EP2342365B1 - Process for manufacturing a beta-gamma tial-based alloy - Google Patents

Process for manufacturing a beta-gamma tial-based alloy Download PDF

Info

Publication number
EP2342365B1
EP2342365B1 EP10765988A EP10765988A EP2342365B1 EP 2342365 B1 EP2342365 B1 EP 2342365B1 EP 10765988 A EP10765988 A EP 10765988A EP 10765988 A EP10765988 A EP 10765988A EP 2342365 B1 EP2342365 B1 EP 2342365B1
Authority
EP
European Patent Office
Prior art keywords
base alloy
electrode
titanium
tial base
tial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10765988A
Other languages
German (de)
French (fr)
Other versions
EP2342365A1 (en
Inventor
Matthias Achtermann
Willy FÜRWITT
Volker GÜTHER
Hans-Peter Nicolai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GfE Metalle und Materialien GmbH
TiTAL GmbH
Original Assignee
GfE Metalle und Materialien GmbH
TiTAL GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GfE Metalle und Materialien GmbH, TiTAL GmbH filed Critical GfE Metalle und Materialien GmbH
Publication of EP2342365A1 publication Critical patent/EP2342365A1/en
Application granted granted Critical
Publication of EP2342365B1 publication Critical patent/EP2342365B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting

Definitions

  • the invention relates to a process for the production of ⁇ -TiAl base alloys by means of vacuum arc melting (VAR), which solidify completely or at least partially primarily via the ⁇ -phase.
  • VAR vacuum arc melting
  • Such target alloys will hereinafter be referred to as ⁇ - ⁇ -TiAl base alloy.
  • the technical field of the present invention is the melt metallurgical production of ⁇ - ⁇ -TiAl alloys by means of vacuum arc melting (VAR).
  • VAR vacuum arc melting
  • the DE 195 81 384 T1 describes intermetallic TiAl compounds and processes for their preparation, wherein the alloy by heat treatment of an alloy having a Ti concentration of 42 to 48 atom%, an Al concentration of 44 to 47 atom%, a Nb concentration of 6 to 10 at.% And a Cr concentration of 1 to 3 at.% At a temperature in the range of 1300 to 1400 ° C.
  • the DE 196 31 583 A1 discloses a method for producing an alloy TiAl-Nb product in which an alloy electrode is first prepared from the alloy components. The formation of the alloy electrode is carried out by pressing and / or sintering the alloy components to the electrode. The latter is melted off by an induction coil.
  • a heat-resistant TiAl based alloy is known in which specific amounts of V and Cr are incorporated into a Ti-Al intermetallic compound for the purpose of improving heat resistance and ductility.
  • a new generation of ⁇ -TiAl high performance materials has a structural design different from conventional TiAl alloys.
  • ⁇ -stabilizing elements such as Cr, Cu, Hf, Mn, Mo, Nb, V, Ta and Zr is set a primary solidification path over the ⁇ -Ti phase. This results in very fine microstructure, in addition to lamellar ⁇ 2 / ⁇ colonies also contain globular ⁇ grains and globular ⁇ grains, sometimes including globular ⁇ 2 grains.
  • a temperature field of melting temperature (about 1570 ° C.) at the bottom of the electrode extends to near room temperature at the electrode suspension through the material. Not far from the melt front, the critical temperature interval between 1000 and 1200 ° C is reached.
  • the relatively poor ductility of the intermetallic material then leads in this zone to the fact that the stresses formed there discharge in the form of cracks, which in turn lead to the described chipping of unmelted pieces from the electrode.
  • the present invention seeks to provide a method for producing a ⁇ -phase solidified ⁇ -TiAl base alloy - hereinafter referred to as ⁇ - ⁇ -TiAl base alloy - specify that Avoiding the cracking problem leads to a reliable production of such a target alloy.
  • the successive remelting steps during the vacuum arc melting are thus subdivided into the melting of a primary alloy in the first remelting steps, wherein a base melted electrode is produced from a conventional ⁇ -TiAl primary alloy, and the melting of the target alloy in the form of the desired ⁇ - ⁇ -TiAl-based alloy in the last remelting step.
  • the primary alloy has a deficiency of titanium and / or a deficiency of ⁇ -stabilizing elements such as Nb, Mo, Cr, Mn, V, and Ta.
  • the alloy is a defined amount of titanium and / or ⁇ in the preparation of the pressed base melt electrode deprived of stabilizing elements, so that an aluminum content of the primary alloy preferably between 45 at .-% (particularly preferably 45.5 at .-%) and 50 at .-% sets.
  • the contents of aluminum and ⁇ -stabilizing elements are chosen so that the solidification path of the primary alloy is at least partially via the peritectic conversion. It is thus set a structure analogous to conventional TiAl alloys, which can be processed easily in the VAR oven.
  • the target alloy is readjusted by the addition of the materials originally removed from the press electrode.
  • these materials are welded as cladding to form a composite electrode firmly on the outer surface of the Abschmelzelektrode to safely exclude a solid state drop into the molten bath. It is also possible to accomplish this by a sheath insert of the deficient alloy content on the inside of the Umschmelzkokille the VAR furnace.
  • the VAR furnace 1 has a copper crucible 4 with a bottom plate 5.
  • a water jacket 6 with water inlet 7 and 8 water outlet is arranged.
  • the copper crucible 4 is also closed at the top of a vacuum bell 9, passes through the top of a lifting bar 10 vertically displaceable. At this lifting bar 10 sits the holder 11, on which the actual electrode 2 is suspended.
  • a DC voltage is applied between the copper crucible 4 and the lifting rod 10, due to which a high-current arc is ignited and maintained between the electrode 2 electrically connected to the lifting rod 10 and the copper crucible 4.
  • the electrode 2 is successively remelted to ingot 3 under homogenization of the alloy components.
  • the target composition of the ⁇ - ⁇ -TiAl alloy is Ti-43.5Al-4.0Nb-1.0Mo-0.1B (at.%) Or Ti-A128.6-Nb9.1-Mo2.3. B0.03 (m-%).
  • the composition of the primary alloy for the base melt electrode is determined by a reduction of the titanium content to Ti - 45.93Al - 4.22Nb - 1.06Mo - 0.11B (at .-%).
  • a ingot 3 of the primary alloy of 200 mm in diameter and 1.4 m in length is prepared from a press electrode 2 by 2-fold VAR melting as described above, without cracking problem.
  • As starting materials for the production of the pressing electrode 2 titanium sponge pure aluminum and master alloys are used.
  • the entire surface area of the ingot 3 becomes of the primary alloy Pure titanium sheet 15 with a thickness of 3 mm (mass 12 kg) wound and partially welded to the outer surface 16 of the ingot 3, as shown in Fig. 2 is shown.
  • the upper edge 17 of the titanium sheet 15 is completely welded over the circumference of the ingot 3 with this.
  • welding point 18 are set distributed over the lateral surface 16.
  • the self-consumable electrode thus assembled is remelted as a composite electrode 19 in a final melting step in the VAR furnace 1 to a ingot 3 having a diameter of 280 mm and the composition of the target alloy.
  • the target composition, the feeds used and the composition of the primary alloy correspond to Embodiment 1.
  • an ingot 3 having a diameter of 140 mm and a length of 1.8 m is manufactured by simply VAR-melting press electrodes 2.
  • the mass of the ingot is 115 kg.
  • a sheet of pure titanium with the dimensions circumference 628 mm x height 880 mm x thickness 3 mm (mass 7.6 kg) in the inserted inner surface.
  • the composition of the primary alloy ingot forming the base melt electrode 2 and the titanium sheet thus provide the target composition.
  • the remelting takes place in the lined with the titanium sheet copper crucible 4 to an intermediate electrode such that the outer skin of the titanium sheet is not completely melted with and remains as a stable shell.
  • an intermediate electrode such that the outer skin of the titanium sheet is not completely melted with and remains as a stable shell.
  • cracking may occur, but due to the mechanical stabilization by the ductile outer shell, this does not lead to cracking Drop down of electrode material in the melt reservoir 14 lead.
  • the target composition, the feeds used and the composition of the primary alloy correspond to the embodiment 1, also the production of the composite electrode 19.
  • the last remelting takes place in a so-called VAR skull melter, ie a vacuum arc melting device with a water-cooled, tiltable copper crucible.
  • the target material's molten alloy material is poured into permanent molds made of stainless steel, which are attached to a rotating casting wheel.
  • the casting bodies produced by centrifugal casting are used as starting material for the production of components from the target alloy.
  • a ⁇ - ⁇ -TiAl alloy according to U.S. Patent 6,669,791 has a composition (target alloy) of Ti - 43.0Al - 6.0V (at .-%) and Ti - A129.7 - V7.8 (m%).
  • the composition of the primary alloy is determined by the complete reduction of the strongly ⁇ -stabilizing element vanadium to Ti - 45.75A1 (at .-%) or Ti - A132.2 (m -%).
  • the starting materials used are titanium sponge, aluminum and vanadium.
  • a base melt electrode 2 is conventionally produced as an ingot of the binary TiAl primary alloy with a diameter of 200 mm and a length of 1 m by double VAR melting (mass 126 kg).
  • FIG. 3 shows, along the entire surface 16 of the base melt electrode 2 along axialaxialparallel eight vanadium rods 20 with a diameter of 16.7 mm and a length of 1 m (total mass 10.7 kg) each offset by 45 ° to each other and thus uniformly over the circumference of Electrode 2 distributed welded.
  • the resulting composite electrode 19 'of the binary primary alloy and the welded vanadium rods 20 is remelted in the final third melting process to an ingot of target alloy with a diameter of 300 mm in the VAR furnace 1.
  • the target composition of the ⁇ -TiAl alloy corresponds to that of Embodiment 1 (Ti - 43.5A1 - 4.0Nb - 1.0Mo - 0.1 B at .-%).
  • the composition of the primary alloy is determined by a complete reduction of the molybdenum content and a partial reduction of the titanium content to Ti - 49.63A1 - 4.57Nb - 0.11 B (at .-%).
  • a base melt electrode 2 having a diameter of 200 mm and a length of 1 m is produced by double VAR melting.
  • the ingot mass is 126 kg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A method for the production of a γ-TiAl base alloy by vacuum arc remelting, which γ-TiAl base alloy solidifies via the (&bgr;-phase (&bgr;-γ-TiAl base alloy), comprises the following method steps: forming a basic melting electrode by melting, in at least one vacuum arc remelting step, of a conventional γ-TiAl primary alloy containing a lack of titanium and/or of at least one (&bgr;-stabilising element compared to the (&bgr;-γ-TiAl base alloy to be produced; allocating an amount of titanium and/or (&bgr;-stabilising element to the basic melting electrode, which amount corresponds to the reduced amount of titanium and/or (&bgr;-stabilising element, in an even distribution across the length and periphery of the basic melting electrode; adding the allocated amount of titanium and/or (&bgr;-stabilising element to the basic melting electrode so as to form the homogeneous (&bgr;-γ-TiAl base alloy in a final vacuum arc remelting step.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von γ-TiAl Basislegierungen mittels Vakuum-lichtbogen-Schmelzen (VAR), die vollständig oder zumindest teilweise primär über die β-Phase erstarren. Derartige Ziellegierungen sollen im Folgenden als β-γ-TiAl-Basislegierung bezeichnet werden.The invention relates to a process for the production of γ-TiAl base alloys by means of vacuum arc melting (VAR), which solidify completely or at least partially primarily via the β-phase. Such target alloys will hereinafter be referred to as β-γ-TiAl base alloy.

