nb - 1.06Mo - 0.11B (at .-%). First, conventionally, a
Um den reduzierten Titangehalt in der Basisschmelzelektrode auf den gewünschten Wert der β-γ-TiAl-Legierung in der Ziellegierung anzuheben, wird die gesamte Mantelfläche des Ingots 3 aus der Primärlegierung ein Rein-Titanblech 15 mit einer Dicke von 3 mm (Masse 12 kg) gewickelt und teilweise mit der Mantelfläche 16 des Ingots 3 verschweißt, wie dies in
Die Zielzusammensetzung, die verwendeten Einsatzmaterialien und die Zusammensetzung der Primärlegierung entsprechen dem Ausführungsbeispiel 1. Aus der Primärlegierung wird durch einfaches VAR-Schmelzen von Presselektroden 2 ein Ingot 3 mit einem Durchmesser von 140 mm und einer Länge von 1,8 m hergestellt. Die Masse des Ingots beträgt 115 kg. In die vom Kupfertiegel 4 gebildete Kokille des VAR-Ofens 1 wird vor der letzten Schmelze des der Basisschmelzelektrode 2 ein Blech aus Rein-Titan mit den Abmessungen Umfang 628 mm x Höhe 880 mm x Dicke 3 mm (Masse 7,6 kg) in die innere Mantelfläche eingelegt. In Summe ergibt sich somit aus der Zusammensetzung des die Basisschmelzelektrode 2 bildenden Primärlegierungsingots und dem Titanblech die Zielzusammensetzung. Die Umschmelze erfolgt in den mit dem Titanblech ausgekleideten Kupfertiegel 4 zu einer Zwischenelektrode derart, dass die Außenhaut des Titanblechs nicht vollständig mit aufgeschmolzen wird und als stabile Hülle bestehen bleibt. Im nachfolgenden letzten VAR-Umschmelzschritt der Zwischenelektrode kann es zwar zu Rissbildungen kommen, die aber aufgrund der mechanischen Stabilisierung durch die duktile Außenhülle nicht zu einem Herunterfallen von Elektrodenmaterial in das Schmelzreservoir 14 führen.The target composition, the feeds used and the composition of the primary alloy correspond to Embodiment 1. From the primary alloy, an
Die Zielzusammensetzung, die verwendeten Einsatzmaterialien und die Zusammensetzung der Primärlegierung entsprechen dem Ausführungsbeispiel 1, ebenfalls die Herstellung der Komposit-Elektrode 19. Im Unterschied zu Ausführungsbeispiel 1 erfolgt deren letztes Umschmelzen in einem sogenannten, VAR skull melter', also einer Vakuum-Lichtbogen-Schmelzeinrichtung mit einem wassergekühlten, kippbaren Schmelztiegel aus Kupfer. Das im ,skull' befindliche schmelzflüssige Material der Ziellegierung wird in Permanentkokillen aus Edelstahl abgegossen, die an einem rotierenden Gießrad angebracht sind. Die so im Schleuderguss hergestellten Gießkörper werden als Vormaterial für die Herstellung von Bauteilen aus der Ziellegierung verwendet.The target composition, the feeds used and the composition of the primary alloy correspond to the embodiment 1, also the production of the
Eine β-γ-TiAl Legierung gemäß
Die Zielzusammensetzung der γ-TiAl-Legierung entspricht der des Ausführungsbeispiels 1 (Ti - 43.5A1 - 4,0Nb - 1,0Mo - 0,1 B at.-%). Die Zusammensetzung der Primärlegierung wird durch eine vollständige Reduktion des Molybdängehaltes und eine teilweise Reduktion des Titangehaltes auf Ti - 49,63A1 - 4,57Nb - 0,11 B (at.-%) festgelegt. Aus der Primärlegierung wird durch zweifaches VAR-Schmelzen eine Basisschmelzelektrode 2 mit einem Durchmesser von 200 mm und einer Länge von 1 m hergestellt. Die Ingotmasse beträgt 126 kg. Auf die Mantelfläche 16 der Elektrode 2 werden analog zu Ausführungsbeispiel 4 längsaxialparallel acht Stäbe aus der kommerziellen Legierung TiMo15 aufgeschweißt. Der Durchmesser der Stäbe beträgt 26 mm, die Länge der Stäbe entspricht der Ingotlänge. Die Gesamtmasse der TiMo15 Stäbe beträgt 19,6 kg. Die so entstandene Komposit-Elektrode aus einem Ingot der Primärlegierung und acht TiMo15 Stäben wird im abschließenden dritten Schmelzprozess zu einem Ingot der Ziellegierung mit einem Durchmesser von 300 mm im VAR-Ofen 1 umgeschmolzen. The target composition of the γ-TiAl alloy corresponds to that of Embodiment 1 (Ti - 43.5A1 - 4.0Nb - 1.0Mo - 0.1 B at .-%). The composition of the primary alloy is determined by a complete reduction of the molybdenum content and a partial reduction of the titanium content to Ti - 49.63A1 - 4.57Nb - 0.11 B (at .-%). From the primary alloy, a
