EP2338157B1 - Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques - Google Patents
Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques Download PDFInfo
- Publication number
- EP2338157B1 EP2338157B1 EP09820277A EP09820277A EP2338157B1 EP 2338157 B1 EP2338157 B1 EP 2338157B1 EP 09820277 A EP09820277 A EP 09820277A EP 09820277 A EP09820277 A EP 09820277A EP 2338157 B1 EP2338157 B1 EP 2338157B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- neutrons
- fission
- max
- measuring device
- thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000005259 measurement Methods 0.000 title claims description 36
- 230000004992 fission Effects 0.000 claims description 131
- 229910052778 Plutonium Inorganic materials 0.000 claims description 32
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 claims description 32
- 239000010948 rhodium Substances 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 25
- 230000035945 sensitivity Effects 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 20
- 230000000155 isotopic effect Effects 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000005316 response function Methods 0.000 claims description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 12
- 229910052703 rhodium Inorganic materials 0.000 claims description 10
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical group [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 8
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- OYEHPCDNVJXUIW-YPZZEJLDSA-N plutonium-242 Chemical compound [242Pu] OYEHPCDNVJXUIW-YPZZEJLDSA-N 0.000 claims description 4
- JFALSRSLKYAFGM-OIOBTWANSA-N uranium-235 Chemical compound [235U] JFALSRSLKYAFGM-OIOBTWANSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 claims description 2
- 229910052781 Neptunium Inorganic materials 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052776 Thorium Inorganic materials 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- LFNLGNPSGWYGGD-UHFFFAOYSA-N neptunium atom Chemical compound [Np] LFNLGNPSGWYGGD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 230000000750 progressive effect Effects 0.000 claims 6
- 230000004907 flux Effects 0.000 description 72
- 238000004364 calculation method Methods 0.000 description 48
- 230000005855 radiation Effects 0.000 description 13
- 239000004020 conductor Substances 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 230000008542 thermal sensitivity Effects 0.000 description 8
- 230000003750 conditioning effect Effects 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000009377 nuclear transmutation Methods 0.000 description 6
- 229910052770 Uranium Inorganic materials 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 TeflonĀ® Polymers 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000001869 rapid Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 229910052685 Curium Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005258 radioactive decay Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OYEHPCDNVJXUIW-FTXFMUIASA-N 239Pu Chemical compound [239Pu] OYEHPCDNVJXUIW-FTXFMUIASA-N 0.000 description 1
- 229910052695 Americium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000287107 Passer Species 0.000 description 1
- 241000135309 Processus Species 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- LXQXZNRPTYVCNG-UHFFFAOYSA-N americium atom Chemical compound [Am] LXQXZNRPTYVCNG-UHFFFAOYSA-N 0.000 description 1
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- NIWWFAAXEMMFMS-UHFFFAOYSA-N curium atom Chemical compound [Cm] NIWWFAAXEMMFMS-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004980 dosimetry Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 235000021183 entrƩe Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T3/00—Measuring neutron radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/04—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
- G01V5/08—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
- G01V5/10—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources
- G01V5/107—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources and detecting reflected or back-scattered neutrons
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C17/00—Monitoring; Testing ; Maintaining
- G21C17/10—Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
- G21C17/108—Measuring reactor flux
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the present invention relates to a device for online measurement of a fast and epithermal neutron flux over an energy interval [E min , E max ].
- MTR Machine Testing Reactor
- in-core monitoring of power
- the measurement of fast neutron fluxes is currently carried out using two classes of detectors: the detectors by activation and the detectors in line.
- the on-line detectors are uranium fission chambers under a thermal neutron absorber screen. Fission chambers are well known and widely used neutron detectors for the neutron control of reactors ("ex-coreā or "in-coreā detectors). Some rooms, said to be miniature or even sub-miniature, are externally in the form of cylinders with a diameter of 4mm or less, which lends itself particularly well to the "in-coreā instrumentation, area covered by this application. patent.
- This other type of detector is constituted by a fission chamber containing plutonium Pu242 pure at least 99.5%.
- the Figures 1A and 1B represent two examples of such a fission chamber and the figure 2 represents a device capable of depositing plutonium Pu242 in these fission chambers.
- the advantage of such a fission chamber is to meet the needs defined above without using a thermal neutron screen.
- the Figure 1A represents a first example of a fission chamber containing at least 99.5% pure Pu242 plutonium. In terms of mechanical structure, this fission chamber is identical to that described in the published patent application No. 2,727,526.
- the reference 20 designates a tube of substantially equal outer diameter, for example, at 1.5 mm and which serves both as envelope to the fission chamber and, for at least a part designated by the reference 21, cathode.
- This tube is for example Inconel or stainless steel.
- the tube 20 is closed at one of its ends 23 by a plug 28, for example stainless steel.
- a plug 28 for example stainless steel.
- the room is filled with a neutral gas, for example argon or argon with a low nitrogen content (for example 4%) at a pressure of a few bars (for example 5 bar), and the plug 28 serves both filling and sealing the chamber.
- the anode 26 is connected to conductive elements 32, 36 for transmitting an electrical signal to the outside of the chamber. These conductive elements 32, 36 are themselves connected to the conductive element 44 of a connecting cable 11 which connects the assembly to a connection device as described in the patent application. 2,727,526 .
- the conductor 32 is connected to the end 35 of the conductor 36, inside the tube 20 which defines the fission chamber, while the other end 37 of the conductor 36 which passes through the cap 34, of high purity alumina, is connected to the conductor 44 inside the extension of the outer metal sleeve 30 of the cable 11.
- the cap 34 is crimped, at least in part, in a metal sheath 38 that can be welded to the end 40 of the tube 20.
- the Figure 1B represents a second example of a fission chamber containing at least 99.5% Pu242 pure plutonium.
- a chamber body 1 made of an electrically conductive material, which is the outer casing of the device.
- the enclosure can also be made of any other material and deposit a layer of electrically conductive material on the inside of the walls of the enclosure to form the external electrode 1.
- these means 2 will form, for example, an anode, the body 1 forming a cathode. Between cathode and anode will be imprisoned an ionizable gas, for example argon at 1.5 bar.
- a sealed passage 3 (metal and alumina) holds the substrate 2 and allows the electrical connection to the outside while sealing one end of the chamber.
- a screw 4 makes it possible to block the substrate on the sealed passage.
- the reference 5 designates a cap, and the reference 6 a thickened welded on the wire of the sealed passage to facilitate the electrical connection.
- Such a fission chamber may have, for example, an outer diameter of the order of 4mm.
- a thin layer of fissile material comprising plutonium Pu242 is deposited on one of the electrodes or on the two electrodes.
- the chamber is transparent to the transmission of neutrons, that is to say, it lets neutrons pass through its walls. In other words, the material constituting the wall of the enclosure has a small neutron capture cross section.
- the electrodes are either made entirely of electrically conductive material or are coated with a layer of electrically conductive material.
- the Pu242 plutonium layer may be made by electrodeposition, for example using a device such as that represented in FIG. figure 2 .
- the plutonium Pu242 to be deposited may be in the form of a liquid solution 100, placed in a beaker 102, in an electrolysis solution comprising a mixture of nitric acid and ammonium oxalate.
- the electrode or the support 120 on which the deposition is to be made is held by two teflon tips 111, 113, at the end of a rod 116, for example made of platinum covered with a film. Teflon.
- the whole is placed in the solution. This can be agitated to remain homogeneous, for example by placing a magnet bar 104 at the bottom of the beaker 102 and placing it on a magnetic stirrer 106.
- a wire 105 made of an electrically conductive material (for example platinum), is placed in the solution 102.
- Feeding means 107 make it possible to circulate an electric current in this wire and in the solution. This current will move the plutonium of the solution, which is fixed on the electrode or the support 120.
- the electrode or the support 120 may optionally be rotated, using a motor 110, so as to obtain a uniform deposit over the entire surface in contact with the electrolysis solution.
- the internal electrode can be rotated at 60 rpm as indicated by the arrow 108.
- This method can be applied to both the internal electrode and the external electrode. If it is desired that the plutonium be deposited only on the inner walls of the external electrode (the latter then having for example a cylindrical shape), the outer wall of the outer electrode is covered with a layer of material protection, for example a teflon layer.
- a problem with the Pu242 plutonium fission chamber is the presence of fissile impurities (Pu239 and Pu241) in the deposit which gives the chamber a sensitivity to thermal neutrons, which presence, even if it is weak, can not be totally neglected.
- the production of fissile isotopes by successive transmutations even if it is considerably lower than that observed for uranium U238, contributes to increase this thermal sensitivity during the irradiation.
- the plutonium fission chamber Pu242 can therefore be used without a screen only under very specific circumstances, ie a not too high heat flow or irradiations of short duration.
- the invention proposes an on-line measurement device for a fast and epithermal neutron flux.
- the fast neutron detector and the thermal neutron detector being fission chambers
- the evolutionary sensitivities I 11 (t n ), I 12 (t n ), I 21 ( t n ) and I 22 (t n ) are respectively written:
- N i (t n ) is the isotopic composition at time t n of an isotope i of the material capable of detecting mainly fast neutrons and ā i f E is the cross section of the isotope i;
- I 21 t not ā j NOT j t not ā E min E max ā f 1 E ā ā
- the thermal neutron detector is a fission chamber containing Uranium U235.
- the fast neutron detector being a fission chamber and the thermal neutron detector being a collectron
- the evolutionary sensitivities I 11 (t n ), I 12 (t n ), I 21 ( t n ) and I 22 (t n ) are written, respectively:
- I 11 t not ā i NOT i t not ā E min E max ā f 1 E ā ā i f E ā of
- I 12 t not ā i NOT i t not ā E min E max ā f 2 E ā ā ā i f E ā of
- N i (t n ) is the isotopic composition at time t n of an isotope i of the material able to detect mainly fast neutrons
- ā j f E is the cross section of the isotope i
- I 21 t not U ā t not ā ā E min E max ā f 1 E
- the thermal neutron detector is a collectron Rhodium or Vanadium or Silver.
- the fast neutron detector is a fission chamber with a fissile threshold deposit, for example a fission chamber containing plutonium Pu242 at least 99.5% pure.
- the first electronic circuit comprises a numerical processor for calculating variance which delivers the digital signal VR (t n ) in the form of a digital variance of the signal delivered by the fast neutron detector.
- the second electronic circuit comprises a digital variance calculation processor which delivers the digital signal VT (t n ) in the form of a digital variance of the signal delivered by the thermal neutron detector.
- the second electronic circuit is a digital current-voltage conversion circuit.
- the measuring device of the invention rejects the component of the signal due to gamma radiation.
- Tests carried out in the irradiation reactor show that gamma radiation can be responsible for more than half of the average current produced by a threshold fission chamber. In this case, it is recommended to operate the fission chamber in so-called "fluctuationā or "Campbellā mode. This consists of looking at the variance of the current produced by the fission chamber rather than its average. The contribution of gamma radiation can then be neglected because this contribution represents only a few percent, at most, of the variance.
- the figure 3 represents a schematic diagram of a device for measuring fast and epithermal neutron flux in line with the invention and the figure 4 collects time diagrams useful for understanding the functioning of the measuring device of the invention represented in figure 3 .
- the device comprises a detector DNR for measuring fast neutrons, a first electronic circuit C1 for conditioning and processing the signal from the detector DNR, a detector DNT for the measurement of thermal neutrons, a second electronic circuit C2 for conditioning and treatment signal from the DNT detector, an EC evolution code, a PMM calculation code and a CALC calculator.
- the detector DNR delivers a current iR (t) and the detector DNT delivers a current iT (t).
- the currents iR (t) and iT (t) are transmitted, respectively, to the conditioning and processing circuit C1 and to the second conditioning and processing circuit C2, which respectively deliver a digital signal VR (t n ) and a signal digital VT (t n ) at discrete instants t n .
- the digital signal VR (t n ) is, preferably, the numerical variance of the current iR (t).
- the invention however relates to digital signals other than the variance of the current, such as, for example, the average value of the current.
- the digital signals VR (t n ) and VT (t n ) are transmitted to the calculator CALC.
- the index k is a current index varying from 1 to N R , where N R represents a maximum number of integral results calculated at the same time t n .
- the response function Y k (E) corresponds to an energy support [E s ], E max ], the energy E s being a value threshold beyond which neutrons are considered to be fast neutrons.
- f fiss (E), f epi (E) and f mxw (E, ā ) are, respectively, the fission component of the neutron flux, the epithermal component of the neutron flux and the Maxwellian component of the neutron flux.
- the components f fiss (E), f epi (E) and f mxw (E, ā ) are quantities known per se.
