EP2334871B1 - Verfahren zur herstellung von papier, pappe und karton unter verwendung von endo-beta-1,4-glucanasen als entwässerungsmittel - Google Patents

Verfahren zur herstellung von papier, pappe und karton unter verwendung von endo-beta-1,4-glucanasen als entwässerungsmittel Download PDF

Info

Publication number
EP2334871B1
EP2334871B1 EP09782300.9A EP09782300A EP2334871B1 EP 2334871 B1 EP2334871 B1 EP 2334871B1 EP 09782300 A EP09782300 A EP 09782300A EP 2334871 B1 EP2334871 B1 EP 2334871B1
Authority
EP
European Patent Office
Prior art keywords
weight
enzyme
retention
endo
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09782300.9A
Other languages
English (en)
French (fr)
Other versions
EP2334871A1 (de
Inventor
Torsten Klein
Christian Jehn-Rendu
Hans-Georg Lemaire
Oliver Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09782300.9A priority Critical patent/EP2334871B1/de
Publication of EP2334871A1 publication Critical patent/EP2334871A1/de
Application granted granted Critical
Publication of EP2334871B1 publication Critical patent/EP2334871B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/005Microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/55Polyamides; Polyaminoamides; Polyester-amides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides

Definitions

  • the invention relates to a process for the production of paper, paperboard and cardboard in the presence of at least one cationic polymeric retention agent and / or retention agent system using endo- ⁇ -1,4-glucanases as dehydrating agents, as well as the papers produced by this process.
  • Suitable retention agents are in particular cationic polymers such as polyacrylamides, polyethyleneimines, polyvinylamines, polydimethyldiallylammonium chloride and any mixtures thereof, but also retention agent systems comprising at least one cationic polymer in combination with an organic and / or inorganic component are known.
  • Cationic polyacrylamides are for example from EP 0 176 757 A2 known. These may be linear polyacrylamides but also branched polyacrylamides, as in US 2003/0150575 and in the German Offenlegungsschrift DE 10 2004 058 587 A1 described.
  • Suitable cationic polymeric retention agents are also polyethyleneimines and modified polyethyleneimines, as disclosed in German Offenlegungsschrift DE 24 34 816 are known.
  • DE 24 34 816 and the literature cited therein describes the reactions of polyethyleneimine with crosslinkers such as epichlorohydrin, reactions of polyethylenimine or other oligoamines with oligocarboxylic acids to form polyamidoamines, crosslinked products of these polyamidoamines and reactions of the polyamidoamines with ethyleneimine and bifunctional crosslinkers.
  • Other modified polyethylenimines are made WO 00/67884 A1 and WO 97/25367 A1 known.
  • polyvinylamines in the production of paper, for example, in US 2003/0192664 discloses dosing according to this document to an aqueous fiber slurry, a polymer containing vinylamine units and a particulate, organic, crosslinked polymer.
  • retention aid system which contains cationic polyvinylamine is disclosed in the German Offenlegungsschrift DE 10 2005 043 800 A1 described. There is disclosed a process for making paper in which the retention aid system is comprised of (i) at least one vinylamine units-containing polymer, (ii) at least one linear, anionic polymer having a molecular weight M w of at least 1 million and / or at least one branched anionic water-soluble polymer and / or a bentonite and / or silica gel and (iii) at least one particulate, anionic, crosslinked polymer having an average particle diameter of at least 1 ⁇ m and an intrinsic viscosity of less than 3 dl / g consists.
  • Retention agent systems are also so-called microparticle systems which, in addition to at least one polymeric component, also contain an organic and / or inorganic component.
  • polymers such as modified polyethylenimines, polyacrylamides or polyvinylamines are added as flocculants which are further flocculated by subsequent addition of, for example, inorganic microparticles such as bentonite or colloidal silica.
  • inorganic microparticles such as bentonite or colloidal silica.
  • the order of addition of the components can also be reversed.
  • DE 102 36 252 A1 discloses a process for the production of paper using as cationic polymer of the microparticle system cationic polyacrylamides, vinylamine units containing polymers and / or polydiallyldimethylammonium chloride having an average molecular weight M w of at least 500,000 daltons and a charge density of at most 4.0 meq./g become.
  • the inorganic component is added as well as the cationic polymer before the last shear stage before the headbox of the fiber suspension.
  • the retention aid system is free of polymers with a charge density of more than 4 meq./g.
  • a process for the production of pulp is known in which cellulases are used to improve the dewatering of the pulp.
  • the cellulases are dosed into at least 8% by weight stock preparation, preferably the stock preparation has a proportion of 10-20% by weight of fibers.
  • a disadvantage of this method is that only the drainage is improved.
  • a method for improving the dewatering of paper pulp using a cellulase is also out EP 0 536 580 A1 known. Accordingly, first a cellulase in an amount of at least 0.05 wt .-%, based on the dry pulp, metered into the pulp. The contact time of the cellulase with the pulp is at least 20 minutes at a temperature of at least 20 ° C before subsequently adding a water-soluble cationic polymer in an amount of at least 0.007 wt .-%, based on the dry pulp.
  • a disadvantage of this method is that the cellulase must be used in high amounts in order to achieve a good drainage effect.
  • WO97 / 38164 describes a method of forming paper from recycled paper pulp by adding a dewatering-enhancing amount of a starch-hydrolyzing enzyme, preferably amylase, to the pulp suspension.
  • a starch-hydrolyzing enzyme preferably amylase
  • This document also refers to the use of an amylase in combination with a cellulase such as endoglucanase.
  • the object has been achieved by a method for producing paper, paperboard and cardboard by draining a stock on a wire in the presence of at least one cationic polymeric retention agent and / or retention system to sheet and dry the sheets, prior to the addition of the at least one cationic polymeric retention agent and / or retention aid system an endo- ⁇ -1,4-glucanase in an amount of 0.00001 to 0.01 wt .-%, based on the dry pulp, is metered into the pulp, wherein the cationic polymeric retention aid is a polyacrylamide and the intrinsic viscosity of the polyacrylamide ranges from 7 to 15 dL / g.
  • endo- ⁇ -1,4-glucanases are used as dehydrating agents in an amount of from 0.00001 to 0.01% by weight, based on the dry pulp.
  • the endo- ⁇ -1,4-glucanases in an amount of 0.00001 to 0.005 wt .-%, more preferably in the range of 0.00001 to 0.001 wt .-%, each based on the dry paper stock used.
  • Endo- ⁇ -1,4-glucanases are enzymes belonging to the group of cellulases. These are involved in the hydrolysis of cellulose. For the hydrolysis of native cellulose three main types of cellulases are known: endoglucanases, exoglucanases and ⁇ -glucosidases. According to the invention, endo- ⁇ -1,4-glucanases which belong to the group of endoglucanases act.
  • Endoglucanases act randomly on soluble and insoluble cellulose chains. They are most reactive with non-crystalline or amorphous cellulose, whereas they show a very low reactivity towards crystalline cellulose. Examples of endo- ⁇ -1,4-gluconases (EC No. 3.2.1.4) are the commercial products Novozym® 476 from the company
  • Novozymes and Polymin® PR 8336 from BASF SE.
  • the Novozym® 476 commercial product from Novozymes has an activity of 4500 ECU / g in accordance with the standard unit definition of Novozymes.
  • Endoglucanases are described in detail in WO 98/12307 A1 and the literature cited therein, which is incorporated herein by reference.
  • modified endoglucanases are in EP 0 937 138 B1 which is also referred to here.
  • cellulases are produced by a large number of microorganisms such as fungi, actinobacteria and myxobacteria, but also by plants. Especially endoglucanases from a wide variety of species have been identified so far. For commercial use, they are mostly isolated from cultures of microscopic fungi of the genus Trichoderma (e.g., T. reesei) that occur in the soil and are considered to be the deuteromycetes (Fungi imperfecti).
  • Trichoderma e.g., T. reesei
  • the endo- ⁇ -1,4-glucanase can be dosed into both the thick and the thin pulp of the stock.
  • the thick material usually has a consistency of more than 2 wt .-%, for example 2.5 to 6 wt .-%, preferably 3.0 to 4.5 wt .-%, each based on the dry pulp, on.
  • the thick material is transferred by supplying water into the so-called thin material, which has a substance concentration below 1.5% by weight, based on the dry paper stock.
  • the substance concentration of the thin material is below 1.2% by weight, for example from 0.5 to 1.1% by weight, preferably from 0.6 to 0.9% by weight, in each case based on the dry paper stock.
  • the endo- ⁇ -1,4-glucanase is metered into the thick stock of the paper stock.
  • the dosage of the endo- ⁇ -1,4-glucanase takes place before the addition of the at least one cationic polymeric retention agent and / or retention agent system.
  • Retention agent systems in the context of this invention consist of cationic polyacrylamides in combination with an organic and / or inorganic component.
  • Cationic polyacrylamides are, for example, copolymers prepared by copolymerizing acrylamide and at least one di-C 1 to C 2 -alkylamino-C 2 to C 4 -alkyl (meth) acrylate or a basic acrylamide in the form of the free bases, the salts with organic or inorganic acids or the alkyl halides quaternized compounds are available.
  • Examples of such compounds are dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoethyl acrylate, diethylaminoethyloacrylyl, dimethylaminopropyl methacrylate, dimethylaminopropyl acrylate, diethylaminopropyl methacrylate, diethylaminopropyl acrylate and / or dimethylaminoethylacrylamide.
  • Further examples of cationic polyacrylamides may be the references cited in the prior art such as EP 0 910 701 A1 and US 6,103,065 be removed.
  • One can use both linear and branched or crosslinked polyacrylamides. Such polymers are commercial products.
  • Branched polymers the z. Example, by copolymerization of acrylamide or methacrylamide with at least one cationic monomer in the presence of small amounts of crosslinking agents can be produced, for example, in the references cited in the prior art US 5,393,381 . WO 99/66130 A1 and WO 99/63159 A1 described. Further branched cationic polyacrylamides are as component (b) in DE 10 2004 058 587 A1 discloses, to which reference is expressly made at this point.
  • the branched or crosslinked (co) polyacrylamide is a cationic copolymer of acrylamide and a non-saturated cationic ethylene monomer selected from dimethylaminoethyl acrylate (ADAME), dimethylaminoethylacrylamide, dimethylaminoethyl methacrylate (MADAME) quaternized or salted by various acids and quaternizing agents such as benzyl chloride, methyl chloride, alkyl or aryl chloride, dimethyl sulfate, furthermore dimethyldiallylammonium chloride (DADMAC), acrylamidopropyltrimethylammonium chloride (APTAC) and methacrylamidopropyltrimethylammonium chloride (MAPTAC).