Claims (10)
- Method for the production of a γ-TiAl base alloy by vacuum arc remelting which γ-TiAl base alloy solidifies via the β-phase (β-γ-TiAl base alloy),
characterized by the following method steps:- forming a basic melting electrode by melting, in at least one vacuum arc remelting step, of a conventional γ-TiAl primary alloy containing a lack of titanium and/or of at least one β-stabilising element compared to the β-γ-TiAl base alloy to be produced;- allocating an amount of titanium and/or β-stabilising element to the basic melting electrode, which amount corresponds to the reduced amount of titanium and/or β-stabilising element, in an even distribution across the length and periphery of the basic melting electrode;- adding the allocated amount of titanium and/or β-stabilising element to the basic melting electrode so as to form the homogeneous β-γ-TiAl base alloy in a final vacuum arc remelting step. - Method for the production of a β-γ-TiAl base alloy according to claim 1, characterized in that the basic melting electrode (2) of the conventional γ-TiAl base alloy has an aluminium content of 45 at. % to 50 at. %.
- Method for the production of a β-γ-TiAl base alloy according to claim 1 or 2, characterized in that the basic melting electrode (2) has a lack of titanium and/or at least one element from the group of B, Cr, Cu, Hf, Mn, Mo, Nb, Si, Ta, V and Zr which have a β-stabilizing effect in TiAl alloys.
- Method for the production of a β-γ-TiAl base alloy according to one of the preceding claims, characterized in that the basic melting electrode (2) is produced by single or multiple remelting of a compacted electrode comprising the alloy components of the basic melting electrode (2) in a homogeneous distribution.
- Method for the production of a β-γ-TiAl base alloy according to one of the preceding claims, characterized in that in order to allocate the amount of titanium and/or γ-stabilizing element corresponding to the lacking amount of titanium and/or γ-stabilizing element to the basic melting electrode, a composite electrode (19, 19') is produced which consists of the basic melting electrode (2) and a layer (15) of a corresponding thickness of titanium and/or the β-stabilizing element which is constant across the periphery and length thereof.
- Method for the production of a β-γ-TiAl base alloy according to claim 5, characterized in that the layer consists of a coat (15) of titanium sheet which extends along the length of the basic melting electrode (2).
- Method for the production of a β-γ-TiAl base alloy according to claim 6, characterized in that the coat (15) of titanium sheet is secured to the basic melting electrode by means of welding spots (18) which are evenly distributed across the outer peripheral surface (16) thereof and/or by means of a weld seam which runs along the upper edge of the welding electrode (2) across the entire periphery thereof.
- Method for the production of a β-γ-TiAl base alloy according to claim 6, characterized in that the coat (15) of titanium sheet is formed by a coat lining on the inside of the remelting die (4) of the vacuum arc melting furnace (1), with the coat (15) of titanium sheet being fused to the basic melting electrode (2) in an intermediate remelting step so as to form an intermediate electrode which is then remolten to form the homogeneous β-γ-TiAl base alloy in a final vacuum arc melting step.