- the coefficient ā is a known coefficient of proportionality between the epithermal component and the fission component.
- an evolution code for example the evolution code CE which is used to calculate the isotopic compositions of the fission chamber detector materials.
- the matrices M and H are firstly calculated by the PMM during an initialization phase, then are periodically updated by the PMM, at discrete moments. T p ' as explained below.
- M 0 and H 0 the initial M and H matrices.
- the function of the PMM is to develop the interpretation matrices of the M and H measurements on the basis of physical neutron flux models and detectors.
- the PMM Before the time t 0 of the first measurement, the PMM performs the following operations:
- the temperature of the moderator ā 0 is either entered by the user (it is then assumed to be constant throughout the experiment) or measured at the start of the system.
- f fiss , epithermal epi and maxwellian f mxw fission components are quantities known per se.
- the input data consists of the initial isotopic composition NOT i j t ini j the deposition of the fission chamber (number of atoms of each isotope i).
- This isotopic composition given at the moment t ini j ā t 0 results from chemical analyzes carried out by the manufacturer of the fission chamber or, advantageously, result from calculations made by the PMM during a previous irradiation of the fission chamber.
- the PMM launches a zero neutron flux evolution calculation using the EC evolution code, which also relies on nuclear data (cross sections, radioactive decay constants, etc.). from standard libraries (type JEF, ENDF, etc.).
- Step 2 Calculation of the fast and thermal sensitivities of the fission chamber
- the temperature of the moderator ā 0 is either entered by the user (it is then assumed to be constant throughout the experiment) or measured at the start of the system.
- Input data ā i f E defined on the energetic support [E min ' E max ] denote the fission cross sections of the isotopes i. They usually come from standardized nuclear data libraries (type JEF, ENDF, etc.).
- DNR is a fission chamber and the DNT is a collectron (SPND)
- the temperature of the moderator ā is either entered by the user (and assumed constant throughout the experiment), or measured at the start of the system.
- the time synchronization of the CALC calculator and the PMM is illustrated on the figure 4 .
- the PMM starts an update calculation of M and H at times noted T p (see T 0 , T 1 , T 2 , T 3 , ... on the figure 4 ).
- the PMM transmits the new matrices denoted by M p and H p to the computer so that it uses them in place of the preceding matrices denoted M p-1 and H p-1 .
- the calculator takes into account M p and H p at the moment T p ' > T p .
- the duration T p ' - T p can vary, it is necessary to simply choose the instants T p so that T p ' ā T p + 1 .
- the jump ā p corresponds to the retrieval of the sensitivity error which has increased (slowly) since the last PMM calculation at T p-1 .
- This error will remain negligible if (T p -T p-1 ) is sufficiently short (in fact, as long as the fluence integrated by the detectors in this time interval is sufficiently small).
- the PMM uses the VR and VT measurements to update the interpretation matrices M and H used by the calculator. If the temperature of the moderator ā is measured, it is also used in this process, otherwise the PMM uses the temperature entered by the user and supposed constant throughout the irradiation of the detectors.
- the PMM accumulates the measurements VR, VT and possibly ā which are transmitted to it by the computer at each instant t n , in order to calculate the average values thereof:
- N p is the number of measurements transmitted to the PMM between the instants T p-1 and T p : NOT p ā T p - T p - 1 / dt
- H p The calculation of H p differs from that of H 0 in that the neutron flux is no longer zero and the evolution calculations must take into account the interaction of neutrons with the detector materials.
- the PMM launches an evolution calculation under neutron flux thanks to the evolution code CE which also relies on DN nuclear data (cross sections, radioactive decay constants, etc.). from standard libraries (type JEF, ENDF, etc.).
- Step 2 Calculation of the fast and thermal sensitivities of the fission chamber
- Input data ā i f E defined on the energetic support [E min , E max ] denote the fission cross sections of the isotopes i. They come from standard nuclear data libraries (type JEF, ENDF, etc.).
- Step 1 Calculation of the integrated thermal fluence by the collectron
- ā j T p ā j ā T p - 1 + ā ā SPND T p ā T p - T p - 1
- Step 2 Calculation of the fast and thermal sensitivities of the collectron
- the PMM transmits the matrices M p and H p to the calculator CALC which replaces them with the interpretation matrices M and H at the moment T p ' > T p .
- the detector DNR is a fission chamber having a fissile threshold deposit.
- a fission chamber is represented, for example, on Figures 1A and 1B .
- the fissile threshold deposit may be a Pu242 plutonium deposit, as previously mentioned.
- the fissile threshold deposit may also be a uranium U238 or neptunium Np237 or Th232 thorium deposit.
- a connecting cable connects the detector DNR to the circuit C1. This connecting cable is used to both polarize electrically the detector and transmit the signal delivered by the fission chamber to the processing circuit C1.
- the part of the cable subjected to the neutron flux must be mineral insulator (alumina, silica, magnesia).
- the cable is preferably integrated in the detector and its outside diameter is smaller than that of the detector.
- This cable must, in addition, have electrical properties compatible with a fission chamber operation in fluctuation mode, namely: a low linear capacitance, a characteristic impedance close to the input impedance of the electronics (typically 50 ā ) and low transfer impedance to ensure high immunity to parasites.
- Copper conductor and shielding cable is used for this purpose, with a stainless steel or inconel jacket to ensure good mechanical resistance in the reactor.
- the cable has, for example, a diameter substantially between 2 mm and 2.2 mm for a fission chamber of 3 mm in diameter and substantially equal to 1.3 mm for a fission chamber of 1.5 mm in diameter (optimization of the impedance transfer).
- the figure 5 represents a block diagram which details the conditioning and processing circuit C1 according to the preferred embodiment of the invention.
- the circuit C1 comprises a PA preamplifier, a CAN / digital converter, a digital variance calculation processor VAR and a high voltage generator HT.
- the detector DNR is connected to the circuit C1 by a CAB cable.
- the PA preamplifier converts current iR (t) that it receives, via the CAB cable, an analog voltage Va (t) which is transmitted to the analog / digital converter CAN.
- the high voltage T delivered by the high voltage generator HT passes via the preamplifier PA and the cable CAB to the detector DNR.
- the signal processing electronics implement the fluctuation mode based on Campbell's theorem (see reference [4]).
- This theorem demonstrates that the electrical signal produced by a stack of pulses in a fission chamber has interesting statistical properties.
- the average and the variance of this signal are indeed both proportional to the incident neutron flux, but while the average is also proportional to the average charge Q created in the gas for each detected neutron, the variance is proportional to the this load squared high.
- a fission chamber is operated in "current mode", when one is interested in the average of the current it produces.
- the sensitivity of a fission chamber in current mode is proportional to Q.
- the charge created by a neutron being generally 100 times higher than that produced by a gamma photon, so will the sensitivities relative to the neutron and gamma fluxes, respectively.
- This property makes the fission chamber a neutron detector generally well suited to the measurement of neutrons in the presence of intense gamma radiation (typical situation of reactor measurements).
- the rejection of gamma radiation in the current mode may, however, be insufficient: either because the gamma radiation is very intense (in irradiation reactor in particular), or because the neutron sensitivity is reduced (this is the case of fission chambers at Pu242 whose sensitivity to fast neutrons is two orders of magnitude lower than that of conventional fission chambers at U235 with respect to thermal neutrons).
- the "current mode" signal must then be corrected by subtracting the signal produced by a neighboring fission chamber devoid of fissile deposit (thus sensitive exclusively to gamma radiation). It is then necessary to use two detectors to access the neutron flux.
- the electrical signal from the fission chamber is, after amplification and conditioning (PA preamplifier), digitized using the analog-digital converter CAN.
- PA preamplifier amplification and conditioning
- the calculation of the variance is then done digitally, using a digital electronic circuit, for example FPGA (FPGA for "Field Programmable Gate Arrayā or FPGA Programmable Gate Array) or using a processor.
- FPGA Field Programmable Gate Array
- FPGA Programmable Gate Array FPGA Programmable Gate Array
- the frequency Fe is, for example, equal to 1 MHz.
- the digital signal Vn (t n ) is then processed by the digital processor VAR.
- the numerical variance VR (t n ) can possibly be decimated (up to a factor N) since its bandwidth is lower than that of the original signal Vn (t n ).
- the measurement chain thus produces a numerical value of the variance proportional to the flow of incident neutrons, for example every 100 ms.
- thermal neutrons The measurement of thermal neutrons is carried out using a collectron (SPND), for example rhodium, or using a uranium fission chamber U235 also exploited, preferably in fluctuation mode (rejection of gamma radiation).
- SPND collectron
- uranium fission chamber U235 also exploited, preferably in fluctuation mode (rejection of gamma radiation).
- the measurement of thermal neutrons is used to evaluate the evolution of the isotopic composition of the deposition of the fission chamber under flow. Indeed, under the effect of an intense heat flux, fissile isotopes are formed by successive transmutations of Pu242 plutonium, making the plutonium Pu242 fission chamber more and more sensitive to thermal neutrons.
- the figure 6 illustrates, by way of non-limiting example for thermal and fast flows of 1E15 n / cm 2 / s, the total fission rate (KS curve on the figure 6 ) and the contribution to the total fission rate of the different isotopes formed by successive transmutations, namely the plutonium Pu242 (K1 curve on the figure 6 ), the plutonium Pu241 (curve K2 on the figure 6 ), americium AM243 (curve K3 on the figure 6 ), CM244 curium (curve K4 on the figure 6 ) and curium CM245 (curve K5 on the figure 6 ).
- the most troublesome of the fissile isotopes that appear by transmutations successive is the Cm245 (curve K5), from a thermal fluence of the order of 10 21 n / cm 2 .
- the electronic conditioning and processing circuit C2 (not shown in the figures) is advantageously identical to the circuit C1 if the detector DNT is a fission chamber at U235. If the thermal detector DNT is a collectron, the circuit C2 is a digital current-voltage conversion circuit. This function can, for example, be provided by a digital voltmeter which measures the voltage drop across a resistor (for example from 10 k ā to 1%) in which the current generated by the collectron flows.
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Measurement Of Radiation (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
- La prƩsente invention concerne un dispositif de mesure en ligne d'un flux de neutrons rapides et Ʃpithermiques sur un intervalle d'Ʃnergie [Emin, Emax].
- A titre d'exemple non limitatif, l'invention s'applique de faƧon particuliĆØrement avantageuse Ć la mesure en ligne d'un flux de neutrons rapides et Ć©pithermiques dans un coeur de rĆ©acteur, avec les contraintes suivantes :
- le flux neutronique global est ƩlevƩ (par exemple 1E14 n/cm2/s ou plus) ;
- la contribution des neutrons thermiques au flux neutronique global est importante ;
- le rayonnement gamma est intense ;
- on veut une mesure en temps rƩel (en ligne) pour suivre les Ʃvolutions temporelles du flux rapide ;
- on veut une mesure effectuĆ©e en coeur, plus communĆ©ment appelĆ©e mesure Ā« in-core Ā».
- Les contraintes mentionnĆ©es ci-dessus s'appliquent Ć l'instrumentation en rĆ©acteur d'essai de matĆ©riaux, plus gĆ©nĆ©ralement dĆ©signĆ©e sous l'appellation d'instrumentation MTR (MTR pour Ā« Material Testing Reactor Ā»), ou Ć la surveillance des coeurs de rĆ©acteur de puissance (plus gĆ©nĆ©ralement dĆ©signĆ©e sous l'appellation de Ā« surveillance Ā« in-core Ā» Ā»).
- La mesure des flux de neutrons rapides s'effectue actuellement Ć l'aide de deux classes de dĆ©tecteurs : les dĆ©tecteurs par activation et les dĆ©tecteurs en ligne.
- Les dĆ©tecteurs par activation sont des dosimĆØtres dont les matĆ©riaux sont convenablement choisis pour fournir la fluence neutronique dans une bande d'Ć©nergie d'intĆ©rĆŖt. Il s'agit d'une mĆ©thode Ć©prouvĆ©e (cf. rĆ©fĆ©rence [1]) dont les inconvĆ©nients sont les suivants :
- les dosimĆØtres doivent ĆŖtre retirĆ©s du coeur pour ĆŖtre analysĆ©s (il s'agit donc d'une mesure a posteriori disponible aprĆØs la fin du cycle du rĆ©acteur) ;
- la quantitĆ© obtenue est le flux intĆ©grĆ© sur la durĆ©e de l'irradiation et il n'est alors pas possible d'avoir accĆØs aux Ć©volutions temporelles.
