EP2338157B1 - Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques - Google Patents

Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques Download PDF

Info

Publication number
EP2338157B1
EP2338157B1 EP09820277A EP09820277A EP2338157B1 EP 2338157 B1 EP2338157 B1 EP 2338157B1 EP 09820277 A EP09820277 A EP 09820277A EP 09820277 A EP09820277 A EP 09820277A EP 2338157 B1 EP2338157 B1 EP 2338157B1
Authority
EP
European Patent Office
Prior art keywords
neutrons
fission
max
measuring device
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09820277A
Other languages
German (de)
English (en)
Other versions
EP2338157A1 (fr
Inventor
Ludovic Oriol
Bernard Lescop
Ludo Vermeeren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCK CEN
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
SCK CEN
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SCK CEN, Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical SCK CEN
Priority to PL09820277T priority Critical patent/PL2338157T3/pl
Priority to SI200930421T priority patent/SI2338157T1/sl
Publication of EP2338157A1 publication Critical patent/EP2338157A1/fr
Application granted granted Critical
Publication of EP2338157B1 publication Critical patent/EP2338157B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/10Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources
    • G01V5/107Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources and detecting reflected or back-scattered neutrons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/108Measuring reactor flux
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a device for online measurement of a fast and epithermal neutron flux over an energy interval [E min , E max ].
  • MTR Machine Testing Reactor
  • in-core monitoring of power
  • the measurement of fast neutron fluxes is currently carried out using two classes of detectors: the detectors by activation and the detectors in line.
  • the on-line detectors are uranium fission chambers under a thermal neutron absorber screen. Fission chambers are well known and widely used neutron detectors for the neutron control of reactors ("ex-coreā€ or "in-coreā€ detectors). Some rooms, said to be miniature or even sub-miniature, are externally in the form of cylinders with a diameter of 4mm or less, which lends itself particularly well to the "in-coreā€ instrumentation, area covered by this application. patent.
  • This other type of detector is constituted by a fission chamber containing plutonium Pu242 pure at least 99.5%.
  • the Figures 1A and 1B represent two examples of such a fission chamber and the figure 2 represents a device capable of depositing plutonium Pu242 in these fission chambers.
  • the advantage of such a fission chamber is to meet the needs defined above without using a thermal neutron screen.
  • the Figure 1A represents a first example of a fission chamber containing at least 99.5% pure Pu242 plutonium. In terms of mechanical structure, this fission chamber is identical to that described in the published patent application No. 2,727,526.
  • the reference 20 designates a tube of substantially equal outer diameter, for example, at 1.5 mm and which serves both as envelope to the fission chamber and, for at least a part designated by the reference 21, cathode.
  • This tube is for example Inconel or stainless steel.
  • the tube 20 is closed at one of its ends 23 by a plug 28, for example stainless steel.
  • a plug 28 for example stainless steel.
  • the room is filled with a neutral gas, for example argon or argon with a low nitrogen content (for example 4%) at a pressure of a few bars (for example 5 bar), and the plug 28 serves both filling and sealing the chamber.
  • the anode 26 is connected to conductive elements 32, 36 for transmitting an electrical signal to the outside of the chamber. These conductive elements 32, 36 are themselves connected to the conductive element 44 of a connecting cable 11 which connects the assembly to a connection device as described in the patent application. 2,727,526 .
  • the conductor 32 is connected to the end 35 of the conductor 36, inside the tube 20 which defines the fission chamber, while the other end 37 of the conductor 36 which passes through the cap 34, of high purity alumina, is connected to the conductor 44 inside the extension of the outer metal sleeve 30 of the cable 11.
  • the cap 34 is crimped, at least in part, in a metal sheath 38 that can be welded to the end 40 of the tube 20.
  • the Figure 1B represents a second example of a fission chamber containing at least 99.5% Pu242 pure plutonium.
  • a chamber body 1 made of an electrically conductive material, which is the outer casing of the device.
  • the enclosure can also be made of any other material and deposit a layer of electrically conductive material on the inside of the walls of the enclosure to form the external electrode 1.
  • these means 2 will form, for example, an anode, the body 1 forming a cathode. Between cathode and anode will be imprisoned an ionizable gas, for example argon at 1.5 bar.
  • a sealed passage 3 (metal and alumina) holds the substrate 2 and allows the electrical connection to the outside while sealing one end of the chamber.
  • a screw 4 makes it possible to block the substrate on the sealed passage.
  • the reference 5 designates a cap, and the reference 6 a thickened welded on the wire of the sealed passage to facilitate the electrical connection.
  • Such a fission chamber may have, for example, an outer diameter of the order of 4mm.
  • a thin layer of fissile material comprising plutonium Pu242 is deposited on one of the electrodes or on the two electrodes.
  • the chamber is transparent to the transmission of neutrons, that is to say, it lets neutrons pass through its walls. In other words, the material constituting the wall of the enclosure has a small neutron capture cross section.
  • the electrodes are either made entirely of electrically conductive material or are coated with a layer of electrically conductive material.
  • the Pu242 plutonium layer may be made by electrodeposition, for example using a device such as that represented in FIG. figure 2 .
  • the plutonium Pu242 to be deposited may be in the form of a liquid solution 100, placed in a beaker 102, in an electrolysis solution comprising a mixture of nitric acid and ammonium oxalate.
  • the electrode or the support 120 on which the deposition is to be made is held by two teflon tips 111, 113, at the end of a rod 116, for example made of platinum covered with a film. Teflon.
  • the whole is placed in the solution. This can be agitated to remain homogeneous, for example by placing a magnet bar 104 at the bottom of the beaker 102 and placing it on a magnetic stirrer 106.
  • a wire 105 made of an electrically conductive material (for example platinum), is placed in the solution 102.
  • Feeding means 107 make it possible to circulate an electric current in this wire and in the solution. This current will move the plutonium of the solution, which is fixed on the electrode or the support 120.
  • the electrode or the support 120 may optionally be rotated, using a motor 110, so as to obtain a uniform deposit over the entire surface in contact with the electrolysis solution.
  • the internal electrode can be rotated at 60 rpm as indicated by the arrow 108.
  • This method can be applied to both the internal electrode and the external electrode. If it is desired that the plutonium be deposited only on the inner walls of the external electrode (the latter then having for example a cylindrical shape), the outer wall of the outer electrode is covered with a layer of material protection, for example a teflon layer.
  • a problem with the Pu242 plutonium fission chamber is the presence of fissile impurities (Pu239 and Pu241) in the deposit which gives the chamber a sensitivity to thermal neutrons, which presence, even if it is weak, can not be totally neglected.
  • the production of fissile isotopes by successive transmutations even if it is considerably lower than that observed for uranium U238, contributes to increase this thermal sensitivity during the irradiation.
  • the plutonium fission chamber Pu242 can therefore be used without a screen only under very specific circumstances, ie a not too high heat flow or irradiations of short duration.
  • the invention proposes an on-line measurement device for a fast and epithermal neutron flux.
  • the fast neutron detector and the thermal neutron detector being fission chambers
  • the evolutionary sensitivities I 11 (t n ), I 12 (t n ), I 21 ( t n ) and I 22 (t n ) are respectively written:
  • N i (t n ) is the isotopic composition at time t n of an isotope i of the material capable of detecting mainly fast neutrons and ā‡ i f E is the cross section of the isotope i;
  • I 21 t not ā‡ j NOT j t not ā‡ E min E max ā‡ f 1 E ā‡ ā‡
  • the thermal neutron detector is a fission chamber containing Uranium U235.
  • the fast neutron detector being a fission chamber and the thermal neutron detector being a collectron
  • the evolutionary sensitivities I 11 (t n ), I 12 (t n ), I 21 ( t n ) and I 22 (t n ) are written, respectively:
  • I 11 t not ā‡ i NOT i t not ā‡ E min E max ā‡ f 1 E ā‡ ā‡ i f E ā‡ of
  • I 12 t not ā‡ i NOT i t not ā‡ E min E max ā‡ f 2 E ā‡ ā‡ ā‡ i f E ā‡ of
  • N i (t n ) is the isotopic composition at time t n of an isotope i of the material able to detect mainly fast neutrons
  • ā‡ j f E is the cross section of the isotope i
  • I 21 t not U ā‡ t not ā‡ ā‡ E min E max ā‡ f 1 E
  • the thermal neutron detector is a collectron Rhodium or Vanadium or Silver.
  • the fast neutron detector is a fission chamber with a fissile threshold deposit, for example a fission chamber containing plutonium Pu242 at least 99.5% pure.
  • the first electronic circuit comprises a numerical processor for calculating variance which delivers the digital signal VR (t n ) in the form of a digital variance of the signal delivered by the fast neutron detector.
  • the second electronic circuit comprises a digital variance calculation processor which delivers the digital signal VT (t n ) in the form of a digital variance of the signal delivered by the thermal neutron detector.
  • the second electronic circuit is a digital current-voltage conversion circuit.
  • the measuring device of the invention rejects the component of the signal due to gamma radiation.
  • Tests carried out in the irradiation reactor show that gamma radiation can be responsible for more than half of the average current produced by a threshold fission chamber. In this case, it is recommended to operate the fission chamber in so-called "fluctuationā€ or "Campbellā€ mode. This consists of looking at the variance of the current produced by the fission chamber rather than its average. The contribution of gamma radiation can then be neglected because this contribution represents only a few percent, at most, of the variance.
  • the figure 3 represents a schematic diagram of a device for measuring fast and epithermal neutron flux in line with the invention and the figure 4 collects time diagrams useful for understanding the functioning of the measuring device of the invention represented in figure 3 .
  • the device comprises a detector DNR for measuring fast neutrons, a first electronic circuit C1 for conditioning and processing the signal from the detector DNR, a detector DNT for the measurement of thermal neutrons, a second electronic circuit C2 for conditioning and treatment signal from the DNT detector, an EC evolution code, a PMM calculation code and a CALC calculator.
  • the detector DNR delivers a current iR (t) and the detector DNT delivers a current iT (t).
  • the currents iR (t) and iT (t) are transmitted, respectively, to the conditioning and processing circuit C1 and to the second conditioning and processing circuit C2, which respectively deliver a digital signal VR (t n ) and a signal digital VT (t n ) at discrete instants t n .
  • the digital signal VR (t n ) is, preferably, the numerical variance of the current iR (t).
  • the invention however relates to digital signals other than the variance of the current, such as, for example, the average value of the current.
  • the digital signals VR (t n ) and VT (t n ) are transmitted to the calculator CALC.
  • the index k is a current index varying from 1 to N R , where N R represents a maximum number of integral results calculated at the same time t n .
  • the response function Y k (E) corresponds to an energy support [E s ], E max ], the energy E s being a value threshold beyond which neutrons are considered to be fast neutrons.
  • f fiss (E), f epi (E) and f mxw (E, ā‡ ) are, respectively, the fission component of the neutron flux, the epithermal component of the neutron flux and the Maxwellian component of the neutron flux.
  • the components f fiss (E), f epi (E) and f mxw (E, ā‡ ) are quantities known per se.
  • the coefficient ā‡ is a known coefficient of proportionality between the epithermal component and the fission component.
  • an evolution code for example the evolution code CE which is used to calculate the isotopic compositions of the fission chamber detector materials.
  • the matrices M and H are firstly calculated by the PMM during an initialization phase, then are periodically updated by the PMM, at discrete moments. T p ' as explained below.
  • M 0 and H 0 the initial M and H matrices.
  • the function of the PMM is to develop the interpretation matrices of the M and H measurements on the basis of physical neutron flux models and detectors.
  • the PMM Before the time t 0 of the first measurement, the PMM performs the following operations:
  • the temperature of the moderator ā‡ 0 is either entered by the user (it is then assumed to be constant throughout the experiment) or measured at the start of the system.
  • f fiss , epithermal epi and maxwellian f mxw fission components are quantities known per se.
  • the input data consists of the initial isotopic composition NOT i j t ini j the deposition of the fission chamber (number of atoms of each isotope i).
  • This isotopic composition given at the moment t ini j ā‡ t 0 results from chemical analyzes carried out by the manufacturer of the fission chamber or, advantageously, result from calculations made by the PMM during a previous irradiation of the fission chamber.
  • the PMM launches a zero neutron flux evolution calculation using the EC evolution code, which also relies on nuclear data (cross sections, radioactive decay constants, etc.). from standard libraries (type JEF, ENDF, etc.).
  • Step 2 Calculation of the fast and thermal sensitivities of the fission chamber
  • the temperature of the moderator ā‡ 0 is either entered by the user (it is then assumed to be constant throughout the experiment) or measured at the start of the system.
  • Input data ā‡ i f E defined on the energetic support [E min ' E max ] denote the fission cross sections of the isotopes i. They usually come from standardized nuclear data libraries (type JEF, ENDF, etc.).
  • DNR is a fission chamber and the DNT is a collectron (SPND)
  • the temperature of the moderator ā‡ is either entered by the user (and assumed constant throughout the experiment), or measured at the start of the system.
  • the time synchronization of the CALC calculator and the PMM is illustrated on the figure 4 .
  • the PMM starts an update calculation of M and H at times noted T p (see T 0 , T 1 , T 2 , T 3 , ... on the figure 4 ).
  • the PMM transmits the new matrices denoted by M p and H p to the computer so that it uses them in place of the preceding matrices denoted M p-1 and H p-1 .
  • the calculator takes into account M p and H p at the moment T p ' > T p .
  • the duration T p ' - T p can vary, it is necessary to simply choose the instants T p so that T p ' ā‡ T p + 1 .
  • the jump ā‡ p corresponds to the retrieval of the sensitivity error which has increased (slowly) since the last PMM calculation at T p-1 .
  • This error will remain negligible if (T p -T p-1 ) is sufficiently short (in fact, as long as the fluence integrated by the detectors in this time interval is sufficiently small).
  • the PMM uses the VR and VT measurements to update the interpretation matrices M and H used by the calculator. If the temperature of the moderator ā‡ is measured, it is also used in this process, otherwise the PMM uses the temperature entered by the user and supposed constant throughout the irradiation of the detectors.
  • the PMM accumulates the measurements VR, VT and possibly ā‡ which are transmitted to it by the computer at each instant t n , in order to calculate the average values thereof:
  • N p is the number of measurements transmitted to the PMM between the instants T p-1 and T p : NOT p ā‡ T p - T p - 1 / dt
  • H p The calculation of H p differs from that of H 0 in that the neutron flux is no longer zero and the evolution calculations must take into account the interaction of neutrons with the detector materials.
  • the PMM launches an evolution calculation under neutron flux thanks to the evolution code CE which also relies on DN nuclear data (cross sections, radioactive decay constants, etc.). from standard libraries (type JEF, ENDF, etc.).
  • Step 2 Calculation of the fast and thermal sensitivities of the fission chamber
  • Input data ā‡ i f E defined on the energetic support [E min , E max ] denote the fission cross sections of the isotopes i. They come from standard nuclear data libraries (type JEF, ENDF, etc.).
  • Step 1 Calculation of the integrated thermal fluence by the collectron
  • ā‡ j T p ā‡ j ā‡ T p - 1 + ā‡ ā‡ SPND T p ā‡ T p - T p - 1
  • Step 2 Calculation of the fast and thermal sensitivities of the collectron
  • the PMM transmits the matrices M p and H p to the calculator CALC which replaces them with the interpretation matrices M and H at the moment T p ' > T p .
  • the detector DNR is a fission chamber having a fissile threshold deposit.
  • a fission chamber is represented, for example, on Figures 1A and 1B .
  • the fissile threshold deposit may be a Pu242 plutonium deposit, as previously mentioned.
  • the fissile threshold deposit may also be a uranium U238 or neptunium Np237 or Th232 thorium deposit.
  • a connecting cable connects the detector DNR to the circuit C1. This connecting cable is used to both polarize electrically the detector and transmit the signal delivered by the fission chamber to the processing circuit C1.
  • the part of the cable subjected to the neutron flux must be mineral insulator (alumina, silica, magnesia).
  • the cable is preferably integrated in the detector and its outside diameter is smaller than that of the detector.
  • This cable must, in addition, have electrical properties compatible with a fission chamber operation in fluctuation mode, namely: a low linear capacitance, a characteristic impedance close to the input impedance of the electronics (typically 50 ā‡ ) and low transfer impedance to ensure high immunity to parasites.
  • Copper conductor and shielding cable is used for this purpose, with a stainless steel or inconel jacket to ensure good mechanical resistance in the reactor.
  • the cable has, for example, a diameter substantially between 2 mm and 2.2 mm for a fission chamber of 3 mm in diameter and substantially equal to 1.3 mm for a fission chamber of 1.5 mm in diameter (optimization of the impedance transfer).
  • the figure 5 represents a block diagram which details the conditioning and processing circuit C1 according to the preferred embodiment of the invention.
  • the circuit C1 comprises a PA preamplifier, a CAN / digital converter, a digital variance calculation processor VAR and a high voltage generator HT.
  • the detector DNR is connected to the circuit C1 by a CAB cable.
  • the PA preamplifier converts current iR (t) that it receives, via the CAB cable, an analog voltage Va (t) which is transmitted to the analog / digital converter CAN.
  • the high voltage T delivered by the high voltage generator HT passes via the preamplifier PA and the cable CAB to the detector DNR.
  • the signal processing electronics implement the fluctuation mode based on Campbell's theorem (see reference [4]).
  • This theorem demonstrates that the electrical signal produced by a stack of pulses in a fission chamber has interesting statistical properties.
  • the average and the variance of this signal are indeed both proportional to the incident neutron flux, but while the average is also proportional to the average charge Q created in the gas for each detected neutron, the variance is proportional to the this load squared high.
  • a fission chamber is operated in "current mode", when one is interested in the average of the current it produces.
  • the sensitivity of a fission chamber in current mode is proportional to Q.
  • the charge created by a neutron being generally 100 times higher than that produced by a gamma photon, so will the sensitivities relative to the neutron and gamma fluxes, respectively.
  • This property makes the fission chamber a neutron detector generally well suited to the measurement of neutrons in the presence of intense gamma radiation (typical situation of reactor measurements).
  • the rejection of gamma radiation in the current mode may, however, be insufficient: either because the gamma radiation is very intense (in irradiation reactor in particular), or because the neutron sensitivity is reduced (this is the case of fission chambers at Pu242 whose sensitivity to fast neutrons is two orders of magnitude lower than that of conventional fission chambers at U235 with respect to thermal neutrons).
  • the "current mode" signal must then be corrected by subtracting the signal produced by a neighboring fission chamber devoid of fissile deposit (thus sensitive exclusively to gamma radiation). It is then necessary to use two detectors to access the neutron flux.
  • the electrical signal from the fission chamber is, after amplification and conditioning (PA preamplifier), digitized using the analog-digital converter CAN.
  • PA preamplifier amplification and conditioning
  • the calculation of the variance is then done digitally, using a digital electronic circuit, for example FPGA (FPGA for "Field Programmable Gate Arrayā€ or FPGA Programmable Gate Array) or using a processor.
  • FPGA Field Programmable Gate Array
  • FPGA Programmable Gate Array FPGA Programmable Gate Array
  • the frequency Fe is, for example, equal to 1 MHz.
  • the digital signal Vn (t n ) is then processed by the digital processor VAR.
  • the numerical variance VR (t n ) can possibly be decimated (up to a factor N) since its bandwidth is lower than that of the original signal Vn (t n ).
  • the measurement chain thus produces a numerical value of the variance proportional to the flow of incident neutrons, for example every 100 ms.
  • thermal neutrons The measurement of thermal neutrons is carried out using a collectron (SPND), for example rhodium, or using a uranium fission chamber U235 also exploited, preferably in fluctuation mode (rejection of gamma radiation).
  • SPND collectron
  • uranium fission chamber U235 also exploited, preferably in fluctuation mode (rejection of gamma radiation).
  • the measurement of thermal neutrons is used to evaluate the evolution of the isotopic composition of the deposition of the fission chamber under flow. Indeed, under the effect of an intense heat flux, fissile isotopes are formed by successive transmutations of Pu242 plutonium, making the plutonium Pu242 fission chamber more and more sensitive to thermal neutrons.
  • the figure 6 illustrates, by way of non-limiting example for thermal and fast flows of 1E15 n / cm 2 / s, the total fission rate (KS curve on the figure 6 ) and the contribution to the total fission rate of the different isotopes formed by successive transmutations, namely the plutonium Pu242 (K1 curve on the figure 6 ), the plutonium Pu241 (curve K2 on the figure 6 ), americium AM243 (curve K3 on the figure 6 ), CM244 curium (curve K4 on the figure 6 ) and curium CM245 (curve K5 on the figure 6 ).
  • the most troublesome of the fissile isotopes that appear by transmutations successive is the Cm245 (curve K5), from a thermal fluence of the order of 10 21 n / cm 2 .
  • the electronic conditioning and processing circuit C2 (not shown in the figures) is advantageously identical to the circuit C1 if the detector DNT is a fission chamber at U235. If the thermal detector DNT is a collectron, the circuit C2 is a digital current-voltage conversion circuit. This function can, for example, be provided by a digital voltmeter which measures the voltage drop across a resistor (for example from 10 k ā‡ to 1%) in which the current generated by the collectron flows.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Measurement Of Radiation (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