Das technische Gebiet der vorliegenden Erfindung ist die schmelzmetallurgische Herstellung von β-γ-TiAl-Legierungen mittel Vakuum-Lichtbogen-Schmelzen (VAR). Ursprünglich werden dabei ausgehend von den Rohstoffen Titanschwamm, Aluminium sowie Legienmgselementen und Vorlegierungen kompakte Körper gepresst, in denen die gewünschten Legierungsbestandteile in der stöchiometrisch passenden Form vorliegen. Gegebenenfalls werden hierbei durch das spätere Schmelzen verursachte Abdampfverluste vorgehalten. Die Presskörper werden entweder direkt mittels Plasmaschmelzen zu sogenannten Ingots eingeschmolzen (PAM) oder zu selbstverzehrenden Elektroden zusammengebaut und zu Ingots abgeschmolzen (VAR). In beiden Fällen entstehen Materialien, deren chemische und strukturelle Homogenität für eine technische Verwendung ungeeignet ist und die demzufolge noch mindestens einmal umgeschmolzen werden müssen (s. V. Guether: "Microstructure and Defects in γ-TiAl based Vacuum Arc Remelted Ingot Materials", 3rd Int. Symp. on Structural Intermetallics, September 2001, Jackson Hole WY, USA ).The technical field of the present invention is the melt metallurgical production of β-γ-TiAl alloys by means of vacuum arc melting (VAR). Originally, starting from the raw materials titanium sponge, aluminum and alloying elements and master alloys compact bodies are pressed in which the desired alloying constituents are present in the stoichiometrically appropriate form. Optionally, this evaporation losses caused by the subsequent melting are kept available. The compacts are either melted directly by means of plasma melts into so-called ingots (PAM) or assembled to self-consuming electrodes and melted down to ingots (VAR). In both cases, materials are created whose chemical and structural homogeneity is unsuitable for technical use and which consequently must be remelted at least once (see p. V. Guether: "Microstructures and Defects in γ-TiAl based Vacuum Arc Remelted Ingot Materials", 3rd Int. Symp. On Structural Intermetallics, September 2001, Jackson Hole WY, USA ).

Aus der DE 101 56 336 A1 ist ein Verfahren zur Herstellung von Legierungs-Ingots bekannt, das folgende Stufen aufweist:

  1. (i) Herstellung von Elektroden durch übliches Vennischen und Verpressen der ausgewählten Ausgangsstoffe,
  2. (ii) mindestens einmaliges Umschmelzen der in Stufe (i) erhaltenen Elektroden durch ein übliches schmelzmetallurgisches Verfahren,
  3. (iii) induktives Abschmelzen der in Stufe (i) oder (ii) erhaltenen Elektroden in einer Hochfrequenz-Spule,
  4. (iv) Homogenisieren der in Stufe (iii) erhaltenen Schmelze in einem Kaltwandinduktionstiegel und
  5. (v) Abziehen der Schmelze unter Kühlung aus dem Kaltwandinduktionstiegel von Stufe (iv) in Form von Blöcken mit frei einstellbarem Durchmesser.
From the DE 101 56 336 A1 a method for the production of alloy ingots is known, which comprises the following steps:
  1. (i) preparation of electrodes by conventional Vennisch and compression of the selected starting materials,
  2. (ii) at least one remelting of the electrodes obtained in step (i) by a conventional melt metallurgical process,
  3. (iii) inductive melting of the electrodes obtained in step (i) or (ii) in a high-frequency coil,
  4. (iv) homogenizing the melt obtained in step (iii) in a cold wall induction crucible and
  5. (v) withdrawing the melt under cooling from the cold wall induction crucible of step (iv) in the form of blocks of freely adjustable diameter.

Die DE 195 81 384 T1 beschreibt intermetallische TiAl-Verbindungen und Verfahren zu ihrer Herstellung, wobei die Legierung durch Wärmebehandlung einer Legierung mit einer Ti-Konzentration von 42 bis 48 Atom-%, einer Al-Konzentration von 44 bis 47 Atom-%, einer Nb-Konzentration von 6 bis 10 Atom-% und einer Cr-Konzentration von 1 bis 3 Atom-% bei einer Temperatur im Bereich von 1.300 bis 1.400°C hergestellt wird.The DE 195 81 384 T1 describes intermetallic TiAl compounds and processes for their preparation, wherein the alloy by heat treatment of an alloy having a Ti concentration of 42 to 48 atom%, an Al concentration of 44 to 47 atom%, a Nb concentration of 6 to 10 at.% And a Cr concentration of 1 to 3 at.% At a temperature in the range of 1300 to 1400 ° C.