- Les dĆ©tecteurs en ligne, contrairement aux dĆ©tecteurs prĆ©cĆ©dents, permettent une mesure en ligne dans le coeur du rĆ©acteur. Selon l'art connu, les dĆ©tecteurs en ligne sont des chambres Ć fission Ć uranium sous Ć©cran absorbeur des neutrons thermiques. Les chambres Ć fission sont des dĆ©tecteurs neutroniques bien connus et trĆØs rĆ©pandus pour le contrĆ“le neutronique des rĆ©acteurs (dĆ©tecteurs Ā« ex-core Ā» ou Ā« in-core Ā»). Certaines chambres, dites miniatures voire sub-miniatures, se prĆ©sentent extĆ©rieurement sous la forme de cylindres de diamĆØtre de 4mm ou moins, ce qui se prĆŖte particuliĆØrement bien Ć l'instrumentation Ā« in-core Ā», domaine visĆ© dans la prĆ©sente demande de brevet. La demande de brevet franƧais dĆ©posĆ©e, au nom du Commissariat Ć l'Ćnergie Atomique, le 29 novembre 1994 et publiĆ©e sous le numĆ©ro
2 727 526 - Un autre type de dĆ©tecteur en ligne est connu de la Demanderesse. Cet autre type de dĆ©tecteur en ligne est un art antĆ©rieur qui est dĆ©crit dans une On connaĆ®t encore la publication intitulĆ©e "Thermal and fast neutron detection in chemical vapor deposition single-crystal diamond detectors", publiĆ©e le 3 mars 2008, Journal of Applied Physics 103, 054501. Ce document dĆ©crit un dispositif de mesure en ligne d'un flux de neutrons. En particulier, avec le dispositif dĆ©crit dans ce document, une mesure de flux de neutrons rapides est effectuĆ©e dans une couche appelĆ©e "CVD intrinsic" alors qu'une mesure de flux de neutrons thermiques est effectuĆ©e grĆ¢ce Ć une couche supplĆ©mentaire de 6LiF enrichi dĆ©posĆ©e sur le mĆŖme dĆ©tecteur. demande de brevet franƧais, dĆ©posĆ©e par la Demanderesse le 21 dĆ©cembre 2007 sous le numĆ©ro d'enregistrement national
07 60229 FR 2 925750 figures 1A et 1B reprĆ©sentent deux exemples d'une telle chambre Ć fission et lafigure 2 reprĆ©sente un dispositif apte Ć effectuer le dĆ©pĆ“t de plutonium Pu242 dans ces chambres Ć fission. L'avantage d'une telle chambre Ć fission est de rĆ©pondre aux besoins dĆ©finis prĆ©cĆ©demment sans utiliser d'Ć©cran aux neutrons thermiques. - La
figure 1A reprĆ©sente un premier exemple de chambre Ć fission contenant du plutonium Pu242 pur Ć au moins 99,5%. En termes de structure mĆ©canique, cette chambre Ć fission est identique Ć celle dĆ©crite dans la demande de brevet publiĆ©e sous le numĆ©ro 2 727 526. - La rĆ©fĆ©rence 20 dĆ©signe un tube, de diamĆØtre extĆ©rieur sensiblement Ć©gal, par exemple, Ć 1,5mm et qui sert Ć la fois d'enveloppe Ć la chambre Ć fission et, pour au moins une partie dĆ©signĆ©e par la rĆ©fĆ©rence 21, de cathode. Ce tube est par exemple en Inconel ou en inox.
- A l'intĆ©rieur de la chambre, deux isolateurs 22, 24, par exemple en rubis, supportent une anode centrale 26 recouverte d'un dĆ©pĆ“t fissile Ć seuil, par exemple du plutonium Pu242, dont le pourcentage de puretĆ© est au moins Ć©gal Ć 99,5 %.
- Le tube 20 est fermĆ© Ć une de ses extrĆ©mitĆ©s 23 par un bouchon 28, par exemple en inox. Lors de son utilisation, la chambre est remplie d'un gaz neutre, par exemple de l'argon ou de l'argon additionnĆ© d'une faible teneur d'azote (par exemple 4%) Ć une pression de quelques bars (par exemple 5 bars), et le bouchon 28 sert Ć la fois au remplissage et Ć l'Ć©tanchĆ©itĆ© de la chambre. L'anode 26 est reliĆ©e Ć des Ć©lĆ©ments conducteurs 32, 36 pour transmettre un signal Ć©lectrique vers l'extĆ©rieur de la chambre. Ces Ć©lĆ©ments conducteurs 32, 36 sont eux-mĆŖmes reliĆ©s Ć l'Ć©lĆ©ment conducteur 44 d'un cĆ¢ble 11 de liaison qui relie l'ensemble Ć un dispositif de connexion comme cela est dĆ©crit dans la demande de brevet
2 727 526 - Le conducteur 32 est reliĆ© Ć l'extrĆ©mitĆ© 35 du conducteur 36, Ć l'intĆ©rieur du tube 20 qui dĆ©limite la chambre de fission, tandis que l'autre extrĆ©mitĆ© 37 du conducteur 36 qui traverse le bouchon 34, en alumine de grande puretĆ©, est reliĆ©e au conducteur 44 Ć l'intĆ©rieur du prolongement du fourreau mĆ©tallique extĆ©rieur 30 du cĆ¢ble 11. Le bouchon 34 est serti, au moins en partie, dans une gaine mĆ©tallique 38 pouvant ĆŖtre soudĆ©e sur l'extrĆ©mitĆ© 40 du tube 20.
- La
figure 1B reprĆ©sente un deuxiĆØme exemple de chambre Ć fission contenant du plutonium Pu242 pur Ć au moins 99,5%. - Il comporte un corps de chambre 1, en un matĆ©riau Ć©lectriquement conducteur, qui est l'enveloppe extĆ©rieure du dispositif. On peut Ć©galement rĆ©aliser l'enceinte en un tout autre matĆ©riau et dĆ©poser une couche de matĆ©riau Ć©lectriquement conducteur sur l'intĆ©rieur des parois de l'enceinte pour former l'Ć©lectrode externe 1. Des moyens 2, Ć©galement en un matĆ©riau Ć©lectriquement conducteur, forment un support, sur lequel est dĆ©posĆ©e une fine couche 120 de radioĆ©lĆ©ment, soit, conformĆ©ment Ć la prĆ©sente invention, du plutonium 242 de puretĆ© au moins 99,5 %. En fonctionnement, ces moyens 2 formeront par exemple une anode, le corps 1 formant cathode. Entre cathode et anode sera emprisonnĆ© un gaz ionisable, par exemple de l'argon Ć 1,5 bar.
- Un passage Ʃtanche 3 (mƩtal et alumine) maintient le substrat 2 et permet la connexion Ʃlectrique vers l'extƩrieur tout en assurant l'ƩtanchƩitƩ d'une extrƩmitƩ de la chambre.
- Une vis 4 permet de bloquer le substrat sur le passage Ć©tanche.
- La rƩfƩrence 5 dƩsigne un bouchon, et la rƩfƩrence 6 une surƩpaisseur soudƩe sur le fil du passage Ʃtanche pour faciliter la connexion Ʃlectrique.
- Une telle chambre Ć fission peut avoir, par exemple, un diamĆØtre externe de l'ordre de 4mm.
- Quel que soit le mode de rĆ©alisation de la chambre Ć fission au plutonium Pu242, une fine couche de matiĆØre fissile comprenant du plutonium Pu242 est dĆ©posĆ©e sur l'une des Ć©lectrodes ou sur les deux Ć©lectrodes. L'enceinte est transparente Ć la transmission des neutrons, c'est-Ć -dire qu'elle laisse passer les neutrons Ć travers ses parois. En d'autres termes, le matĆ©riau constitutif de la paroi de l'enceinte prĆ©sente une faible section efficace de capture neutronique. Les Ć©lectrodes sont soit rĆ©alisĆ©es totalement en matĆ©riau Ć©lectriquement conducteur, soit revĆŖtues d'une couche de matĆ©riau Ć©lectriquement conducteur.
- La couche de plutonium Pu242 peut ĆŖtre rĆ©alisĆ©e par Ć©lectrodĆ©position, par exemple Ć l'aide d'un dispositif tel que celui reprĆ©sentĆ© en
figure 2 . - Le plutonium Pu242 Ć dĆ©poser peut se prĆ©senter sous forme d'une solution liquide 100, placĆ©e dans un bĆ©cher 102, dans une solution d'Ć©lectrolyse comprenant un mĆ©lange d'acide nitrique et d'oxalate d'ammonium.
- L'Ć©lectrode ou le support 120 sur laquelle/lequel le dĆ©pĆ“t est Ć rĆ©aliser est maintenu(e) par deux embouts 111, 113 en tĆ©flon, Ć l'extrĆ©mitĆ© d'une tige 116, par exemple en platine recouvert d'un film en tĆ©flon. L'ensemble est placĆ© dans la solution. Celle-ci peut ĆŖtre agitĆ©e pour rester homogĆØne, par exemple en plaƧant un barreau aimantĆ© 104 au fond du bĆ©cher 102 et en plaƧant ce dernier sur un agitateur magnĆ©tique 106.
- Un fil 105, en un matƩriau Ʃlectriquement conducteur (par exemple en platine), est placƩ dans la solution 102. Des moyens d'alimentation 107 permettent de faire circuler un courant Ʃlectrique dans ce fil et dans la solution. Ce courant va faire se dƩplacer le plutonium de la solution, qui vient se fixer sur l'Ʃlectrode ou le support 120.
- On peut Ć©ventuellement mettre l'Ć©lectrode ou le support 120 en rotation, Ć l'aide d'un moteur 110, de maniĆØre Ć obtenir un dĆ©pĆ“t homogĆØne sur toute la surface en contact avec la solution d'Ć©lectrolyse. Par exemple, on peut faire tourner l'Ć©lectrode interne Ć 60 tours/min, comme indiquĆ© par la flĆØche 108.
- Ce procĆ©dĆ© peut s'appliquer aussi bien Ć l'Ć©lectrode interne qu'Ć l'Ć©lectrode externe. Si l'on souhaite que le plutonium ne soit dĆ©posĆ© que sur les parois intĆ©rieures de l'Ć©lectrode externe (celle-ci ayant alors par exemple une forme cylindrique), on recouvre la paroi externe de l'Ć©lectrode externe d'une couche de matĆ©riau de protection, par exemple une couche de tĆ©flon.
- Dans les cas prĆ©sentĆ©s ci-dessus, en faisant circuler un courant d'environ 350mA pendant deux heures, on peut dĆ©poser 90 Ć 95 % du plutonium prĆ©sent dans la solution d'Ć©lectrolyse sur l'Ć©lectrode ou le support 120.
- Un problĆØme de la chambre Ć fission au plutonium Pu242 est la prĆ©sence d'impuretĆ©s fissiles (Pu239 et Pu241) dans le dĆ©pĆ“t qui confĆØre Ć la chambre une sensibilitĆ© aux neutrons thermiques, laquelle prĆ©sence, mĆŖme si elle est faible, ne peut pas ĆŖtre totalement nĆ©gligĆ©e. De plus, la production d'isotopes fissiles par transmutations successives, mĆŖme si elle est considĆ©rablement infĆ©rieure Ć celle observĆ©e pour l'uranium U238, contribue Ć accroĆ®tre cette sensibilitĆ© thermique au cours de l'irradiation. La chambre Ć fission au plutonium Pu242 ne peut donc ĆŖtre utilisĆ©e sans Ć©cran que dans des circonstances bien particuliĆØres, Ć savoir un flux thermique pas trop Ć©levĆ© ou des irradiations de courtes durĆ©es.
- Il existe donc un rĆ©el besoin de rĆ©aliser un systĆØme de mesure permettant de discriminer, dans le signal produit par une chambre Ć fission Ć seuil, la contribution due aux neutrons rapides (grandeur d'intĆ©rĆŖt) de celle due aux neutrons thermiques. Tel que dĆ©fini dans la revendication 1.
- Pour rƩpondre aux besoins mentionnƩs ci-dessus, l'invention propose un dispositif de mesure en ligne d'un flux de neutrons rapides et Ʃpithermiques
-
- f1(E)=ffiss(E)+Ī±fepi(E), et
- f2(E, Īø)=fmxw(E, Īø),
- Selon une autre caractĆ©ristique supplĆ©mentaire de l'invention, le dispositif de mesure comprend, en outre, des moyens pour calculer, sur l'intervalle [Emin, Emax], Nr rĆ©sultats intĆ©graux aux instants tn, Nr Ć©tant un nombre entier supĆ©rieur ou Ć©gal Ć 1, un rĆ©sultat intĆ©gral de rang k (k=1, 2, ..., Nr) Ć©tant donnĆ© par l'Ć©quation :
avec
et
oĆ¹ - f1(E)=ffiss(E) + Ī±fepi(E), et
- f2(E, Īø) = fmxw(E, Īø),
- Yk(E) est une fonction de rƩponse qui caractƩrise le rƩsultat intƩgral de rang k.