  • ADAME dimethylaminoethyl acrylate
  • MADAME dimethylaminoethyl methacrylate
  • DADMAC dimethyldiallylammonium chloride
  • ATAC acryl
  • Preferred cationic comonomers are dimethylaminoethyl acrylate methochloride and dimethylaminoethylacrylamide methochloride, which are obtained by alkylation of dimethylaminoethyl acrylate or dimethylaminoethylacrylamide with methyl chloride.
  • This copolymer is branched, as known to those skilled in the art, through a branching agent consisting of a compound having at least two reactive moieties selected from the group comprising double, aldehyde or epoxy bonds. These compounds are known and are for example in the document EP 0 374 458 A1 described.
  • branched cationic polyacrylamides which consist of a mixture of branched and linear polyacrylamides, as described in the prior art, by the process according to the invention.
  • a mixture usually consists of a branched cationic polyacrylamide as described above and a linear polyacrylamide in a ratio of 99: 1 to 1: 2, preferably in a ratio of 90: 1 to 2: 1, and particularly preferably in a ratio of 90: 1 to 3: 1.
  • the cationic polyacrylamide may also be crosslinked, wherein the polymerization of the monomers is carried out in the presence of a conventional crosslinker.
  • Crosslinkers are known compounds containing at least two ethylenically unsaturated double bonds in the molecule, such as methylenebisacrylamide, pentaerythritol triacrylate or glycol diacrylates.
  • mixtures of linear, branched and crosslinked polyacrylamides may also be used in the process according to the invention, but preference is given to using only one polyacrylamide.
  • the intrinsic viscosity is determined according to ISO 1628/1, October 1988, "Guidelines for the standardization of methods for the determination of viscosity number and polymer in dilute solution".
  • the said cationic polymeric retention agents can be used alone or in any desired mixture with one another in the process according to the invention. Preferably, only a cationic polymeric retention agent is used.
  • the at least one cationic polymeric retention agent is added in an amount of 0.001 to 0.1, preferably 0.03 to 0.5 wt .-%, each based on the dry paper stock.
  • retention aid systems as known from the prior art, can be used in the process according to the invention.
  • These retention aid systems consist of the cited cationic polymers and a further organic and / or inorganic component.
  • a retention agent system with a further organic component which is suitable in the process according to the invention also contains, in addition to one of the abovementioned cationic polymers, a water-insoluble, anionic, organic component which crosslinks a diameter of less than 750 nm and uncrosslinked a diameter of less than 60 nm.
  • This anionic component is preferably an anionic, crosslinked polyacrylamide.
  • Such a system is in EP 0 462 365 A1 describe.
  • such a system may still contain an inorganic component as described below.
  • a retention aid system in which the organic component is an anionic polymer such as preferably polyacrylamide is suitable.
  • This polyacrylamide may be linear, branched or crosslinked.
  • Such a system of cationic polymer, anionic, branched polymer and inorganic component is, for example, in EP 1 328 683 A1 described.
  • Similar retention systems are in WO 02/33171 A1 described here, wherein an anionic, crosslinked polyacrylamide is used as organic components.
  • this is suitable in WO 01/34910 A1 discloses retention system containing an anionic, linear polyacrylamide as an organic component.
  • an inorganic component is metered into the paper stock together with the cited cationic polymers.
  • This inorganic component is preferably bentonite and / or silica gel.
  • Bentonites are finely divided, water-swellable minerals, such as bentonite itself, hectorite, attapulgite, montmorillonite, nontronite, saponite, sauconite, hormitol and sepiolite.
  • modified and unmodified silicic acids are suitable as silica gel. Bentonite and / or silica gel are usually used in the form of an aqueous slurry.
  • a microparticle system with an inorganic component is used in the process according to the invention, in the case of bentonite the amount is 0.05 to 0.5, preferably 0.1 to 0.3,% by weight, in each case based on the dry paper stock, and in the case of silica gel usually 0.005 to 0.5, preferably 0.01 to 0.3 wt .-%, calculated on the basis of the SiO 2 content in the silica gel and in each case based on the dry pulp.
  • the inorganic component can be metered into the stock both before and after the last shear stage before the headbox.
  • the dosage takes place before the last shear stage before the headbox.
  • All the paper materials can be processed by the process according to the invention.
  • cellulose fibers of all kinds both from natural as well as recovered fibers, in particular recycled paper fibers.
  • Suitable pulps for the production of the pulps are all qualities customary for this purpose, for example wood pulp, bleached and unbleached pulp and pulps from all annual plants.
  • Wood pulp includes, for example, groundwood, thermomechanical pulp (TMP), chemo-thermo-mechanical pulp (CTMP), pressure groundwood, semi-pulp, high yield pulp, and refiner mechanical pulp (RMP).
  • TMP thermomechanical pulp
  • CMP chemo-thermo-mechanical pulp
  • RMP refiner mechanical pulp
  • pulp for example, sulphate, sulphite and soda pulps come into consideration.
  • unbleached pulp also referred to as unbleached kraft pulp
  • Suitable annual plants for the production of pulps are, for example, rice, wheat, sugar cane and kenaf.
  • For the production of pulps can also be used with advantage waste paper or old cardboard, which is used either alone or in admixture with other fibers, or it is based on fiber blends of a primary material and recycled scrap Committee, eg bleached pine sulfate in admixture with recycled scrap Committee.
  • the endo- ⁇ -1,4-glucanases are added to the stock as a dehydrating agent prior to the addition of the cationic polymeric retention aid and / or retention aid system.
  • the usual process chemicals can additionally be used for the production of paper and paper products.
  • Typical process chemicals include, for example, additives such as starch, pigments, optical brighteners, dyes, biocides, paper strength agents, sizing agents, fixatives, defoamers and deaerators.
  • the additives mentioned are used in the otherwise customary amounts known to those skilled in the art.
  • all starches such as native starches or modified starches, in particular cationically modified starches, can be used as starches.
  • Suitable fixing agents are optionally modified polyethyleneimines, polydimethyldiallylammonium chloride, dicyandiamide resins, epichlorohydrin-crosslinked condensation products of a dicarboxylic acid and a polyamine, polyaluminum chloride, aluminum sulfate and polyaluminum chlorosulphate.
  • Sizing agents are e.g. Rosin size, alkyl diketenes, alkenyl succinic anhydrides or polymeric sizing agents and mixtures thereof.
  • solidifiers for paper are, for example, the polymers containing polyvinylamines or vinylamine units mentioned above, which are usually present in an amount of from 0.01 to 0.5, preferably from 0.1 to 0.3,% by weight, based in each case on the dry paper stock , are used.
  • carrier systems which are fillers treated with amphoteric polymers, such as calcium carbonate, are also suitable as solidifiers. Such carrier system are for example in the German Offenlegungsschrift DE 10 334 133 A1 disclosed.
  • Enzyme A Endo- ⁇ -1,4-glucanase (Polymin® PR 8336 from BASF SE)
  • Polymer A high molecular weight cationic polyacrylamide emulsion having a molecular weight of about 5,000,000, a charge density of 1.8 meq./g and an intrinsic viscosity of 10.5 dL / g (Polymin® KE 440 from BASF SE)
  • Fixative A low molecular weight polyethyleneimine having a molecular weight of about 800,000 and a charge density of about 11 meq./g (Catiofast® SF from BASF SE) bentonite: Microfloc® XFB from BASF SE
  • the retention effect (total retention FPR) was determined according to Britt Jarr.
  • the dewatering time was determined according to ISO Standard 5267 with a Schopper-Riegler tester by dewatering each 1 L of the fiber slurry to be tested with a consistency of 2 g / L therein and determining the time in seconds to pass through 600 mL Filtrate was necessary.
  • the improvement of the dewatering time in% was given, which results from the formula [1 - (dewatering time (experiment) / dewatering time (comparison)] x 100.
  • the water retention value was determined by empirical measurement of the water absorption capacity of a fiber mat. For this purpose, 2.50 ml of a 4% strength by weight fiber slurry were introduced into an anion exchange extraction column which had a glass frit installed at about half the height (Merck, SAX, 1.02025.0001 or Fa. Strata, C8, 8B-S005-HBJ). Subsequently, the suspension was centrifuged at 3000 g for 15 minutes. The wet fiber mat was removed from the sieve and weighed (weight G1). Then, the fiber mat was dried at 105 ° C to constant weight and weighed again (weight G2). The WRV was given in% in the examples and results from the formula (G1-G2) / G2 ⁇ 100.
  • Example 1 was repeated, but only 1 wt .-% fabric suspensions were used. These were stirred after enzyme addition with the aid of a Heiltof stirrer at different stirring speeds (250 rpm and 800 rpm). The further treatment was carried out as in Example 1. Subsequently, the drainage time was determined.
  • Example 1 was repeated, but only 3 wt .-% solids suspensions were used. These were stirred after enzyme addition with the aid of a Heiltof stirrer at different stirring speeds (250 rpm and 800 rpm). The further treatment was carried out as in Example 1. Subsequently, the drainage time was determined.
  • the total retention action (FPR) is markedly improved in the range of the low dosage of the enzyme according to the invention.
  • the addition of the retention agent polymer A in conjunction with the low dosage of the enzyme according to the invention results in an overall effect in the overall retention (FPR).
  • Table 5 Improvement of the dewatering time at different enzyme concentrations depending on the addition of a polymeric retention agent Test no. Enzyme A [wt%] Improvement of the dewatering time [%], without addition of polymer A Improvement of the drainage time [%], with addition of polymer A 21 0 - 41.7 22 0.0001 27.4 51.2 23 0.0003 39.3 58.3
  • Example 5 was repeated except that enzyme A was added only in an amount of 0.001% by weight. Further, an optional fixing agent A, polymer A and a bentonite were added. Subsequently, the dehydration time was determined, the results are summarized in Table 6. Table 6: Improvement of drainage time as a function of the addition of a fixing agent, a polymeric retention agent and a bentonite Test no.
  • Table 7 Water retention value at different enzyme concentrations depending on the addition of a polymeric retention agent Test no. Enzyme A [wt%] WRV without addition of polymer A [%] WRV with addition of polymer A [%] 33 0 116 112 34 0.001 103 98 35 0.005 99 101 36 0.01 101 99 37 0.05 102 102 38 0.1 104 98 39 0.3 103 101 40 0.5 102 101