Die DE 196 31 583 A1 offenbart ein Verfahren zur Herstellung eines TiAl-Nb-Erzeugnisses aus einer Legierung, bei dem zunächst aus den Legierungskomponenten eine Legierungselektrode hergestellt wird. Die Ausbildung der Legierungselektrode erfolgt durch Pressung und/oder Sintern der Legierungskomponenten zu der Elektrode. Letztere wird durch eine Induktionsspule abgeschmolzen.The DE 196 31 583 A1 discloses a method for producing an alloy TiAl-Nb product in which an alloy electrode is first prepared from the alloy components. The formation of the alloy electrode is carried out by pressing and / or sintering the alloy components to the electrode. The latter is melted off by an induction coil.

Aus der JP 02277736 A ist eine hitzebeständige TiAl-Basislegierung bekannt, bei der zur Verbesserung der Wärmebeständigkeit und Duktilität spezifische Mengen von V und Cr in eine intermetallische Ti-Al-Verbindung eingebracht werden.From the JP 02277736 A For example, a heat-resistant TiAl based alloy is known in which specific amounts of V and Cr are incorporated into a Ti-Al intermetallic compound for the purpose of improving heat resistance and ductility.

Die DE 1 179 006 A schließlich offenbart ternäre oder höhere Titan-Aluminium-Legierungen mit solchen Elementen, die die α- und β-Phase des Titans stabilisieren.The DE 1 179 006 A Finally, ternary or higher titanium-aluminum alloys with such elements stabilize the α- and β-phase of the titanium.

Übliches Verfahren zum Umschmelzen ist das Vakuum-Lichtbogen-Schmelzen mit selbstverzehrender Elektrode, da die Anlagen zum PlasmaSchmelzen in der Regel nicht für die Zuführung von kompakten Ingots als Ausgangsmaterial ausgelegt sind. Im Falle von herkömmlichen, zweiphasig in Form lamellarer Kolonien aus der α2-Ti3Al-Phase und der γ-TiAl-Phase aufgebauten γ-TiAγ-Basislegierungen geschieht das Umschmelzen im Vakuum-Lichtbogen-Schmelzofen (VAR-Ofen) problemlos und führt zum gewünschten Ergebnis (s. V. Guether: "Status and Prospects of γ-TiAl Ingot Production", Int. Symp. on Gamma Titanium Aluminides 2003, Hrsg. H. Clemens, Y.-W. Kim and A.H. Rosenberger, San Diego, TMS 2004 ).The usual process for remelting is self-consuming vacuum-arc melting, since the plasma-melting plants are generally not designed for feeding compact ingots as starting material. In the case of conventional, biphasic in the form of lamellar colonies of the α 2 -Ti 3 Al phase and the γ-TiAl phase constructed γ-TiAγ base alloys remelting takes place in the vacuum arc furnace (VAR furnace) easily and leads to the desired result (s. V. Guether: "Status and Prospects of γ-TiAl Ingot Production", Int. Symp. On Gamma Titanium Aluminides 2003, ed. H. Clemens, Y.-W. Kim and AH Rosenberger, San Diego, TMS 2004 ).

Eine neue Generation von γ-TiAl-Hochleistungswerkstoffen, z.B. die so bezeichneten TNM®-Legierungen der Anmelderin, besitzt einen von herkömmlichen TiAl-Legierungen abweichenden strukturellen Aufbau. Insbesondere aufgrund der Absenkung des Aluminium-Gehaltes auf üblicherweise 40 at.-% bis 45,5 Atom-%, aber auch aufgrund des Zulegierens von β-stabilisierenden Elementen wie beispielsweise Cr, Cu, Hf, Mn, Mo, Nb, V, Ta und Zr wird ein primärer Erstarrungspfad über die β-Ti-Phase eingestellt. Es entstehen dadurch sehr feine Gefüge, die neben lamellaren α2/γ-Kolonien auch globulare β-Körner und globulare γ-Körner, mitunter auch globulare α2-Körner enthalten. Werkstoffe mit derartigen Gefügen besitzen entscheidende Vorteile bezüglich der thermo-mechanischen Eigenschaften und der Prozessierbarkeit mittels Umformtechnologien (s. H. Clemens: "Design of Novel β-Solidifying TiAl Alloys with Adjustable β/B2-Phase Fraction and Excellent Hot-Workability", Advanced Engineering Materials 2008, 10, No.8, p. 707-713 ). Derartige Legierungen werden - wie eingangs bereits festgehalten - im Folgenden als β-γ-TiAl-Basislegierungen bezeichnet.A new generation of γ-TiAl high performance materials, such as Applicant's designated TNM® alloys, has a structural design different from conventional TiAl alloys. In particular, due to the lowering of the aluminum content to usually 40 at .-% to 45.5 atom%, but also due to the addition of β-stabilizing elements such as Cr, Cu, Hf, Mn, Mo, Nb, V, Ta and Zr is set a primary solidification path over the β-Ti phase. This results in very fine microstructure, in addition to lamellar α 2 / γ colonies also contain globular β grains and globular γ grains, sometimes including globular α 2 grains. Materials with such structures have significant advantages in terms of thermo-mechanical properties and processability by forming technologies (s. H. Clemens: "Design of Novel β-Solidifying TiAl Alloys with Adjustable β / B2 Phase Fraction and Excellent Hot Workability", Advanced Engineering Materials 2008, 10, No.8, p. 707-713 ). Such alloys are - as already stated - hereinafter referred to as β-γ-TiAl base alloys.

Nachteilig ist, dass es beim erneuten Umschmelzen von Elektroden aus diesem Material im VAR-Ofen zu Rissbildungen kommt, deren Resultat häufig das Abplatzen von Bestandteilen der selbstverzehrenden Legierungselektrode aus der Erstschmelzzone ist. Diese abgeplatzten Teile fallen in das Schmelzbad und werden darin nicht mehr vollständig wieder aufgeschmolzen. Dadurch entstehen strukturelle Defekte im Ingot, wodurch das Ingotmaterial unbrauchbar wird. Das Umschmelzen im VAR-Ofen ist unter diesen Verhältnissen nicht mehr technisch reproduzierbar möglich.The disadvantage is that cracking occurs again during the remelting of electrodes from this material in the VAR furnace, the result of which is frequently the flaking off of constituents of the self-consumable alloy electrode from the primary melting zone. These chipped parts fall into the molten bath and are no longer completely remelted therein. This causes structural defects in the ingot, making the ingot material unusable. Remelting in the VAR furnace is no longer technically reproducible under these conditions.

Als Ursache für das störende Abplatzverhalten werden massive Phasenumwandlungen im Temperaturbereich zwischen der eutektoiden Temperatur und der Phasengrenztemperatur zum β-Einphasengebiet angesehen. Durch die unterschiedlichen linearen Ausdehnungskoeffizienten der verschiedenen Phasenbestandteile kommt es insbesondere bei Phasenumwandlungen zu sprungartigen Veränderungen des integralen linearen Wärmeausdehnungskoeffizienten der Legierung und als Folge davon zu inneren Spannungen, die die Festigkeit des Materials im gegebenen Temperaturbereich übersteigen.As a cause for the disturbing chipping behavior massive phase transformations in the temperature range between the eutectoid temperature and the phase boundary temperature to the β-phase phase are considered. Due to the different linear expansion coefficients of the various phase components, in particular during phase transformations, sudden changes in the integral linear thermal expansion coefficient of the alloy and, as a consequence thereof, internal stresses which exceed the strength of the material in the given temperature range occur.