    Domaine technique et art antƩrieur
  • La prĆ©sente invention concerne un dispositif de mesure en ligne d'un flux de neutrons rapides et Ć©pithermiques sur un intervalle d'Ć©nergie [Emin, Emax].
  • A titre d'exemple non limitatif, l'invention s'applique de faƧon particuliĆØrement avantageuse Ć  la mesure en ligne d'un flux de neutrons rapides et Ć©pithermiques dans un coeur de rĆ©acteur, avec les contraintes suivantes :
    • le flux neutronique global est Ć©levĆ© (par exemple 1E14 n/cm2/s ou plus) ;
    • la contribution des neutrons thermiques au flux neutronique global est importante ;
    • le rayonnement gamma est intense ;
    • on veut une mesure en temps rĆ©el (en ligne) pour suivre les Ć©volutions temporelles du flux rapide ;
    • on veut une mesure effectuĆ©e en coeur, plus communĆ©ment appelĆ©e mesure Ā« in-core Ā».
  • Les contraintes mentionnĆ©es ci-dessus s'appliquent Ć  l'instrumentation en rĆ©acteur d'essai de matĆ©riaux, plus gĆ©nĆ©ralement dĆ©signĆ©e sous l'appellation d'instrumentation MTR (MTR pour Ā« Material Testing Reactor Ā»), ou Ć  la surveillance des coeurs de rĆ©acteur de puissance (plus gĆ©nĆ©ralement dĆ©signĆ©e sous l'appellation de Ā« surveillance Ā« in-core Ā» Ā»).
  • La mesure des flux de neutrons rapides s'effectue actuellement Ć  l'aide de deux classes de dĆ©tecteurs : les dĆ©tecteurs par activation et les dĆ©tecteurs en ligne.
  • Les dĆ©tecteurs par activation sont des dosimĆØtres dont les matĆ©riaux sont convenablement choisis pour fournir la fluence neutronique dans une bande d'Ć©nergie d'intĆ©rĆŖt. Il s'agit d'une mĆ©thode Ć©prouvĆ©e (cf. rĆ©fĆ©rence [1]) dont les inconvĆ©nients sont les suivants :
    • les dosimĆØtres doivent ĆŖtre retirĆ©s du coeur pour ĆŖtre analysĆ©s (il s'agit donc d'une mesure a posteriori disponible aprĆØs la fin du cycle du rĆ©acteur) ;
    • la quantitĆ© obtenue est le flux intĆ©grĆ© sur la durĆ©e de l'irradiation et il n'est alors pas possible d'avoir accĆØs aux Ć©volutions temporelles.
  • Les dĆ©tecteurs en ligne, contrairement aux dĆ©tecteurs prĆ©cĆ©dents, permettent une mesure en ligne dans le coeur du rĆ©acteur. Selon l'art connu, les dĆ©tecteurs en ligne sont des chambres Ć  fission Ć  uranium sous Ć©cran absorbeur des neutrons thermiques. Les chambres Ć  fission sont des dĆ©tecteurs neutroniques bien connus et trĆØs rĆ©pandus pour le contrĆ“le neutronique des rĆ©acteurs (dĆ©tecteurs Ā« ex-core Ā» ou Ā« in-core Ā»). Certaines chambres, dites miniatures voire sub-miniatures, se prĆ©sentent extĆ©rieurement sous la forme de cylindres de diamĆØtre de 4mm ou moins, ce qui se prĆŖte particuliĆØrement bien Ć  l'instrumentation Ā« in-core Ā», domaine visĆ© dans la prĆ©sente demande de brevet. La demande de brevet franƧais dĆ©posĆ©e, au nom du Commissariat Ć  l'Ɖnergie Atomique, le 29 novembre 1994 et publiĆ©e sous le numĆ©ro 2 727 526 (cf. rĆ©fĆ©rence [2]) donne une description dĆ©taillĆ©e d'une telle chambre Ć  fission. La dĆ©tection des neutrons se fait par l'intermĆ©diaire d'un dĆ©pĆ“t fissile qui est le siĆØge de fissions nuclĆ©aires. Ce dĆ©pĆ“t est, dans une trĆØs grande majoritĆ© de cas, constituĆ© d'uranium U235, ce qui est bien adaptĆ© Ć  la mesure des neutrons thermiques ou Ć  la mesure des neutrons rapides en l'absence de composante thermique. Pour la mesure des neutrons rapides avec les contraintes exposĆ©es ci-dessus, l'utilisation de l'uranium U238, pour lequel la section efficace de fission prĆ©sente un seuil, est - a priori - prĆ©fĆ©rentiellement indiquĆ©e. Une difficultĆ© s'Ć©lĆØve toutefois: sous l'effet des captures des neutrons thermiques, l'uranium U238 se transmute en plutonium Pu239, isotope fissile vis-Ć -vis des neutrons thermiques. Pour pallier cette difficultĆ©, Y. Kashchuk et al. (cf. rĆ©fĆ©rence [3]) ont prĆ©conisĆ© l'utilisation d'Ć©crans (B10, Cd, Gd ...) dont le rĆ“le est d'absorber les neutrons thermiques avant qu'ils n'atteignent le dĆ©tecteur proprement dit. Cette solution soulĆØve toutefois des difficultĆ©s majeures : encombrement difficilement compatible avec l'utilisation Ā« in-core Ā», perturbation locale du flux thermique, tenue mĆ©canique, usure sous l'irradiation, Ć©chauffement du dĆ©tecteur.
  • Un autre type de dĆ©tecteur en ligne est connu de la Demanderesse. Cet autre type de dĆ©tecteur en ligne est un art antĆ©rieur qui est dĆ©crit dans une On connaĆ®t encore la publication intitulĆ©e "Thermal and fast neutron detection in chemical vapor deposition single-crystal diamond detectors", publiĆ©e le 3 mars 2008, Journal of Applied Physics 103, 054501. Ce document dĆ©crit un dispositif de mesure en ligne d'un flux de neutrons. En particulier, avec le dispositif dĆ©crit dans ce document, une mesure de flux de neutrons rapides est effectuĆ©e dans une couche appelĆ©e "CVD intrinsic" alors qu'une mesure de flux de neutrons thermiques est effectuĆ©e grĆ¢ce Ć  une couche supplĆ©mentaire de 6LiF enrichi dĆ©posĆ©e sur le mĆŖme dĆ©tecteur. demande de brevet franƧais, dĆ©posĆ©e par la Demanderesse le 21 dĆ©cembre 2007 sous le numĆ©ro d'enregistrement national 07 60229 et publiĆ©e aprĆØs le dĆ©pĆ“t de la prĆ©sente demande avec numĆ©ro de publication FR 2 925750 . Cet autre type des dĆ©tecteur est constituĆ© par une chambre Ć  fission contenant du plutonium Pu242 pur Ć  au moins 99, 5%. Les figures 1A et 1B reprĆ©sentent deux exemples d'une telle chambre Ć  fission et la figure 2 reprĆ©sente un dispositif apte Ć  effectuer le dĆ©pĆ“t de plutonium Pu242 dans ces chambres Ć  fission. L'avantage d'une telle chambre Ć  fission est de rĆ©pondre aux besoins dĆ©finis prĆ©cĆ©demment sans utiliser d'Ć©cran aux neutrons thermiques.
  • La figure 1A reprĆ©sente un premier exemple de chambre Ć  fission contenant du plutonium Pu242 pur Ć  au moins 99,5%. En termes de structure mĆ©canique, cette chambre Ć  fission est identique Ć  celle dĆ©crite dans la demande de brevet publiĆ©e sous le numĆ©ro 2 727 526.
  • La rĆ©fĆ©rence 20 dĆ©signe un tube, de diamĆØtre extĆ©rieur sensiblement Ć©gal, par exemple, Ć  1,5mm et qui sert Ć  la fois d'enveloppe Ć  la chambre Ć  fission et, pour au moins une partie dĆ©signĆ©e par la rĆ©fĆ©rence 21, de cathode. Ce tube est par exemple en Inconel ou en inox.
  • A l'intĆ©rieur de la chambre, deux isolateurs 22, 24, par exemple en rubis, supportent une anode centrale 26 recouverte d'un dĆ©pĆ“t fissile Ć  seuil, par exemple du plutonium Pu242, dont le pourcentage de puretĆ© est au moins Ć©gal Ć  99,5 %.
  • Le tube 20 est fermĆ© Ć  une de ses extrĆ©mitĆ©s 23 par un bouchon 28, par exemple en inox. Lors de son utilisation, la chambre est remplie d'un gaz neutre, par exemple de l'argon ou de l'argon additionnĆ© d'une faible teneur d'azote (par exemple 4%) Ć  une pression de quelques bars (par exemple 5 bars), et le bouchon 28 sert Ć  la fois au remplissage et Ć  l'Ć©tanchĆ©itĆ© de la chambre. L'anode 26 est reliĆ©e Ć  des Ć©lĆ©ments conducteurs 32, 36 pour transmettre un signal Ć©lectrique vers l'extĆ©rieur de la chambre. Ces Ć©lĆ©ments conducteurs 32, 36 sont eux-mĆŖmes reliĆ©s Ć  l'Ć©lĆ©ment conducteur 44 d'un cĆ¢ble 11 de liaison qui relie l'ensemble Ć  un dispositif de connexion comme cela est dĆ©crit dans la demande de brevet 2 727 526 .
  • Le conducteur 32 est reliĆ© Ć  l'extrĆ©mitĆ© 35 du conducteur 36, Ć  l'intĆ©rieur du tube 20 qui dĆ©limite la chambre de fission, tandis que l'autre extrĆ©mitĆ© 37 du conducteur 36 qui traverse le bouchon 34, en alumine de grande puretĆ©, est reliĆ©e au conducteur 44 Ć  l'intĆ©rieur du prolongement du fourreau mĆ©tallique extĆ©rieur 30 du cĆ¢ble 11. Le bouchon 34 est serti, au moins en partie, dans une gaine mĆ©tallique 38 pouvant ĆŖtre soudĆ©e sur l'extrĆ©mitĆ© 40 du tube 20.
  • La figure 1B reprĆ©sente un deuxiĆØme exemple de chambre Ć  fission contenant du plutonium Pu242 pur Ć  au moins 99,5%.
  • Il comporte un corps de chambre 1, en un matĆ©riau Ć©lectriquement conducteur, qui est l'enveloppe extĆ©rieure du dispositif. On peut Ć©galement rĆ©aliser l'enceinte en un tout autre matĆ©riau et dĆ©poser une couche de matĆ©riau Ć©lectriquement conducteur sur l'intĆ©rieur des parois de l'enceinte pour former l'Ć©lectrode externe 1. Des moyens 2, Ć©galement en un matĆ©riau Ć©lectriquement conducteur, forment un support, sur lequel est dĆ©posĆ©e une fine couche 120 de radioĆ©lĆ©ment, soit, conformĆ©ment Ć  la prĆ©sente invention, du plutonium 242 de puretĆ© au moins 99,5 %. En fonctionnement, ces moyens 2 formeront par exemple une anode, le corps 1 formant cathode. Entre cathode et anode sera emprisonnĆ© un gaz ionisable, par exemple de l'argon Ć  1,5 bar.
  • Un passage Ć©tanche 3 (mĆ©tal et alumine) maintient le substrat 2 et permet la connexion Ć©lectrique vers l'extĆ©rieur tout en assurant l'Ć©tanchĆ©itĆ© d'une extrĆ©mitĆ© de la chambre.
  • Une vis 4 permet de bloquer le substrat sur le passage Ć©tanche.
  • La rĆ©fĆ©rence 5 dĆ©signe un bouchon, et la rĆ©fĆ©rence 6 une surĆ©paisseur soudĆ©e sur le fil du passage Ć©tanche pour faciliter la connexion Ć©lectrique.
  • Une telle chambre Ć  fission peut avoir, par exemple, un diamĆØtre externe de l'ordre de 4mm.
  • Quel que soit le mode de rĆ©alisation de la chambre Ć  fission au plutonium Pu242, une fine couche de matiĆØre fissile comprenant du plutonium Pu242 est dĆ©posĆ©e sur l'une des Ć©lectrodes ou sur les deux Ć©lectrodes. L'enceinte est transparente Ć  la transmission des neutrons, c'est-Ć -dire qu'elle laisse passer les neutrons Ć  travers ses parois. En d'autres termes, le matĆ©riau constitutif de la paroi de l'enceinte prĆ©sente une faible section efficace de capture neutronique. Les Ć©lectrodes sont soit rĆ©alisĆ©es totalement en matĆ©riau Ć©lectriquement conducteur, soit revĆŖtues d'une couche de matĆ©riau Ć©lectriquement conducteur.
  • La couche de plutonium Pu242 peut ĆŖtre rĆ©alisĆ©e par Ć©lectrodĆ©position, par exemple Ć  l'aide d'un dispositif tel que celui reprĆ©sentĆ© en figure 2.
  • Le plutonium Pu242 Ć  dĆ©poser peut se prĆ©senter sous forme d'une solution liquide 100, placĆ©e dans un bĆ©cher 102, dans une solution d'Ć©lectrolyse comprenant un mĆ©lange d'acide nitrique et d'oxalate d'ammonium.
  • L'Ć©lectrode ou le support 120 sur laquelle/lequel le dĆ©pĆ“t est Ć  rĆ©aliser est maintenu(e) par deux embouts 111, 113 en tĆ©flon, Ć  l'extrĆ©mitĆ© d'une tige 116, par exemple en platine recouvert d'un film en tĆ©flon. L'ensemble est placĆ© dans la solution. Celle-ci peut ĆŖtre agitĆ©e pour rester homogĆØne, par exemple en plaƧant un barreau aimantĆ© 104 au fond du bĆ©cher 102 et en plaƧant ce dernier sur un agitateur magnĆ©tique 106.
  • Un fil 105, en un matĆ©riau Ć©lectriquement conducteur (par exemple en platine), est placĆ© dans la solution 102. Des moyens d'alimentation 107 permettent de faire circuler un courant Ć©lectrique dans ce fil et dans la solution. Ce courant va faire se dĆ©placer le plutonium de la solution, qui vient se fixer sur l'Ć©lectrode ou le support 120.
  • On peut Ć©ventuellement mettre l'Ć©lectrode ou le support 120 en rotation, Ć  l'aide d'un moteur 110, de maniĆØre Ć  obtenir un dĆ©pĆ“t homogĆØne sur toute la surface en contact avec la solution d'Ć©lectrolyse. Par exemple, on peut faire tourner l'Ć©lectrode interne Ć  60 tours/min, comme indiquĆ© par la flĆØche 108.
  • Ce procĆ©dĆ© peut s'appliquer aussi bien Ć  l'Ć©lectrode interne qu'Ć  l'Ć©lectrode externe. Si l'on souhaite que le plutonium ne soit dĆ©posĆ© que sur les parois intĆ©rieures de l'Ć©lectrode externe (celle-ci ayant alors par exemple une forme cylindrique), on recouvre la paroi externe de l'Ć©lectrode externe d'une couche de matĆ©riau de protection, par exemple une couche de tĆ©flon.
  • Dans les cas prĆ©sentĆ©s ci-dessus, en faisant circuler un courant d'environ 350mA pendant deux heures, on peut dĆ©poser 90 Ć  95 % du plutonium prĆ©sent dans la solution d'Ć©lectrolyse sur l'Ć©lectrode ou le support 120.
  • Un problĆØme de la chambre Ć  fission au plutonium Pu242 est la prĆ©sence d'impuretĆ©s fissiles (Pu239 et Pu241) dans le dĆ©pĆ“t qui confĆØre Ć  la chambre une sensibilitĆ© aux neutrons thermiques, laquelle prĆ©sence, mĆŖme si elle est faible, ne peut pas ĆŖtre totalement nĆ©gligĆ©e. De plus, la production d'isotopes fissiles par transmutations successives, mĆŖme si elle est considĆ©rablement infĆ©rieure Ć  celle observĆ©e pour l'uranium U238, contribue Ć  accroĆ®tre cette sensibilitĆ© thermique au cours de l'irradiation. La chambre Ć  fission au plutonium Pu242 ne peut donc ĆŖtre utilisĆ©e sans Ć©cran que dans des circonstances bien particuliĆØres, Ć  savoir un flux thermique pas trop Ć©levĆ© ou des irradiations de courtes durĆ©es.
  • Il existe donc un rĆ©el besoin de rĆ©aliser un systĆØme de mesure permettant de discriminer, dans le signal produit par une chambre Ć  fission Ć  seuil, la contribution due aux neutrons rapides (grandeur d'intĆ©rĆŖt) de celle due aux neutrons thermiques. Tel que dĆ©fini dans la revendication 1.
  • ExposĆ© de l'invention
  • Pour rĆ©pondre aux besoins mentionnĆ©s ci-dessus, l'invention propose un dispositif de mesure en ligne d'un flux de neutrons rapides et Ć©pithermiques
  • Selon une caractĆ©ristique supplĆ©mentaire de l'invention, le dispositif de mesure comprend, en outre, des moyens pour calculer un flux neutronique complet Ļ•(tn, E) Ć  l'aide de l'Ć©quation : Ļ• t n E = Ļ• 1 t n ā‹… f 1 E + Ļ• 2 t n ā‹… f 2 E Īø ,
    Figure imgb0001
    oĆ¹
    • f1(E)=ffiss(E)+Ī±fepi(E), et
    • f2(E, Īø)=fmxw(E, Īø),
    ffiss (E) Ć©tant une composante de fission du flux de neutrons, fepi(E) Ć©tant une composante Ć©pithermique du flux de neutrons, fmxw(E, Īø) Ć©tant une composante maxwellienne du flux de neutrons et Ī± Ć©tant un coefficient de proportionnalitĆ© entre la composante Ć©pithermique du flux de neutrons et la composante de fission du flux de neutrons.
  • Selon une autre caractĆ©ristique supplĆ©mentaire de l'invention, le dispositif de mesure comprend, en outre, des moyens pour calculer, sur l'intervalle [Emin, Emax], Nr rĆ©sultats intĆ©graux aux instants tn, Nr Ć©tant un nombre entier supĆ©rieur ou Ć©gal Ć  1, un rĆ©sultat intĆ©gral de rang k (k=1, 2, ..., Nr) Ć©tant donnĆ© par l'Ć©quation : R k t n = m k ā¢ 1 ā‹… Ļ• 1 t n + m k ā¢ 2 Īø ā‹… Ļ• 2 t n
    Figure imgb0002