- Selon une caractĆ©ristique particuliĆØre de l'invention, la fonction de rĆ©ponse Yk(E) est une fonction d'identification d'une bande d'Ć©nergie d'intĆ©rĆŖt [Ea, Eb] qui coĆÆncide avec l'intervalle [Emin, Emax] ou qui est comprise dans l'intervalle [Emin, Emax] telle que :
et
sinon
de telle sorte que Rk(tn) est le flux des neutrons dont l'Ć©nergie est comprise entre Ea et Eb, Ć savoir : - Selon une autre caractĆ©ristique particuliĆØre de l'invention, la fonction de rĆ©ponse Yk(E) est une section efficace macroscopique de rĆ©action Ī£r(E) telle que :
oĆ¹
Ni' est un nombre d'atomes d'un isotope i prƩsent dans un milieu et
la rĆ©action r Ć©tant, par exemple, une rĆ©action de fission ou de capture ou de diffusion ou d'endommagement. - Selon une caractĆ©ristique supplĆ©mentaire du dispositif de mesure de l'invention, le dĆ©tecteur de neutrons rapides et le dĆ©tecteur de neutrons thermiques Ć©tant des chambres Ć fission, les sensibilitĆ©s Ć©volutives I11(tn), I12(tn), I21(tn) et I22(tn) s'Ć©crivent respectivement :
oĆ¹ Ni(tn) est la composition isotopique Ć l'instant tn d'un isotope i du matĆ©riau apte Ć dĆ©tecter principalement des neutrons rapides et
oĆ¹ Nj(tn) est la composition isotopique Ć l'instant tn d'un isotope j du matĆ©riau apte Ć dĆ©tecter principalement des neutrons thermiques et - Selon une caractĆ©ristique supplĆ©mentaire de l'invention, le dĆ©tecteur de neutrons thermiques est une chambre Ć fission contenant de l'Uranium U235.
- Selon une autre caractĆ©ristique supplĆ©mentaire de l'invention, le dĆ©tecteur de neutrons rapides Ć©tant une chambre Ć fission et le dĆ©tecteur de neutrons thermiques Ć©tant un collectron, les sensibilitĆ©s Ć©volutives I11(tn), I12(tn), I21(tn) et I22(tn) s'Ć©crivent, respectivement :
et
oĆ¹ Ni(tn) est la composition isotopique Ć l'instant tn d'un isotope i du matĆ©riau apte Ć dĆ©tecter principalement des neutrons rapides et
oĆ¹ U [Ļ(tn)] est une fonction d'usure du collectron tabulĆ©e en fonction de la fluence thermique Ć l'instant tn Ļ(tn) du matĆ©riau apte Ć dĆ©tecter principalement des neutrons thermiques et SRh(E) est la sensibilitĆ© du collectron. - Selon une caractĆ©ristique supplĆ©mentaire de l'invention, le dĆ©tecteur de neutrons thermiques est un collectron au Rhodium ou au Vanadium ou Ć l'Argent.
- Selon une autre caractĆ©ristique supplĆ©mentaire de l'invention, le dĆ©tecteur de neutrons rapides est une chambre Ć fission avec un dĆ©pĆ“t fissile Ć seuil, par exemple une chambre Ć fission contenant du plutonium Pu242 pur Ć au moins 99,5%.
- Selon une autre caractĆ©ristique supplĆ©mentaire de l'invention, la chambre Ć fission contenant du plutonium Pu242 pur Ć au moins 99,5% comprend :
- * une enceinte apte Ć contenir un gaz de dĆ©tection sous pression et dont les parois laissent passer les neutrons,
- * une premiĆØre et une seconde Ć©lectrode, isolĆ©es Ć©lectriquement l'une de l'autre, entre lesquelles une tension peut ĆŖtre appliquĆ©e,
- * une matiĆØre fissile, comportant du plutonium 242 pur Ć au moins 99,5 % atomique, disposĆ©e sur l'une au moins des deux Ć©lectrodes, et
- * un gaz de dƩtection, inclus dans l'enceinte sous pression, ionisable par des produits de fissions.
- Selon une caractƩristique supplƩmentaire de l'invention, le premier circuit Ʃlectronique comprend un processeur numƩrique de calcul de variance qui dƩlivre le signal numƩrique VR(tn) sous la forme d'une variance numƩrique du signal dƩlivrƩ par le dƩtecteur de neutrons rapides.
- Selon une autre caractƩristique supplƩmentaire de l'invention, le second circuit Ʃlectronique comprend un processeur numƩrique de calcul de variance qui dƩlivre le signal numƩrique VT(tn) sous la forme d'une variance numƩrique du signal dƩlivrƩ par le dƩtecteur de neutrons thermiques.
- Selon une autre caractƩristique supplƩmentaire de l'invention, le second circuit Ʃlectronique est un circuit numƩrique de conversion courant-tension.
- De faƧon prĆ©fĆ©rentielle, le dispositif de mesure de l'invention rejette la composante du signal due au rayonnement gamma. Des essais rĆ©alisĆ©s en rĆ©acteur d'irradiation montrent en effet que le rayonnement gamma peut ĆŖtre responsable de plus de la moitiĆ© du courant moyen produit par une chambre Ć fission Ć seuil. Il est recommandĆ©, dans ce cas, d'exploiter la chambre Ć fission en mode dit de Ā« fluctuation Ā» ou de Ā« Campbell Ā». Cela consiste Ć s'intĆ©resser Ć la variance du courant produit par la chambre Ć fission plutĆ“t qu'Ć sa moyenne. La contribution du rayonnement gamma peut alors ĆŖtre nĆ©gligĆ©e car cette contribution ne reprĆ©sente que quelques pourcents, tout au plus, de la variance.
- Dans le cadre du mode de rĆ©alisation prĆ©fĆ©rentiel de l'invention selon lequel la contribution du rayonnement gamma est rendue nĆ©gligeable, un dispositif de mesure particuliĆØrement avantageux de l'invention comprend, par exemple, les Ć©lĆ©ments essentiels suivants:
- Un dĆ©tecteur neutronique sensible principalement aux neutrons rapides tel que, par exemple, une chambre Ć fission au plutonium Pu242 contenant de l'argon additionnĆ© de 4% d'azote ;
- une Ć©lectronique de traitement permettant d'exploiter en mode fluctuation le signal dĆ©livrĆ© par la chambre Ć fission au plutonium Pu242 ;
- une liaison par cĆ¢ble compatible d'une utilisation en mode fluctuation et qui relie la chambre Ć fission au plutonium Pu242 Ć l'Ć©lectronique de traitement qui exploite le signal dĆ©livrĆ© par la chambre Ć fission, (l'impĆ©dance caractĆ©ristique du cĆ¢ble est alors adaptĆ©e Ć l'impĆ©dance d'entrĆ©e de l'Ć©lectronique de traitement) ;
- un dĆ©tecteur neutronique sensible principalement aux neutrons thermiques tel que, par exemple, un collectron (SPND pour Ā« Self Powered Neutron Detector Ā» en Anglais) ou une chambre Ć fission Ć l'uranium U235 ;
- des codes de calcul (code d'Ć©volution CE et code de calcul PMM (PMM pour Ā« Processus de ModĆ©lisation des Mesures Ā») ; et
- un calculateur.
- D'autres caractĆ©ristiques et avantages de l'invention apparaĆ®tront Ć la lecture d'un mode de rĆ©alisation prĆ©fĆ©rentiel fait en rĆ©fĆ©rence aux figures jointes parmi lesquelles :
- les
figures 1A-1B reprĆ©sentent deux exemples de chambre Ć fission susceptibles d'ĆŖtre utilisĆ©es pour rĆ©aliser un dispositif de mesure conforme Ć l'invention ; - la
figure 2 reprĆ©sente un dispositif apte Ć dĆ©poser de la matiĆØre fissile dans les chambres Ć fission reprĆ©sentĆ©es sur lesfigures 1A et 1B ; - la
figure 3 reprĆ©sente un schĆ©ma de principe de dispositif de mesure conforme Ć l'invention ; - la
figure 4 reprƩsente un diagramme temporel qui illustre le fonctionnement du dispositif de mesure de l'invention de lafigure 3 ; - la
figure 5 reprƩsente un schƩma de principe d'un circuit particulier qui participe au dispositif de mesure de l'invention ; - la
figure 6 illustre la contribution au signal de mesure issu d'une chambre Ć fission au plutonium Pu242 des diffĆ©rents isotopes formĆ©s par transmutations successives (captures thermiques) ; - Sur toutes les figures, les mĆŖmes repĆØres dĆ©signent les mĆŖmes Ć©lĆ©ments.
- Les
figures 1A, 1B et2 ont ƩtƩ dƩcrites prƩcƩdemment. Il est donc inutile d'y revenir. - La
figure 3 reprĆ©sente un schĆ©ma de principe de dispositif de mesure en ligne de flux de neutrons rapides et Ć©pithermiques conforme Ć l'invention et lafigure 4 rassemble des diagrammes temporels utiles Ć la comprĆ©hension du fonctionnement du dispositif de mesure de l'invention reprĆ©sentĆ© enfigure 3 . - Le dispositif comprend un dĆ©tecteur DNR pour la mesure de neutrons rapides, un premier circuit Ć©lectronique C1 de conditionnement et de traitement du signal issu du dĆ©tecteur DNR, un dĆ©tecteur DNT pour la mesure de neutrons thermiques, un second circuit Ć©lectronique C2 de conditionnement et de traitement du signal issu du dĆ©tecteur DNT, un code d'Ć©volution CE, un code de calcul PMM et un calculateur CALC.
- Le dĆ©tecteur DNR dĆ©livre un courant iR(t) et le dĆ©tecteur DNT dĆ©livre un courant iT(t). Les courants iR(t) et iT(t) sont transmis, respectivement, au circuit de conditionnement et de traitement C1 et au second circuit de conditionnement et de traitement C2 qui dĆ©livrent, respectivement, un signal numĆ©rique VR(tn) et un signal numĆ©rique VT(tn) Ć des instants discrets tn. Comme cela apparaĆ®tra ci-dessous, le signal numĆ©rique VR(tn) est, prĆ©fĆ©rentiellement, la variance numĆ©rique du courant iR(t). L'invention concerne toutefois des signaux numĆ©riques autres que la variance du courant, comme, par exemple, la valeur moyenne du courant. Les signaux numĆ©riques VR(tn) et VT(tn) sont transmis au calculateur CALC.
- Le calculateur CALC calcule, Ć chaque instant tn, au moins un rĆ©sultat intĆ©gral Rk(tn) (k=1, 2, ..., NR) sur un intervalle d'Ć©nergie choisi [Emin, Emax] Ć partir des signaux numĆ©riques VR (tn) et VT(tn) et de donnĆ©es dĆ©livrĆ©es par le code d'Ć©volution CE et le code de calcul PMM. L'indice k est un indice courant variant de 1 Ć NR, NR reprĆ©sentant un nombre maximal de rĆ©sultats intĆ©graux calculĆ©s au mĆŖme instant tn.
- Le calcul des rĆ©sultats Rk(tn) va maintenant ĆŖtre dĆ©crit.