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Papier, Pappe und Karton in Gegenwart mindestens eines kationischen polymeren Retentionsmittels und/oder Retentionsmittelsystems unter Verwendung von Endo-β-1,4-glucanasen als Entwässerungsmittel, sowie die nach diesem Verfahren hergestellten Papiere.
  • Der Einsatz von Entwässerungs- und Retentionsmitteln bei der Herstellung von Papier, Pappe und Karton ist seit langem bekannt. Als Retentionsmittel kommen insbesondere kationische Polymere wie Polyacrylamide, Polyethylenimine, Polyvinylamine, Polydimethyldiallylammoniumchlorid und beliebige Mischungen davon in Betracht, aber auch Retentionsmittelsysteme aus mindestens einem kationischen Polymeren in Kombination mit einer organischen und/oder anorganischen Komponente sind bekannt.
  • Kationische Polyacrylamide sind beispielsweise aus der EP 0 176 757 A2 bekannt. Dabei kann es sich um lineare Polyacrylamide aber auch um verzweigte Polyacrylamide handeln, wie in US 2003/0150575 und in der deutschen Offenlegungsschrift DE 10 2004 058 587 A1 beschrieben.
  • Als kationische polymere Retentionsmittel kommen auch Polyethylenimine und modifizierte Polyethylenimine in Betracht, wie sie aus der deutschen Offenlegungsschrift DE 24 34 816 bekannt sind. In der DE 24 34 816 und der dort zitierten Literatur sind die Umsetzungen aus Polyethylenimin mit Vernetzern wie Epichlorhydrin, Umsetzungen von Polyethylenimin oder anderen Oligoaminen mit Oligocarbonsäuren zu Polyamidoaminen, vernetzte Produkte dieser Polyamidoamine sowie Umsetzungen der Polyamidoamine mit Ethylenimin und bifunktionellen Vernetzern beschrieben. Andere modifiezierte Polyethylenimine sind aus WO 00/67884 A1 und WO 97/25367 A1 bekannt.
  • Der Einsatz von Polyvinylaminen bei der Herstellung von Papier wird beispielsweise in US 2003/0192664 offenbart, wobei man gemäß dieser Schrift zu einer wässrigen Faseraufschlämmung ein Vinylamineinheiten enthaltendes Polymer und ein teilchenförmiges, organisches, vernetztes Polymer dosiert.
  • Ein weiteres Retentionsmittelsystem, welches kationisches Polyvinylamin enthält, ist in der deutschen Offenlegungsschrift DE 10 2005 043 800 A1 beschrieben. Dort wird ein Verfahren zur Herstellung von Papier offenbart, in dem das Retentionsmittelsystem aus (i) mindestens einem Vinylamineinheiten enthaltenden Polymeren, (ii) mindestens einem linearen, anionischen Polymeren mit einer Molmasse Mw von mindestens 1 Million und/oder mindestens einem verzweigten, anionischen wasserlöslichen Polymeren und/oder einem Bentonit und/oder Kieselgel und (iii) mindestens einem teilchenförmigen, anionischen, vernetzten Polymer mit einem mittleren Teilchendurchmesser von mindestens 1 µm und einer intrinsischen Viskosität von weniger als 3 dl/g besteht.
  • Retentionsmittelsysteme sind auch sogenannte Mikropartikelsysteme, die neben mindestens einer polymeren Komponente noch eine organische und/oder anorganische Komponente enthalten. Allgemein werden in den Mikropartikelsystemen Polymere, wie modifizierte Polyethylenimine, Polyacrylamide oder Polyvinylamine, als Flockungsmittel zugesetzt, die durch anschließende Zugabe von beispielsweise anorganischen Mikropartikeln wie Bentonit oder kolloidales Silica weiter geflockt werden. Die Reihenfolge der Zugabe der Komponenten kann auch umgekehrt erfolgen.
  • Ein solches Mikropartikelsystem ist aus EP 0 235 893 A1 bekannt. Darin wird ein Verfahren zur Herstellung von Papier beschrieben, in dem man zu einer wässrigen Fasersuspension zunächst ein im wesentlichen lineares synthetisches Polymer mit einer Molmasse von mehr als 500 000 in einer Menge von mehr als 0,03 Gew.-%, bezogen auf trockenen Papierstoff, zugibt, die Mischung anschließend der Einwirkung eines Scherfeldes unterwirft, und nach der letzten Scherstufe einen Bentonit zudosiert.
  • Ein anderes Mikropartikelsystem ist in DE 102 36 252 A1 beschrieben. DE 102 36 252 A1 offenbart eine Verfahren zur Herstellung von Papier, wobei als kationisches Polymer des Mikropartikelsystems kationische Polyacrylamide, Vinylamineinheiten enthaltende Polymere und/oder Polydiallyldimethylammoniumchlorid mit einer mittleren Molmasse Mw von jeweils mindestens 500 000 Dalton und einer Ladungsdichte von jeweils höchstens 4,0 meq./g eingesetzt werden. Die anorganische Komponente wird ebenso wie das kationische Polymer vor der letzten Scherstufe vor dem Stoffauflauf der Fasersuspension zugegeben. Darüber hinaus ist das Retentionsmittelsystem frei von Polymeren mit einer ladungsdichte von mehr als 4 meq./g.
  • Allen genannten Kombinationen ist gemeinsam, dass nur die Retention verbessert werden kann.
  • Darüber hinaus ist aus der Literatur der Einsatz von Enzymen, insbesondere Cellulasen, als Hilfsmittel bei der Herstellung von Papier bekannt.
  • Aus der EP 0 524 220 B1 ist ein Verfahren zur Herstellung von Pulpe bekannt, in dem Cellulasen zur Verbesserung der Entwässerung der Pulpe eingesetzt werden. Dabei werden die Cellulasen in eine mindestens 8 gew.-%ige Stoffaufbereitung dosiert, vorzugsweise hat die Stoffaufbereitung einen Anteil von 10 - 20 Gew.-% Fasern. Nachteilig an diesem Verfahren ist, dass nur die Entwässerung verbessert wird.
  • Ein Verfahren zur Verbesserung der Entwässerung von Papierpulpe unter Einsatz einer Cellulase ist auch aus EP 0 536 580 A1 bekannt. Demgemäß wird zunächst eine Cellulase in einer Menge von mindestens 0,05 Gew.-%, bezogen auf den trockenen Papierstoff, in den Papierstoff dosiert. Die Kontaktdauer der Cellulase mit dem Papierstoff beträgt mindestens 20 Minuten bei einer Temperatur von mindestens 20 °C, bevor anschließend ein wasserlösliches kationisches Polymer in einer Menge von mindestens 0,007 Gew.-%, bezogen auf den trockenen Papierstoff zugegeben wird. Nachteilig an diesem Verfahren ist, dass die Cellulase in hohen Mengen eingesetzt werden muss, um eine gute Entwässerungswirkung zu erzielen.
  • WO97/38164 beschreibt ein Verfahren zur Bildung von Papier aus wiederverwendetem Papierzellstoff, durch Zugabe einer die Entwässerung verbessernden Menge eines Stärke hydrolysierenden Enzyms, vorzugsweise Amylase, zur Faserstoffsuspension. Dieses Dokument nimmt auch Bezug auf die Verwendung einer Amylase in Kombination mit einer Cellulase wie Endoglucanase.
  • Es besteht daher in der Papierindustrie ein ständiger Bedarf an verbesserten und neuen Papierhilfsmitteln und Papierhilfsmittelsystemen, die die Retention und Entwässerung gleichermaßen verbessern.
  • Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, ein Verfahren zur Herstellung von Papier, Pappe und Karton unter Einsatz eines Papierhilfsmittelsystems zur Verfügung zu stellen, welches eine verbesserte Retention und Entwässerung bewirkt.
  • Die Aufgabe wurde gelöst durch ein Verfahren zur Herstellung von Papier, Pappe und Karton durch Entwässern eines Papierstoffs auf einem Sieb in Gegenwart mindestens eines kationischen polymeren Retentionsmittels und/oder Retentionsmittelsystems unter Blattbildung und Trocknung der Blätter, wobei vor der Zugabe des mindestens einen kationischen polymeren Retentionsmittels und/oder Retentionsmittelsystems eine Endo-β-1,4-glucanase in einer Menge von 0,00001 bis 0,01 Gew.-%, bezogen auf den trockenen Papierstoff, in den Papierstoff dosiert wird,
    wobei das kationische polymere Retentionsmittel ein Polyacrylamid ist und die intrinsische Viskosität des Polyacrylamids im Bereich von 7 bis 15 dL/g liegt.
  • Nach dem erfindungsgemäßen Verfahren werden Endo-β-1,4-glucanasen als Entwässerungsmittel in einer Menge von 0,00001 bis 0,01 Gew.-%, bezogen auf den trockenen Papierstoff eingesetzt. Bevorzugt werden die Endo-β-1,4-glucanasen in einer Menge von 0,00001 bis 0,005 Gew.-%, besonders bevorzugt im Bereich von 0,00001 bis 0,001 Gew.-%, jeweils bezogen auf den trockenen Papierstoff, eingesetzt.
  • Endo-β-1,4-glucanasen sind Enzyme, die zur Gruppe der Cellulasen gehören. Diese sind in der Hydrolyse von Cellulose involviert. Für die Hydrolyse von nativer Cellulose sind drei Haupttypen von Cellulasen bekannt: Endoglucanasen, Exoglucanasen und β-Glucosidasen. Erfindungsgemäß wirken Endo-β-1,4-glucanasen, die zur Gruppe der Endoglucanasen gehören.
  • Endoglucanasen wirken zufällig an löslichen und unlöslichen Celluloseketten. Am reaktivsten sind sie bei nicht-kristalliner oder amorpher Cellulose, wohingegen sie eine sehr geringe Reaktivität gegenüber kristalliner Cellulose aufzeigen. Beispiele für Endo-β-1,4-gluconasen (EC Nr. 3.2.1.4) sind die Handelsprodukte Novozym® 476 der Firma
  • Novozymes und Polymin® PR 8336 der BASF SE. Das Handelsprodukt Novozym® 476 der Firma Novozymes weist eine Aktivität von 4500 ECU/g gemäß der gängigen Unit-Defintion der Firma Novozymes auf.