Entsprechende Dilatometermessungen an einer TNM®-B1-Legierung (Ti - 43,5A1 - 4,0Nb - 1,0Mo - 0,1B at.-%) zeigen, dass sich der lineare Ausdehnungskoeffizient einer entsprechenden Legierungsprobe im Temperaturintervall zwischen 1.000 °C und 1.200°C von 9 x 10-6 auf 40 x 10-6 K-1 mehr als vervierfacht. Dieses Verhalten ist in der beigefügten Fig. 4 dargestellt, in der die Kurve A den linearen Ausdehnungskoeffizienten dieser Legierung wiedergibt. Die Kurve R stellt die Aufheizrate der Probe dar.Corresponding dilatometer measurements on a TNM ® -B1 alloy (Ti - 43.5A1 - 4.0Nb - 1.0Mo - 0.1B at .-%) show that the linear expansion coefficient of a corresponding alloy sample in the temperature range between 1000 ° C and 1.200 ° C more than quadrupled from 9 x 10 -6 to 40 x 10 -6 K -1 . This behavior is in the attached Fig. 4 shown, in which the curve A represents the linear expansion coefficient of this alloy. The curve R represents the heating rate of the sample.

Während des VAR-Schmelzens zieht sich bezogen auf die Länge der selbstverzehrenden Elektrode ein Temperaturfeld von Schmelztemperatur (ca. 1570 °C) an der Elektrodenunterseite bis nahezu Raumtemperatur an der Elektrodenaufhängung durch das Material. Unweit der Schmelzfront wird das kritische Temperaturintervall zwischen 1000 und 1200 °C erreicht. Die relativ schlechte Duktilität des intermetallischen Werkstoffes führt dann in dieser Zone dazu, dass sich die dort bildenden Spannungen in Form von Rissen entladen, die wiederum zu dem geschilderten Abplatzen von ungeschmolzenen Stücken von der Elektrode führen.During VAR melting, based on the length of the consumable electrode, a temperature field of melting temperature (about 1570 ° C.) at the bottom of the electrode extends to near room temperature at the electrode suspension through the material. Not far from the melt front, the critical temperature interval between 1000 and 1200 ° C is reached. The relatively poor ductility of the intermetallic material then leads in this zone to the fact that the stresses formed there discharge in the form of cracks, which in turn lead to the described chipping of unmelted pieces from the electrode.

Ausgehend von dieser geschilderten Problematik des Standes der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung einer über die β-Phase erstarrenden γ-TiAl-Basislegierung - im Folgenden kurz als β-γ-TiAl-Basislegierung bezeichnet - anzugeben, dass unter Umgehung der Rissbildungsproblematik zu einer zuverlässigen Produktion einer solchen Ziellegierung führt.Based on this described problem of the prior art, the present invention seeks to provide a method for producing a β-phase solidified γ-TiAl base alloy - hereinafter referred to as β-γ-TiAl base alloy - specify that Avoiding the cracking problem leads to a reliable production of such a target alloy.

Diese Aufgabe wird durch die im Patentanspruch 1 angegebenen Verfahrensschritte wie folgt gelöst:

  • Erschmelzen einer Basisschmelzelektrode einer herkömmlichen γ-TiAl-Primärlegierung mit einem defizitären Gehalt an Titan und/oder an mindestens einem β-stabilisierenden Element gegenüber der herzustellenden β-γ-TiAl-Basislegierung in mindestens einem ersten Vakuum-Lichtbogen-Umschmelzschritt,
  • Zuordnen einer dem defizitären Gehalt des Titans und/oder β-stabilisierenden Elements entsprechenden Menge an Titan und/oder β-stabilisierendem Element zur Basisschmelzelektrode in gleichmäßiger Verteilung über deren Länge und Umfang, und
  • Zulegieren der zugeordneten Menge des Titans und/oder β-stabilisierenden Elements in die Basisschmelzelektrode zur Bildung der homogenen β-γ-TiAl-Basislegierung in einem letzten Vakuum-Lichtbogen-Schmelzschritt.
This object is achieved by the method steps indicated in claim 1 as follows:
  • Melting a base melt electrode of a conventional γ-TiAl primary alloy with a deficient content of titanium and / or on at least one β-stabilizing element in relation to the β-γ-TiAl base alloy to be produced in at least one first vacuum arc remelting step,
  • Assigning to the deficient content of the titanium and / or β-stabilizing element corresponding amount of titanium and / or β-stabilizing element to the base melt electrode in a uniform distribution over the length and circumference, and
  • Alloying the associated amount of the titanium and / or β stabilizing element in the base melt electrode to form the homogeneous β-γ-TiAl base alloy in a final vacuum arc melting step.

Die aufeinanderfolgenden Umschmelzschritte während des Vakuum-Lichtbogen-Schmelzens werden also unterteilt in das Schmelzen einer Primär-Legierung in den ersten Umschmelzschritten, wobei eine Basisschmelzelektrode aus einer herkömmlichen γ-TiAl-Primärlegierung hergestellt wird, und das Schmelzen der Ziellegierung in Form der gewünschten β-γ-TiAl-Basislegierung im jeweils letzten Umschmelzschritt. Die Primärlegierung besitzt ein Defizit an Titan und/oder ein Defizit an β-stabilisierenden Elementen wie z.B. Nb, Mo, Cr, Mn, V, und Ta. Dabei wird der Legierung beim Herstellen der gepressten Basisschmelzelektrode eine definierte Menge an Titan und/oder β-stabilisierenden Elementen entzogen, so dass sich ein Aluminium-Gehalt der Primärlegierung vorzugsweise zwischen 45 at.-% (besonders bevorzugt 45,5 at.-%) und 50 at.-% einstellt. Die Gehalte an Aluminium und an β-stabilisierenden Elementen werden so gewählt, dass der Erstarrungsweg der Primärlegierung zumindest teilweise über die peritektische Umwandlung erfolgt. Es wird damit ein Gefüge analog zu konventionellen TiAl Legierungen eingestellt, das sich problemlos im VAR-Ofen prozessieren lässt.The successive remelting steps during the vacuum arc melting are thus subdivided into the melting of a primary alloy in the first remelting steps, wherein a base melted electrode is produced from a conventional γ-TiAl primary alloy, and the melting of the target alloy in the form of the desired β- γ-TiAl-based alloy in the last remelting step. The primary alloy has a deficiency of titanium and / or a deficiency of β-stabilizing elements such as Nb, Mo, Cr, Mn, V, and Ta. In this case, the alloy is a defined amount of titanium and / or β in the preparation of the pressed base melt electrode deprived of stabilizing elements, so that an aluminum content of the primary alloy preferably between 45 at .-% (particularly preferably 45.5 at .-%) and 50 at .-% sets. The contents of aluminum and β-stabilizing elements are chosen so that the solidification path of the primary alloy is at least partially via the peritectic conversion. It is thus set a structure analogous to conventional TiAl alloys, which can be processed easily in the VAR oven.

Im letzten Schmelzschritt wird durch die Zugabe der ursprünglich der Presselektrode entzogenen Materialien die Ziellegierung wieder eingestellt. Vorzugsweise werden diese Materialien als Mantel unter Bildung einer Komposit-Elektrode fest auf die Mantelfläche der Abschmelzelektrode aufgeschweißt, um ein Abfallen im festen Zustand in das Schmelzbad sicher auszuschließen. Auch ist es möglich, dies durch eine Manteleinlage des defizitären Legierungsanteils an der Innenseite der Umschmelzkokille des VAR-Ofens zu bewerkstelligen.In the last melting step, the target alloy is readjusted by the addition of the materials originally removed from the press electrode. Preferably, these materials are welded as cladding to form a composite electrode firmly on the outer surface of the Abschmelzelektrode to safely exclude a solid state drop into the molten bath. It is also possible to accomplish this by a sheath insert of the deficient alloy content on the inside of the Umschmelzkokille the VAR furnace.