    avec m k ā¢ 1 = āˆ« E min E max ā¢ f 1 E ā‹… Y k E ā¢ dE ,
    Figure imgb0003

    et m k ā¢ 2 = āˆ« E min E max ā¢ f 2 E Īø 0 ā‹… Y k E ā¢ dE ,
    Figure imgb0004

    oĆ¹
    • f1(E)=ffiss(E) + Ī±fepi(E), et
    • f2(E, Īø) = fmxw(E, Īø),
    ffiss(E) Ć©tant une composante de fission du flux de neutrons, fepi(E) Ć©tant une composante Ć©pithermique du flux de neutrons, fmxw(E, Īø) Ć©tant une composante maxwellienne du flux de neutrons et Ī± Ć©tant un coefficient de proportionnalitĆ© entre la composante Ć©pithermique du flux de neutrons et la composante de fission du flux de neutrons, et oĆ¹
    • Yk(E) est une fonction de rĆ©ponse qui caractĆ©rise le rĆ©sultat intĆ©gral de rang k.
  • Selon une caractĆ©ristique particuliĆØre de l'invention, la fonction de rĆ©ponse Yk(E) est une fonction d'identification d'une bande d'Ć©nergie d'intĆ©rĆŖt [Ea, Eb] qui coĆÆncide avec l'intervalle [Emin, Emax] ou qui est comprise dans l'intervalle [Emin, Emax] telle que : Y k E = 1 Si E a < E < E b
    Figure imgb0005

    et Y k E = 0
    Figure imgb0006

    sinon
    de telle sorte que Rk(tn) est le flux des neutrons dont l'Ć©nergie est comprise entre Ea et Eb, Ć  savoir : R k t n = āˆ« E a E b ā¢ Ļ• t n E ā¢ dE .
    Figure imgb0007
  • Selon une autre caractĆ©ristique particuliĆØre de l'invention, la fonction de rĆ©ponse Yk(E) est une section efficace macroscopique de rĆ©action Ī£r(E) telle que : āˆ‘ r E = āˆ‘ i N i Ź¹ ā‹… Ļƒ i r E ,
    Figure imgb0008

    oĆ¹
    Ni' est un nombre d'atomes d'un isotope i prĆ©sent dans un milieu et Ļƒ i r E
    Figure imgb0009
    est une section efficace microscopique de l'isotope i vis-Ć -vis d'une rĆ©action r dans le milieu, de telle sorte que Rk(tn) est un taux de la rĆ©action r dans le milieu, Ć  savoir : R k t n = āˆ« E min E max ā¢ Ļ• t n E ā¢ Ī£ r E ā¢ dE
    Figure imgb0010

    la rƩaction r Ʃtant, par exemple, une rƩaction de fission ou de capture ou de diffusion ou d'endommagement.
  • Selon une caractĆ©ristique supplĆ©mentaire du dispositif de mesure de l'invention, le dĆ©tecteur de neutrons rapides et le dĆ©tecteur de neutrons thermiques Ć©tant des chambres Ć  fission, les sensibilitĆ©s Ć©volutives I11(tn), I12(tn), I21(tn) et I22(tn) s'Ć©crivent respectivement : I 11 t n = āˆ‘ i N i t n āˆ« E min E max ā¢ f 1 E ā¢ Ļƒ i f E ā¢ dE
    Figure imgb0011
    I 12 t n = āˆ‘ i N i t n āˆ« E min E max ā¢ f 2 E Īø ā¢ Ļƒ i f E ā¢ dE
    Figure imgb0012

    oĆ¹ Ni(tn) est la composition isotopique Ć  l'instant tn d'un isotope i du matĆ©riau apte Ć  dĆ©tecter principalement des neutrons rapides et Ļƒ i f E
    Figure imgb0013
    est la section efficace de l'isotope i ; et I 21 t n = āˆ‘ j N j t n āˆ« E min E max ā¢ f 1 E ā¢ Ļƒ j f E ā¢ dE
    Figure imgb0014
    I 22 t n = āˆ‘ j N j t n āˆ« E min E max ā¢ f 2 E Īø ā¢ Ļƒ i f E ā¢ dE
    Figure imgb0015

    oĆ¹ Nj(tn) est la composition isotopique Ć  l'instant tn d'un isotope j du matĆ©riau apte Ć  dĆ©tecter principalement des neutrons thermiques et Ļƒ j f E
    Figure imgb0016
    est la section efficace de l'isotope j.
  • Selon une caractĆ©ristique supplĆ©mentaire de l'invention, le dĆ©tecteur de neutrons thermiques est une chambre Ć  fission contenant de l'Uranium U235.
  • Selon une autre caractĆ©ristique supplĆ©mentaire de l'invention, le dĆ©tecteur de neutrons rapides Ć©tant une chambre Ć  fission et le dĆ©tecteur de neutrons thermiques Ć©tant un collectron, les sensibilitĆ©s Ć©volutives I11(tn), I12(tn), I21(tn) et I22(tn) s'Ć©crivent, respectivement : I 11 t n = āˆ‘ i N i t n āˆ« E min E max ā¢ f 1 E ā¢ Ļƒ i f E ā¢ dE ,
    Figure imgb0017

    et I 12 t n = āˆ‘ i N i t n āˆ« E min E max ā¢ f 2 E Īø ā¢ Ļƒ i f E ā¢ dE
    Figure imgb0018

    oĆ¹ Ni(tn) est la composition isotopique Ć  l'instant tn d'un isotope i du matĆ©riau apte Ć  dĆ©tecter principalement des neutrons rapides et Ļƒ j f E
    Figure imgb0019
    est la section efficace de l'isotope i ; et I 21 t n = U ĪØ t n ā¢ āˆ« E min E max ā¢ f 1 E ā¢ s Rh E ā¢ dE
    Figure imgb0020
    I 22 t n = U ĪØ t n ā¢ āˆ« E min E max ā¢ f 2 E Īø ā¢ s Rh , E ā¢ dE
    Figure imgb0021