  • Endoglucanasen werden ausführlich in WO 98/12307 A1 und der darin zitierten Literatur beschrieben, worauf an dieser Stelle ausdrücklich Bezug genommen wird. Darüber hinaus sind modifizierte Endoglucanasen in EP 0 937 138 B1 offenbart, worauf ebenfalls an dieser Stelle Bezug genommen wird.
  • Im Allgemeinen werden Cellulasen durch eine große Anzahl von Mikroorganismen wie beispielsweise Pilzen, Actinobakterien und Myxobakterien aber auch durch Pflanzen produziert. Besonders Endoglucanasen aus einer breiten Vielzahl von Spezies sind bisher identifiziert worden. Für die kommerzielle Nutzung werden sie meist aus Kulturen mikroskopischer Pilze der Gattung Trichoderma (z.B. T. reesei) isoliert, die im Erdboden vorkommen und zu den Deuteromyceten (Fungi imperfecti) gerechnet werden.
  • Die Endo-β-1,4-glucanase kann sowohl in den Dickstoff als auch in den Dünnstoff des Papierstoffs dosiert werden. Der Dickstoff weist üblicherweise eine Stoffdichte von mehr als 2 Gew.-%, beispielsweise 2,5 bis 6 Gew.-%, bevorzugt 3,0 bis 4,5 Gew.-%, jeweils bezogen auf den trockenen Papierstoff, auf. Anschließend wird der Dickstoff durch Zuführen von Wasser in den sogenannten Dünnstoff überführt, der eine Stoffkonzentration unterhalb von 1,5 Gew.-%, bezogen auf den trockenen Papierstoff, hat. Meistens liegt die Stoffkonzentration des Dünnstoffs unterhalb von 1,2 Gew.-%, beispielsweise bei 0,5 bis 1,1 Gew.-%, vorzugsweise 0,6 bis 0,9 Gew.-%, jeweils bezogen auf den trockenen Papierstoff.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Endo-β-1,4-glucanase in den Dickstoff des Papierstoffs dosiert.
  • Erfindungswesentlich ist, dass die Dosierung der Endo-β-1,4-glucanase vor der Zugabe des mindestens einen kationischen polymeren Retentionsmittels und/oder Retentionsmittelsystems erfolgt.
  • Retentionsmittelsysteme im Sinne dieser Erfindung bestehen aus kationischen Polyacrylamiden in Kombination mit einer organischen und/oder anorganischen Komponente.
  • In dem erfindungsgemäßen Verfahren können lineare, verzweigte oder vernetzte Polyacrylamide als kationische polymere Retentionsmittel eingesetzt werden.
  • Kationische Polyacrylamide sind beispielsweise Copolymerisate, die durch Copolymerisieren von Acrylamid und mindestens einem Di-C1-bis C2-alkylamino-C2-bis C4-alkyl(meth)acrylat oder einem basischen Acrylamid in Form der freien Basen, der Salze mit organischen oder anorganischen Säuren oder der mit Alkylhalogeniden quaternierten Verbindungen erhältlich sind. Beispiele für solche Verbindungen sind Dimethylaminoethylmethacrylat, Diethylaminoethylmethacrylat, Dimethylaminoethylacrylat, Diethylaminoethyloacrylyat, Dimethylaminopropylmethacrylat, Dimethylaminopropylacrylat, Diethylaminopropylmethacrylat, Diethylaminopropylacrylat und/oder Dimethylaminoethylacrylamid. Weitere Beispiele für kationische Polyacrylamide können den zum Stand der Technik genannten Literaturstellen wie EP 0 910 701 A1 und US 6,103,065 entnommen werden. Man kann sowohl lineare als auch verzweigte oder vernetzte Polyacrylamide verwenden. Solche Polymere sind handelsübliche Produkte.
  • Verzweigte Polymere, die z. B. durch Copolymerisation von Acrylamid oder Methacrylamid mit mindestens einem kationischen Monomer in Gegenwart geringer Mengen an Vernetzern herstellbar sind, werden beispielsweise in den zum Stand der Technik angegebenen Literaturstellen US 5,393,381 , WO 99/66130 A1 und WO 99/63159 A1 beschrieben. Weitere verzweigte kationische Polyacrylamide sind als Komponente (b) in DE 10 2004 058 587 A1 offenbart, auf die an dieser Stelle ausdrücklich Bezug genommen wird.
  • Bevorzugt ist in der Praxis das verzweigte oder vernetzte (Co)polyacrylamid ein kationisches Copolymer von Acrylamid und eines nicht gesättigten kationischen Ethylenmonomers, das ausgewählt ist aus Dimethylaminoethylacrylat (ADAME), Dimethylaminoethylacrylamid, Dimethylaminoethylmethacrylat (MADAME), die durch verschiedene Säuren und Quaternisierungsmittel quaternisiert oder salzbildend gemacht werden wie Benzylchlorid, Methylchlorid, Alkyl- oder Arylchlorid, Dimethylsulfat, weiterhin Dimethyldiallylammoniumchlorid (DADMAC), Acrylamidopropyltrimethylammoniumchlorid (APTAC) und Methacrylamidopropyltrimethylammoniumchlorid (MAPTAC). Bevorzugte kationische Comonomere sind Dimethylaminoethylacrylat-methochlorid und Dimethylaminoethylacrylamid-methochlorid, die durch Alkylierung von Dimethylaminoethylacrylat bzw. Dimethylaminoethylacrylamid mit Methylchlorid erhalten werden.
  • Dieses Copolymer wird durch dem Fachmann bekannte Weise durch ein Verzweigungsmittel verzweigt, das aus einer Verbindung besteht, die mindestens zwei reaktive Gruppierungen aufweist, die aus der Gruppe ausgewählt sind, die Doppel-, Aldehyd- oder Epoxybindungen umfassen. Diese Verbindungen sind bekannt und sind beispielsweise in der Druckschrift EP 0 374 458 A1 beschrieben.
  • Selbstverständlich können nach dem erfindungsgemäßen Verfahren auch verzweigte kationische Polyacrylamide eingesetzt werden, die aus einer Mischung aus verzweigten und linearen Polyacrylamiden, wie sie im Stand der Technik beschrieben sind, bestehen. Eine solche Mischung besteht in der Regel aus einem verzweigten kationischen Polyacrylamid wie oben beschrieben und einem linearen Polyacrylamid in einem Verhältnis von 99:1 bis 1:2, bevorzugt in einem Verhältnis von 90:1 bis 2:1 und besonders bevorzugt in einem Verhältnis von 90:1 bis 3:1.
  • Das kationische Polyacrylamid kann auch vernetzt sein, wobei die Polymerisation der Monomeren in Gegenwart eines üblichen Vernetzers durchgeführt wird. Vernetzer sind bekanntlich, Verbindungen, die mindestens zwei ethylenisch ungesättigte Doppelbindungen im Molekül enthalten wie Methylenbisacrylamid, Pentaerythrittriacrylat oder Glykoldiacrylate.
  • Selbstverständlich können in dem erfindungsgemäßen verfahren auch Mischungen von linearen, verzweigten und vernetzten Polyacrylamiden eingesetzt werden, bevorzugt wird jedoch nur ein Polyacrylamid eingesetzt.
  • Die intrinsische Viskosität wird gemäß ISO 1628/1, October 1988, "Guidelines for the standardization of methods for the determination of viscosity number and limiting viscosity number of polymers in dilute solution" bestimmt.
  • Selbstverständlich können die genannten kationischen polymeren Retentionsmittel allein oder in beliebiger Mischung untereinander in dem erfindungsgemäßen Verfahren eingesetzt werden. Bevorzugt wird nur ein kationisches polymeres Retentionsmittel eingesetzt.
  • Üblicherweise wird das mindestens eine kationische polymere Retentionsmittel in einer Menge von 0,001 bis 0,1, bevorzugt 0,03 bis 0,5 Gew.-%, jeweils bezogen auf den trockenen Papierstoff, zudosiert.
  • Weiterhin können Retentionsmittelsystem, wie sie aus dem Stand der Technik bekannt sind, in dem erfindungsgemäßen Verfahren eingesetzt werden. Diese Retentionsmittelsysteme bestehen aus den genannten kationischen Polymeren und einer weiteren organischen und/oder anorganischen Komponente.
  • Ein Retentionsmittelsystem mit einer weiteren organischen Komponente, das sich in dem erfindungsgemäßen Verfahren eignet, enthält neben einem der zuvor genannten kationischen Polymere noch eine wasserunlösliche, anionische, organische Komponente, die vernetzt einen Durchmesser von weniger als 750 nm und unvernetzt einen Durchmesser von weniger als 60 nm aufweist. Bevorzugt handelt es sich bei dieser anionischen Komponente um ein anionisches, vernetztes Polyacrylamid. Ein solches System ist in EP 0 462 365 A1 beschreiben. Optional kann ein solches System noch eine anorganische Komponente wie unten beschrieben enthalten.
  • Weiterhin eignet sich ein Retentionsmittelsystem, in dem die organische Komponente ein anionisches Polymer wie bevorzugt Polyacrylamid ist. Dieses Polyacrylamid kann linear, verzweigt oder vernetzt sein. Ein solches System aus kationischem Polymer, anionisch, verzweigtem Polymer und anorganische Komponente ist beispielsweise in EP 1 328 683 A1 beschrieben. Ähnliche Retentionssysteme sind in WO 02/33171 A1 beschrieben, wobei hier ein anionisches, vernetztes Polyacrylamid als organische Komponenten verwendet wird. Darüber hinaus eignet sich das in WO 01/34910 A1 offenbart Retentionssystem, das ein anionisches, lineares Polyacrylamid als organische Komponente enthält.
  • Bevorzugt sind sogenannte Mikropartikelsysteme, in denen zusammen mit den genannten kationischen Polymeren eine anorganische Komponente zum Papierstoff dosiert wird. Bei dieser anorganischen Komponente handelt es sich bevorzugt um Bentonit und/oder Kieselgel. Bentonite sind feinteilige, in Wasser quellbare Mineralien, wie z.B. Bentonit selbst, Hectorit, Attapulgit, Montmorillonit, Nontronit, Saponit, Sauconit, Hormit und Sepiolit. Als Kieselgel eignen sich beispielsweise modifizierte und nicht modifizierte Kieselsäuren. Bentonit und/oder Kieselgel werden üblicherweise in Form einer wässrigen Aufschlämmung verwendet. Falls man bei dem erfindungsgemäßen Verfahren ein Mikropartikelsystem mit einer anorganischen Komponente einsetzt, so beträgt Im Falle von Bentonit die Menge 0,05 bis 0,5, vorzugsweise 0,1 bis 0,3 Gew.-%, jeweils bezogen auf den trockenen Papierstoff, und im Falle von Kieselgel üblicherweise 0,005 bis 0,5, vorzugsweise 0,01 bis 0,3 Gew.-%, kalkuliert auf der Basis des SiO2-Anteils im Kieselgel und jeweils bezogen auf den trockenen Papierstoff.