- A chaque instant tn, le calculateur CALC reƧoit les signaux de mesure VR(tn) et VT(tn) et effectue les calculs suivants :
- 1) Calcul d'une composante de flux de neutrons rapides et Ć©pithermiques Ļ1(tn) et d'une composante de flux de neutrons thermiques Ļ2(tn) telles que :
- 2) Calcul d'au moins un rƩsultat
-
- A titre d'exemple non limitatif, pour le calcul d'un flux de neutrons rapides, la fonction de rĆ©ponse Yk(E) correspond Ć un support Ć©nergĆ©tique [Es], Emax], l'Ć©nergie Es Ć©tant une valeur de seuil au-delĆ de laquelle les neutrons sont considĆ©rĆ©s comme Ć©tant des neutrons rapides. La valeur de seuil Es peut ĆŖtre Ć©gale, par exemple, Ć 100keV ou 1Mev. Il vient:
et - Les deux fonctions f1(E) et f2(E, Īø) sont donnĆ©es par les Ć©quations respectives :
oĆ¹ ffiss(E), fepi(E) et fmxw(E,Īø) sont, respectivement, la composante de fission du flux de neutrons, la composante Ć©pithermique du flux de neutrons et la composante maxwellienne du flux de neutrons. Les composantes ffiss(E), fepi(E) et fmxw(E,Īø) sont des grandeurs connues en soi. Le coefficient Ī± est un coefficient de proportionnalitĆ© connu entre la composante Ć©pithermique et la composante de fission. - Comme cela a Ć©tĆ© mentionnĆ© prĆ©cĆ©demment, l'invention concerne des fonctions de rĆ©ponse Yk(E) autres que la fonction de rĆ©ponse dĆ©finie ci-dessus. La fonction de rĆ©ponse Yk(E) peut ainsi ĆŖtre une fonction d'identification d'une bande d'Ć©nergie d'intĆ©rĆŖt [Ea, Eb] comprise dans l'intervalle [Emin, Emax] ou identique Ć l'intervalle [Emin, Emax]. Il vient alors :
et
sinon. - La fonction de rĆ©ponse peut Ć©galement ĆŖtre une section efficace macroscopique de rĆ©action Ī£r(E) telle que :
oĆ¹
Ni' est un nombre d'atomes d'un isotope i prĆ©sent dans un milieu et - Avantageusement, l'Ć©volution sous flux de la grandeur Ni' peut ĆŖtre calculĆ©e Ć l'aide d'un code d'Ć©volution, par exemple le code d'Ć©volution CE qui sert au calcul des compositions isotopiques des matĆ©riaux dĆ©tecteurs des chambres Ć fission, en utilisant le flux Ļ (tn, E) dĆ©terminĆ© par le systĆØme de mesure.
-
-
-
- La fonction du PMM est d'Ć©laborer les matrices d'interprĆ©tation des mesures M et H sur la base de modĆØles physiques du flux neutronique et des dĆ©tecteurs.
- Avant l'instant t0 de la premiĆØre mesure, le PMM rĆ©alise les opĆ©rations suivantes :
-
- La tempĆ©rature du modĆ©rateur Īø0 est soit saisie par l'utilisateur (elle est alors supposĆ©e constante tout au long de l'expĆ©rience), soit mesurĆ©e au dĆ©marrage du systĆØme.
-
-
-
-
-
-
- Soit une chambre Ć fission repĆ©rĆ©e par l'indice j :
- j=1 correspond Ć la chambre Ć fission pour la dĆ©tection des neutrons rapides (par exemple, une chambre au Pu242), et
- j=2 correspond Ć la chambre Ć fission pour la dĆ©tection des neutrons thermiques (par exemple, une chambre Ć fission Ć l'U235).
- Les donnƩes d'entrƩe sont constituƩes par la composition isotopique initiale
- Avec ces donnĆ©es d'entrĆ©e, le PMM lance un calcul d'Ć©volution Ć flux neutronique nul grĆ¢ce au code d'Ć©volution CE qui s'appuie, en outre, sur des donnĆ©es nuclĆ©aires (sections efficaces, constantes de dĆ©croissance radioactive, etc.) issues de bibliothĆØques normalisĆ©es (type JEF, ENDF, etc.).
-
-
-
- La tempĆ©rature du modĆ©rateur Īø0 est soit saisie par l'utilisateur (elle est alors supposĆ©e constante tout au long de l'expĆ©rience), soit mesurĆ©e au dĆ©marrage du systĆØme.
-
- La diffĆ©rence entre un collectron et une chambre Ć fission tient au fait que les phĆ©nomĆØnes d'autoprotection et d'autoabsorption dans le matĆ©riau dĆ©tecteur massif d'un collectron ne peuvent pas ĆŖtre nĆ©gligĆ©s comme on le fait pour une chambre Ć fission dont le dĆ©pĆ“t est extrĆŖmement fin (masse surfacique infĆ©rieure Ć 1 mg/cm2). Il s'ensuit que les calculs d'Ć©volution sous flux sont plus complexes et ne peuvent pas ĆŖtre effectuĆ©s en ligne. Ils sont donc rĆ©alisĆ©s Ć l'avance et les rĆ©sultats sont tabulĆ©s sous forme d'une fonction d'usure dĆ©pendant de la fluence thermique intĆ©grĆ©e par le collectron, comme cela sera explicitĆ© plus loin.
-
- Les donnƩes d'entrƩe sont ici :
-
- SRh(E) : sensibilitƩ du SPND, par exemple au rhodium Rh, tenant compte de la section efficace de capture, de l'autoprotection de l'Ʃmetteur et de l'autoabsorption des Ʃlectrons Ʃmis (calcul effectuƩ par un expert) ;
- U(Ļ) : fonction d'usure, tabulĆ©e en fonction de la fluence thermique Ļ (calcul effectuĆ© par un expert ou retour d'expĆ©rience expĆ©rimental).
- Les calculs de SRh et U sont dƩcrits, par exemple, dans la publication mentionnƩe en rƩfƩrence bibliographique [6].
-
- La tempĆ©rature du modĆ©rateur Īø est soit saisie par l'utilisateur (et supposĆ©e constante tout au long de l'expĆ©rience), soit mesurĆ©e au dĆ©marrage du systĆØme.
-
- Le coefficient d'Ć©talonnage Kj est le rapport entre la grandeur Vj transmise au calculateur et le taux d'interaction (fission ou capture) RD j dans le dĆ©tecteur j (V j = K jĀ·RD j).
- La synchronisation temporelle du calculateur CALC et du PMM est illustrƩe sur la
figure 4 . - Le PMM lance un calcul de mise Ć jour de M et H Ć des instants notĆ©s T p (cf. T0, T1, T2, T3, ... sur la
figure 4 ). - Le calcul terminƩ, le PMM transmet les nouvelles matrices notƩes M p et H p au calculateur afin qu'il les utilise en lieu et place des matrices prƩcƩdentes notƩes M p-1 et H p-1.
-
- En pratique, on choisit un ĪTp =Tp - Tp-1 =QĀ·dt constant et le plus faible possible, en fonction des performances de calcul permises par le processeur en charge du PMM. D'autres critĆØres de cadencement du PMM sont envisageables, mais ils ne prĆ©sentent pas d'intĆ©rĆŖt particulier par rapport Ć celui que nous avons choisi.
-
- Le saut Īµp correspond en fait au rattrapage de l'erreur de sensibilitĆ© qui s'est accrue (lentement) depuis le dernier calcul PMM Ć Tp-1. Cette erreur restera nĆ©gligeable si (Tp-Tp-1) est suffisamment court (en fait, tant que la fluence intĆ©grĆ©e par les dĆ©tecteurs dans cet intervalle de temps est suffisamment faible).
- Le PMM utilise les mesures VR et VT pour mettre Ć jour les matrices d'interprĆ©tation M et H utilisĆ©es par le calculateur. Si la tempĆ©rature du modĆ©rateur Īø est mesurĆ©e, elle est Ć©galement utilisĆ©e dans ce processus, sinon le PMM utilise la tempĆ©rature saisie par l'utilisateur et supposĆ©e constante tout au long de l'irradiation des dĆ©tecteurs.
-
-
- Remarque 1 : le flux moyen sert Ć calculer H p. Le PMM utilise donc Hp-1 pour calculer H p, il s'agit donc d'un algorithme itĆ©ratif.
- Remarque 2 : il est lƩgitime d'utiliser le flux moyen dans les Ʃtapes qui vont suivre, car on suppose que l'intervalle de temps entre deux calculs PMM est aussi court que possible.
- Il n'y a rien Ć faire si la tempĆ©rature Īø est saisie par l'utilisateur et supposĆ©e constante : Mp = M0.
-
- Le calcul de H p diffĆØre de celui de H 0 par le fait que le flux neutronique n'est plus nul et que les calculs d'Ć©volution doivent tenir compte de l'interaction des neutrons avec les matĆ©riaux dĆ©tecteurs.
- Soit une chambre Ć fission repĆ©rĆ©e par l'indice j (j=1 pour la chambre Ć fission DNR et j=2 pour la chambre Ć fission DNT).
- Les donnƩes d'entrƩe sont :
- La composition isotopique
- Le flux neutronique moyen
Ļ (E,Tp). - Avec ces donnĆ©es d'entrĆ©e, le PMM lance un calcul d'Ć©volution sous flux neutronique grĆ¢ce au code d'Ć©volution CE qui s'appuie, en outre, sur des donnĆ©es nuclĆ©aires DN (sections efficaces, constantes de dĆ©croissance radioactive, etc.) issues de bibliothĆØques normalisĆ©es (type JEF, ENDF, etc.).
-
-
-
-
- Soit un collectron, par exemple au rhodium (Rh), repƩrƩ par l'indice j.
- On procĆØde en deux Ć©tapes.
-
-
- Les donnƩes d'entrƩe sont :
- Ļj(Tp) : la fluence thermique intĆ©grĆ©e par le collectron (intĆ©grale temporelle du flux thermique) ;
- SRh(E) : la sensibilitƩ du collectron, par exemple au rhodium (Rh), tenant compte de la section efficace de capture, de l'autoprotection de l'Ʃmetteur et de l'autoabsorption des Ʃlectrons Ʃmis (calcul effectuƩ par un expert).
- U(Ļ) : la fonction d'usure, tabulĆ©e en fonction de la fluence thermique Ļ (calcul effectuĆ© par un expert ou retour d'expĆ©rience expĆ©rimental).
-
-
- Le coefficient d'Ć©talonnage K j est le rapport entre la grandeur V j transmise au calculateur et le taux d'interaction (fission ou capture) RDj dans le dĆ©tecteur j (Vj =KjĀ·RDj).
-
- Selon le mode de rĆ©alisation prĆ©fĆ©rentiel de l'invention, le dĆ©tecteur DNR est une chambre Ć fission ayant un dĆ©pĆ“t fissile Ć seuil. Une telle chambre Ć fission est reprĆ©sentĆ©e, par exemple, sur les
figures 1A et 1B . Le dĆ©pĆ“t fissile Ć seuil peut ĆŖtre un dĆ©pĆ“t de plutonium Pu242, comme cela a Ć©tĆ© mentionnĆ© prĆ©cĆ©demment. Le dĆ©pĆ“t fissile Ć seuil peut Ć©galement ĆŖtre un dĆ©pĆ“t d'uranium U238 ou de neptunium Np237 ou encore de thorium Th232. Dans le cadre du mode de rĆ©alisation prĆ©fĆ©rentiel de l'invention, un cĆ¢ble de liaison relie le dĆ©tecteur DNR au circuit C1. Ce cĆ¢ble de liaison est utilisĆ© pour, Ć la fois, polariser Ć©lectriquement le dĆ©tecteur et transmettre le signal dĆ©livrĆ© par la chambre Ć fission vers le circuit de traitement C1. La partie du cĆ¢ble soumise au flux neutronique doit ĆŖtre Ć isolant minĆ©ral (alumine, silice, magnĆ©sie). Le cĆ¢ble est prĆ©fĆ©rentiellement intĆ©grĆ© au dĆ©tecteur et son diamĆØtre extĆ©rieur est infĆ©rieur Ć celui du dĆ©tecteur. Ce cĆ¢ble doit, en outre, avoir des propriĆ©tĆ©s Ć©lectriques compatibles avec une exploitation de la chambre Ć fission en mode fluctuation, Ć savoir: une faible capacitĆ© linĆ©ique, une impĆ©dance caractĆ©ristique proche de l'impĆ©dance d'entrĆ©e de l'Ć©lectronique (typiquement 50Ī©) et une faible impĆ©dance de transfert pour garantir une forte immunitĆ© aux parasites. On utilise, Ć cette fin, du cĆ¢ble Ć conducteur et blindage en cuivre, avec une enveloppe en inox ou en inconel pour assurer une bonne tenue mĆ©canique en rĆ©acteur. Le cĆ¢ble a, par exemple, un diamĆØtre sensiblement compris entre 2mm et 2,2mm pour une chambre Ć fission de 3mm de diamĆØtre et sensiblement Ć©gal Ć 1,3mm pour une chambre Ć fission de 1,5mm de diamĆØtre (optimisation de l'impĆ©dance de transfert). - La
figure 5 reprĆ©sente un schĆ©ma de principe qui dĆ©taille le circuit de conditionnement et de traitement C1 selon le mode de rĆ©alisation prĆ©fĆ©rentiel de l'invention. Le circuit C1 comprend un prĆ©amplificateur PA, un convertisseur analogique/numĆ©rique CAN, un processeur numĆ©rique de calcul de variance VAR et un gĆ©nĆ©rateur de haute tension HT. Le dĆ©tecteur DNR est reliĆ© au circuit C1 par un cĆ¢ble CAB. Le prĆ©amplificateur PA convertit le courant iR(t) qu'il reƧoit, via le cĆ¢ble CAB, en une tension analogique Va(t) qui est transmise au convertisseur analogique/numĆ©rique CAN. La haute tension T dĆ©livrĆ©e par le gĆ©nĆ©rateur de haute tension HT transite, via le prĆ©amplificateur PA et le cĆ¢ble CAB, vers le dĆ©tecteur DNR. Le convertisseur analogique/numĆ©rique CAN convertit la tension analogique Va(t) en une tension numĆ©rique Vn(tn) Ć©chantillonnĆ©e aux instants discrets tn = n Ā· dt (dt est la pĆ©riode d'Ć©chantillonnage, typiquement dt = 1 Āµs, et n est un entier reprĆ©sentant l'indice temporel de l'Ć©chantillon) qui est transmise au processeur numĆ©rique de calcul de variance VAR, lequel dĆ©livre la variance numĆ©rique VR(tn). - De faƧon prĆ©fĆ©rentielle, l'Ć©lectronique de traitement du signal met en oeuvre le mode fluctuation basĆ© sur le thĆ©orĆØme de Campbell (cf. rĆ©fĆ©rence [4]). Ce thĆ©orĆØme dĆ©montre que le signal Ć©lectrique produit par un empilement d'impulsions dans une chambre Ć fission a des propriĆ©tĆ©s statistiques intĆ©ressantes. La moyenne et la variance de ce signal sont en effet toutes deux proportionnelles au flux de neutrons incident, mais tandis que la moyenne est Ć©galement proportionnelle Ć la charge moyenne Q crĆ©Ć©e dans le gaz pour chaque neutron dĆ©tectĆ©, la variance est quant Ć elle proportionnelle Ć cette charge Ć©levĆ©e au carrĆ©.