- Method for the production of a β-γ-TiAl base alloy according to one of claims 1 to 4, characterized in that in order to allocate the amount of titanium and/or β-stabilizing element corresponding to the lacking amount of titanium and/or β-stabilizing element to the basic melting electrode, a composite electrode (19') is formed which consists of the basic melting electrode (2) and several rods (20) of corresponding thickness consisting of titanium and/or the β-stabilizing element which are arranged parallel to the longitudinal axis of the basic melting electrode (2) and are distributed evenly across the periphery of the basic melting electrode (2).
- Method for the production of a β-γ-TiAl base alloy according to one of the preceding claims, characterized in that the final vacuum arc melting step for forming the homogeneous β-γ-TiAl base alloy is performed in a vacuum arc skull melting device after which the molten material of the β-γ-TiAl base alloy is cast to form cast bodies of the β-γ-TiAl base alloy in a lost-wax or die casting process.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009050603A DE102009050603B3 (en) | 2009-10-24 | 2009-10-24 | Process for producing a β-γ-TiAl base alloy |
PCT/EP2010/064306 WO2011047937A1 (en) | 2009-10-24 | 2010-09-28 | Method for producing a ss-γ-tial base alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2342365A1 EP2342365A1 (en) | 2011-07-13 |
EP2342365B1 true EP2342365B1 (en) | 2013-03-06 |
Family
ID=43216184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10765988A Active EP2342365B1 (en) | 2009-10-24 | 2010-09-28 | Process for manufacturing a beta-gamma tial-based alloy |
Country Status (8)
Country | Link |
---|---|
US (1) | US8668760B2 (en) |
EP (1) | EP2342365B1 (en) |
JP (1) | JP5492982B2 (en) |
CN (1) | CN102449176B (en) |
DE (1) | DE102009050603B3 (en) |
ES (1) | ES2406904T3 (en) |
RU (1) | RU2490350C2 (en) |
WO (1) | WO2011047937A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102312111B (en) * | 2011-09-07 | 2013-02-06 | 上海交通大学 | Method for preparing TiAl alloy through melting with consumable vacuum arc furnace |
WO2013172745A1 (en) * | 2012-05-16 | 2013-11-21 | Gkn Aerospace Sweden Ab | Method for applying a titanium alloy on a substrate |
JP5857917B2 (en) * | 2012-08-28 | 2016-02-10 | 新日鐵住金株式会社 | Ni-base superalloy ingot manufacturing method |
CN103014386B (en) * | 2012-12-10 | 2014-07-09 | 西安诺博尔稀贵金属材料有限公司 | Preparation method of niobium-tungsten-molybdenum-zirconium alloy ingot |
CN103276229A (en) * | 2013-06-06 | 2013-09-04 | 广西大学 | Melting method for minimizing aluminium burning loss during melting process of high-temperature structural material Ti-40Al-10Fe alloys |
EP2851445B1 (en) * | 2013-09-20 | 2019-09-04 | MTU Aero Engines GmbH | Creep-resistant TiAl alloy |
WO2015058611A1 (en) * | 2013-10-23 | 2015-04-30 | Byd Company Limited | Metal forming apparatus |
CN104532061A (en) * | 2014-12-26 | 2015-04-22 | 北京科技大学 | High-temperature-resistant aluminum titanium oxide alloy and preparation method thereof |
DE102015103422B3 (en) * | 2015-03-09 | 2016-07-14 | LEISTRITZ Turbinentechnik GmbH | Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines |
CN104976888B (en) * | 2015-06-08 | 2017-03-08 | 重庆钢铁(集团)有限责任公司 | A kind of vacuum consumable smelting furnace |
DE102015115683A1 (en) * | 2015-09-17 | 2017-03-23 | LEISTRITZ Turbinentechnik GmbH | A method for producing an alpha + gamma titanium aluminide alloy preform for producing a heavy duty component for reciprocating engines and gas turbines, in particular aircraft engines |
RU2621500C1 (en) * | 2015-12-21 | 2017-06-06 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | INTERMETALLIC TiAl BASED ALLOY |
CN107385370B (en) * | 2017-06-23 | 2019-04-05 | 太原理工大学 | Ti-44Al-4Nb-4V-0 ﹒ 3Mo alloy grain refining heat treatment method |
KR102095463B1 (en) | 2018-05-24 | 2020-03-31 | 안동대학교 산학협력단 | TiAl-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE FORMABILITY AND METHOD FOR MANUFACTURING TiAl-BASED ALLOY MEMBER USING THE SAME |