  • Falls ein Mikropartikelsystem in dem erfindungsgemäßen Verfahren verwendet wird, kann die anorganische Komponente sowohl vor als auch nach der letzten Scherstufe vor dem Stoffauflauf in den Papierstoff dosiert werden. Bevorzugt erfolgt die Dosierung vor der letzten Scherstufe vor dem Stoffauflauf.
  • Nach dem erfindungsgemäßen Verfahren erhält man überraschenderweise eine beträchtlich verbesserte Entwässerung bei gleich guter Retention gegenüber der Verwendung von kationischen polymeren Retentionsmitteln und/oder Retentionsmittelsystemen. Die Verwendung von Endo-β-1,4-glucanasen in einer gegenüber dem Stand der Technik niedrigeren Dosierung in Kombination mit der Verwendung von Retentionsmitteln und Retentionsmittelsystemen führt zu einer deutlichen Verbesserung der Entwässerungseigenschaften.
  • Nach dem erfindungsgemäßen Verfahren können sämtliche Papierstoffe verarbeitet werden. Man kann beispielsweise von Cellulosefasern aller Art ausgehen, sowohl von natürlichen wie auch von zurück gewonnenen Fasern, insbesondere von Fasern aus Altpapier. Als Faserstoffe zur Herstellung der Pulpen kommen sämtliche dafür gebräuchlichen Qualitäten in Betracht, z.B. Holzstoff, gebleichter und ungebleichter Zellstoff sowie Papierstoffe aus allen Einjahrespflanzen. Zu Holzstoff gehören beispielsweise Holzschliff, thermomechanischer Stoff (TMP), chemo-thermomechanischer Stoff (CTMP), Druckschliff, Halbzellstoff, Hochausbeute-Zellstoff und Refiner Mechanical Pulp (RMP). Als Zellstoff kommen beispielsweise Sulfat-, Sulfit- und Natronzellstoffe in Betracht. Vorzugsweise verwendet man ungebleichten Zellstoff, der auch als ungebleichter Kraftzellstoff bezeichnet wird. Geeignete Einjahrespflanzen zur Herstellung von Papierstoffen sind beispielsweise Reis, Weizen, Zuckerrohr und Kenaf. Zur Herstellung der Pulpen kann auch mit Vorteil Altpapier bzw. Altkarton, das entweder allein oder in Mischung mit anderen Faserstoffen eingesetzt wird, oder man geht von Fasermischungen aus einem Primärstoff und zurückgeführtem gestrichenen Ausschuss aus, z.B. gebleichtes Kiefernsulfat in Mischung mit zurückgeführtem gestrichenen Ausschuss.
  • Nach dem erfindungsgemäßen Verfahren werden die Endo-β-1,4-glucanasen als Entwässerungsmittel vor der Zugabe des kationischen polymeren Retentionsmittels und/oder Retentionsmittelsystems dem Papierstoff zugesetzt. Selbstverständlich können bei dem erfindungsgemäßen Verfahren zusätzlich noch die üblichen Prozesschemikalien zur Herstellung von Papier und Papierprodukten eingesetzt werden. Übliche Prozesschemikalien sind beispielsweise Additive wie Stärke, Pigmente, optische Aufheller, Farbstoffe, Biozide, Verfestiger für Papier, Leimungsmittel, Fixiermittel, Entschäumer und Entlüfter. Die genannten Additive werden dabei in den sonst üblichen, den Fachmann bekannten Mengen eingesetzt. Als Stärke kann man beispielsweise sämtliche Stärkesorten wie native Stärken oder modifizierte Stärken, insbesondere kationisch modifizierte Stärken, verwenden. Als Fixiermittel eignen sich beispielsweise gegebenenfalls modifizierte Polyethylenimine, Polydimethyldiallylammoniumchlorid, Dicyandiamid-Harze, mit Epichlorhydrin vernetzte Kondensationsprodukte aus einer Dicarbonsäure und einem Polyamin, Poly-Aluminiumchlorid, Aluminiumsulfat und Poly-Aluminiumchlorsulfat. Als Leimungsmittel kommen z.B. Harzleim, Alkyldiketene, Alkenylbernsteinsäureanhydride oder polymere Leimungsmittel sowie Mischungen davon in Betracht.
  • Insbesondere der Einsatz von Verfestigern für Papier ist im erfindungsgemäßen Verfahren vorteilhaft. Als Verfestiger kommen beispielsweise auch die zuvor genannten Polyvinylamine bzw. Vinylamineinheiten enthaltenden Polymere in Betracht, die üblicherweise in einer Menge von 0,01 bis 0,5, vorzugsweise 0,1 bis 0,3 Gew.-%, jeweils bezogen auf den trockenen Papierstoff, eingesetzt werden. Darüber hinaus eignen sich als Verfestiger auch sogenannte Carriersysteme, bei denen es sich um mit amphoteren Polymerisaten behandelte Füllstoffe wie Calciumcarbonat handelt. Derartige Carriersystem sind beispielsweise in der deutschen Offenlegungsschrift DE 10 334 133 A1 offenbart.
  • Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.
  • Die Prozentangaben in den Beispielen bedeuten Gewichtsprozent, sofern aus dem Zusammenhang nichts anderes hervorgeht. Die Dosierung der einzelnen Komponenten Enzym, Polymer, Fixiermittel und Bentonit ist in Gew.-% angegeben und bezieht sich auf die trockene Menge der jeweilige Komponente pro Tonne Papier In den Beispielen wurden folgende Komponenten verwendet:
    Enzym A: Endo-β-1,4-glucanase (Polymin® PR 8336 der BASF SE)
    Polymer A: hochmolekulare kationische Polyacrylamidemulsion mit einem Molekulargewicht von ca. 5 000 000, einer Ladungsdichte von 1,8 meq./g und einer intrinsischen Viskosität von 10,5 dL/g (Polymin® KE 440 der BASF SE)
    Fixiermittel A: niedermolekulares Polyethylenimin mit einem Molekulargewicht von ca. 800 000 und einer Ladungsdichte von ca. 11 meq./g (Catiofast® SF der BASF SE)
    Bentonit: Microfloc® XFB der BASF SE
  • Die Retentionswirkung (Gesamtretention FPR) wurde nach Britt Jarr bestimmt.
  • Die Entwässerungszeit wurde nach ISO Standard 5267 mit einem Schopper-Riegler-Testgerät bestimmt, in dem man jeweils 1 L der zu prüfenden Faseraufschlämmung mit einer Stoffdichte von 2 g/L darin entwässerte und die Zeit in Sekunden bestimmte, die für den Durchlauf von 600 mL Filtrat notwendig war. In den Beispielen wurde die Verbesserung der Entwässerungszeit in % angegeben, die sich aus der Formel [1 - (Entwässerungszeit (Versuch)/Entwässerungszeit(Vergleich)] x 100 ergibt.
  • Zur Bestimmung des Zeta-Potentials (Oberflächenladung von Fasern) wurde ein SZP-06 System Zeta Potential der Firma Mütek verwendet.
  • Der Wasserretentionswert (water retention value, WRV) wurde durch eine empirische Messung der Wasseraufnahmekapazität einer Fasermatte bestimmt. Dazu wurden 2,50 mL einer 4 gew.-%igen Faseraufschlämmung in eine Anionenaustauscherextraktionssäule gefüllt, die auf ca. halber Höhe eine Glasfritte eingebaut enthält (Fa. Merck, SAX, 1.02025.0001 oder Fa. Strata, C8, 8B-S005-HBJ). Anschließend wurde die Suspension bei 3000g für 15 Minuten zentrifugiert. Die feuchte Fasermatte wurde vom Sieb genommen und gewogen (Gewicht G1). Dann wurde die Fasermatte bei 105 °C bis zur Massenkonstanz getrocknet und erneut gewogen (Gewicht G2). Der WRV wurde in den Beispielen in % angegeben und ergibt sich aus der Formel (G1 - G2)/G2 x 100.
  • Beispiel 1
  • In einem 2 L Becherglas wurde eine 1 gew.-%ige Stoffsuspension aus 100 % Altpapier (old courrugated container) eingefüllt. In einem zweiten 2 L Becherglas wurde eine 3 gew.-%ige Stoffsuspension aus 100 % Altpapier (old corrugated container) eingefüllt. Der pH-Wert der Stoffsuspensionen wurde, soweit erforderlich, mit einer wässrigen Natriumhydroxidlösung oder mit Salzsäure auf pH 7,5 eingestellt. Anschließend wurden die in Tabelle 1 angegeben Mengen des Enzyms A zu den verschiedenen Stoffsuspensionen gegeben und mit Hilfe eines Heiltof-Rührers bei 800 Umdrehungen pro Minute (UpM) für eine Stunde bei einer Temperatur von 55 °C gerührt. Nach dieser Behandlung wurden die Stoffsuspensionen mit Wasser auf eine Stoffdichte von 2 g/L verdünnt und die Entwässerungszeit bestimmt.
  • Zum Vergleich wurde jeweils die Entwässerungszeit einer 1- bzw. 3 gew.%-igen Stoffsupension als Vergleichswert bestimmt, die derselben Behandlung unterzogen wurden, jedoch kein Enzym A enthielten. Die Ergebnisse sind in Tabelle 1 zusammengefasst. Tabelle 1: Verbesserung der Entwässerungszeit bei verschiedenen Enzymkonzentrationen in Abhängigkeit von der initialen Stoffkonzentration
    Test Nr. Enzym A [Gew.-%] Verbesserung der Entwässerungszeit [%], 1 gew.-%ige Stoffsuspension Verbesserung der Entwässerungszeit [%], 3 gew.-%ige Stoffsuspension
    1 0,001 2,41 11,11
    2 0,005 7,23 19,75
    3 0,01 13,25 25,93
    4 0,05 21,69 32,10
    5 0,1 22,89 35,80
    6 0,3 26,51 38,27
    7 0,5 32,53 43,21
  • Aus Tabelle 1 wird ersichtlich, dass bei einer initialen Stoffkonzentration von 3 Gew.-% die Effizienz des Enzyms deutlich besser ist.
  • Beispiel 2
  • Beispiel 1 wurde wiederholt, allerdings wurden nur 1 gew.-%ige Stoffsupensionen eingesetzt. Diese wurden nach der Enzymzugabe mit Hilfe eines Heiltof-Rührers bei unterschiedlichen Rührgeschwindigkeiten (250 UpM bzw. 800 UpM) gerührt. Die weitere Behandlung erfolgte wie in Bespiel 1. Anschließend wurde die Entwässerungszeit bestimmt.