- De faƧon connue en soi, il est dit qu'une chambre Ć fission est exploitĆ©e en Ā« mode courant Ā», lorsqu'on s'intĆ©resse Ć la moyenne du courant qu'elle produit. La sensibilitĆ© d'une chambre Ć fission en mode courant est proportionnelle Ć Q. La charge crĆ©Ć©e par un neutron Ć©tant gĆ©nĆ©ralement 100 fois plus Ć©levĆ©e que celle produite par un photon gamma, il en ira de mĆŖme des sensibilitĆ©s relatives respectivement aux flux neutronique et gamma. Cette propriĆ©tĆ© fait de la chambre Ć fission un dĆ©tecteur neutronique gĆ©nĆ©ralement bien adaptĆ© Ć la mesure des neutrons en prĆ©sence d'un rayonnement gamma intense (situation typique des mesures en rĆ©acteur). Dans certaines circonstances, la rĆ©jection du rayonnement gamma en mode courant peut cependant s'avĆ©rer insuffisante : soit parce que le rayonnement gamma est trĆØs intense (en rĆ©acteur d'irradiation notamment), soit parce que la sensibilitĆ© aux neutrons est rĆ©duite (c'est le cas des chambres Ć fission au Pu242 dont la sensibilitĆ© aux neutrons rapides est de deux ordres de grandeur infĆ©rieure Ć celle des chambres Ć fission classiques Ć U235 vis-Ć -vis des neutrons thermiques). Le signal Ā« mode courant Ā» doit alors ĆŖtre corrigĆ© en lui soustrayant celui produit par une chambre Ć fission voisine dĆ©pourvue de dĆ©pĆ“t fissile (donc sensible exclusivement aux rayonnements gamma). Il faut alors mettre en oeuvre deux dĆ©tecteurs pour accĆ©der au flux neutronique.
- Exploiter la chambre Ć fission en Ā« mode fluctuation Ā» est, dans ce cas, une alternative intĆ©ressante. La sensibilitĆ© dĆ©pendant de la quantitĆ© Q2, la sensibilitĆ© au rayonnement gamma se trouvera donc environ 10 000 fois plus faible que celle observĆ©e vis-Ć -vis des neutrons. On peut alors obtenir, avec une seule chambre Ć fission, une rĆ©jection des gamma suffisamment efficace, y compris dans des circonstances assez difficiles. Avec les chambres Ć fission au plutonium Pu242, les inventeurs de la prĆ©sente demande de brevet ont observĆ© que, en rĆ©acteur d'irradiation, la contribution du rayonnement gamma passe d'environ 50% en mode courant Ć environ 0,6% en mode fluctuation. C'est la raison pour laquelle, les inventeurs de la prĆ©sente demande de brevet ont choisi, prĆ©fĆ©rentiellement, de dĆ©velopper une Ć©lectronique de traitement numĆ©rique du signal pour exploiter la chambre en mode fluctuation.
- Le signal Ć©lectrique issu de la chambre Ć fission est, aprĆØs amplification et conditionnement (prĆ©amplificateur PA), numĆ©risĆ© Ć l'aide du convertisseur analogique-numĆ©rique CAN. Le calcul de la variance est alors rĆ©alisĆ© de maniĆØre numĆ©rique, Ć l'aide d'un circuit d'Ć©lectronique numĆ©rique, par exemple de type FPGA (FPGA pour Ā« Field Programmable Gate Array Ā» ou RĆ©seau PrĆ©diffusĆ© Programmable par l'Utilisateur) ou Ć l'aide d'un processeur.
- Le circuit CAN Ć©chantillonne, avec une frĆ©quence d'Ć©chantillonnage Fe=1/dt, le signal analogique Va(t) en un signal numĆ©rique VR(tn) avec tn = n Ā· dt. La frĆ©quence Fe est, par exemple, Ć©gale Ć 1 MHz. Le signal numĆ©rique Vn(tn) est alors traitĆ© par le processeur numĆ©rique VAR. Le processeur VAR calcule la variance numĆ©rique VR(tn) sur un horizon glissant de N Ć©chantillons correspondant Ć une durĆ©e Th telle que :
-
- La variance numĆ©rique VR(tn) peut Ć©ventuellement ĆŖtre dĆ©cimĆ©e (jusqu'Ć un facteur N) puisque sa bande passante est infĆ©rieure Ć celle du signal d'origine Vn(tn). La chaĆ®ne de mesure produit ainsi une valeur numĆ©rique de la variance proportionnelle au flux de neutrons incidents, par exemple toutes les 100 ms.
- La mesure des neutrons thermiques est rĆ©alisĆ©e Ć l'aide d'un collectron (SPND), par exemple au rhodium, ou Ć l'aide d'une chambre Ć fission Ć l'uranium U235 Ć©galement exploitĆ©e, de faƧon prĆ©fĆ©rentielle, en mode fluctuation (rĆ©jection du rayonnement gamma). La mesure des neutrons thermiques sert Ć Ć©valuer l'Ć©volution de la composition isotopique du dĆ©pĆ“t de la chambre Ć fission sous flux. En effet, sous l'effet d'un flux thermique intense, il se forme des isotopes fissiles par transmutations successives du plutonium Pu242, rendant la chambre Ć fission au plutonium Pu242 de plus en plus sensible aux neutrons thermiques. La
figure 6 illustre, Ć titre d'exemple non limitatif pour des flux thermiques et rapides de 1E15 n/cm2/s, le taux de fission total (courbe KS sur lafigure 6 ) et la contribution au taux de fission total des diffĆ©rents isotopes formĆ©s par transmutations successives, Ć savoir le plutonium Pu242 (courbe K1 sur lafigure 6 ), le plutonium Pu241 (courbe K2 sur lafigure 6 ), l'amĆ©ricium AM243 (courbe K3 sur lafigure 6 ), le curium CM244 (courbe K4 sur lafigure 6 ) et le curium CM245 (courbe K5 sur lafigure 6 ). Comme cela apparaĆ®t clairement, le plus gĆŖnant des isotopes fissiles qui apparaissent par transmutations successives est le Cm245 (courbe K5), Ć partir d'une fluence thermique de l'ordre de 1021n/cm2. - Dans le cadre de l'invention, le circuit Ć©lectronique de conditionnement et de traitement C2 (non reprĆ©sentĆ© sur les figures) est avantageusement identique au circuit C1 si le dĆ©tecteur DNT est une chambre Ć fission Ć U235. Si le dĆ©tecteur thermique DNT est un collectron, le circuit C2 est un circuit numĆ©rique de conversion courant - tension. Cette fonction peut, par exemple, ĆŖtre assurĆ©e par un voltmĆØtre digital qui mesure la chute de tension aux bornes d'une rĆ©sistance (par exemple de 10 kĪ© Ć 1%) dans laquelle circule le courant gĆ©nĆ©rĆ© par le collectron.
-
- [1] D. Beretz et al. :Ā« French PWR Vessel Surveillance Program Dosimetry Experience Feedback from More than a Hundred Capsules Ā», Reactor Dosimetry ASTM STP 1398, West Conshohocken, PA, 2000
- [2] G. Bignan et J-C. Guyard :Ā« Chambre Ć fission subminiature avec passage Ć©tanche Ā» brevet franƧais, NĀ° enregistrement
9414293 2727526 - [3] Y. Kashchuk et al. : Ā« Monitoring the Fast Neutron Flux Density and Fluence in a RBMK Core Using a Threshold Fission Chamber in a Screen-Absorber Ā». Atomic Energy, Vol. 98, 4, (2005), 249.
- [4] G.F. Knoll. : Ā« Radiation Detection and Measurement Ā» 3rd Edition, John Wiley & Sons, 1999.
- [5] A. Tsilanizara et al. DARWIN : Ā« An evolution code system for a large range of applications Ā». J. Nucl. Sci. Technol. 37 (2000) 845.
- [6] L. Vermeeren : Ā« Absolute on-line in-pile measurement of neutron fluxes using self-powered neutron detectors Ā», 5th International Topical Meeting on Research Reactor Fuel Management, Org. European Nuclear Society, Aix-la-Chapelle, Allemagne, 1-3 avril 2001.
Claims (20)
- Dispositif de mesure en ligne d'un flux de neutrons rapides et Ć©pithermiques Ļ1(tn) Ć des instants tn sur un intervalle d'Ć©nergie [Emin, Emax], comprenant:- un dĆ©tecteur de neutrons rapides (DNR) contenant un matĆ©riau apte Ć dĆ©tecter principalement des neutrons rapides;- un dĆ©tecteur de neutrons thermiques (DNT) contenant un matĆ©riau apte Ć dĆ©tecter principalement des neutrons thermiques;- un premier circuit Ć©lectronique (C1) qui dĆ©livre, aux instants tn, un signal numĆ©rique VR(tn) Ć partir d'un signal de dĆ©tection dĆ©livrĆ© par le dĆ©tecteur de neutrons rapides;- un second circuit Ć©lectronique (C2) qui dĆ©livre, aux instants tn, un second signal numĆ©rique VT(tn) Ć partir d'un signal de dĆ©tection dĆ©livrĆ© par le dĆ©tecteur de neutrons thermiques ;- des moyens (PMM, CE) agencĆ©s pour dĆ©terminer, aux instant tn, la composition isotopique du matĆ©riau dĆ©tecteur de neutrons rapides et la composition isotopique du matĆ©riau dĆ©tecteur de neutrons thermiques ;- des moyens (PMM, CE) agencĆ©s pour dĆ©terminer, aux instants tn, Ć partir desdites compositions isotopiques, la sensibilitĆ© Ć©volutive aux neutrons rapides I11(tn) du dĆ©tecteur de neutrons rapides, la sensibilitĆ© Ć©volutive aux neutrons thermiques I12(tn) du dĆ©tecteur de neutrons rapides, la sensibilitĆ© Ć©volutive aux neutrons rapides I21(tn) du dĆ©tecteur de neutrons thermiques et la sensibilitĆ© Ć©volutive aux neutrons thermiques I22(tn) du dĆ©tecteur de neutrons thermiques,- des moyens de calcul (CALC) agencĆ©s pour calculer le flux de neutrons rapides et Ć©pithermiques Ļ1 (tn) aux instants tn et un flux de neutrons thermiques Ļ2 (tn), Ć partir du systĆØme d'Ć©quations :
et
oĆ¹ KR et KT sont, respectivement, un coefficient d'Ć©talonnage du dĆ©tecteur de neutrons rapides et un coefficient d'Ć©talonnage du dĆ©tecteur de neutrons thermiques. - Dispositif de mesure selon la revendication 1, caractĆ©risĆ© en ce qu'il comprend, en outre, des moyens (CALC) pour calculer un flux neutronique complet Ļ(tn,E) Ć l'aide de l'Ć©quation :
ou- f1(E) = ffiss (E) + Ī± fepi (E), et- f2 (E, Īø) = fmxw (E, Īø),ffiss(E) Ć©tant une composante de fission du flux de neutrons, fepi(E) Ć©tant une composante Ć©pithermique du flux de neutrons, fmxw(E, Īø) Ć©tant une composante maxwellienne du flux de neutrons et Ī± Ć©tant un coefficient de proportionnalitĆ© entre la composante Ć©pithermique du flux de neutrons et la composante de fission du flux de neutrons. - Dispositif selon la revendication 1, caractĆ©risĆ© en ce qu'il comprend, en outre, des moyens (CALC) pour calculer, sur l'intervalle [Emin, Emax], Nr rĆ©sultats intĆ©graux aux instants tn, Nr Ć©tant un nombre entier supĆ©rieur ou Ć©gal Ć 1, un rĆ©sultat intĆ©gral de rang k (k=1, 2, ..., Nn) Ć©tant donnĆ© par l'Ć©quation :
avec
et
oĆ¹- fi(E) = ffiss(E) + Ī± fepi (E), et- f2(E, Īø) = fmxw(E, Īø),ffiss(E) Ć©tant une composante de fission du flux de neutrons, fepi(E) Ć©tant une composante Ć©pithermique du flux de neutrons, fmxw(E, Īø) Ć©tant une composante maxwellienne du flux de neutrons et Ī± Ć©tant un coefficient de proportionnalitĆ© entre la composante Ć©pithermique du flux de neutrons et la composante de fission du flux de neutrons, et oĆ¹- Yk(E) est une fonction de rĆ©ponse qui caractĆ©rise le rĆ©sultat intĆ©gral de rang k. - Dispositif de mesure selon la revendication 3, dans lequel la fonction de rĆ©ponse Yk(E) est une fonction d'identification d'une bande d'Ć©nergie d'intĆ©rĆŖt [Ea, Eb] qui coĆÆncide avec l'intervalle [Emin, Emax] ou qui est comprise dans l'intervalle [Emin, Emax] telle que :
et
de telle sorte que Rk(tn) est le flux des neutrons dont l'Ć©nergie est comprise entre Ea et Eb, Ć savoir : - Dispositif de mesure selon la revendication 3, dans lequel la fonction de rĆ©ponse Yk(E) est une section efficace macroscopique de rĆ©action Ī£r(E) telle que :
oĆ¹
Ni' est un nombre d'atomes d'un isotope i prƩsent dans un milieu et - Dispositif de mesure selon la revendication 5, dans lequel la rƩaction r est une rƩaction de fission ou de capture ou de diffusion ou d'endommagement.