    oĆ¹ U [Ļˆ(tn)] est une fonction d'usure du collectron tabulĆ©e en fonction de la fluence thermique Ć  l'instant tn Ļˆ(tn) du matĆ©riau apte Ć  dĆ©tecter principalement des neutrons thermiques et SRh(E) est la sensibilitĆ© du collectron.
  • Selon une caractĆ©ristique supplĆ©mentaire de l'invention, le dĆ©tecteur de neutrons thermiques est un collectron au Rhodium ou au Vanadium ou Ć  l'Argent.
  • Selon une autre caractĆ©ristique supplĆ©mentaire de l'invention, le dĆ©tecteur de neutrons rapides est une chambre Ć  fission avec un dĆ©pĆ“t fissile Ć  seuil, par exemple une chambre Ć  fission contenant du plutonium Pu242 pur Ć  au moins 99,5%.
  • Selon une autre caractĆ©ristique supplĆ©mentaire de l'invention, la chambre Ć  fission contenant du plutonium Pu242 pur Ć  au moins 99,5% comprend :
    • * une enceinte apte Ć  contenir un gaz de dĆ©tection sous pression et dont les parois laissent passer les neutrons,
    • * une premiĆØre et une seconde Ć©lectrode, isolĆ©es Ć©lectriquement l'une de l'autre, entre lesquelles une tension peut ĆŖtre appliquĆ©e,
    • * une matiĆØre fissile, comportant du plutonium 242 pur Ć  au moins 99,5 % atomique, disposĆ©e sur l'une au moins des deux Ć©lectrodes, et
    • * un gaz de dĆ©tection, inclus dans l'enceinte sous pression, ionisable par des produits de fissions.
  • Selon une caractĆ©ristique supplĆ©mentaire de l'invention, le premier circuit Ć©lectronique comprend un processeur numĆ©rique de calcul de variance qui dĆ©livre le signal numĆ©rique VR(tn) sous la forme d'une variance numĆ©rique du signal dĆ©livrĆ© par le dĆ©tecteur de neutrons rapides.
  • Selon une autre caractĆ©ristique supplĆ©mentaire de l'invention, le second circuit Ć©lectronique comprend un processeur numĆ©rique de calcul de variance qui dĆ©livre le signal numĆ©rique VT(tn) sous la forme d'une variance numĆ©rique du signal dĆ©livrĆ© par le dĆ©tecteur de neutrons thermiques.
  • Selon une autre caractĆ©ristique supplĆ©mentaire de l'invention, le second circuit Ć©lectronique est un circuit numĆ©rique de conversion courant-tension.
  • De faƧon prĆ©fĆ©rentielle, le dispositif de mesure de l'invention rejette la composante du signal due au rayonnement gamma. Des essais rĆ©alisĆ©s en rĆ©acteur d'irradiation montrent en effet que le rayonnement gamma peut ĆŖtre responsable de plus de la moitiĆ© du courant moyen produit par une chambre Ć  fission Ć  seuil. Il est recommandĆ©, dans ce cas, d'exploiter la chambre Ć  fission en mode dit de Ā« fluctuation Ā» ou de Ā« Campbell Ā». Cela consiste Ć  s'intĆ©resser Ć  la variance du courant produit par la chambre Ć  fission plutĆ“t qu'Ć  sa moyenne. La contribution du rayonnement gamma peut alors ĆŖtre nĆ©gligĆ©e car cette contribution ne reprĆ©sente que quelques pourcents, tout au plus, de la variance.
  • Dans le cadre du mode de rĆ©alisation prĆ©fĆ©rentiel de l'invention selon lequel la contribution du rayonnement gamma est rendue nĆ©gligeable, un dispositif de mesure particuliĆØrement avantageux de l'invention comprend, par exemple, les Ć©lĆ©ments essentiels suivants:
    • Un dĆ©tecteur neutronique sensible principalement aux neutrons rapides tel que, par exemple, une chambre Ć  fission au plutonium Pu242 contenant de l'argon additionnĆ© de 4% d'azote ;
    • une Ć©lectronique de traitement permettant d'exploiter en mode fluctuation le signal dĆ©livrĆ© par la chambre Ć  fission au plutonium Pu242 ;
    • une liaison par cĆ¢ble compatible d'une utilisation en mode fluctuation et qui relie la chambre Ć  fission au plutonium Pu242 Ć  l'Ć©lectronique de traitement qui exploite le signal dĆ©livrĆ© par la chambre Ć  fission, (l'impĆ©dance caractĆ©ristique du cĆ¢ble est alors adaptĆ©e Ć  l'impĆ©dance d'entrĆ©e de l'Ć©lectronique de traitement) ;
    • un dĆ©tecteur neutronique sensible principalement aux neutrons thermiques tel que, par exemple, un collectron (SPND pour Ā« Self Powered Neutron Detector Ā» en Anglais) ou une chambre Ć  fission Ć  l'uranium U235 ;
    • des codes de calcul (code d'Ć©volution CE et code de calcul PMM (PMM pour Ā« Processus de ModĆ©lisation des Mesures Ā») ; et
    • un calculateur.
    BrĆØve description des figures
  • D'autres caractĆ©ristiques et avantages de l'invention apparaĆ®tront Ć  la lecture d'un mode de rĆ©alisation prĆ©fĆ©rentiel fait en rĆ©fĆ©rence aux figures jointes parmi lesquelles :
    • les figures 1A-1B reprĆ©sentent deux exemples de chambre Ć  fission susceptibles d'ĆŖtre utilisĆ©es pour rĆ©aliser un dispositif de mesure conforme Ć  l'invention ;
    • la figure 2 reprĆ©sente un dispositif apte Ć  dĆ©poser de la matiĆØre fissile dans les chambres Ć  fission reprĆ©sentĆ©es sur les figures 1A et 1B ;
    • la figure 3 reprĆ©sente un schĆ©ma de principe de dispositif de mesure conforme Ć  l'invention ;
    • la figure 4 reprĆ©sente un diagramme temporel qui illustre le fonctionnement du dispositif de mesure de l'invention de la figure 3 ;
    • la figure 5 reprĆ©sente un schĆ©ma de principe d'un circuit particulier qui participe au dispositif de mesure de l'invention ;
    • la figure 6 illustre la contribution au signal de mesure issu d'une chambre Ć  fission au plutonium Pu242 des diffĆ©rents isotopes formĆ©s par transmutations successives (captures thermiques) ;
  • Sur toutes les figures, les mĆŖmes repĆØres dĆ©signent les mĆŖmes Ć©lĆ©ments.
  • ExposĆ© dĆ©taillĆ© de modes de rĆ©alisation particuliers de l'invention
  • Les figures 1A, 1B et 2 ont Ć©tĆ© dĆ©crites prĆ©cĆ©demment. Il est donc inutile d'y revenir.
  • La figure 3 reprĆ©sente un schĆ©ma de principe de dispositif de mesure en ligne de flux de neutrons rapides et Ć©pithermiques conforme Ć  l'invention et la figure 4 rassemble des diagrammes temporels utiles Ć  la comprĆ©hension du fonctionnement du dispositif de mesure de l'invention reprĆ©sentĆ© en figure 3.
  • Le dispositif comprend un dĆ©tecteur DNR pour la mesure de neutrons rapides, un premier circuit Ć©lectronique C1 de conditionnement et de traitement du signal issu du dĆ©tecteur DNR, un dĆ©tecteur DNT pour la mesure de neutrons thermiques, un second circuit Ć©lectronique C2 de conditionnement et de traitement du signal issu du dĆ©tecteur DNT, un code d'Ć©volution CE, un code de calcul PMM et un calculateur CALC.
  • Le dĆ©tecteur DNR dĆ©livre un courant iR(t) et le dĆ©tecteur DNT dĆ©livre un courant iT(t). Les courants iR(t) et iT(t) sont transmis, respectivement, au circuit de conditionnement et de traitement C1 et au second circuit de conditionnement et de traitement C2 qui dĆ©livrent, respectivement, un signal numĆ©rique VR(tn) et un signal numĆ©rique VT(tn) Ć  des instants discrets tn. Comme cela apparaĆ®tra ci-dessous, le signal numĆ©rique VR(tn) est, prĆ©fĆ©rentiellement, la variance numĆ©rique du courant iR(t). L'invention concerne toutefois des signaux numĆ©riques autres que la variance du courant, comme, par exemple, la valeur moyenne du courant. Les signaux numĆ©riques VR(tn) et VT(tn) sont transmis au calculateur CALC.
  • Le calculateur CALC calcule, Ć  chaque instant tn, au moins un rĆ©sultat intĆ©gral Rk(tn) (k=1, 2, ..., NR) sur un intervalle d'Ć©nergie choisi [Emin, Emax] Ć  partir des signaux numĆ©riques VR (tn) et VT(tn) et de donnĆ©es dĆ©livrĆ©es par le code d'Ć©volution CE et le code de calcul PMM. L'indice k est un indice courant variant de 1 Ć  NR, NR reprĆ©sentant un nombre maximal de rĆ©sultats intĆ©graux calculĆ©s au mĆŖme instant tn.
  • Le calcul des rĆ©sultats Rk(tn) va maintenant ĆŖtre dĆ©crit.
  • A chaque instant tn, le calculateur CALC reƧoit les signaux de mesure VR(tn) et VT(tn) et effectue les calculs suivants :
    1. 1) Calcul d'une composante de flux de neutrons rapides et Ć©pithermiques Ļ•1(tn) et d'une composante de flux de neutrons thermiques Ļ•2(tn) telles que : Ļ• 1 t n = h 11 ā‹… VR t n + h 12 ā‹… VT t n
      Figure imgb0022
      Ļ• 2 t n = h 21 ā‹… VR t n + h 22 ā‹… VT t n
      Figure imgb0023
    2. 2) Calcul d'au moins un rĆ©sultat R k t n = āˆ« E min E max ā¢ Ļ• t n E ā‹… Y k E ā¢ dE
      Figure imgb0024
      Ć  l'aide de l'Ć©quation : R k t n = m k ā¢ 1 ā‹… Ļ• 1 t n + m k ā¢ 2 Īø ā‹… Ļ• 2 t n
      Figure imgb0025
  • Les grandeurs mk1 et mk2 Ć©tant donnĆ©es par les Ć©quations respectives : m k ā¢ 1 = āˆ« E min E max ā¢ f 1 E ā‹… Y k E ā¢ dE ,
    Figure imgb0026
    m k ā¢ 2 = āˆ« E min E max ā¢ f 2 E Īø 0 ā‹… Y k E ā¢ dE
    Figure imgb0027

    oĆ¹ Yk(E) est une fonction de rĆ©ponse dĆ©finie sur le support Ć©nergĆ©tique [Emin' Emax] et qui caractĆ©rise le rĆ©sultat intĆ©gral Rk(tn).
  • A titre d'exemple non limitatif, pour le calcul d'un flux de neutrons rapides, la fonction de rĆ©ponse Yk(E) correspond Ć  un support Ć©nergĆ©tique [Es], Emax], l'Ć©nergie Es Ć©tant une valeur de seuil au-delĆ  de laquelle les neutrons sont considĆ©rĆ©s comme Ć©tant des neutrons rapides. La valeur de seuil Es peut ĆŖtre Ć©gale, par exemple, Ć  100keV ou 1Mev. Il vient: Y k E = 1 pour E < E S ,
    Figure imgb0028

    et Y k E = 0 pour E ā‰¤ E S
    Figure imgb0029
  • Les deux fonctions f1(E) et f2(E, Īø) sont donnĆ©es par les Ć©quations respectives : f 1 E = f fiss E + Ī± ā‹… f epi E
    Figure imgb0030
    f 2 E Īø = f mxw E Īø
    Figure imgb0031

    oĆ¹ ffiss(E), fepi(E) et fmxw(E,Īø) sont, respectivement, la composante de fission du flux de neutrons, la composante Ć©pithermique du flux de neutrons et la composante maxwellienne du flux de neutrons. Les composantes ffiss(E), fepi(E) et fmxw(E,Īø) sont des grandeurs connues en soi. Le coefficient Ī± est un coefficient de proportionnalitĆ© connu entre la composante Ć©pithermique et la composante de fission.
  • Comme cela a Ć©tĆ© mentionnĆ© prĆ©cĆ©demment, l'invention concerne des fonctions de rĆ©ponse Yk(E) autres que la fonction de rĆ©ponse dĆ©finie ci-dessus. La fonction de rĆ©ponse Yk(E) peut ainsi ĆŖtre une fonction d'identification d'une bande d'Ć©nergie d'intĆ©rĆŖt [Ea, Eb] comprise dans l'intervalle [Emin, Emax] ou identique Ć  l'intervalle [Emin, Emax]. Il vient alors : Y k E = 1 si E a < E < E b
    Figure imgb0032

    et Y k E = 0
    Figure imgb0033

    sinon.
  • La fonction de rĆ©ponse peut Ć©galement ĆŖtre une section efficace macroscopique de rĆ©action Ī£r(E) telle que : āˆ‘ r E = āˆ‘ i N i Ź¹ ā‹… Ļƒ i r E ,
    Figure imgb0034

    oĆ¹
    Ni' est un nombre d'atomes d'un isotope i prĆ©sent dans un milieu et Ļƒ i r E
    Figure imgb0035
    est une section efficace microscopique de l'isotope i vis-Ơ-vis d'une rƩaction r dans le milieu, de telle sorte que Rk(tn) est un taux de la rƩaction r dans le milieu.
  • Avantageusement, l'Ć©volution sous flux de la grandeur Ni' peut ĆŖtre calculĆ©e Ć  l'aide d'un code d'Ć©volution, par exemple le code d'Ć©volution CE qui sert au calcul des compositions isotopiques des matĆ©riaux dĆ©tecteurs des chambres Ć  fission, en utilisant le flux Ļ• (tn, E) dĆ©terminĆ© par le systĆØme de mesure.
  • Dans le cas gĆ©nĆ©ral oĆ¹ un nombre NR de calculs de flux sont effectuĆ©s simultanĆ©ment au mĆŖme instant tn, les calculs prĆ©cĆ©dents s'Ć©crivent sous une forme matricielle. En omettant la variable temporelle, il vient alors : R 1 ā‹Æ R N R = M ā‹… H ā‹… VR VT
    Figure imgb0036
    M = m 11 m 12 ā‹Æ ā‹Æ m N R ā¢ 1 m N R ā¢ 2 et H = h 11 h 12 h 21 h 22
    Figure imgb0037
  • Les matrices M et H sont tout d'abord calculĆ©es par le PMM lors d'une phase d'initialisation, puis sont pĆ©riodiquement mises Ć  jour par le PMM, Ć  des instants discrets T p Ź¹
    Figure imgb0038
    comme cela est prƩcisƩ plus loin.
  • On note M 0 et H 0 les matrices M et H initiales. On note M p et H p les matrices M et H entre les instants de mise Ć  jour T p Ź¹
    Figure imgb0039
    et T p + 1 Ź¹ .
    Figure imgb0040
  • La fonction du PMM est d'Ć©laborer les matrices d'interprĆ©tation des mesures M et H sur la base de modĆØles physiques du flux neutronique et des dĆ©tecteurs.
  • 1) PHASE D'INITIALISATION
  • Avant l'instant t0 de la premiĆØre mesure, le PMM rĆ©alise les opĆ©rations suivantes :
  • 1.1) Calcul de la matrice M
  • On calcule mk1 et mk2 grĆ¢ce Ć  un algorithme d'intĆ©gration numĆ©rique. Il vient : m k ā¢ 1 = āˆ« E min E max ā¢ f 1 E ā‹… Y k E ā¢ dE , k = 1 , ā€¦ , N R
    Figure imgb0041
    m k ā¢ 2 = āˆ« E min E max ā¢ f 2 E Īø 0 ā‹… Y k E ā¢ dE , k = 1 , ā€¦ , N R
    Figure imgb0042
  • La tempĆ©rature du modĆ©rateur Īø0 est soit saisie par l'utilisateur (elle est alors supposĆ©e constante tout au long de l'expĆ©rience), soit mesurĆ©e au dĆ©marrage du systĆØme.
  • Comme cela a Ć©tĆ© prĆ©cisĆ© auparavant, les Yk(E) sont des fonctions de rĆ©ponse qui dĆ©finissent le rĆ©sultat intĆ©gral choisi. On rappelle que : R k t n = āˆ« Ļ• t n E ā‹… Y k E ā¢ dE
    Figure imgb0043
  • Comme cela a Ć©tĆ© mentionnĆ© prĆ©cĆ©demment, les deux fonctions f1(E) et f2(E, Īø) sont donnĆ©es par : f 1 E = f fiss E + Ī± ā‹… f epi E
    Figure imgb0044
    f 2 E Īø = f mxw E Īø
    Figure imgb0045

    oĆ¹ les composantes de fission ffiss, Ć©pithermique fepi et maxwellienne fmxw sont des grandeurs connues en soi.
  • A titre d'exemple non limitatif, la composante de fission dĆ©pend de l'Ć©nergie avec la fonction de forme suivante : f fiss E = Īŗ fiss ā‹… exp - E a ā‹… sin bE ,
    Figure imgb0046

    oĆ¹ les paramĆØtres a et b dĆ©pendent du type de combustible utilisĆ© dans le rĆ©acteur.
  • Pour la composante Ć©pithermique, il vient, par exemple : f epi E = { Īŗ epi ā‹… E 2 - E 0 0 E ā‹… E 1 2 - E 0 2 si E 0 ā‰¤ E ā‰¤ E 1 Īŗ epi ā‹… 1 E si E 1 ā‰¤ E ā‰¤ E 2 Īŗ epi ā‹… E 2 - E 3 2 E ā‹… E 2 2 - E 3 2 si E 2 ā‰¤ E ā‰¤ E 3 0 sinon
    Figure imgb0047

    avec, Ć  titre d'exemple non limitatif : E 0 = 0 ā¢ eV ; E 1 = 0.2 ā¢ eV ; E 2 = 0.25 ā¢ MeV ; E 3 = 1 ā¢ MeV
    Figure imgb0048
  • Enfin, la composante maxwellienne s'Ć©crit, par exemple: f mxw E Īø = 1 kĪø 2 ā‹… E ā‹… exp - E kĪø ,
    Figure imgb0049