  • Zum Vergleich wurde jeweils die Entwässerungszeit einer 1 gew.-%igen Stoffsuspension als Vergleichswert bestimmt, die derselben Behandlung unterzogen wurden, jedoch kein Enzym A enthielten. Die Ergebnisse sind in Tabelle 2 zusammengefasst. Tabelle 2: Verbesserung der Entwässerungszeit bei verschiedenen Enzymkonzentrationen in Abhängigkeit von der Rührgeschwindigkeit (initiale Stoffkonzentration 1 Gew.-%)
    Test Nr. Enzym A [Gew.-%] Verbesserung der Entwässerungszeit [%], 250 UpM Verbesserung der Entwässerungszeit [%], 800 UpM
    8 0,005 23,91 7,23
    9 0,01 28,26 13,25
    10 0,05 31,52 21,69
    11 0,1 34,78 22,89
    12 0,3 39,13 26,51
    13 0,5 43,48 32,53
  • Aus Tabelle 2 wird ersichtlich, dass eine Reduzierung der Rührgeschwindigkeit zu einer erhöhten Effizienz des Enzyms führt.
  • Beispiel 3
  • Beispiel 1 wurde wiederholt, allerdings wurden nur 3 gew.-%ige Stoffsuspensionen eingesetzt. Diese wurden nach der Enzymzugabe mit Hilfe eines Heiltof-Rührers bei unterschiedlichen Rührgeschwindigkeiten (250 UpM bzw. 800 UpM) gerührt. Die weitere Behandlung erfolgte wie in Bespiel 1. Anschließend wurde die Entwässerungszeit bestimmt.
  • Zum Vergleich wurde jeweils die Entwässerungszeit einer 3 gew.-%igen Stoffsuspension als Vergleichswert bestimmt, die derselben Behandlung unterzogen wurden, jedoch kein Enzym A enthielten. Die Ergebnisse sind in Tabelle 3 zusammengefasst. Tabelle 3: Verbesserung der Entwässerungszeit bei verschiedenen Enzymkonzentra tionen in Abhängigkeit von der Rührgeschwindigkeit (initiale Stoffkonzentration 3 Gew.-%)
    Test Nr. Enzym A [Gew.-%] Verbesserung der Entwässerungszeit [%], 250 UpM Verbesserung der Entwässerungszeit [%], 800 UpM
    14 0,001 34,12 11,11
    15 0,005 42,35 19,75
    16 0,01 44,71 25,93
    17 0,05 45,88 32,10
    18 0,1 45,88 35,80
    19 0,3 47,06 38,27
    20 0,5 48,24 43,21
  • Es zeigt sich, dass die Reduzierung der Rührgeschwindigkeit in Kombination mit einer erhöhten initialen Stoffkonzentration zu einer deutlichen Effizienzsteigerung des Enzyms beiträgt.
  • Beispiel 4
  • In einem 2 L Becherglas wurde eine 6 gew.-%ige Stoffsuspension aus 100 % Altpapier (old corrugated container) eingefüllt. Der pH-Wert der Stoffsuspension wurde, soweit erforderlich, mit einer wässrigen Natriumhydroxidlösung oder Salzsäure auf pH 7,5 eingestellt. Anschließend wurden die in Tabelle 4 angegebenen Mengen des Enzyms A zugegeben und mit Hilfe eines Heiltof-Rührers bei 250 UpM für eine Stunde bei 55 °C gerührt. Nach dieser Behandlung wurden 500 mL dieser Stoffsuspension entnommen und mit Wasser auf eine Stoffkonzentration von 0,5 Gew.-% verdünnt.
  • Von dieser verdünnten Stoffsuspension wurde das Zeta Potential bestimmt. Darüber hinaus wurde die Retentionswirkung (Gesamtretention FPR) nach Britt Jarr von dieser verdünnten Stoffsuspension, sowie der chemische Sauerstoffbedarf (COD) des Weißwassers (Filtrat) bestimmt, wobei folgende Zeitsequenz eingehalten wurde:
    t = 0 s Start des Rührers
    t = 10 s optional Zugabe von 0,03 Gew.-% Polymer A)
    t = 30 s Abnahme von 100 mL der Suspension zur Messung der Retentionswirkung (FPR) oder des chemischen Sauerstoffbedarfs (COD) des Weißwassers (Filtrat)
  • Zum Vergleich wurde das Zeta-Potential, die Retentionswirkung (FPR) und der chemische Sauerstoffbedarf (COD) einer Stoffsuspension bestimmt, die derselben Behandlung unterzogen wurde, jedoch der 0,46 Gew.-% des Enzyms Celluclast® 1,5L (Firma Novozymes, entsprechend EP 536 580 A ) zugefügt wurden. Die Ergebnisse sind in Tabelle 4 zusammengefasst Tabelle 4: Zeta-Potential, Retentionswirkung (FPR) und chemischer Sauerstoffbedarf (COD)
    Enzym [Gew.-%] Zeta-Potential [mV] COD ohne Zugabe von Polymer A [µeq/L] COD mit Zugabe von Polymer A [µeq/L] FPR ohne Zugabe von Polymer A [%] FPR mit Zugabe von Polymer A [%]
    Enzym A, 0 -23,6 142 31,1 73,9 82,2
    Enzym A, 0,0001 -24,4 186 154 77,9 81,5
    Enzym A, 0,0003 -25,0 221 186 77,9 78,8
    Enzym A, 0,01 -24,9 293 257 75,7 79,0
    Enzym A, 0,03 -24,8 413 312 75,4 78,9
    Enzym A, 0,46 -19,4 2020 2037 73,6 78,8
    Celluclast® 1,5L, 0,46 -10,4 2023 2020 70,5 78,4
  • Anhand der Ergebnisse wird deutlich, dass ein großer Überschuss des Enzyms die Effektivität des Retentionsmittels Polymer A bei gleichzeitiger starker Zunahme des COD im Weißwasser (Filtrat) erheblich beeinträchtigt. Durch die Zugabe des Enzyms in einer Konzentration von 0,46 Gew.-% werden große Mengen an Störstoffen produziert.
  • Ohne Zugabe des Retentionsmittels Polymer A wird im Bereich der erfindungsgemäßen niedrigen Dosierung des Enzyms die Gesamtretentionswirkung (FPR) deutlich verbessert. Durch die Zugabe des Retentionsmittels Polymer A in Verbindung mit der erfindungsgemäßen niedrigen Dosierung des Enzyms zeigt sich eine darüber hinaus gehende Wirkung in der Gesamtretention (FPR).
  • Beispiel 5
  • In einem 2 L Becherglas wurde eine 6 gew.-%ige Stoffsuspension aus 100 % Altpapier (old corrugated container) eingefüllt. Der pH-Wert der Stoffsuspension wurde, soweit erforderlich, mit einer wässrigen Natriumhydroxidlösung oder Salzsäure auf pH 7,5 eingestellt. Anschließend wurden die in Tabelle 5 angegebenen Mengen des Enzyms A zugegeben und mit Hilfe eines Heiltof-Rührers bei 250 UpM für eine Stunde bei 55 °C gerührt. Nach dieser Behandlung wurde die Stoffsuspension mit Wasser auf eine Stoffdichte von 2 g/L verdünnt. Zu dieser verdünnten Stoffsuspension wurden optional unter Rühren 0,03 Gew.-% Polymer A zugegeben. Anschließend wurde die Entwässerungszeit bestimmt, die Ergebnisse sind in Tabelle 5 zusammengefasst. Tabelle 5: Verbesserung der Entwässerungszeit bei verschiedenen Enzymkonzentrationen in Abhängigkeit von der Zugabe eines polymeren Retentionsmittels
    Test Nr. Enzym A [Gew.-%] Verbesserung der Entwässerungszeit [%], ohne Zugabe von Polymer A Verbesserung der Entwässerungszeit [%], mit Zugabe von Polymer A
    21 0 -- 41,7
    22 0,0001 27,4 51,2
    23 0,0003 39,3 58,3
  • Diese Ergebnisse zeigen den synergistischen Effekt bei einer erfindungsgemäßen niedrigen Dosierung eines Enzyms in Kombination mit einem kationischen polymeren Retentionsmittel. Bei einer Enzymdosierung von 0,003 Gew.-% bewirkt die Zugabe des kationischen polymeren Retentionsmittels eine Erhöhung der Entwässerungsleistung um ca. 20 %.
  • Beispiel 6
  • Beispiel 5 wurde wiederholt, allerdings wurde Enzym A nur in einer Menge von 0,001 Gew.-% zugegeben. Weiterhin wurden optional ein Fixiermittel A, Polymer A und ein Bentonit zugegeben. Anschließend wurde die Entwässerungszeit bestimmt, die Ergebnisse sind in Tabelle 6 zusammengefasst. Tabelle 6: Verbesserung Entwässerungszeit in Abhängigkeit von der Zugabe eines Fixiermittels, eines polymeren Retentionsmittels und eines Bentonits
    Test Nr. Enzym A [Gew.-%] Fixiermittel A [Gew.-%] Polymer A [Gew.-%] Bentonit [Gew.-%] Verbesserung der Entwässerungszeit [%]
    24 0 0 0 0 --
    25 0,001 0 0 0 35,0
    26 0 0,01 0 0 3,3
    27 0,001 0,01 0 0 32,5
    28 0 0 0,03 0 41,7
    29 0 0,01 0,03 0 39,2
    30 0,001 0,01 0,03 0 51,7
    31 0 0,01 0,03 0,2 46,7
    32 0,001 0,01 0,03 0,2 54,2
  • Anhand der Ergebnisse wird deutlich, dass die Kombination von niedrig dosiertem Enzym mit einem kationischen polymeren Retentionsmittel als auch mit einem Retentionsmittelsystem aus kationischem Polymer und anorganischer Mikropartikelkomponente zu einer erheblichen Verbesserung der Entwässerung führt.
  • Beispiel 7
  • In einem 2 L Becherglas wurde eine 4 gew.-% Stoffsuspension aus 100 % Altpapier (old corrugated container) eingefüllt. Der pH-Wert der Stoffsuspension wurde, soweit erforderlich, mit einer wässrigen Natriumhydroxidlösung oder Salzsäure auf pH 7,5 eingestellt. Anschließend wurden die in Tabelle 7 angegebenen Mengen des Enzyms A zugegeben und mit Hilfe eines Heiltof-Rührers bei 800 UpM für eine Stunde bei 55 °C gerührt. Nach dieser Behandlung wurde die Stoffsuspension mit Wasser auf eine Stoffdichte von 2 g/L verdünnt. Zu dieser verdünnten Stoffsuspension wurden optional unter Rühren 0,03 Gew.-% Polymer A zugegeben. Anschließend wurde der Wasserretentionswert (water retention value, WRV) bestimmt, die Ergebnisse sind in Tabelle 7 zusammengefasst. Tabelle 7: Wasserretentionswert bei verschiedenen Enzymkonzentrationen in Abhängigkeit von der Zugabe eines polymeren Retentionsmittels
    Test Nr. Enzym A [Gew.-%] WRV ohne Zugabe von Polymer A [%] WRV mit Zugabe von Polymer A [%]
    33 0 116 112
    34 0,001 103 98
    35 0,005 99 101
    36 0,01 101 99
    37 0,05 102 102
    38 0,1 104 98
    39 0,3 103 101
    40 0,5 102 101
  • Die Ergebnisse zeigen, dass die Zugabe des Enzyms in einer niedrigen Dosierung zu einer Verbesserung der Fasermodifikation führen.