CN110814481B (en) * | 2019-10-30 | 2021-07-13 | 西部超导材料科技股份有限公司 | Butt welding method of auxiliary electrode for titanium alloy |
CN113234960A (en) * | 2021-05-08 | 2021-08-10 | 陕西工业职业技术学院 | Preparation method of alloy |
CN113351838B (en) * | 2021-05-17 | 2022-11-04 | 西部超导材料科技股份有限公司 | Gas cooling device, control system and control method for preparing titanium alloy ingots |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1179006B (en) * | 1952-12-18 | 1964-10-01 | Crucible Steel Internat | Titanium alloys |
JPH02277736A (en) * | 1989-04-19 | 1990-11-14 | Mitsubishi Heavy Ind Ltd | Ti-al base heat-resistant alloy |
US5332545A (en) * | 1993-03-30 | 1994-07-26 | Rmi Titanium Company | Method of making low cost Ti-6A1-4V ballistic alloy |
US6051084A (en) | 1994-10-25 | 2000-04-18 | Mitsubishi Jukogyo Kabushiki Kaisha | TiAl intermetallic compound-based alloys and methods for preparing same |
DE19631583C2 (en) * | 1996-08-05 | 2002-10-02 | Geesthacht Gkss Forschung | Process for the manufacture of an alloy product |
JP4287991B2 (en) | 2000-02-23 | 2009-07-01 | 三菱重工業株式会社 | TiAl-based alloy, method for producing the same, and moving blade using the same |
DE10156336A1 (en) * | 2001-11-16 | 2003-06-05 | Ald Vacuum Techn Gmbh | Process for the production of alloy ingots |
RU2269584C1 (en) * | 2004-07-30 | 2006-02-10 | Открытое Акционерное Общество "Корпорация Всмпо-Ависма" | Titanium-base alloy |
DE102007060587B4 (en) * | 2007-12-13 | 2013-01-31 | Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH | titanium aluminide |
CN101476061B (en) * | 2009-02-06 | 2010-08-25 | 洛阳双瑞精铸钛业有限公司 | High temperature resistant titanium and aluminum based alloy and manufacturing method thereof |
-
2009
- 2009-10-24 DE DE102009050603A patent/DE102009050603B3/en not_active Expired - Fee Related
-
2010
- 2010-09-28 CN CN201080023762.3A patent/CN102449176B/en not_active Expired - Fee Related
- 2010-09-28 US US13/130,643 patent/US8668760B2/en active Active
- 2010-09-28 EP EP10765988A patent/EP2342365B1/en active Active
- 2010-09-28 ES ES10765988T patent/ES2406904T3/en active Active
- 2010-09-28 RU RU2011143579/02A patent/RU2490350C2/en active
- 2010-09-28 JP JP2012511306A patent/JP5492982B2/en active Active
- 2010-09-28 WO PCT/EP2010/064306 patent/WO2011047937A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN102449176B (en) | 2014-04-16 |
US20110219912A1 (en) | 2011-09-15 |
EP2342365A1 (en) | 2011-07-13 |
RU2011143579A (en) | 2013-05-10 |
JP5492982B2 (en) | 2014-05-14 |
DE102009050603B3 (en) | 2011-04-14 |
CN102449176A (en) | 2012-05-09 |
ES2406904T3 (en) | 2013-06-10 |
WO2011047937A1 (en) | 2011-04-28 |
RU2490350C2 (en) | 2013-08-20 |
US8668760B2 (en) | 2014-03-11 |
JP2012527533A (en) | 2012-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2342365B1 (en) | Process for manufacturing a beta-gamma tial-based alloy | |
DE60224514T2 (en) | METHOD FOR PRODUCING BLOCKS FROM NICKEL BASE ALLOY WITH LARGE DIAMETER | |
DE2230317C2 (en) | Method for casting metal workpieces, in particular turbine blades | |
EP1287173B1 (en) | $g(G)-TIAL ALLOY-BASED COMPONENT COMPRISING AREAS HAVING A GRADUATED STRUCTURE | |
DE60002474T2 (en) | METHOD FOR CASTING SEMI-SOLID METAL ALLOYS | |
DE69520779T2 (en) | Process for the production of an active metal-containing copper alloy | |
DE102015016729B4 (en) | Process for producing a nickel-base alloy | |
DE3828612A1 (en) | METHOD FOR PRODUCING TITANIUM ALLOYS | |
EP1444065B1 (en) | Method for producing alloy ingots | |
DE4016340C1 (en) | Process for the treatment of chrome and niobium-modified titanium-aluminum alloys | |
DE60001249T2 (en) | Ti-Al (Mo, V, Si, Fe) alloys and process for their manufacture | |
EP1851350B1 (en) | Method for casting titanium alloy | |
DE60036646T2 (en) | CASTING SYSTEMS AND METHOD WITH AUXILIARY COOLING OF THE LIQUID SURFACE OF THE CASTORS | |