Überraschenderweise zeigt sich, dass sich bei geeigneter Auswahl und geeignet gleichverteiltem Anbringen der defizitären Legierungsbestandteile auf der Elektrodenmantelfläche keine negativen Folgen für die lokale chemische Homogenität des entstehenden Ingots der herzustellenden β-γ-TiAl-Basislegierung als Ziellegierung ergeben.Surprisingly, it has been found that, with a suitable selection and suitably evenly distributed attachment of the deficient alloy constituents on the electrode jacket surface, there are no negative consequences for the local chemical homogeneity of the resulting ingot of the produced β-γ-TiAl base alloy as target alloy.

Weitere bevorzugte Ausführungsformen des erfindungsgemäßen Herstellungsverfahrens sind in weiteren Unteransprüchen angegeben, deren Einzelheiten und Merkmale sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der beigefügten Zeichnungen ergeben. Es zeigen:

Fig.1
eine Prinzipskizze eines Vakuum-Lichtbogen-Schmelzofens,
Fig. 2
eine perspektivische Ansicht einer Komposit-Elektrode in einer ersten Ausführungsform,
Fig. 3
eine perspektivische Ansicht einer Komposit-Elektrode in einer zweiten Ausführungsform und
Fig. 4
ein Diagramm des linearen Ausdehnungskoeffizienten als Funktion der Temperatur einer TNM®-B1-Legierung.
Further preferred embodiments of the manufacturing method according to the invention are specified in further subclaims, whose details and features will become apparent from the following description of embodiments with reference to the accompanying drawings. Show it:
Fig.1
a schematic diagram of a vacuum arc melting furnace,
Fig. 2
a perspective view of a composite electrode in a first embodiment,
Fig. 3
a perspective view of a composite electrode in a second embodiment and
Fig. 4
a graph of the linear expansion coefficient as a function of the temperature of a TNM®-B1 alloy.

Anhand von Fig. 1 soll grundsätzlich ein Vakuum-Lichtbogen-Schmelzofen 1 und das Verfahren zum Umschmelzen einer entsprechenden Elektrode 2 zu einem Ingot 3 erläutert werden. So weist der VAR-Ofen 1 einen Kupfertiegel 4 mit einer Bodenplatte 5 auf. Um diesen Kupfertiegel 4 herum ist ein Wasserkühlmantel 6 mit Wasserzulauf 7 und Wasserablauf 8 angeordnet. Der Kupfertiegel 4 ist ferner oben von einer Vakuumglocke 9 abgeschlossen, durch die an der Oberseite eine Hebestange 10 vertikal verschiebbar durchgreift. An dieser Hebestange 10 sitzt der Halter 11, an dem die eigentliche Elektrode 2 aufgehängt ist.Based on Fig. 1 In principle, a vacuum arc melting furnace 1 and the method for remelting a corresponding electrode 2 to an ingot 3 will be explained. Thus, the VAR furnace 1 has a copper crucible 4 with a bottom plate 5. Around this copper crucible 4 around a water jacket 6 with water inlet 7 and 8 water outlet is arranged. The copper crucible 4 is also closed at the top of a vacuum bell 9, passes through the top of a lifting bar 10 vertically displaceable. At this lifting bar 10 sits the holder 11, on which the actual electrode 2 is suspended.

Über eine Gleichstromversorgung 12 wird zwischen Kupfertiegel 4 und Hebestange 10 eine Gleichspannung angelegt, aufgrund derer ein Hochstrom-Lichtbogen zwischen der mit der Hebestange 10 elektrisch verbundenen Elektrode 2 und dem Kupfertiegel 4 gezündet und aufrecht erhalten wird. Dieser führt zum Abschmelzen der Elektrode 2, wobei sich das abgeschmolzene Legierungsmaterial im Kupfertiegel 4 sammelt und dort erstarrt. In einem kontinuierlichen Prozess, bei dem zwischen der sich selbst verzehrenden Elektrode 2 über den Elektrodenlichtbogenspalt 13 der Lichtbogen zum geschmolzenen Reservoir 14 an der Oberseite des Ingots 3 läuft, wird die Elektrode 2 sukzessive zum Ingot 3 unter Homogenisierung der Legierungsbestandteile umgeschmolzen.Via a DC power supply 12, a DC voltage is applied between the copper crucible 4 and the lifting rod 10, due to which a high-current arc is ignited and maintained between the electrode 2 electrically connected to the lifting rod 10 and the copper crucible 4. This leads to the melting of the electrode 2, wherein the molten alloy material collects in the copper crucible 4 and solidifies there. In a continuous process in which, between the self-consuming electrode 2 via the electrode arc gap 13, the arc to the molten reservoir 14 at the top of the ingot 3 runs, the electrode 2 is successively remelted to ingot 3 under homogenization of the alloy components.

Dieser Vorgang kann mit im Durchmesser jeweils größeren Schmelztiegeln 4 mehrfach wiederholt werden, wobei der Ingot des einen Umschmelzschrittes zur Elektrode des nächsten Umschmelzschrittes wird. Damit wird der Homogenisierungsgrad der herzustellenden Ingots mit jedem Umschmelzschritt verbessert.This process can be repeated several times with larger diameter crucibles 4, wherein the ingot of a remelting step to the electrode of the next Umschmelzschrittes. Thus, the degree of homogenization of the ingots to be produced is improved with each remelting step.

Im Folgenden werden nun verschiedene Ausführungsbeispiele zur Herstellung einer β-γ-TiAl-Basislegierung beschrieben:Various embodiments for producing a β-γ-TiAl base alloy will now be described below:

Ausführungsbeispiel 1Embodiment 1

Die Zielzusammensetzung der β-γ-TiAl-Legierung ist Ti - 43,5Al - 4,0Nb - 1,0Mo - 0,1B (at.-%) bzw. Ti - A128,6 - Nb9,1 - Mo2,3 - B0,03 (m-%). Die Zusammensetzung der Primärlegierung für die Basisschmelzelektrode wird durch eine Reduktion des Titangehaltes auf Ti - 45,93Al- 4,22Nb - 1,06Mo - 0,11B (at.-%) festgelegt. Zunächst wird konventionell aus einer Presselektrode 2 ein Ingot 3 der Primärlegierung mit 200 mm Durchmesser und einer Länge von 1,4 m durch 2-faches VAR-Schmelzen wie oben beschrieben hergestellt, ohne dass eine Rissproblematik auftritt. Als Einsatzmaterialien für die Herstellung der Presselektrode 2 werden Titan-Schwamm, Rein-Aluminium und Vorlegierungen verwendet.The target composition of the β-γ-TiAl alloy is Ti-43.5Al-4.0Nb-1.0Mo-0.1B (at.%) Or Ti-A128.6-Nb9.1-Mo2.3. B0.03 (m-%). The composition of the primary alloy for the base melt electrode is determined by a reduction of the titanium content to Ti - 45.93Al - 4.22Nb - 1.06Mo - 0.11B (at .-%). First, conventionally, a ingot 3 of the primary alloy of 200 mm in diameter and 1.4 m in length is prepared from a press electrode 2 by 2-fold VAR melting as described above, without cracking problem. As starting materials for the production of the pressing electrode 2 titanium sponge, pure aluminum and master alloys are used.