    avec K =8.617343Ɨ10-5 eV/K (K est la constante de Boltzmann divisĆ©e par la charge de l'Ć©lectron).
  • Les coefficients de normalisation Kfiss et KepĀ” sont tels que : āˆ« 0 āˆž ā¢ f fiss E ā¢ dE = āˆ« 0 āˆž ā¢ f epi E ā¢ dE = 1.
    Figure imgb0050
  • 1.2) Calcul de H 0 1.2.1 Cas oĆ¹ les dĆ©tecteurs DNR et DNT sont des chambres Ć  fission :
  • Soit une chambre Ć  fission repĆ©rĆ©e par l'indice j :
    • j=1 correspond Ć  la chambre Ć  fission pour la dĆ©tection des neutrons rapides (par exemple, une chambre au Pu242), et
    • j=2 correspond Ć  la chambre Ć  fission pour la dĆ©tection des neutrons thermiques (par exemple, une chambre Ć  fission Ć  l'U235).
    Ɖtape 1 : calcul de la composition isotopique
  • Les donnĆ©es d'entrĆ©e sont constituĆ©es par la composition isotopique initiale N i j t ini j
    Figure imgb0051
    du dƩpƓt de la chambre Ơ fission (nombre d'atomes de chaque isotope i). Cette composition isotopique donnƩe Ơ l'instant t ini j < t 0
    Figure imgb0052
    rƩsulte d'analyses chimiques rƩalisƩes par le fabricant de la chambre Ơ fission ou, avantageusement, rƩsultent de calculs effectuƩs par le PMM lors d'une prƩcƩdente irradiation de la chambre Ơ fission.
  • Avec ces donnĆ©es d'entrĆ©e, le PMM lance un calcul d'Ć©volution Ć  flux neutronique nul grĆ¢ce au code d'Ć©volution CE qui s'appuie, en outre, sur des donnĆ©es nuclĆ©aires (sections efficaces, constantes de dĆ©croissance radioactive, etc.) issues de bibliothĆØques normalisĆ©es (type JEF, ENDF, etc.).
  • Le rĆ©sultat de ce calcul d'Ć©volution qui se rĆ©duit Ć  un calcul de dĆ©croissance (flux nul) est la composition isotopique du dĆ©pĆ“t Ć  t0 : N i j t 0 .
    Figure imgb0053
  • Ɖtape 2 Calcul des sensibilitĆ©s rapide et thermique de la chambre Ć  fission
  • On rappelle que les sensibilitĆ©s I ji d'une chambre Ć  fission se dĆ©finissent comme le rapport entre le taux de fission RDj et la composante de flux considĆ©rĆ©e, soit : RD j = I j ā¢ 1 ā‹… Ļ• 1 + I j ā¢ 2 ā‹… Ļ• 2
    Figure imgb0054
  • Le PMM calcule alors les coefficients de sensibilitĆ©s rapide et thermique de la chambre Ć  fission : I j ā¢ 1 = āˆ‘ i N i j t 0 āˆ« E min E max ā¢ f 1 E ā‹… Ļƒ i f E ā¢ dE
    Figure imgb0055
    I j ā¢ 2 = āˆ‘ i N i j t 0 ā‹… āˆ« E min E max ā¢ f 2 E Īø 0 ā‹… Ļƒ i f E ā¢ dE
    Figure imgb0056
  • La tempĆ©rature du modĆ©rateur Īø0 est soit saisie par l'utilisateur (elle est alors supposĆ©e constante tout au long de l'expĆ©rience), soit mesurĆ©e au dĆ©marrage du systĆØme.
  • Les donnĆ©es d'entrĆ©es Ļƒ i f E
    Figure imgb0057
    dĆ©finies sur le support Ć©nergĆ©tique [Emin' Emax] dĆ©signent les sections efficaces de fission des isotopes i. Elles sont gĆ©nĆ©ralement issues de bibliothĆØques de donnĆ©es nuclĆ©aires normalisĆ©es (type JEF, ENDF, etc.).
  • 1.2.2 Cas oĆ¹ le dĆ©tecteur DNR est une chambre Ć  fission et oĆ¹ le dĆ©tecteur DNT est un collectron (SPND)
  • La diffĆ©rence entre un collectron et une chambre Ć  fission tient au fait que les phĆ©nomĆØnes d'autoprotection et d'autoabsorption dans le matĆ©riau dĆ©tecteur massif d'un collectron ne peuvent pas ĆŖtre nĆ©gligĆ©s comme on le fait pour une chambre Ć  fission dont le dĆ©pĆ“t est extrĆŖmement fin (masse surfacique infĆ©rieure Ć  1 mg/cm2). Il s'ensuit que les calculs d'Ć©volution sous flux sont plus complexes et ne peuvent pas ĆŖtre effectuĆ©s en ligne. Ils sont donc rĆ©alisĆ©s Ć  l'avance et les rĆ©sultats sont tabulĆ©s sous forme d'une fonction d'usure dĆ©pendant de la fluence thermique intĆ©grĆ©e par le collectron, comme cela sera explicitĆ© plus loin.
  • Soit un collectron, par exemple au rhodium (Rh), repĆ©rĆ© par l'indice j. On rappelle que les sensibilitĆ©s d'un collectron se dĆ©finissent comme le rapport entre le taux de capture RDj et la composante de flux considĆ©rĆ©e, soit : RD j = I j ā¢ 1 ā‹… Ļ• 1 + I j ā¢ 2 ā‹… Ļ• 2
    Figure imgb0058
  • Les donnĆ©es d'entrĆ©e sont ici :
    • Ļˆ j ā¢ t ini j :
      Figure imgb0059
      Fluence thermique initiale intƩgrƩe par le collectron (intƩgrale temporelle du flux thermique). Cette fluence donnƩe Ơ l'instant t ini j < t 0
      Figure imgb0060
      est nulle pour un collectron neuf. Sinon, elle rƩsulte des calculs effectuƩs par le PMM lors d'une prƩcƩdente utilisation du collectron (irradiation) ;
    • SRh(E) : sensibilitĆ© du SPND, par exemple au rhodium Rh, tenant compte de la section efficace de capture, de l'autoprotection de l'Ć©metteur et de l'autoabsorption des Ć©lectrons Ć©mis (calcul effectuĆ© par un expert) ;
    • U(Ļˆ) : fonction d'usure, tabulĆ©e en fonction de la fluence thermique Ļˆ (calcul effectuĆ© par un expert ou retour d'expĆ©rience expĆ©rimental).
  • Les calculs de SRh et U sont dĆ©crits, par exemple, dans la publication mentionnĆ©e en rĆ©fĆ©rence bibliographique [6].
  • Le PMM calcule directement les sensibilitĆ©s rapide et thermique du collectron Ć  l'aide des Ć©quations: I j ā¢ 1 = U ĪØ j t ini j ā‹… āˆ« E min E max ā¢ f 1 E ā‹… S Rh E ā¢ dE
    Figure imgb0061
    I j ā¢ 2 = U ĪØ j t ini j ā‹… āˆ« E min E max ā¢ f 2 E Īø ā‹… S Rh E ā¢ dE
    Figure imgb0062
  • La tempĆ©rature du modĆ©rateur Īø est soit saisie par l'utilisateur (et supposĆ©e constante tout au long de l'expĆ©rience), soit mesurĆ©e au dĆ©marrage du systĆØme.
  • 1.2.3) Calcul de H 0
  • Le PMM procĆØde Ć  une inversion de matrice 2x2 : H 0 = K 1 ā‹… I 11 K 1 ā‹… I 12 K 2 ā‹… I 21 K 1 ā‹… I 22 - 1
    Figure imgb0063
  • Le coefficient d'Ć©talonnage Kj est le rapport entre la grandeur Vj transmise au calculateur et le taux d'interaction (fission ou capture) RD j dans le dĆ©tecteur j (V j = K jĀ·RD j).
  • 2) MISE A JOUR DES MATRICES M ET H 2.1) Synchronisation temporelle du calculateur CALC et du PMM
  • La synchronisation temporelle du calculateur CALC et du PMM est illustrĆ©e sur la figure 4.
  • Le PMM lance un calcul de mise Ć  jour de M et H Ć  des instants notĆ©s T p (cf. T0, T1, T2, T3, ... sur la figure 4).
  • Le calcul terminĆ©, le PMM transmet les nouvelles matrices notĆ©es M p et H p au calculateur afin qu'il les utilise en lieu et place des matrices prĆ©cĆ©dentes notĆ©es M p-1 et H p-1.
  • Le calculateur prend en compte M p et H p Ć  l'instant T p Ź¹ > T p .
    Figure imgb0064
    La durĆ©e T p Ź¹ - T p
    Figure imgb0065
    peut varier, il faut simplement choisir les instants T p de telle sorte que T p Ź¹ < T p + 1 .
    Figure imgb0066
  • En pratique, on choisit un Ī”Tp =Tp - Tp-1 =QĀ·dt constant et le plus faible possible, en fonction des performances de calcul permises par le processeur en charge du PMM. D'autres critĆØres de cadencement du PMM sont envisageables, mais ils ne prĆ©sentent pas d'intĆ©rĆŖt particulier par rapport Ć  celui que nous avons choisi.
  • Remarque : si les mesures sont constantes au voisinage de l'instant T p Ź¹ ,
    Figure imgb0067
    le changement de matrices d'interprĆ©tation introduit cependant un lĆ©ger saut Īµp (cf. Īµ1, Īµ2, Īµ3 sur la figure 4) dans les rĆ©sultats : R 1 ā‹Æ R N R = M ā‹… H ā‹… VR VT
    Figure imgb0068
  • Le saut Īµp correspond en fait au rattrapage de l'erreur de sensibilitĆ© qui s'est accrue (lentement) depuis le dernier calcul PMM Ć  Tp-1. Cette erreur restera nĆ©gligeable si (Tp-Tp-1) est suffisamment court (en fait, tant que la fluence intĆ©grĆ©e par les dĆ©tecteurs dans cet intervalle de temps est suffisamment faible).
  • 2.2) Calcul des mesures moyennes
  • Le PMM utilise les mesures VR et VT pour mettre Ć  jour les matrices d'interprĆ©tation M et H utilisĆ©es par le calculateur. Si la tempĆ©rature du modĆ©rateur Īø est mesurĆ©e, elle est Ć©galement utilisĆ©e dans ce processus, sinon le PMM utilise la tempĆ©rature saisie par l'utilisateur et supposĆ©e constante tout au long de l'irradiation des dĆ©tecteurs.
  • Entre les instants T p-1 et T p, le PMM accumule les mesures VR, VT et Ć©ventuellement Īø qui lui sont transmises par le calculateur Ć  chaque instant tn, dans le but d'en calculer les valeurs moyennes : VR ā€¾ T p = 1 N p āˆ‘ t n = T p - 1 T p VR t n
    Figure imgb0069
    VR ā€¾ T p = 1 N p āˆ‘ t n = T p - 1 T p VT t n
    Figure imgb0070
    Īø ā€¾ T p = 1 N p āˆ‘ t n = T p - 1 T p Īø t n ā¢ si Īø est mesurĆ©e ,
    Figure imgb0071
    Īø ā€¾ T p = Īø si Īø est saisie .
    Figure imgb0072

    Np est le nombre de mesures transmises au PMM entre les instants Tp-1 et Tp : N p ā‰ˆ T p - T p - 1 / dt
    Figure imgb0073
  • 2.3) Calcul du flux neutronique moyen Ć  l'instant T p
  • Les mesures moyennes sont interprĆ©tĆ©es par le PMM comme le fait le calculateur en utilisant la matrice H. On calcule tout d'abord : Ļ• ā€¾ 1 T p Ļ• ā€¾ 1 T p = H p - 1 ā‹… VR ā€¾ T p VT ā€¾ T p
    Figure imgb0074

    puis
    le flux neutronique moyen par : Ļ• ā€¾ T p E = Ļ• ā€¾ 1 T p ā‹… f 1 E + Ļ• ā€¾ 2 T p ā‹… f 2 E , Īø ā€¾ T p
    Figure imgb0075
    • Remarque 1 : le flux moyen sert Ć  calculer H p. Le PMM utilise donc Hp-1 pour calculer H p, il s'agit donc d'un algorithme itĆ©ratif.
    • Remarque 2 : il est lĆ©gitime d'utiliser le flux moyen dans les Ć©tapes qui vont suivre, car on suppose que l'intervalle de temps entre deux calculs PMM est aussi court que possible.
    2.4) Mise Ć  jour de la matrice M
  • Il n'y a rien Ć  faire si la tempĆ©rature Īø est saisie par l'utilisateur et supposĆ©e constante : Mp = M0.
  • Si la tempĆ©rature Īø est mesurĆ©e, seule la seconde colonne de M doit ĆŖtre mise Ć  jour. On procĆØde comme pour M0 en remplaƧant Īø0 par Īø(Tp) : m k ā¢ 2 = āˆ« E min E max ā¢ f 2 E , Īø ā€¾ T 0 ā‹… Y k E ā¢ dE , k = 1 , ā€¦ , N R
    Figure imgb0076
  • 2.5) Mise Ć  jour de la matrice H
  • Le calcul de H p diffĆØre de celui de H 0 par le fait que le flux neutronique n'est plus nul et que les calculs d'Ć©volution doivent tenir compte de l'interaction des neutrons avec les matĆ©riaux dĆ©tecteurs.
  • 2.5.1 Calcul de la sensibilitĆ© des chambres Ć  fission
  • Soit une chambre Ć  fission repĆ©rĆ©e par l'indice j (j=1 pour la chambre Ć  fission DNR et j=2 pour la chambre Ć  fission DNT).
  • Ɖtape 1 : calcul de la composition isotopique
  • Les donnĆ©es d'entrĆ©e sont :
    • La composition isotopique N i j ā¢ T p - 1
      Figure imgb0077
      du dƩpƓt de la chambre Ơ fission (nombre d'atomes de chaque isotope i) Ơ l'instant Tp-1, N i j T 0 = N i j t 0
      Figure imgb0078
      Ʃtant calculƩ par le PMM en phase d'initialisation, et
    • Le flux neutronique moyen Ļ•(E,Tp).
  • Avec ces donnĆ©es d'entrĆ©e, le PMM lance un calcul d'Ć©volution sous flux neutronique grĆ¢ce au code d'Ć©volution CE qui s'appuie, en outre, sur des donnĆ©es nuclĆ©aires DN (sections efficaces, constantes de dĆ©croissance radioactive, etc.) issues de bibliothĆØques normalisĆ©es (type JEF, ENDF, etc.).
  • Le rĆ©sultat de ce calcul d'Ć©volution est la composition isotopique du dĆ©pĆ“t Ć  l'instant T p : N i j T p .
    Figure imgb0079
  • Ɖtape 2 : Calcul des sensibilitĆ©s rapide et thermique de la chambre Ć  fission
  • On rappelle que les sensibilitĆ©s I ji d'une chambre Ć  fission se dĆ©finissent comme le rapport entre le taux de fission et la composante de flux considĆ©rĆ©e, soit : RD j = I j ā¢ 1 ā‹… Ļ• 1 + I j ā¢ 2 ā‹… Ļ• 2
    Figure imgb0080
  • Le PMM peut calcule alors les coefficients de sensibilitĆ©s rapide et thermique de la chambre Ć  fission Ć  l'instant Tp : I j ā¢ 1 T p = āˆ‘ i N i j T p ā‹… āˆ« E min E max ā¢ f 1 E ā‹… Ļƒ i f E ā¢ dE
    Figure imgb0081
    I j ā¢ 2 T p = āˆ‘ i N i j T p ā‹… āˆ« E min E max ā¢ f 2 E , Īø ā€¾ T p ā‹… Ļƒ i f E ā¢ dE
    Figure imgb0082
  • Les donnĆ©es d'entrĆ©es Ļƒ i f E
    Figure imgb0083
    dĆ©finies sur le support Ć©nergĆ©tique [Emin, Emax] dĆ©signent les sections efficaces de fission des isotopes i. Elles sont issues de bibliothĆØques de donnĆ©es nuclĆ©aires normalisĆ©es (type JEF, ENDF, etc.).
  • 2.5.2 Calcul de la sensibilitĆ© du collectron (cas oĆ¹ le dĆ©tecteur DNT est un collectron)
  • Soit un collectron, par exemple au rhodium (Rh), repĆ©rĆ© par l'indice j.
  • On procĆØde en deux Ć©tapes.
  • Ɖtape 1 : calcul de la fluence thermique intĆ©grĆ©e par le collectron
  • On procĆØde de maniĆØre itĆ©rative : Ļˆ j T p = Ļˆ j ā¢ T p - 1 + Ļ• ā€¾ SPND T p ā‹… T p - T p - 1 ,
    Figure imgb0084