AT406384B (en) | METHOD FOR ELECTROSHELL STRAND MELTING OF METALS | |
DE102009025197B4 (en) | Process for the production of composite metal semi-finished products | |
DE3421488A1 (en) | METHOD FOR PRODUCING ALLOY POWDER AND DEVICE FOR CARRYING OUT THE METHOD | |
WO2003008655A2 (en) | Moulded piece made from an intermetallic gamma tial material | |
DE4142941A1 (en) | USE OF A CURABLE copper alloy | |
DE4327227A1 (en) | Grain refining agent, its manufacture and use | |
DE3740732C2 (en) | ||
JPH05214458A (en) | Method for melting titanium alloy ingot by var process | |
DE3805503A1 (en) | METHOD FOR IMPROVING HIGH TEMPERATURE ALLOYS | |
DE19505689C2 (en) | Casting mold for the production of castings from reactive metals | |
DE19504359C1 (en) | Prodn. of alloys from components of different melting points | |
DE69113676T2 (en) | Device and method for precision casting. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110211 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GUETHER, VOLKER Inventor name: FUERWITT, WILLY Inventor name: NICOLAI, HANS-PETER Inventor name: ACHTERMANN, MATTHIAS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 599670 Country of ref document: AT Kind code of ref document: T Effective date: 20130315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010002484 Country of ref document: DE Effective date: 20130502 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2406904 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130606 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130606 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130306 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E008090 Country of ref document: EE Effective date: 20130515 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130607 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130708 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130706 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
26N | No opposition filed |
Effective date: 20131209 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010002484 Country of ref document: DE Effective date: 20131209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100928 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130928 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: EE Payment date: 20200921 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20200814 Year of fee payment: 11 Ref country code: BE Payment date: 20200921 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: MM4A Ref document number: E008090 Country of ref document: EE Effective date: 20210930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20220818 Year of fee payment: 13 Ref country code: RO Payment date: 20220922 Year of fee payment: 13 Ref country code: IT Payment date: 20220825 Year of fee payment: 13 Ref country code: GB Payment date: 20220819 Year of fee payment: 13 Ref country code: DE Payment date: 20220818 Year of fee payment: 13 Ref country code: AT Payment date: 20220819 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220819 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010002484 Country of ref document: DE Representative=s name: FORRESTERS IP LLP, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502010002484 Country of ref document: DE Representative=s name: KUEHR, VERA, DIPL.-BIOL., DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20221003 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010002484 Country of ref document: DE Representative=s name: FORRESTERS IP LLP, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010002484 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230928 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 599670 Country of ref document: AT Kind code of ref document: T Effective date: 20230928 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230928 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240403 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230929 |