Um den reduzierten Titangehalt in der Basisschmelzelektrode auf den gewünschten Wert der β-γ-TiAl-Legierung in der Ziellegierung anzuheben, wird die gesamte Mantelfläche des Ingots 3 aus der Primärlegierung ein Rein-Titanblech 15 mit einer Dicke von 3 mm (Masse 12 kg) gewickelt und teilweise mit der Mantelfläche 16 des Ingots 3 verschweißt, wie dies in Fig. 2 dargestellt ist. Dabei wird die obere Kante 17 des Titanbleches 15 vollständig über den Umfang des Ingots 3 mit diesem verschweißt. Ferner werden Schweißpunkt 18 über die Mantelfläche 16 verteilt gesetzt. Die so zusammengebaute selbstverzehrende Elektrode wird als Komposit-Elektrode 19 in einem letzten Schmelzschritt im VAR-Ofen 1 zu einem Ingot 3 mit einem Durchmesser von 280 mm und der Zusammensetzung der Ziellegierung umgeschmolzen.In order to raise the reduced titanium content in the base melt electrode to the desired value of the β-γ-TiAl alloy in the target alloy, the entire surface area of the ingot 3 becomes of the primary alloy Pure titanium sheet 15 with a thickness of 3 mm (mass 12 kg) wound and partially welded to the outer surface 16 of the ingot 3, as shown in Fig. 2 is shown. In this case, the upper edge 17 of the titanium sheet 15 is completely welded over the circumference of the ingot 3 with this. Furthermore, welding point 18 are set distributed over the lateral surface 16. The self-consumable electrode thus assembled is remelted as a composite electrode 19 in a final melting step in the VAR furnace 1 to a ingot 3 having a diameter of 280 mm and the composition of the target alloy.

Ausführungsbeispiel 2Embodiment 2

Die Zielzusammensetzung, die verwendeten Einsatzmaterialien und die Zusammensetzung der Primärlegierung entsprechen dem Ausführungsbeispiel 1. Aus der Primärlegierung wird durch einfaches VAR-Schmelzen von Presselektroden 2 ein Ingot 3 mit einem Durchmesser von 140 mm und einer Länge von 1,8 m hergestellt. Die Masse des Ingots beträgt 115 kg. In die vom Kupfertiegel 4 gebildete Kokille des VAR-Ofens 1 wird vor der letzten Schmelze des der Basisschmelzelektrode 2 ein Blech aus Rein-Titan mit den Abmessungen Umfang 628 mm x Höhe 880 mm x Dicke 3 mm (Masse 7,6 kg) in die innere Mantelfläche eingelegt. In Summe ergibt sich somit aus der Zusammensetzung des die Basisschmelzelektrode 2 bildenden Primärlegierungsingots und dem Titanblech die Zielzusammensetzung. Die Umschmelze erfolgt in den mit dem Titanblech ausgekleideten Kupfertiegel 4 zu einer Zwischenelektrode derart, dass die Außenhaut des Titanblechs nicht vollständig mit aufgeschmolzen wird und als stabile Hülle bestehen bleibt. Im nachfolgenden letzten VAR-Umschmelzschritt der Zwischenelektrode kann es zwar zu Rissbildungen kommen, die aber aufgrund der mechanischen Stabilisierung durch die duktile Außenhülle nicht zu einem Herunterfallen von Elektrodenmaterial in das Schmelzreservoir 14 führen.The target composition, the feeds used and the composition of the primary alloy correspond to Embodiment 1. From the primary alloy, an ingot 3 having a diameter of 140 mm and a length of 1.8 m is manufactured by simply VAR-melting press electrodes 2. The mass of the ingot is 115 kg. In the mold formed by the copper crucible 4 of the VAR furnace 1 is before the last melt of the base melt electrode 2, a sheet of pure titanium with the dimensions circumference 628 mm x height 880 mm x thickness 3 mm (mass 7.6 kg) in the inserted inner surface. In sum, the composition of the primary alloy ingot forming the base melt electrode 2 and the titanium sheet thus provide the target composition. The remelting takes place in the lined with the titanium sheet copper crucible 4 to an intermediate electrode such that the outer skin of the titanium sheet is not completely melted with and remains as a stable shell. Although in the subsequent last VAR remelting step of the intermediate electrode, cracking may occur, but due to the mechanical stabilization by the ductile outer shell, this does not lead to cracking Drop down of electrode material in the melt reservoir 14 lead.

Ausführungsbeispiel 3Embodiment 3

Die Zielzusammensetzung, die verwendeten Einsatzmaterialien und die Zusammensetzung der Primärlegierung entsprechen dem Ausführungsbeispiel 1, ebenfalls die Herstellung der Komposit-Elektrode 19. Im Unterschied zu Ausführungsbeispiel 1 erfolgt deren letztes Umschmelzen in einem sogenannten, VAR skull melter', also einer Vakuum-Lichtbogen-Schmelzeinrichtung mit einem wassergekühlten, kippbaren Schmelztiegel aus Kupfer. Das im ,skull' befindliche schmelzflüssige Material der Ziellegierung wird in Permanentkokillen aus Edelstahl abgegossen, die an einem rotierenden Gießrad angebracht sind. Die so im Schleuderguss hergestellten Gießkörper werden als Vormaterial für die Herstellung von Bauteilen aus der Ziellegierung verwendet.The target composition, the feeds used and the composition of the primary alloy correspond to the embodiment 1, also the production of the composite electrode 19. In contrast to Example 1, the last remelting takes place in a so-called VAR skull melter, ie a vacuum arc melting device with a water-cooled, tiltable copper crucible. The target material's molten alloy material is poured into permanent molds made of stainless steel, which are attached to a rotating casting wheel. The casting bodies produced by centrifugal casting are used as starting material for the production of components from the target alloy.

Ausführungsbeispiel 4:Embodiment 4

Eine β-γ-TiAl Legierung gemäß US Patent 6,669,791 besitzt eine Zusammensetzung (Ziellegierung) Ti - 43,0Al - 6,0V (at.-%) bzw. Ti - A129,7 - V7,8 (m-%). Die Zusammensetzung der Primärlegierung wird durch die vollständige Reduktion des stark β-stabilisierenden Elementes Vanadium auf Ti - 45,75A1 (at.-%) bzw. Ti - A132,2 (m-%) festgelegt. Als Einsatzmaterialien werden Titan-Schwamm, Aluminium und Vanadium verwendet. Zunächst wird konventionell eine Basisschmelzelektrode 2 als Ingot der binären TiAl-Primärlegierung mit einem Durchmesser von 200 nun und einer Länge von 1 m durch zweifaches VAR-Schmelzen hergestellt (Masse 126 kg). Wie Fig. 3 zeigt, werden entlang der gesamten Mantelfläche 16 der Basisschmelzelektrode 2 längsaxialparallel acht Vanadiumstäbe 20 mit einem Durchmesser von 16,7 mm und einer Länge von 1 m (Masse insgesamt 10,7 kg) jeweils um 45° zueinander versetzt und damit gleichmäßig über den Umfang der Elektrode 2 verteilt aufgeschweißt. Die so entstandene Komposit-Elektrode 19' aus der binären Primärlegierung und den aufgeschweißten Vanadiumstäben 20 wird im abschließenden dritten Schmelzprozess zu einem Ingot der Ziellegierung mit einem Durchmesser von 300 mm im VAR-Ofen 1 umgeschmolzen.A β-γ-TiAl alloy according to U.S. Patent 6,669,791 has a composition (target alloy) of Ti - 43.0Al - 6.0V (at .-%) and Ti - A129.7 - V7.8 (m%). The composition of the primary alloy is determined by the complete reduction of the strongly β-stabilizing element vanadium to Ti - 45.75A1 (at .-%) or Ti - A132.2 (m -%). The starting materials used are titanium sponge, aluminum and vanadium. First of all, a base melt electrode 2 is conventionally produced as an ingot of the binary TiAl primary alloy with a diameter of 200 mm and a length of 1 m by double VAR melting (mass 126 kg). As Fig. 3 shows, along the entire surface 16 of the base melt electrode 2 along axialaxialparallel eight vanadium rods 20 with a diameter of 16.7 mm and a length of 1 m (total mass 10.7 kg) each offset by 45 ° to each other and thus uniformly over the circumference of Electrode 2 distributed welded. The resulting composite electrode 19 'of the binary primary alloy and the welded vanadium rods 20 is remelted in the final third melting process to an ingot of target alloy with a diameter of 300 mm in the VAR furnace 1.