    et Ļˆ j T 0 = Ļˆ j t 0
    Figure imgb0085

    oĆ¹ Ļ• SPND(Tp) est le flux thermique dĆ©duit de Ļ•(E,Tp) suivant la mĆŖme convention que celle utilisĆ©e lors des calculs des fonctions SRh(E) et U(Ļˆ).
  • En pratique, un expert qui a rĆ©alisĆ© les calculs des fonctions SRh(E) et U(Ļˆ) a dĆ©fini deux paramĆØtres Ī±1 et Ī±2 tels que : Ļ• ā€¾ SPND T p = Ī± 1 ā‹… Ļ• ā€¾ 1 T p + Ī± 2 ā‹… Ļ• ā€¾ 2 T p
    Figure imgb0086
  • Ɖtape 2 : Calcul des sensibilitĆ©s rapide et thermique du collectron
  • Les donnĆ©es d'entrĆ©e sont :
    • Ļˆj(Tp) : la fluence thermique intĆ©grĆ©e par le collectron (intĆ©grale temporelle du flux thermique) ;
    • SRh(E) : la sensibilitĆ© du collectron, par exemple au rhodium (Rh), tenant compte de la section efficace de capture, de l'autoprotection de l'Ć©metteur et de l'autoabsorption des Ć©lectrons Ć©mis (calcul effectuĆ© par un expert).
    • U(Ļˆ) : la fonction d'usure, tabulĆ©e en fonction de la fluence thermique Ļˆ (calcul effectuĆ© par un expert ou retour d'expĆ©rience expĆ©rimental).
  • Le PMM calcule directement les sensibilitĆ©s rapide et thermique du collectron Ć  l'aide des Ć©quations : I j ā¢ 1 T p = U ĪØ j T p ā‹… āˆ« E min E max ā¢ f 1 E ā‹… S Rh E ā¢ dE
    Figure imgb0087
    I j ā¢ 2 T p = U ĪØ j T p ā‹… āˆ« E min E max ā¢ f 2 E , Īø ā€¾ T p ā‹… S Rh E ā¢ dE
    Figure imgb0088
  • 2.5.3) Calcul de_H p
  • Le PMM procĆØde Ć  une inversion de matrice 2x2 : H p = K 1 ā‹… I 11 T p K 1 ā‹… I 12 T p K 2 ā‹… I 21 T p K 1 ā‹… I 22 T p - 1
    Figure imgb0089
  • Le coefficient d'Ć©talonnage K j est le rapport entre la grandeur V j transmise au calculateur et le taux d'interaction (fission ou capture) RDj dans le dĆ©tecteur j (Vj =KjĀ·RDj).
  • 2.6) Transmission des matrices M et H
  • Le PMM transmet les matrices Mp et Hp au calculateur CALC qui les substitue aux matrices d'interprĆ©tation M et H Ć  l'instant T p Ź¹ > T p .
    Figure imgb0090
  • Selon le mode de rĆ©alisation prĆ©fĆ©rentiel de l'invention, le dĆ©tecteur DNR est une chambre Ć  fission ayant un dĆ©pĆ“t fissile Ć  seuil. Une telle chambre Ć  fission est reprĆ©sentĆ©e, par exemple, sur les figures 1A et 1B. Le dĆ©pĆ“t fissile Ć  seuil peut ĆŖtre un dĆ©pĆ“t de plutonium Pu242, comme cela a Ć©tĆ© mentionnĆ© prĆ©cĆ©demment. Le dĆ©pĆ“t fissile Ć  seuil peut Ć©galement ĆŖtre un dĆ©pĆ“t d'uranium U238 ou de neptunium Np237 ou encore de thorium Th232. Dans le cadre du mode de rĆ©alisation prĆ©fĆ©rentiel de l'invention, un cĆ¢ble de liaison relie le dĆ©tecteur DNR au circuit C1. Ce cĆ¢ble de liaison est utilisĆ© pour, Ć  la fois, polariser Ć©lectriquement le dĆ©tecteur et transmettre le signal dĆ©livrĆ© par la chambre Ć  fission vers le circuit de traitement C1. La partie du cĆ¢ble soumise au flux neutronique doit ĆŖtre Ć  isolant minĆ©ral (alumine, silice, magnĆ©sie). Le cĆ¢ble est prĆ©fĆ©rentiellement intĆ©grĆ© au dĆ©tecteur et son diamĆØtre extĆ©rieur est infĆ©rieur Ć  celui du dĆ©tecteur. Ce cĆ¢ble doit, en outre, avoir des propriĆ©tĆ©s Ć©lectriques compatibles avec une exploitation de la chambre Ć  fission en mode fluctuation, Ć  savoir: une faible capacitĆ© linĆ©ique, une impĆ©dance caractĆ©ristique proche de l'impĆ©dance d'entrĆ©e de l'Ć©lectronique (typiquement 50Ī©) et une faible impĆ©dance de transfert pour garantir une forte immunitĆ© aux parasites. On utilise, Ć  cette fin, du cĆ¢ble Ć  conducteur et blindage en cuivre, avec une enveloppe en inox ou en inconel pour assurer une bonne tenue mĆ©canique en rĆ©acteur. Le cĆ¢ble a, par exemple, un diamĆØtre sensiblement compris entre 2mm et 2,2mm pour une chambre Ć  fission de 3mm de diamĆØtre et sensiblement Ć©gal Ć  1,3mm pour une chambre Ć  fission de 1,5mm de diamĆØtre (optimisation de l'impĆ©dance de transfert).
  • La figure 5 reprĆ©sente un schĆ©ma de principe qui dĆ©taille le circuit de conditionnement et de traitement C1 selon le mode de rĆ©alisation prĆ©fĆ©rentiel de l'invention. Le circuit C1 comprend un prĆ©amplificateur PA, un convertisseur analogique/numĆ©rique CAN, un processeur numĆ©rique de calcul de variance VAR et un gĆ©nĆ©rateur de haute tension HT. Le dĆ©tecteur DNR est reliĆ© au circuit C1 par un cĆ¢ble CAB. Le prĆ©amplificateur PA convertit le courant iR(t) qu'il reƧoit, via le cĆ¢ble CAB, en une tension analogique Va(t) qui est transmise au convertisseur analogique/numĆ©rique CAN. La haute tension T dĆ©livrĆ©e par le gĆ©nĆ©rateur de haute tension HT transite, via le prĆ©amplificateur PA et le cĆ¢ble CAB, vers le dĆ©tecteur DNR. Le convertisseur analogique/numĆ©rique CAN convertit la tension analogique Va(t) en une tension numĆ©rique Vn(tn) Ć©chantillonnĆ©e aux instants discrets tn = n Ā· dt (dt est la pĆ©riode d'Ć©chantillonnage, typiquement dt = 1 Āµs, et n est un entier reprĆ©sentant l'indice temporel de l'Ć©chantillon) qui est transmise au processeur numĆ©rique de calcul de variance VAR, lequel dĆ©livre la variance numĆ©rique VR(tn).
  • De faƧon prĆ©fĆ©rentielle, l'Ć©lectronique de traitement du signal met en oeuvre le mode fluctuation basĆ© sur le thĆ©orĆØme de Campbell (cf. rĆ©fĆ©rence [4]). Ce thĆ©orĆØme dĆ©montre que le signal Ć©lectrique produit par un empilement d'impulsions dans une chambre Ć  fission a des propriĆ©tĆ©s statistiques intĆ©ressantes. La moyenne et la variance de ce signal sont en effet toutes deux proportionnelles au flux de neutrons incident, mais tandis que la moyenne est Ć©galement proportionnelle Ć  la charge moyenne Q crĆ©Ć©e dans le gaz pour chaque neutron dĆ©tectĆ©, la variance est quant Ć  elle proportionnelle Ć  cette charge Ć©levĆ©e au carrĆ©.
  • De faƧon connue en soi, il est dit qu'une chambre Ć  fission est exploitĆ©e en Ā« mode courant Ā», lorsqu'on s'intĆ©resse Ć  la moyenne du courant qu'elle produit. La sensibilitĆ© d'une chambre Ć  fission en mode courant est proportionnelle Ć  Q. La charge crĆ©Ć©e par un neutron Ć©tant gĆ©nĆ©ralement 100 fois plus Ć©levĆ©e que celle produite par un photon gamma, il en ira de mĆŖme des sensibilitĆ©s relatives respectivement aux flux neutronique et gamma. Cette propriĆ©tĆ© fait de la chambre Ć  fission un dĆ©tecteur neutronique gĆ©nĆ©ralement bien adaptĆ© Ć  la mesure des neutrons en prĆ©sence d'un rayonnement gamma intense (situation typique des mesures en rĆ©acteur). Dans certaines circonstances, la rĆ©jection du rayonnement gamma en mode courant peut cependant s'avĆ©rer insuffisante : soit parce que le rayonnement gamma est trĆØs intense (en rĆ©acteur d'irradiation notamment), soit parce que la sensibilitĆ© aux neutrons est rĆ©duite (c'est le cas des chambres Ć  fission au Pu242 dont la sensibilitĆ© aux neutrons rapides est de deux ordres de grandeur infĆ©rieure Ć  celle des chambres Ć  fission classiques Ć  U235 vis-Ć -vis des neutrons thermiques). Le signal Ā« mode courant Ā» doit alors ĆŖtre corrigĆ© en lui soustrayant celui produit par une chambre Ć  fission voisine dĆ©pourvue de dĆ©pĆ“t fissile (donc sensible exclusivement aux rayonnements gamma). Il faut alors mettre en oeuvre deux dĆ©tecteurs pour accĆ©der au flux neutronique.
  • Exploiter la chambre Ć  fission en Ā« mode fluctuation Ā» est, dans ce cas, une alternative intĆ©ressante. La sensibilitĆ© dĆ©pendant de la quantitĆ© Q2, la sensibilitĆ© au rayonnement gamma se trouvera donc environ 10 000 fois plus faible que celle observĆ©e vis-Ć -vis des neutrons. On peut alors obtenir, avec une seule chambre Ć  fission, une rĆ©jection des gamma suffisamment efficace, y compris dans des circonstances assez difficiles. Avec les chambres Ć  fission au plutonium Pu242, les inventeurs de la prĆ©sente demande de brevet ont observĆ© que, en rĆ©acteur d'irradiation, la contribution du rayonnement gamma passe d'environ 50% en mode courant Ć  environ 0,6% en mode fluctuation. C'est la raison pour laquelle, les inventeurs de la prĆ©sente demande de brevet ont choisi, prĆ©fĆ©rentiellement, de dĆ©velopper une Ć©lectronique de traitement numĆ©rique du signal pour exploiter la chambre en mode fluctuation.
  • Le signal Ć©lectrique issu de la chambre Ć  fission est, aprĆØs amplification et conditionnement (prĆ©amplificateur PA), numĆ©risĆ© Ć  l'aide du convertisseur analogique-numĆ©rique CAN. Le calcul de la variance est alors rĆ©alisĆ© de maniĆØre numĆ©rique, Ć  l'aide d'un circuit d'Ć©lectronique numĆ©rique, par exemple de type FPGA (FPGA pour Ā« Field Programmable Gate Array Ā» ou RĆ©seau PrĆ©diffusĆ© Programmable par l'Utilisateur) ou Ć  l'aide d'un processeur.
  • Le circuit CAN Ć©chantillonne, avec une frĆ©quence d'Ć©chantillonnage Fe=1/dt, le signal analogique Va(t) en un signal numĆ©rique VR(tn) avec tn = n Ā· dt. La frĆ©quence Fe est, par exemple, Ć©gale Ć  1 MHz. Le signal numĆ©rique Vn(tn) est alors traitĆ© par le processeur numĆ©rique VAR. Le processeur VAR calcule la variance numĆ©rique VR(tn) sur un horizon glissant de N Ć©chantillons correspondant Ć  une durĆ©e Th telle que : T h = N dt
    Figure imgb0091
  • La durĆ©e Th est Ć©gale, par exemple, Ć  100 ms. Il vient : VR t n = 1 N - 1 āˆ‘ k = 0 N - 1 Vn ā¢ t n - k ā‹… dt 2
    Figure imgb0092
  • La variance numĆ©rique VR(tn) peut Ć©ventuellement ĆŖtre dĆ©cimĆ©e (jusqu'Ć  un facteur N) puisque sa bande passante est infĆ©rieure Ć  celle du signal d'origine Vn(tn). La chaĆ®ne de mesure produit ainsi une valeur numĆ©rique de la variance proportionnelle au flux de neutrons incidents, par exemple toutes les 100 ms.
  • La mesure des neutrons thermiques est rĆ©alisĆ©e Ć  l'aide d'un collectron (SPND), par exemple au rhodium, ou Ć  l'aide d'une chambre Ć  fission Ć  l'uranium U235 Ć©galement exploitĆ©e, de faƧon prĆ©fĆ©rentielle, en mode fluctuation (rĆ©jection du rayonnement gamma). La mesure des neutrons thermiques sert Ć  Ć©valuer l'Ć©volution de la composition isotopique du dĆ©pĆ“t de la chambre Ć  fission sous flux. En effet, sous l'effet d'un flux thermique intense, il se forme des isotopes fissiles par transmutations successives du plutonium Pu242, rendant la chambre Ć  fission au plutonium Pu242 de plus en plus sensible aux neutrons thermiques. La figure 6 illustre, Ć  titre d'exemple non limitatif pour des flux thermiques et rapides de 1E15 n/cm2/s, le taux de fission total (courbe KS sur la figure 6) et la contribution au taux de fission total des diffĆ©rents isotopes formĆ©s par transmutations successives, Ć  savoir le plutonium Pu242 (courbe K1 sur la figure 6), le plutonium Pu241 (courbe K2 sur la figure 6), l'amĆ©ricium AM243 (courbe K3 sur la figure 6), le curium CM244 (courbe K4 sur la figure 6) et le curium CM245 (courbe K5 sur la figure 6). Comme cela apparaĆ®t clairement, le plus gĆŖnant des isotopes fissiles qui apparaissent par transmutations successives est le Cm245 (courbe K5), Ć  partir d'une fluence thermique de l'ordre de 1021n/cm2.
  • Dans le cadre de l'invention, le circuit Ć©lectronique de conditionnement et de traitement C2 (non reprĆ©sentĆ© sur les figures) est avantageusement identique au circuit C1 si le dĆ©tecteur DNT est une chambre Ć  fission Ć  U235. Si le dĆ©tecteur thermique DNT est un collectron, le circuit C2 est un circuit numĆ©rique de conversion courant - tension. Cette fonction peut, par exemple, ĆŖtre assurĆ©e par un voltmĆØtre digital qui mesure la chute de tension aux bornes d'une rĆ©sistance (par exemple de 10 kĪ© Ć  1%) dans laquelle circule le courant gĆ©nĆ©rĆ© par le collectron.
  • RĆ©fĆ©rences bibliographiques
    1. [1] D. Beretz et al. :Ā« French PWR Vessel Surveillance Program Dosimetry Experience Feedback from More than a Hundred Capsules Ā», Reactor Dosimetry ASTM STP 1398, West Conshohocken, PA, 2000
    2. [2] G. Bignan et J-C. Guyard :Ā« Chambre Ć  fission subminiature avec passage Ć©tanche Ā» brevet franƧais, NĀ° enregistrement 9414293 , NĀ° publication 2727526 .
    3. [3] Y. Kashchuk et al. : Ā« Monitoring the Fast Neutron Flux Density and Fluence in a RBMK Core Using a Threshold Fission Chamber in a Screen-Absorber Ā». Atomic Energy, Vol. 98, 4, (2005), 249.
    4. [4] G.F. Knoll. : Ā« Radiation Detection and Measurement Ā» 3rd Edition, John Wiley & Sons, 1999.
    5. [5] A. Tsilanizara et al. DARWIN : Ā« An evolution code system for a large range of applications Ā». J. Nucl. Sci. Technol. 37 (2000) 845.
    6. [6] L. Vermeeren : Ā« Absolute on-line in-pile measurement of neutron fluxes using self-powered neutron detectors Ā», 5th International Topical Meeting on Research Reactor Fuel Management, Org. European Nuclear Society, Aix-la-Chapelle, Allemagne, 1-3 avril 2001.