- Dispositif de mesure selon l'une quelconque des revendications prĆ©cĆ©dentes, dans lequel le dĆ©tecteur de neutrons rapides et le dĆ©tecteur de neutrons thermiques Ć©tant des chambres Ć fission, les sensibilitĆ©s Ć©volutives I11(tn), I12(tn), I21(tn) et I22(tn) s'Ć©crivent respectivement :
oĆ¹ Ni(tn) est la composition isotopique Ć l'instant tn d'un isotope i du matĆ©riau apte Ć dĆ©tecter principalement des neutrons rapides et
oĆ¹ Nj(tn) est la composition isotopique Ć l'instant tn d'un isotope j du matĆ©riau apte Ć dĆ©tecter principalement des neutrons thermiques et - Dispositif de mesure selon la revendication 7, dans lequel le dĆ©tecteur de neutrons thermiques est une chambre Ć fission contenant de l'Uranium U235.
- Dispositif de mesure selon l'une quelconque des revendications 1 Ć 6 dans lequel, le dĆ©tecteur de neutrons rapides Ć©tant une chambre Ć fission et le dĆ©tecteur de neutrons thermiques Ć©tant un collectron, les sensibilitĆ©s Ć©volutives I11(tn), I12(tn), I21(tn) et I22(tn) s'Ć©crivent, respectivement :
et
oĆ¹ Ni(tn) est la composition isotopique Ć l'instant tn d'un isotope i du matĆ©riau apte Ć dĆ©tecter principalement des neutrons rapides et
oĆ¹ U [ĪØ(tn)] est une fonction d'usure du collectron tabulĆ©e en fonction de la fluence thermique Ć l'instant tn ĪØ(tn) du matĆ©riau apte Ć dĆ©tecter principalement des neutrons thermiques et SRh(E) est la sensibilitĆ© du collectron. - Dispositif de mesure selon la revendication 9 dans lequel le dĆ©tecteur de neutrons thermiques est un collectron au Rhodium ou au Vanadium ou Ć l'Argent.
- Dispositif de mesure selon l'une quelconque des revendications 7 Ć 10, dans lequel le dĆ©tecteur de neutrons rapides est une chambre Ć fission avec un dĆ©pĆ“t fissile Ć seuil.
- Dispositif de mesure selon la revendication 11, dans lequel la chambre Ć fission est une chambre Ć fission contenant du plutonium Pu242 pur Ć au moins 99,5%.
- Dispositif de mesure selon la revendication 12, dans lequel la chambre Ć fission contenant du plutonium Pu242 pur Ć au moins 99,5% comprend :* une enceinte (1, 20) apte Ć contenir un gaz de dĆ©tection sous pression et dont les parois laissent passer les neutrons,* une premiĆØre et une seconde Ć©lectrode (21, 26, 120), isolĆ©es Ć©lectriquement l'une de l'autre, entre lesquelles une tension peut ĆŖtre appliquĆ©e,* une matiĆØre fissile, comportant du plutonium 242 pur Ć au moins 99,5 % atomique, disposĆ©e sur l'une au moins des deux Ć©lectrodes, et* un gaz de dĆ©tection, inclus dans l'enceinte sous pression, ionisable par des produits de fissions.
- Dispositif de mesure selon la revendication 13, dans lequel l'une parmi les premiĆØre et seconde Ć©lectrodes fait partie de l'enceinte, les Ć©lectrodes Ć©tant alors appelĆ©es Ć©lectrode externe (1) et Ć©lectrode interne (2).
- Dispositif de mesure selon la revendication 14, dans lequel la matiĆØre fissile (3) est disposĆ©e sur une paroi de l'Ć©lectrode interne.
- Dispositif de mesure selon l'une quelconque des revendications 13 Ć 15, dans lequel le gaz de dĆ©tection est de l'argon additionnĆ© de 4% d'azote.
- Dispositif de mesure selon la revendication 11, dans lequel le dĆ©tecteur de neutrons rapides est une chambre Ć fission contenant du Neptunium Np237, ou de l'Uranium U238, ou du Thorium Th232.
- Dispositif de mesure selon l'une quelconque des revendications prƩcƩdentes, dans lequel le premier circuit Ʃlectronique (C1) comprend un processeur numƩrique de calcul de variance qui dƩlivre le signal numƩrique VR(tn) sous la forme d'une variance numƩrique du signal dƩlivrƩ par le dƩtecteur de neutrons rapides.
- Dispositif de mesure selon l'une quelconque des revendications prƩcƩdentes, dans lequel le second circuit Ʃlectronique (C2) comprend un processeur numƩrique de calcul de variance qui dƩlivre le signal numƩrique VT(tn) sous la forme d'une variance numƩrique du signal dƩlivrƩ par le dƩtecteur de neutrons thermiques.
- Dispositif de mesure selon l'une quelconque des revendications 1 Ć 18, dans lequel le second circuit Ć©lectronique (C2) est un circuit numĆ©rique de conversion courant-tension.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL09820277T PL2338157T3 (pl) | 2008-10-13 | 2009-10-09 | UrzÄ dzenie do pomiaru on-line strumienia neutronĆ³w prÄdkich i epitermicznych |
SI200930421T SI2338157T1 (sl) | 2008-10-13 | 2009-10-09 | Naprava za online merjenje toka hitrih in epitermiÄnih nevtronov |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0856922A FR2937149B1 (fr) | 2008-10-13 | 2008-10-13 | Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques |
PCT/EP2009/063146 WO2010043554A1 (fr) | 2008-10-13 | 2009-10-09 | Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2338157A1 EP2338157A1 (fr) | 2011-06-29 |
EP2338157B1 true EP2338157B1 (fr) | 2012-10-31 |
Family
ID=40894950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09820277A Not-in-force EP2338157B1 (fr) | 2008-10-13 | 2009-10-09 | Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques |
Country Status (9)
Country | Link |
---|---|
US (1) | US8735804B2 (fr) |
EP (1) | EP2338157B1 (fr) |
JP (1) | JP5529144B2 (fr) |
CN (1) | CN102246243B (fr) |
FR (1) | FR2937149B1 (fr) |
PL (1) | PL2338157T3 (fr) |
RU (1) | RU2516854C2 (fr) |
SI (1) | SI2338157T1 (fr) |
WO (1) | WO2010043554A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110765618A (zh) * | 2019-10-28 | 2020-02-07 | č„æå®äŗ¤éå¤§å¦ | äøē§åę°“å å å čŖē»č½äøåę¢ęµåØēååŗēµęµč®”ē®ę¹ę³ |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2625878T3 (es) * | 2010-10-29 | 2017-07-20 | Bellandtechnology Ag | CopolĆmero soluble en agua o desintegrable en agua |
US10446282B2 (en) * | 2011-12-23 | 2019-10-15 | Ge-Hitachi Nuclear Energy Americas Llc | Methods, systems, and computer program products for generating fast neutron spectra |
CN103306663B (zh) * | 2012-03-06 | 2016-01-27 | äøå½ååč½ē§å¦ē ē©¶é¢ | éēæęµäŗę¹ę³ |
JP5787799B2 (ja) * | 2012-03-13 | 2015-09-30 | äøč±é»ę©ę Ŗå¼ä¼ē¤¾ | ēå¤ę øčØč£ č£ ē½® |
CN103871525B (zh) * | 2012-12-13 | 2016-08-31 | äøå½ę øåØåē ē©¶č®¾č®”é¢ | åŗäŗå”å°ę¼ę»¤ę³¢ēéčŖē»č½ę¢ęµåØäæ”å·å»¶čæę¶é¤ę¹ę³ |
FR3005196A1 (fr) * | 2013-04-25 | 2014-10-31 | Commissariat Energie Atomique | Systeme de controle commande de cÅur de reacteur nucleaire |
CN103943158B (zh) * | 2013-12-31 | 2016-06-29 | č„æå®äŗ¤éå¤§å¦ | äøē§ę¶é¤čŖē»č½äøåę¢ęµåØ延čæęåŗēę¹ę³ |
CN104778980A (zh) * | 2015-04-09 | 2015-07-15 | äøå½ę øåØåē ē©¶č®¾č®”é¢ | åŗäŗLuenbergerå½¢å¼ēH2ę»¤ę³¢ēé¶čŖē»č½ę¢ęµåØäæ”å·å»¶čæę¶é¤ę¹ę³ |
RU2630260C2 (ru) * | 2015-11-16 | 2017-09-06 | ŠŠŗŃŠøŠ¾Š½ŠµŃŠ½Š¾Šµ Š¾Š±ŃŠµŃŃŠ²Š¾ "ŠŃŠ°ŃŠ½Š°Ń ŠŠ²ŠµŠ·Š“Š°" | ŠŃŃŠ¾ŠŗŠ¾ŃŠµŠ¼ŠæŠµŃŠ°ŃŃŃŠ½Š°Ń ŠøŠ¾Š½ŠøŠ·Š°ŃŠøŠ¾Š½Š½Š°Ń ŠŗŠ°Š¼ŠµŃŠ° Š“ŠµŠ»ŠµŠ½ŠøŃ Š“Š»Ń ŃŠøŃŃŠµŠ¼ ŃŠæŃŠ°Š²Š»ŠµŠ½ŠøŃ Šø Š·Š°ŃŠøŃŃ ŃŠ“ŠµŃŠ½ŃŃ ŃŠµŠ°ŠŗŃŠ¾ŃŠ¾Š² |
RU2743849C1 (ru) * | 2020-04-23 | 2021-02-26 | Š Š¾ŃŃŠøŠ¹ŃŠŗŠ°Ń Š¤ŠµŠ“ŠµŃŠ°ŃŠøŃ, Š¾Ń ŠøŠ¼ŠµŠ½Šø ŠŗŠ¾ŃŠ¾ŃŠ¾Š¹ Š²ŃŃŃŃŠæŠ°ŠµŃ ŠŠ¾ŃŃŠ“Š°ŃŃŃŠ²ŠµŠ½Š½Š°Ń ŠŗŠ¾ŃŠæŠ¾ŃŠ°ŃŠøŃ ŠæŠ¾ Š°ŃŠ¾Š¼Š½Š¾Š¹ ŃŠ½ŠµŃŠ³ŠøŠø "Š Š¾ŃŠ°ŃŠ¾Š¼" (ŠŠ¾ŃŠŗŠ¾ŃŠæŠ¾ŃŠ°ŃŠøŃ "Š Š¾ŃŠ°ŃŠ¾Š¼") | ŠŠ¾Š½ŠøŠ·Š°ŃŠøŠ¾Š½Š½Š°Ń ŠŗŠ°Š¼ŠµŃŠ° Š“ŠµŠ»ŠµŠ½ŠøŃ Š“Š»Ń ŃŠµŠ³ŠøŃŃŃŠ°ŃŠøŠø Š±ŃŃŃŃŃŃ Š½ŠµŠ¹ŃŃŠ¾Š½Š¾Š² |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3752735A (en) * | 1970-07-16 | 1973-08-14 | Combustion Eng | Instrumentation for nuclear reactor core power measurements |
CA1095635A (fr) * | 1977-01-17 | 1981-02-10 | Wyatt W. Givens | Diagraphie de neutrons instantanes pour la detection de l'uranium |
US4379228A (en) * | 1980-10-10 | 1983-04-05 | Mobil Oil Corporation | Neutron-neutron-logging |
JPS57184991A (en) * | 1981-05-09 | 1982-11-13 | Mitsubishi Electric Corp | Measuring device for neutron flux in nuclear reactor |
US4524274A (en) * | 1982-08-05 | 1985-06-18 | Schlumberger Technology Corporation | Methods and apparatus for investigating an earth formation and compensating for borehole environmental effects |
JPH01100493A (ja) * | 1987-10-14 | 1989-04-18 | Toshiba Corp | ę øåč£åäøę§åę¤åŗåØ |
FR2662816B1 (fr) * | 1990-06-05 | 1993-10-22 | Commissariat A Energie Atomique | Chambre a fission a grande gamme de mesure et dispositif de mesure de debit de fluence neutronique utilisant cette chambre a fission. |
JPH04233499A (ja) * | 1990-10-01 | 1992-08-21 | Westinghouse Electric Corp <We> | ēåæå¤åäøę§åęć»åŗåć¬ćć«ę¤åŗåØć¢ć»ć³ććŖ |
JPH0545490A (ja) * | 1991-08-21 | 1993-02-23 | Toshiba Corp | ååēåŗåē£č¦č£ ē½® |
JP2877609B2 (ja) * | 1992-03-30 | 1999-03-31 | ę Ŗå¼ä¼ē¤¾ę±č | åååēŗé»čØåēØčµ·åé åć¢ććæć·ć¹ćć |
FR2727526B1 (fr) | 1994-11-29 | 1997-01-03 | Commissariat Energie Atomique | Chambre a fission subminiature avec passage etanche |
US5536938A (en) * | 1995-02-22 | 1996-07-16 | Mobil Oil Corporation | Pulsed neutron decay logging |
US5684299A (en) * | 1995-06-26 | 1997-11-04 | Schlumberger Technology Corporation | Method for determining porosity in an invaded gas reservoir |