Claims (8)

  1. Verfahren zur Herstellung von Papier, Pappe und Karton durch Entwässern eines Papierstoffs auf einem Sieb in Gegenwart mindestens eines kationischen polymeren Retentionsmittels und/oder Retentionsmittelsystems unter Blattbildung und Trocknung der Blätter, dadurch gekennzeichnet, dass vor der Zugabe des mindestens einen kationischen polymeren Retentionsmittels und/oder Retentionsmittelsystems eine Endo-β-1,4-glucanase in einer Menge von 0,00001 bis 0,01 Gew.-%, bezogen auf den trockenen Papierstoff, in den Papierstoff dosiert wird,
    wobei das kationische polymere Retentionsmittel ein Polyacrylamid ist und die intrinsische Viskosität des Polyacrylamids im Bereich von 7 bis 15 dL/g liegt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Endo-β-1,4-glucanase in einer Menge von 0,00001 bis 0,005 Gew.-%, bezogen auf den trockenen Papierstoff, in den Papierstoff dosiert wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Endo-β-1,4-glucanase in einer Menge von 0,00001 bis 0,001 Gew.-%, bezogen auf den trockenen Papierstoff, in den Papierstoff dosiert wird.
  4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Endo-β-1,4-glucanase in den Dickstoff des Papierstoffs dosiert wird.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein lineares, verzweigtes oder vernetztes Polyacrylamid eingesetzt wird.
  6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das kationische polymere Retentionsmittel in einer Menge von 0,001 bis 0,1 Gew.-%, bezogen auf den trockenen Papierstoff dosiert wird.
  7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Retentionsmittelsystem ein Mikropartikelsystem mit einer anorganischen Komponente ist.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die anorganische Komponente ausgewählt ist aus Bentonit und Kieselgel.
EP09782300.9A 2008-09-02 2009-08-28 Verfahren zur herstellung von papier, pappe und karton unter verwendung von endo-beta-1,4-glucanasen als entwässerungsmittel Active EP2334871B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09782300.9A EP2334871B1 (de) 2008-09-02 2009-08-28 Verfahren zur herstellung von papier, pappe und karton unter verwendung von endo-beta-1,4-glucanasen als entwässerungsmittel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08163465 2008-09-02
PCT/EP2009/061098 WO2010026101A1 (de) 2008-09-02 2009-08-28 Verfahren zur herstellung von papier, pappe und karton unter verwendung von endo-beta-1,4-glucanasen als entwässerungsmittel
EP09782300.9A EP2334871B1 (de) 2008-09-02 2009-08-28 Verfahren zur herstellung von papier, pappe und karton unter verwendung von endo-beta-1,4-glucanasen als entwässerungsmittel