Claims (20)

  1. Dispositif de mesure en ligne d'un flux de neutrons rapides et Ć©pithermiques Ļ•1(tn) Ć  des instants tn sur un intervalle d'Ć©nergie [Emin, Emax], comprenant:
    - un dƩtecteur de neutrons rapides (DNR) contenant un matƩriau apte Ơ dƩtecter principalement des neutrons rapides;
    - un dƩtecteur de neutrons thermiques (DNT) contenant un matƩriau apte Ơ dƩtecter principalement des neutrons thermiques;
    - un premier circuit Ʃlectronique (C1) qui dƩlivre, aux instants tn, un signal numƩrique VR(tn) Ơ partir d'un signal de dƩtection dƩlivrƩ par le dƩtecteur de neutrons rapides;
    - un second circuit Ʃlectronique (C2) qui dƩlivre, aux instants tn, un second signal numƩrique VT(tn) Ơ partir d'un signal de dƩtection dƩlivrƩ par le dƩtecteur de neutrons thermiques ;
    - des moyens (PMM, CE) agencƩs pour dƩterminer, aux instant tn, la composition isotopique du matƩriau dƩtecteur de neutrons rapides et la composition isotopique du matƩriau dƩtecteur de neutrons thermiques ;
    - des moyens (PMM, CE) agencƩs pour dƩterminer, aux instants tn, Ơ partir desdites compositions isotopiques, la sensibilitƩ Ʃvolutive aux neutrons rapides I11(tn) du dƩtecteur de neutrons rapides, la sensibilitƩ Ʃvolutive aux neutrons thermiques I12(tn) du dƩtecteur de neutrons rapides, la sensibilitƩ Ʃvolutive aux neutrons rapides I21(tn) du dƩtecteur de neutrons thermiques et la sensibilitƩ Ʃvolutive aux neutrons thermiques I22(tn) du dƩtecteur de neutrons thermiques,
    - des moyens de calcul (CALC) agencĆ©s pour calculer le flux de neutrons rapides et Ć©pithermiques Ļ•1 (tn) aux instants tn et un flux de neutrons thermiques Ļ•2 (tn), Ć  partir du systĆØme d'Ć©quations : VR t n = KR x I 11 t n x Ļ• ā¢ 1 t n + KR x I 12 t n x Ļ• ā¢ 2 t n ,
    Figure imgb0093

    et VT t n = KT x I 21 t n x Ļ• ā¢ 1 t n + KT x I 22 t n x Ļ• ā¢ 2 t n
    Figure imgb0094

    oĆ¹ KR et KT sont, respectivement, un coefficient d'Ć©talonnage du dĆ©tecteur de neutrons rapides et un coefficient d'Ć©talonnage du dĆ©tecteur de neutrons thermiques.
  2. Dispositif de mesure selon la revendication 1, caractĆ©risĆ© en ce qu'il comprend, en outre, des moyens (CALC) pour calculer un flux neutronique complet Ļ•(tn,E) Ć  l'aide de l'Ć©quation : Ļ• t n E = Ļ• 1 t n ā‹… f 1 E + Ļ• 2 t n ā‹… f 2 E Īø ,
    Figure imgb0095

    ou
    - f1(E) = ffiss (E) + Ī± fepi (E), et
    - f2 (E, Īø) = fmxw (E, Īø),
    ffiss(E) Ć©tant une composante de fission du flux de neutrons, fepi(E) Ć©tant une composante Ć©pithermique du flux de neutrons, fmxw(E, Īø) Ć©tant une composante maxwellienne du flux de neutrons et Ī± Ć©tant un coefficient de proportionnalitĆ© entre la composante Ć©pithermique du flux de neutrons et la composante de fission du flux de neutrons.
  3. Dispositif selon la revendication 1, caractĆ©risĆ© en ce qu'il comprend, en outre, des moyens (CALC) pour calculer, sur l'intervalle [Emin, Emax], Nr rĆ©sultats intĆ©graux aux instants tn, Nr Ć©tant un nombre entier supĆ©rieur ou Ć©gal Ć  1, un rĆ©sultat intĆ©gral de rang k (k=1, 2, ..., Nn) Ć©tant donnĆ© par l'Ć©quation : R k t n = m k ā¢ 1 ā‹… Ļ• 1 t n + m k ā¢ 2 Īø ā‹… Ļ• 2 t n
    Figure imgb0096

    avec m k ā¢ 1 = āˆ« E min E max ā¢ f 1 E ā‹… Y k E ā¢ dE ,
    Figure imgb0097

    et m k ā¢ 2 = āˆ« E min E max ā¢ f 2 E Īø 0 ā‹… Y k E ā¢ dE ,
    Figure imgb0098

    oĆ¹
    - fi(E) = ffiss(E) + Ī± fepi (E), et
    - f2(E, Īø) = fmxw(E, Īø),
    ffiss(E) Ć©tant une composante de fission du flux de neutrons, fepi(E) Ć©tant une composante Ć©pithermique du flux de neutrons, fmxw(E, Īø) Ć©tant une composante maxwellienne du flux de neutrons et Ī± Ć©tant un coefficient de proportionnalitĆ© entre la composante Ć©pithermique du flux de neutrons et la composante de fission du flux de neutrons, et oĆ¹
    - Yk(E) est une fonction de rƩponse qui caractƩrise le rƩsultat intƩgral de rang k.
  4. Dispositif de mesure selon la revendication 3, dans lequel la fonction de rĆ©ponse Yk(E) est une fonction d'identification d'une bande d'Ć©nergie d'intĆ©rĆŖt [Ea, Eb] qui coĆÆncide avec l'intervalle [Emin, Emax] ou qui est comprise dans l'intervalle [Emin, Emax] telle que : Y k E = 1 si E a < E < E b
    Figure imgb0099

    et Y k E = 0
    Figure imgb0100

    de telle sorte que Rk(tn) est le flux des neutrons dont l'Ć©nergie est comprise entre Ea et Eb, Ć  savoir : R k t n = āˆ« E a E b ā¢ Ļ• t n E ā¢ dE .
    Figure imgb0101
  5. Dispositif de mesure selon la revendication 3, dans lequel la fonction de rĆ©ponse Yk(E) est une section efficace macroscopique de rĆ©action Ī£r(E) telle que : āˆ‘ r E = āˆ‘ i N i Ź¹ ā‹… Ļƒ i r E ,
    Figure imgb0102

    oĆ¹
    Ni' est un nombre d'atomes d'un isotope i prĆ©sent dans un milieu et Ļƒ i r E
    Figure imgb0103
    est une section efficace microscopique de l'isotope i vis-Ć -vis d'une rĆ©action r dans le milieu, de telle sorte que Rk(tn) est un taux de la rĆ©action r dans le milieu, Ć  savoir : R k t n = āˆ« E min E max ā¢ Ļ• t n E ā¢ Ī£ r E ā¢ dE
    Figure imgb0104
  6. Dispositif de mesure selon la revendication 5, dans lequel la rƩaction r est une rƩaction de fission ou de capture ou de diffusion ou d'endommagement.
  7. Dispositif de mesure selon l'une quelconque des revendications prĆ©cĆ©dentes, dans lequel le dĆ©tecteur de neutrons rapides et le dĆ©tecteur de neutrons thermiques Ć©tant des chambres Ć  fission, les sensibilitĆ©s Ć©volutives I11(tn), I12(tn), I21(tn) et I22(tn) s'Ć©crivent respectivement : I 11 t n = āˆ‘ i N i t n āˆ« E min E max ā¢ f 1 E ā¢ Ļƒ i f E ā¢ dE
    Figure imgb0105
    I 12 t n = āˆ‘ i N i t n āˆ« E min E max ā¢ f 2 E Īø ā¢ Ļƒ i f E ā¢ dE
    Figure imgb0106

    oĆ¹ Ni(tn) est la composition isotopique Ć  l'instant tn d'un isotope i du matĆ©riau apte Ć  dĆ©tecter principalement des neutrons rapides et Ļƒ i f E
    Figure imgb0107
    est la section efficace de l'isotope i ; et I 21 t n = āˆ‘ j N j t n āˆ« E min E max ā¢ f 1 E ā¢ Ļƒ j f E ā¢ dE
    Figure imgb0108
    I 22 t n = āˆ‘ j N j t n āˆ« E min E max ā¢ f 2 E Īø ā¢ Ļƒ j f E ā¢ dE
    Figure imgb0109

    oĆ¹ Nj(tn) est la composition isotopique Ć  l'instant tn d'un isotope j du matĆ©riau apte Ć  dĆ©tecter principalement des neutrons thermiques et Ļƒ j f E
    Figure imgb0110
    est la section efficace de l'isotope j.
  8. Dispositif de mesure selon la revendication 7, dans lequel le dƩtecteur de neutrons thermiques est une chambre Ơ fission contenant de l'Uranium U235.
  9. Dispositif de mesure selon l'une quelconque des revendications 1 Ć  6 dans lequel, le dĆ©tecteur de neutrons rapides Ć©tant une chambre Ć  fission et le dĆ©tecteur de neutrons thermiques Ć©tant un collectron, les sensibilitĆ©s Ć©volutives I11(tn), I12(tn), I21(tn) et I22(tn) s'Ć©crivent, respectivement : I 11 t n = āˆ‘ i N i t n āˆ« E min E max ā¢ f 1 E ā¢ Ļƒ i f E ā¢ dE ,
    Figure imgb0111

    et I 12 t n = āˆ‘ i N i t n āˆ« E min E max ā¢ f 2 E Īø ā¢ Ļƒ i f E ā¢ dE
    Figure imgb0112

    oĆ¹ Ni(tn) est la composition isotopique Ć  l'instant tn d'un isotope i du matĆ©riau apte Ć  dĆ©tecter principalement des neutrons rapides et Ļƒ j f E
    Figure imgb0113
    est la section efficace de l'isotope i ; et I 21 t n = U ĪØ t n ā¢ āˆ« E min E max ā¢ f 1 E ā¢ s Rh E ā¢ dE
    Figure imgb0114
    I 22 t n = U ĪØ t n ā¢ āˆ« E min E max ā¢ f 2 E Īø ā¢ s Rh E ā¢ dE
    Figure imgb0115

    oĆ¹ U [ĪØ(tn)] est une fonction d'usure du collectron tabulĆ©e en fonction de la fluence thermique Ć  l'instant tn ĪØ(tn) du matĆ©riau apte Ć  dĆ©tecter principalement des neutrons thermiques et SRh(E) est la sensibilitĆ© du collectron.
  10. Dispositif de mesure selon la revendication 9 dans lequel le dƩtecteur de neutrons thermiques est un collectron au Rhodium ou au Vanadium ou Ơ l'Argent.
  11. Dispositif de mesure selon l'une quelconque des revendications 7 Ơ 10, dans lequel le dƩtecteur de neutrons rapides est une chambre Ơ fission avec un dƩpƓt fissile Ơ seuil.
  12. Dispositif de mesure selon la revendication 11, dans lequel la chambre Ć  fission est une chambre Ć  fission contenant du plutonium Pu242 pur Ć  au moins 99,5%.
  13. Dispositif de mesure selon la revendication 12, dans lequel la chambre Ć  fission contenant du plutonium Pu242 pur Ć  au moins 99,5% comprend :
    * une enceinte (1, 20) apte Ơ contenir un gaz de dƩtection sous pression et dont les parois laissent passer les neutrons,
    * une premiĆØre et une seconde Ć©lectrode (21, 26, 120), isolĆ©es Ć©lectriquement l'une de l'autre, entre lesquelles une tension peut ĆŖtre appliquĆ©e,
    * une matiĆØre fissile, comportant du plutonium 242 pur Ć  au moins 99,5 % atomique, disposĆ©e sur l'une au moins des deux Ć©lectrodes, et
    * un gaz de dƩtection, inclus dans l'enceinte sous pression, ionisable par des produits de fissions.
  14. Dispositif de mesure selon la revendication 13, dans lequel l'une parmi les premiĆØre et seconde Ć©lectrodes fait partie de l'enceinte, les Ć©lectrodes Ć©tant alors appelĆ©es Ć©lectrode externe (1) et Ć©lectrode interne (2).
  15. Dispositif de mesure selon la revendication 14, dans lequel la matiĆØre fissile (3) est disposĆ©e sur une paroi de l'Ć©lectrode interne.
  16. Dispositif de mesure selon l'une quelconque des revendications 13 Ơ 15, dans lequel le gaz de dƩtection est de l'argon additionnƩ de 4% d'azote.
  17. Dispositif de mesure selon la revendication 11, dans lequel le dƩtecteur de neutrons rapides est une chambre Ơ fission contenant du Neptunium Np237, ou de l'Uranium U238, ou du Thorium Th232.
  18. Dispositif de mesure selon l'une quelconque des revendications prƩcƩdentes, dans lequel le premier circuit Ʃlectronique (C1) comprend un processeur numƩrique de calcul de variance qui dƩlivre le signal numƩrique VR(tn) sous la forme d'une variance numƩrique du signal dƩlivrƩ par le dƩtecteur de neutrons rapides.
  19. Dispositif de mesure selon l'une quelconque des revendications prƩcƩdentes, dans lequel le second circuit Ʃlectronique (C2) comprend un processeur numƩrique de calcul de variance qui dƩlivre le signal numƩrique VT(tn) sous la forme d'une variance numƩrique du signal dƩlivrƩ par le dƩtecteur de neutrons thermiques.
  20. Dispositif de mesure selon l'une quelconque des revendications 1 Ơ 18, dans lequel le second circuit Ʃlectronique (C2) est un circuit numƩrique de conversion courant-tension.
EP09820277A 2008-10-13 2009-10-09 Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques Not-in-force EP2338157B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL09820277T PL2338157T3 (pl) 2008-10-13 2009-10-09 Urządzenie do pomiaru on-line strumienia neutronĆ³w prędkich i epitermicznych
SI200930421T SI2338157T1 (sl) 2008-10-13 2009-10-09 Naprava za online merjenje toka hitrih in epitermičnih nevtronov

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856922A FR2937149B1 (fr) 2008-10-13 2008-10-13 Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques
PCT/EP2009/063146 WO2010043554A1 (fr) 2008-10-13 2009-10-09 Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques

Publications (2)

Publication Number Publication Date
EP2338157A1 EP2338157A1 (fr) 2011-06-29
EP2338157B1 true EP2338157B1 (fr) 2012-10-31

Family

ID=40894950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09820277A Not-in-force EP2338157B1 (fr) 2008-10-13 2009-10-09 Dispositif de mesure en ligne d'un flux de neutrons rapides et epithermiques

Country Status (9)

Country Link
US (1) US8735804B2 (fr)
EP (1) EP2338157B1 (fr)
JP (1) JP5529144B2 (fr)
CN (1) CN102246243B (fr)
FR (1) FR2937149B1 (fr)
PL (1) PL2338157T3 (fr)
RU (1) RU2516854C2 (fr)
SI (1) SI2338157T1 (fr)
WO (1) WO2010043554A1 (fr)

Cited By (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN110765618A (zh) * 2019-10-28 2020-02-07 č„æ安äŗ¤é€šå¤§å­¦ äø€ē§åŽ‹ę°“堆堆内č‡Ŗē»™čƒ½äø­å­ęŽ¢ęµ‹å™Øēš„响åŗ”ē”µęµč®”ē®—ę–¹ę³•