JPH112690A (ja) * | 1997-06-12 | 1999-01-06 | Hitachi Ltd | ēå äøę§åęčØęø¬č£ ē½® |
JPH11326584A (ja) * | 1998-05-15 | 1999-11-26 | Toshiba Corp | ååēęø¬å®č£ ē½® |
JP2000162371A (ja) * | 1998-12-01 | 2000-06-16 | Hitachi Ltd | ēęéåä½ę øēØ®éē®åŗč£ ē½®ććć³ćć®ē®åŗę¹ę³ |
RU2200988C2 (ru) * | 2001-02-19 | 2003-03-20 | ŠŠ¾ŃŃŠ“Š°ŃŃŃŠ²ŠµŠ½Š½Š¾Šµ ŠæŃŠµŠ“ŠæŃŠøŃŃŠøŠµ ŠŠµŠ½ŠøŠ½Š³ŃŠ°Š“ŃŠŗŠ°Ń Š°ŃŠ¾Š¼Š½Š°Ń ŃŠ»ŠµŠŗŃŃŠ¾ŃŃŠ°Š½ŃŠøŃ ŠøŠ¼. Š.Š.ŠŠµŠ½ŠøŠ½Š° | Š”ŠæŠ¾ŃŠ¾Š± ŠøŠ·Š¼ŠµŃŠµŠ½ŠøŃ ŠæŠ¾ŃŠ¾ŠŗŠ° Š½ŠµŠ¹ŃŃŠ¾Š½Š¾Š² Š² ŃŠ½ŠµŃŠ³ŠµŃŠøŃŠµŃŠŗŠ¾Š¼ ŃŠµŠ°ŠŗŃŠ¾ŃŠµ |
US20030178560A1 (en) * | 2002-03-19 | 2003-09-25 | Odom Richard C. | Apparatus and method for determining density, porosity and fluid saturation of formations penetrated by a borehole |
WO2004043372A2 (fr) * | 2002-11-13 | 2004-05-27 | Proportional Technologies, Inc. | Detecteur de neutrons par tubes pailles enduits de bore |
JP4528496B2 (ja) * | 2003-05-28 | 2010-08-18 | ę Ŗå¼ä¼ē¤¾ę±č | ååēåŗåē£č¦č£ ē½® |
JP4214176B2 (ja) * | 2004-03-12 | 2009-01-28 | ē¬ē«č”ęæę³äŗŗ ę„ę¬åååē ē©¶éēŗę©ę§ | äøę§åęø¬å®ć·ć¹ćć |
US20060165209A1 (en) * | 2005-01-27 | 2006-07-27 | Cheng Alexander Y | Neutron detector assembly with variable length rhodium emitters |
JP2007163245A (ja) * | 2005-12-13 | 2007-06-28 | Toshihisa Shirakawa | čŖēŗäøę§åę¾åŗę øēęćč£ č·ććååē |
US7667192B2 (en) * | 2007-08-16 | 2010-02-23 | Schlumberger Technology Corporation | Thermal neutron porosity from neutron slowing-down length, formation thermal neutron capture cross section, and bulk density |
FR2925750B1 (fr) | 2007-12-21 | 2015-03-27 | Commissariat Energie Atomique | Detecteur pour la mesure en ligne des neutrons rapides dans un reacteur |
-
2008
- 2008-10-13 FR FR0856922A patent/FR2937149B1/fr not_active Expired - Fee Related
-
2009
- 2009-10-09 SI SI200930421T patent/SI2338157T1/sl unknown
- 2009-10-09 EP EP09820277A patent/EP2338157B1/fr not_active Not-in-force
- 2009-10-09 WO PCT/EP2009/063146 patent/WO2010043554A1/fr active Application Filing
- 2009-10-09 US US13/123,880 patent/US8735804B2/en not_active Expired - Fee Related
- 2009-10-09 CN CN200980149811.5A patent/CN102246243B/zh not_active Expired - Fee Related
- 2009-10-09 JP JP2011530493A patent/JP5529144B2/ja not_active Expired - Fee Related
- 2009-10-09 RU RU2011119091/07A patent/RU2516854C2/ru not_active IP Right Cessation
- 2009-10-09 PL PL09820277T patent/PL2338157T3/pl unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110765618A (zh) * | 2019-10-28 | 2020-02-07 | č„æå®äŗ¤éå¤§å¦ | äøē§åę°“å å å čŖē»č½äøåę¢ęµåØēååŗēµęµč®”ē®ę¹ę³ |
CN110765618B (zh) * | 2019-10-28 | 2021-04-13 | č„æå®äŗ¤éå¤§å¦ | äøē§åę°“å å å čŖē»č½äøåę¢ęµåØēååŗēµęµč®”ē®ę¹ę³ |
Also Published As
Publication number | Publication date |
---|---|
SI2338157T1 (sl) | 2013-01-31 |
EP2338157A1 (fr) | 2011-06-29 |
JP2012505392A (ja) | 2012-03-01 |
FR2937149B1 (fr) | 2010-12-03 |
JP5529144B2 (ja) | 2014-06-25 |
WO2010043554A1 (fr) | 2010-04-22 |
RU2011119091A (ru) | 2012-11-20 |
RU2516854C2 (ru) | 2014-05-20 |
US8735804B2 (en) | 2014-05-27 |
CN102246243A (zh) | 2011-11-16 |
FR2937149A1 (fr) | 2010-04-16 |
PL2338157T3 (pl) | 2013-03-29 |
US20110274230A1 (en) | 2011-11-10 |
CN102246243B (zh) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2338157B1 (fr) | Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques | |
FR2462764A1 (fr) | Procede de determination de la teneur en combustible fissile du materiau de combustible de reacteurs nucleaires | |
FR2945373A1 (fr) | Dispositif et appareil pour la mesure du profil d'enrichissement d'un crayon de combustible nucleaire | |
EP0986766B1 (fr) | Procede et dispositif de mesure de la proportion relative de plutonium et d'uranium dans un corps | |
US3043954A (en) | Fission chamber assembly | |
US12044815B2 (en) | Fixed in-core detector design using sic Schottky diodes configured with a high axial and radial sensor density and enhanced fission gamma measurement sensitivity | |
WO1998011560A1 (fr) | Dispositif miniaturise, auto-alimente et a reponse rapide, pour la detection etagee d'un flux neutronique, notamment dans un reacteur nucleaire | |
EP0294283A1 (fr) | ProcƩdƩ et dispositif de mesure de la concentration en lithium dans le circuit primaire de refroidissement d'un rƩacteur nuclƩaire | |
FR2516665A1 (fr) | Detecteur de concentration de gaz radioactifs a large plage | |
WO2015001527A1 (fr) | Perfectionnement a un dispositif de mesure de champs de neutrons et/ou de gammas formant collectron | |
Vermeeren et al. | Irradiation tests of prototype self-powered gamma and neutron detectors | |
EP2483711B1 (fr) | Procede de determination du rapport isotopique de matiere fissile contenue dans une chambre a fission | |
EP1145249B1 (fr) | Procede et appareil d'identification de combustibles nucleaires | |
Blandin et al. | Development and modeling of neutron detectors for in-core measurement requirements in nuclear reactors | |
RU80070U1 (ru) | ŠŠµŃŠµŠŗŃŠ¾Ń ŃŠ“ŠµŃŠ½Š¾Š³Š¾ ŠøŠ·Š»ŃŃŠµŠ½ŠøŃ | |
FR3033900A1 (fr) | Dispositif de detection de neutrons thermiques, comportant une coquille de scintillateur plastique enveloppant un coeur de gadolinium ou de cadmium, et dispositif de comptage de neutrons thermiques associe | |
Heath | Fission-Product Monitoring in Reactor Coolant Water | |
Wilson et al. | Body current response scaling under high fluence conditions | |
FR2614111A1 (fr) | Procede et appareil d'evaluation de la teneur en un metal rare d'une formation geologique naturelle | |
Biegalski et al. | Design of aerosol sampler to remove radon and thoron progeny interference from aerosol samples for nuclear explosion monitoring | |
Coulon et al. | Sodium fast reactor power monitoring using 20 F tagging agent | |
Mas et al. | Continuous measurement of neutron flux with the help of a converter | |
Guillermin et al. | Detection of tritium in the CO 2 of the reactors G2/G3 using gas chromatography | |
Blagus et al. | Evidence for neutron production during heavy water electrolysis on palladium electrode | |
Seaborg et al. | NEUTRON MEASURING METHOD AND APPARATUS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110419 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602009010942 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G21C0017108000 Ipc: G01T0003000000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G21C 17/108 20060101ALI20120420BHEP Ipc: G01T 1/185 20060101ALI20120420BHEP Ipc: G01V 5/10 20060101ALI20120420BHEP Ipc: G01T 3/00 20060101AFI20120420BHEP |
|
RTI1 | Title (correction) |
Free format text: DEVICE FOR THE ON LINE MEASUREMENT OF RAPID AND EPITHERMAL NEUTRONS |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 582303 Country of ref document: AT Kind code of ref document: T Effective date: 20121115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009010942 Country of ref document: DE Effective date: 20121227 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 582303 Country of ref document: AT Kind code of ref document: T Effective date: 20121031 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20121031 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130211 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130228 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130201 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130228 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130131 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130801 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009010942 Country of ref document: DE Effective date: 20130801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091009 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20170925 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20170918 Year of fee payment: 9 Ref country code: PL Payment date: 20170929 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20170928 Year of fee payment: 9 Ref country code: DE Payment date: 20171010 Year of fee payment: 9 Ref country code: FR Payment date: 20171031 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20170922 Year of fee payment: 9 Ref country code: GB Payment date: 20171016 Year of fee payment: 9 Ref country code: BE Payment date: 20171025 Year of fee payment: 9 Ref country code: SE Payment date: 20171017 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602009010942 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20181101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181009 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181010 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190501 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181009 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181101 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20190627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181010 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181009 |