Ausführungsbeispiel 5Embodiment 5

Die Zielzusammensetzung der γ-TiAl-Legierung entspricht der des Ausführungsbeispiels 1 (Ti - 43.5A1 - 4,0Nb - 1,0Mo - 0,1 B at.-%). Die Zusammensetzung der Primärlegierung wird durch eine vollständige Reduktion des Molybdängehaltes und eine teilweise Reduktion des Titangehaltes auf Ti - 49,63A1 - 4,57Nb - 0,11 B (at.-%) festgelegt. Aus der Primärlegierung wird durch zweifaches VAR-Schmelzen eine Basisschmelzelektrode 2 mit einem Durchmesser von 200 mm und einer Länge von 1 m hergestellt. Die Ingotmasse beträgt 126 kg. Auf die Mantelfläche 16 der Elektrode 2 werden analog zu Ausführungsbeispiel 4 längsaxialparallel acht Stäbe aus der kommerziellen Legierung TiMo15 aufgeschweißt. Der Durchmesser der Stäbe beträgt 26 mm, die Länge der Stäbe entspricht der Ingotlänge. Die Gesamtmasse der TiMo15 Stäbe beträgt 19,6 kg. Die so entstandene Komposit-Elektrode aus einem Ingot der Primärlegierung und acht TiMo15 Stäben wird im abschließenden dritten Schmelzprozess zu einem Ingot der Ziellegierung mit einem Durchmesser von 300 mm im VAR-Ofen 1 umgeschmolzen. The target composition of the γ-TiAl alloy corresponds to that of Embodiment 1 (Ti - 43.5A1 - 4.0Nb - 1.0Mo - 0.1 B at .-%). The composition of the primary alloy is determined by a complete reduction of the molybdenum content and a partial reduction of the titanium content to Ti - 49.63A1 - 4.57Nb - 0.11 B (at .-%). From the primary alloy, a base melt electrode 2 having a diameter of 200 mm and a length of 1 m is produced by double VAR melting. The ingot mass is 126 kg. On the lateral surface 16 of the electrode 2, eight rods made of the commercial TiMo15 alloy are welded on, parallel to the longitudinal direction parallel to Embodiment 4. The diameter of the rods is 26 mm, the length of the rods corresponds to the ingot length. The total mass of TiMo15 rods is 19.6 kg. The resulting composite electrode consisting of one ingot of the primary alloy and eight TiMo15 rods is remelted in the final third melting process to an ingot of the target alloy with a diameter of 300 mm in the VAR furnace 1.

Claims (10)

  1. Method for the production of a γ-TiAl base alloy by vacuum arc remelting which γ-TiAl base alloy solidifies via the β-phase (β-γ-TiAl base alloy),
    characterized by the following method steps:
    - forming a basic melting electrode by melting, in at least one vacuum arc remelting step, of a conventional γ-TiAl primary alloy containing a lack of titanium and/or of at least one β-stabilising element compared to the β-γ-TiAl base alloy to be produced;
    - allocating an amount of titanium and/or β-stabilising element to the basic melting electrode, which amount corresponds to the reduced amount of titanium and/or β-stabilising element, in an even distribution across the length and periphery of the basic melting electrode;
    - adding the allocated amount of titanium and/or β-stabilising element to the basic melting electrode so as to form the homogeneous β-γ-TiAl base alloy in a final vacuum arc remelting step.
  2. Method for the production of a β-γ-TiAl base alloy according to claim 1, characterized in that the basic melting electrode (2) of the conventional γ-TiAl base alloy has an aluminium content of 45 at. % to 50 at. %.
  3. Method for the production of a β-γ-TiAl base alloy according to claim 1 or 2, characterized in that the basic melting electrode (2) has a lack of titanium and/or at least one element from the group of B, Cr, Cu, Hf, Mn, Mo, Nb, Si, Ta, V and Zr which have a β-stabilizing effect in TiAl alloys.
  4. Method for the production of a β-γ-TiAl base alloy according to one of the preceding claims, characterized in that the basic melting electrode (2) is produced by single or multiple remelting of a compacted electrode comprising the alloy components of the basic melting electrode (2) in a homogeneous distribution.
  5. Method for the production of a β-γ-TiAl base alloy according to one of the preceding claims, characterized in that in order to allocate the amount of titanium and/or γ-stabilizing element corresponding to the lacking amount of titanium and/or γ-stabilizing element to the basic melting electrode, a composite electrode (19, 19') is produced which consists of the basic melting electrode (2) and a layer (15) of a corresponding thickness of titanium and/or the β-stabilizing element which is constant across the periphery and length thereof.
  6. Method for the production of a β-γ-TiAl base alloy according to claim 5, characterized in that the layer consists of a coat (15) of titanium sheet which extends along the length of the basic melting electrode (2).
  7. Method for the production of a β-γ-TiAl base alloy according to claim 6, characterized in that the coat (15) of titanium sheet is secured to the basic melting electrode by means of welding spots (18) which are evenly distributed across the outer peripheral surface (16) thereof and/or by means of a weld seam which runs along the upper edge of the welding electrode (2) across the entire periphery thereof.
  8. Method for the production of a β-γ-TiAl base alloy according to claim 6, characterized in that the coat (15) of titanium sheet is formed by a coat lining on the inside of the remelting die (4) of the vacuum arc melting furnace (1), with the coat (15) of titanium sheet being fused to the basic melting electrode (2) in an intermediate remelting step so as to form an intermediate electrode which is then remolten to form the homogeneous β-γ-TiAl base alloy in a final vacuum arc melting step.
  9. Method for the production of a β-γ-TiAl base alloy according to one of claims 1 to 4, characterized in that in order to allocate the amount of titanium and/or β-stabilizing element corresponding to the lacking amount of titanium and/or β-stabilizing element to the basic melting electrode, a composite electrode (19') is formed which consists of the basic melting electrode (2) and several rods (20) of corresponding thickness consisting of titanium and/or the β-stabilizing element which are arranged parallel to the longitudinal axis of the basic melting electrode (2) and are distributed evenly across the periphery of the basic melting electrode (2).
  10. Method for the production of a β-γ-TiAl base alloy according to one of the preceding claims, characterized in that the final vacuum arc melting step for forming the homogeneous β-γ-TiAl base alloy is performed in a vacuum arc skull melting device after which the molten material of the β-γ-TiAl base alloy is cast to form cast bodies of the β-γ-TiAl base alloy in a lost-wax or die casting process.
EP10765988A 2009-10-24 2010-09-28 Process for manufacturing a beta-gamma tial-based alloy Active EP2342365B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009050603A DE102009050603B3 (en) 2009-10-24 2009-10-24 Process for producing a β-γ-TiAl base alloy
PCT/EP2010/064306 WO2011047937A1 (en) 2009-10-24 2010-09-28 Method for producing a ss-γ-tial base alloy

Publications (2)

Publication Number Publication Date
EP2342365A1 EP2342365A1 (en) 2011-07-13
EP2342365B1 true EP2342365B1 (en) 2013-03-06

Family

ID=43216184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10765988A Active EP2342365B1 (en) 2009-10-24 2010-09-28 Process for manufacturing a beta-gamma tial-based alloy

Country Status (8)