Families Citing this family (10)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
ES2625878T3 (es) * 2010-10-29 2017-07-20 Bellandtechnology Ag CopolĆ­mero soluble en agua o desintegrable en agua
US10446282B2 (en) * 2011-12-23 2019-10-15 Ge-Hitachi Nuclear Energy Americas Llc Methods, systems, and computer program products for generating fast neutron spectra
CN103306663B (zh) * 2012-03-06 2016-01-27 äø­å›½åŽŸå­čƒ½ē§‘å­¦ē ”ē©¶é™¢ 铀ēŸæ굋äŗ•ę–¹ę³•
JP5787799B2 (ja) * 2012-03-13 2015-09-30 äø‰č±é›»ę©Ÿę Ŗ式会ē¤¾ ē‚‰å¤–ę øčØˆč£…č£…ē½®
CN103871525B (zh) * 2012-12-13 2016-08-31 äø­å›½ę øåŠØ力ē ”ē©¶č®¾č®”院 åŸŗäŗŽå”å°”ę›¼ę»¤ę³¢ēš„é“‘č‡Ŗē»™čƒ½ęŽ¢ęµ‹å™Øäæ”号延čæŸę¶ˆé™¤ę–¹ę³•
FR3005196A1 (fr) * 2013-04-25 2014-10-31 Commissariat Energie Atomique Systeme de controle commande de cœur de reacteur nucleaire
CN103943158B (zh) * 2013-12-31 2016-06-29 č„æ安äŗ¤é€šå¤§å­¦ äø€ē§ę¶ˆé™¤č‡Ŗē»™čƒ½äø­å­ęŽ¢ęµ‹å™Ø延čæŸę•ˆåŗ”ēš„ę–¹ę³•
CN104778980A (zh) * 2015-04-09 2015-07-15 äø­å›½ę øåŠØ力ē ”ē©¶č®¾č®”院 åŸŗäŗŽLuenberger形式ēš„H2ę»¤ę³¢ēš„银č‡Ŗē»™čƒ½ęŽ¢ęµ‹å™Øäæ”号延čæŸę¶ˆé™¤ę–¹ę³•
RU2630260C2 (ru) * 2015-11-16 2017-09-06 ŠŠŗцŠøŠ¾Š½ŠµŃ€Š½Š¾Šµ Š¾Š±Ń‰ŠµŃŃ‚Š²Š¾ "ŠšŃ€Š°ŃŠ½Š°Ń Š—Š²ŠµŠ·Š“Š°" Š’ысŠ¾ŠŗŠ¾Ń‚ŠµŠ¼ŠæŠµŃ€Š°Ń‚ŃƒŃ€Š½Š°Ń ŠøŠ¾Š½ŠøŠ·Š°Ń†ŠøŠ¾Š½Š½Š°Ń ŠŗŠ°Š¼ŠµŃ€Š° Š“ŠµŠ»ŠµŠ½Šøя Š“Š»Ń сŠøстŠµŠ¼ уŠæрŠ°Š²Š»ŠµŠ½Šøя Šø Š·Š°Ń‰Šøты яŠ“ŠµŃ€Š½Ń‹Ń… рŠµŠ°ŠŗтŠ¾Ń€Š¾Š²
RU2743849C1 (ru) * 2020-04-23 2021-02-26 Š Š¾ŃŃŠøŠ¹ŃŠŗŠ°Ń Š¤ŠµŠ“ŠµŃ€Š°Ń†Šøя, Š¾Ń‚ ŠøŠ¼ŠµŠ½Šø ŠŗŠ¾Ń‚Š¾Ń€Š¾Š¹ Š²Ń‹ŃŃ‚ŃƒŠæŠ°ŠµŃ‚ Š“Š¾ŃŃƒŠ“Š°Ń€ŃŃ‚Š²ŠµŠ½Š½Š°Ń ŠŗŠ¾Ń€ŠæŠ¾Ń€Š°Ń†Šøя ŠæŠ¾ Š°Ń‚Š¾Š¼Š½Š¾Š¹ эŠ½ŠµŃ€Š³ŠøŠø "Š Š¾ŃŠ°Ń‚Š¾Š¼" (Š“Š¾ŃŠŗŠ¾Ń€ŠæŠ¾Ń€Š°Ń†Šøя "Š Š¾ŃŠ°Ń‚Š¾Š¼") Š˜Š¾Š½ŠøŠ·Š°Ń†ŠøŠ¾Š½Š½Š°Ń ŠŗŠ°Š¼ŠµŃ€Š° Š“ŠµŠ»ŠµŠ½Šøя Š“Š»Ń рŠµŠ³ŠøстрŠ°Ń†ŠøŠø Š±Ń‹ŃŃ‚рых Š½ŠµŠ¹Ń‚Ń€Š¾Š½Š¾Š²

Family Cites Families (25)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US3752735A (en) * 1970-07-16 1973-08-14 Combustion Eng Instrumentation for nuclear reactor core power measurements
CA1095635A (fr) * 1977-01-17 1981-02-10 Wyatt W. Givens Diagraphie de neutrons instantanes pour la detection de l'uranium
US4379228A (en) * 1980-10-10 1983-04-05 Mobil Oil Corporation Neutron-neutron-logging
JPS57184991A (en) * 1981-05-09 1982-11-13 Mitsubishi Electric Corp Measuring device for neutron flux in nuclear reactor
US4524274A (en) * 1982-08-05 1985-06-18 Schlumberger Technology Corporation Methods and apparatus for investigating an earth formation and compensating for borehole environmental effects
JPH01100493A (ja) * 1987-10-14 1989-04-18 Toshiba Corp ę øåˆ†č£‚åž‹äø­ę€§å­ę¤œå‡ŗå™Ø
FR2662816B1 (fr) * 1990-06-05 1993-10-22 Commissariat A Energie Atomique Chambre a fission a grande gamme de mesure et dispositif de mesure de debit de fluence neutronique utilisant cette chambre a fission.
JPH04233499A (ja) * 1990-10-01 1992-08-21 Westinghouse Electric Corp <We> ē‚‰åæƒå¤–åž‹äø­ę€§å­ęŸćƒ»å‡ŗåŠ›ćƒ¬ćƒ™ćƒ«ę¤œå‡ŗå™Øć‚¢ć‚»ćƒ³ćƒ–ćƒŖ
JPH0545490A (ja) * 1991-08-21 1993-02-23 Toshiba Corp 原子ē‚‰å‡ŗ力ē›£č¦–č£…ē½®
JP2877609B2 (ja) * 1992-03-30 1999-03-31 ę Ŗ式会ē¤¾ę±čŠ 原子力ē™ŗ電čح備ē”Øčµ·å‹•é ˜åŸŸćƒ¢ćƒ‹ć‚æć‚·ć‚¹ćƒ†ćƒ 
FR2727526B1 (fr) 1994-11-29 1997-01-03 Commissariat Energie Atomique Chambre a fission subminiature avec passage etanche
US5536938A (en) * 1995-02-22 1996-07-16 Mobil Oil Corporation Pulsed neutron decay logging
US5684299A (en) * 1995-06-26 1997-11-04 Schlumberger Technology Corporation Method for determining porosity in an invaded gas reservoir
JPH112690A (ja) * 1997-06-12 1999-01-06 Hitachi Ltd ē‚‰å†…äø­ę€§å­ęŸč؈ęø¬č£…ē½®
JPH11326584A (ja) * 1998-05-15 1999-11-26 Toshiba Corp 原子ē‚‰ęø¬å®šč£…ē½®
JP2000162371A (ja) * 1998-12-01 2000-06-16 Hitachi Ltd ē‡ƒę–™é›†åˆä½“ę øēخ量ē®—å‡ŗč£…ē½®ćŠć‚ˆć³ćć®ē®—å‡ŗę–¹ę³•
RU2200988C2 (ru) * 2001-02-19 2003-03-20 Š“Š¾ŃŃƒŠ“Š°Ń€ŃŃ‚Š²ŠµŠ½Š½Š¾Šµ ŠæрŠµŠ“ŠæрŠøятŠøŠµ Š›ŠµŠ½ŠøŠ½Š³Ń€Š°Š“сŠŗŠ°Ń Š°Ń‚Š¾Š¼Š½Š°Ń эŠ»ŠµŠŗтрŠ¾ŃŃ‚Š°Š½Ń†Šøя ŠøŠ¼. Š’.Š˜.Š›ŠµŠ½ŠøŠ½Š° Š”ŠæŠ¾ŃŠ¾Š± ŠøŠ·Š¼ŠµŃ€ŠµŠ½Šøя ŠæŠ¾Ń‚Š¾ŠŗŠ° Š½ŠµŠ¹Ń‚Ń€Š¾Š½Š¾Š² Š² эŠ½ŠµŃ€Š³ŠµŃ‚ŠøчŠµŃŠŗŠ¾Š¼ рŠµŠ°ŠŗтŠ¾Ń€Šµ
US20030178560A1 (en) * 2002-03-19 2003-09-25 Odom Richard C. Apparatus and method for determining density, porosity and fluid saturation of formations penetrated by a borehole
WO2004043372A2 (fr) * 2002-11-13 2004-05-27 Proportional Technologies, Inc. Detecteur de neutrons par tubes pailles enduits de bore
JP4528496B2 (ja) * 2003-05-28 2010-08-18 ę Ŗ式会ē¤¾ę±čŠ 原子ē‚‰å‡ŗ力ē›£č¦–č£…ē½®
JP4214176B2 (ja) * 2004-03-12 2009-01-28 ē‹¬ē«‹č”Œę”æę³•äŗŗ ę—„ęœ¬åŽŸå­åŠ›ē ”ē©¶é–‹ē™ŗę©Ÿę§‹ äø­ę€§å­ęø¬å®šć‚·ć‚¹ćƒ†ćƒ 
US20060165209A1 (en) * 2005-01-27 2006-07-27 Cheng Alexander Y Neutron detector assembly with variable length rhodium emitters
JP2007163245A (ja) * 2005-12-13 2007-06-28 Toshihisa Shirakawa č‡Ŗē™ŗäø­ę€§å­ę”¾å‡ŗę øē‡ƒę–™ć‚’č£…č·ć›ć‚‹åŽŸå­ē‚‰
US7667192B2 (en) * 2007-08-16 2010-02-23 Schlumberger Technology Corporation Thermal neutron porosity from neutron slowing-down length, formation thermal neutron capture cross section, and bulk density
FR2925750B1 (fr) 2007-12-21 2015-03-27 Commissariat Energie Atomique Detecteur pour la mesure en ligne des neutrons rapides dans un reacteur

Cited By (2)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
CN110765618A (zh) * 2019-10-28 2020-02-07 č„æ安äŗ¤é€šå¤§å­¦ äø€ē§åŽ‹ę°“堆堆内č‡Ŗē»™čƒ½äø­å­ęŽ¢ęµ‹å™Øēš„响åŗ”ē”µęµč®”ē®—ę–¹ę³•
CN110765618B (zh) * 2019-10-28 2021-04-13 č„æ安äŗ¤é€šå¤§å­¦ äø€ē§åŽ‹ę°“堆堆内č‡Ŗē»™čƒ½äø­å­ęŽ¢ęµ‹å™Øēš„响åŗ”ē”µęµč®”ē®—ę–¹ę³•

Also Published As

Publication number Publication date
SI2338157T1 (sl) 2013-01-31
EP2338157A1 (fr) 2011-06-29
JP2012505392A (ja) 2012-03-01
FR2937149B1 (fr) 2010-12-03
JP5529144B2 (ja) 2014-06-25
WO2010043554A1 (fr) 2010-04-22
RU2011119091A (ru) 2012-11-20
RU2516854C2 (ru) 2014-05-20
US8735804B2 (en) 2014-05-27
CN102246243A (zh) 2011-11-16
FR2937149A1 (fr) 2010-04-16
PL2338157T3 (pl) 2013-03-29
US20110274230A1 (en) 2011-11-10
CN102246243B (zh) 2014-07-09

Similar Documents

Publication Publication Date Title
EP2338157B1 (fr) Dispositif de mesure en ligne d&#39;un flux de neutrons rapides et epithermiques
FR2462764A1 (fr) Procede de determination de la teneur en combustible fissile du materiau de combustible de reacteurs nucleaires
FR2945373A1 (fr) Dispositif et appareil pour la mesure du profil d&#39;enrichissement d&#39;un crayon de combustible nucleaire
EP0986766B1 (fr) Procede et dispositif de mesure de la proportion relative de plutonium et d&#39;uranium dans un corps
US3043954A (en) Fission chamber assembly
US12044815B2 (en) Fixed in-core detector design using sic Schottky diodes configured with a high axial and radial sensor density and enhanced fission gamma measurement sensitivity
WO1998011560A1 (fr) Dispositif miniaturise, auto-alimente et a reponse rapide, pour la detection etagee d&#39;un flux neutronique, notamment dans un reacteur nucleaire
EP0294283A1 (fr) ProcƩdƩ et dispositif de mesure de la concentration en lithium dans le circuit primaire de refroidissement d&#39;un rƩacteur nuclƩaire
FR2516665A1 (fr) Detecteur de concentration de gaz radioactifs a large plage
WO2015001527A1 (fr) Perfectionnement a un dispositif de mesure de champs de neutrons et/ou de gammas formant collectron
Vermeeren et al. Irradiation tests of prototype self-powered gamma and neutron detectors
EP2483711B1 (fr) Procede de determination du rapport isotopique de matiere fissile contenue dans une chambre a fission
EP1145249B1 (fr) Procede et appareil d&#39;identification de combustibles nucleaires
Blandin et al. Development and modeling of neutron detectors for in-core measurement requirements in nuclear reactors
RU80070U1 (ru) Š”ŠµŃ‚ŠµŠŗтŠ¾Ń€ яŠ“ŠµŃ€Š½Š¾Š³Š¾ ŠøŠ·Š»ŃƒŃ‡ŠµŠ½Šøя
FR3033900A1 (fr) Dispositif de detection de neutrons thermiques, comportant une coquille de scintillateur plastique enveloppant un coeur de gadolinium ou de cadmium, et dispositif de comptage de neutrons thermiques associe
Heath Fission-Product Monitoring in Reactor Coolant Water
Wilson et al. Body current response scaling under high fluence conditions
FR2614111A1 (fr) Procede et appareil d&#39;evaluation de la teneur en un metal rare d&#39;une formation geologique naturelle
Biegalski et al. Design of aerosol sampler to remove radon and thoron progeny interference from aerosol samples for nuclear explosion monitoring
Coulon et al. Sodium fast reactor power monitoring using 20 F tagging agent
Mas et al. Continuous measurement of neutron flux with the help of a converter
Guillermin et al. Detection of tritium in the CO 2 of the reactors G2/G3 using gas chromatography
Blagus et al. Evidence for neutron production during heavy water electrolysis on palladium electrode
Seaborg et al. NEUTRON MEASURING METHOD AND APPARATUS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009010942

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G21C0017108000

Ipc: G01T0003000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G21C 17/108 20060101ALI20120420BHEP

Ipc: G01T 1/185 20060101ALI20120420BHEP

Ipc: G01V 5/10 20060101ALI20120420BHEP

Ipc: G01T 3/00 20060101AFI20120420BHEP

RTI1 Title (correction)

Free format text: DEVICE FOR THE ON LINE MEASUREMENT OF RAPID AND EPITHERMAL NEUTRONS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 582303

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009010942

Country of ref document: DE

Effective date: 20121227

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 582303

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20121031

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130201

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009010942

Country of ref document: DE

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091009

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20170925

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170918

Year of fee payment: 9

Ref country code: PL

Payment date: 20170929

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20170928

Year of fee payment: 9

Ref country code: DE

Payment date: 20171010

Year of fee payment: 9

Ref country code: FR

Payment date: 20171031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20170922

Year of fee payment: 9

Ref country code: GB

Payment date: 20171016

Year of fee payment: 9

Ref country code: BE

Payment date: 20171025

Year of fee payment: 9

Ref country code: SE

Payment date: 20171017

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009010942

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181009

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181009

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20190627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181009