Country Link
US (1) US8668760B2 (en)
EP (1) EP2342365B1 (en)
JP (1) JP5492982B2 (en)
CN (1) CN102449176B (en)
DE (1) DE102009050603B3 (en)
ES (1) ES2406904T3 (en)
RU (1) RU2490350C2 (en)
WO (1) WO2011047937A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312111B (en) * 2011-09-07 2013-02-06 上海交通大学 Method for preparing TiAl alloy through melting with consumable vacuum arc furnace
WO2013172745A1 (en) * 2012-05-16 2013-11-21 Gkn Aerospace Sweden Ab Method for applying a titanium alloy on a substrate
JP5857917B2 (en) * 2012-08-28 2016-02-10 新日鐵住金株式会社 Ni-base superalloy ingot manufacturing method
CN103014386B (en) * 2012-12-10 2014-07-09 西安诺博尔稀贵金属材料有限公司 Preparation method of niobium-tungsten-molybdenum-zirconium alloy ingot
CN103276229A (en) * 2013-06-06 2013-09-04 广西大学 Melting method for minimizing aluminium burning loss during melting process of high-temperature structural material Ti-40Al-10Fe alloys
EP2851445B1 (en) * 2013-09-20 2019-09-04 MTU Aero Engines GmbH Creep-resistant TiAl alloy
WO2015058611A1 (en) * 2013-10-23 2015-04-30 Byd Company Limited Metal forming apparatus
CN104532061A (en) * 2014-12-26 2015-04-22 北京科技大学 High-temperature-resistant aluminum titanium oxide alloy and preparation method thereof
DE102015103422B3 (en) * 2015-03-09 2016-07-14 LEISTRITZ Turbinentechnik GmbH Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
CN104976888B (en) * 2015-06-08 2017-03-08 重庆钢铁(集团)有限责任公司 A kind of vacuum consumable smelting furnace
DE102015115683A1 (en) * 2015-09-17 2017-03-23 LEISTRITZ Turbinentechnik GmbH A method for producing an alpha + gamma titanium aluminide alloy preform for producing a heavy duty component for reciprocating engines and gas turbines, in particular aircraft engines
RU2621500C1 (en) * 2015-12-21 2017-06-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" INTERMETALLIC TiAl BASED ALLOY
CN107385370B (en) * 2017-06-23 2019-04-05 太原理工大学 Ti-44Al-4Nb-4V-0 ﹒ 3Mo alloy grain refining heat treatment method
KR102095463B1 (en) 2018-05-24 2020-03-31 안동대학교 산학협력단 TiAl-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE FORMABILITY AND METHOD FOR MANUFACTURING TiAl-BASED ALLOY MEMBER USING THE SAME
CN110814481B (en) * 2019-10-30 2021-07-13 西部超导材料科技股份有限公司 Butt welding method of auxiliary electrode for titanium alloy
CN113234960A (en) * 2021-05-08 2021-08-10 陕西工业职业技术学院 Preparation method of alloy
CN113351838B (en) * 2021-05-17 2022-11-04 西部超导材料科技股份有限公司 Gas cooling device, control system and control method for preparing titanium alloy ingots

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1179006B (en) * 1952-12-18 1964-10-01 Crucible Steel Internat Titanium alloys
JPH02277736A (en) * 1989-04-19 1990-11-14 Mitsubishi Heavy Ind Ltd Ti-al base heat-resistant alloy
US5332545A (en) * 1993-03-30 1994-07-26 Rmi Titanium Company Method of making low cost Ti-6A1-4V ballistic alloy
US6051084A (en) 1994-10-25 2000-04-18 Mitsubishi Jukogyo Kabushiki Kaisha TiAl intermetallic compound-based alloys and methods for preparing same
DE19631583C2 (en) * 1996-08-05 2002-10-02 Geesthacht Gkss Forschung Process for the manufacture of an alloy product
JP4287991B2 (en) 2000-02-23 2009-07-01 三菱重工業株式会社 TiAl-based alloy, method for producing the same, and moving blade using the same
DE10156336A1 (en) * 2001-11-16 2003-06-05 Ald Vacuum Techn Gmbh Process for the production of alloy ingots
RU2269584C1 (en) * 2004-07-30 2006-02-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Titanium-base alloy
DE102007060587B4 (en) * 2007-12-13 2013-01-31 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH titanium aluminide
CN101476061B (en) * 2009-02-06 2010-08-25 洛阳双瑞精铸钛业有限公司 High temperature resistant titanium and aluminum based alloy and manufacturing method thereof

Also Published As

Publication number Publication date
CN102449176B (en) 2014-04-16
US20110219912A1 (en) 2011-09-15
EP2342365A1 (en) 2011-07-13
RU2011143579A (en) 2013-05-10
JP5492982B2 (en) 2014-05-14
DE102009050603B3 (en) 2011-04-14
CN102449176A (en) 2012-05-09
ES2406904T3 (en) 2013-06-10
WO2011047937A1 (en) 2011-04-28
RU2490350C2 (en) 2013-08-20
US8668760B2 (en) 2014-03-11
JP2012527533A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
EP2342365B1 (en) Process for manufacturing a beta-gamma tial-based alloy
DE60224514T2 (en) METHOD FOR PRODUCING BLOCKS FROM NICKEL BASE ALLOY WITH LARGE DIAMETER
DE2230317C2 (en) Method for casting metal workpieces, in particular turbine blades
EP1287173B1 (en) $g(G)-TIAL ALLOY-BASED COMPONENT COMPRISING AREAS HAVING A GRADUATED STRUCTURE
DE60002474T2 (en) METHOD FOR CASTING SEMI-SOLID METAL ALLOYS
DE69520779T2 (en) Process for the production of an active metal-containing copper alloy
DE102015016729B4 (en) Process for producing a nickel-base alloy
DE3828612A1 (en) METHOD FOR PRODUCING TITANIUM ALLOYS
EP1444065B1 (en) Method for producing alloy ingots
DE4016340C1 (en) Process for the treatment of chrome and niobium-modified titanium-aluminum alloys
DE60001249T2 (en) Ti-Al (Mo, V, Si, Fe) alloys and process for their manufacture
EP1851350B1 (en) Method for casting titanium alloy
DE60036646T2 (en) CASTING SYSTEMS AND METHOD WITH AUXILIARY COOLING OF THE LIQUID SURFACE OF THE CASTORS
AT406384B (en) METHOD FOR ELECTROSHELL STRAND MELTING OF METALS
DE102009025197B4 (en) Process for the production of composite metal semi-finished products
DE3421488A1 (en) METHOD FOR PRODUCING ALLOY POWDER AND DEVICE FOR CARRYING OUT THE METHOD
WO2003008655A2 (en) Moulded piece made from an intermetallic gamma tial material
DE4142941A1 (en) USE OF A CURABLE copper alloy
DE4327227A1 (en) Grain refining agent, its manufacture and use
DE3740732C2 (en)
JPH05214458A (en) Method for melting titanium alloy ingot by var process
DE3805503A1 (en) METHOD FOR IMPROVING HIGH TEMPERATURE ALLOYS
DE19505689C2 (en) Casting mold for the production of castings from reactive metals
DE19504359C1 (en) Prodn. of alloys from components of different melting points
DE69113676T2 (en) Device and method for precision casting.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUETHER, VOLKER

Inventor name: FUERWITT, WILLY

Inventor name: NICOLAI, HANS-PETER

Inventor name: ACHTERMANN, MATTHIAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAX Request for extension of the european patent (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 599670

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002484

Country of ref document: DE

Effective date: 20130502

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2406904

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130606

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130606

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130306

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E008090

Country of ref document: EE

Effective date: 20130515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130706

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

26N No opposition filed

Effective date: 20131209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002484

Country of ref document: DE

Effective date: 20131209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100928

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130928

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: EE

Payment date: 20200921

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200814

Year of fee payment: 11

Ref country code: BE

Payment date: 20200921

Year of fee payment: 11

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E008090

Country of ref document: EE

Effective date: 20210930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220818

Year of fee payment: 13

Ref country code: RO

Payment date: 20220922

Year of fee payment: 13

Ref country code: IT

Payment date: 20220825

Year of fee payment: 13

Ref country code: GB

Payment date: 20220819

Year of fee payment: 13

Ref country code: DE

Payment date: 20220818

Year of fee payment: 13

Ref country code: AT

Payment date: 20220819

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220819

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002484

Country of ref document: DE

Representative=s name: FORRESTERS IP LLP, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002484

Country of ref document: DE

Representative=s name: KUEHR, VERA, DIPL.-BIOL., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20221003

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010002484

Country of ref document: DE

Representative=s name: FORRESTERS IP LLP, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010002484

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230928

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 599670

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230928

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230928

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240403

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230929