Publications (2)

Publication Number Publication Date
EP2334871A1 EP2334871A1 (de) 2011-06-22
EP2334871B1 true EP2334871B1 (de) 2018-07-18

Family

ID=41123841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782300.9A Active EP2334871B1 (de) 2008-09-02 2009-08-28 Verfahren zur herstellung von papier, pappe und karton unter verwendung von endo-beta-1,4-glucanasen als entwässerungsmittel

Country Status (6)

Country Link
US (1) US8394237B2 (de)
EP (1) EP2334871B1 (de)
BR (1) BRPI0917678B1 (de)
CA (1) CA2735371C (de)
ES (1) ES2691384T3 (de)
WO (1) WO2010026101A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8454799B2 (en) 2010-05-05 2013-06-04 Basf Se Pulp composition for paper and solid board production
US9051200B2 (en) * 2011-04-05 2015-06-09 Nichias Corporation Disk roll and base material thereof
US9856606B2 (en) * 2011-12-12 2018-01-02 Enzymatic Deinking Technologies, L.L.C. Enzymatic pre-treatment of market pulp to improve fiber drainage and physical properties
PL2906750T3 (pl) 2012-10-09 2018-11-30 Solenis Technologies Cayman, L.P. Kompozycja celulazowa zawierająca celulazę i polimery papiernicze do zastosowań wytrzymałościowych papieru w stanie suchym
US9127401B2 (en) 2013-01-31 2015-09-08 University Of New Brunswick Wood pulp treatment
US9145640B2 (en) * 2013-01-31 2015-09-29 University Of New Brunswick Enzymatic treatment of wood chips
BR102015032911A2 (pt) * 2015-12-29 2017-07-04 Fibria Celulose S.A Process for the production of pulp pulp, pulp pulp and its use, paper
EP3512995A2 (de) 2016-09-16 2019-07-24 Basf Se Verfahren zur modifizierung von zellstoff mit cellulase-enzymen und produkte daraus

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144123A (en) * 1974-07-19 1979-03-13 Basf Aktiengesellschaft Incorporating a crosslinked polyamidoamine condensation product into paper-making pulp
DE2434816C3 (de) 1974-07-19 1981-01-22 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von stickstoffhaltigen Kondensationsprodukten und deren Verwendung als Retentionsmittel, Flockungsmittel und Entwässerungsbeschleuniger bei der Papierherstellung
DE3128478A1 (de) * 1981-07-18 1983-02-03 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von linearen, basischen polymerisaten
US4668747A (en) 1984-09-24 1987-05-26 Allied Corporation Preparation of water soluble cationic acrylamide polymer and product using weak acid to adjust pH
DE3534273A1 (de) * 1985-09-26 1987-04-02 Basf Ag Verfahren zur herstellung von vinylamin-einheiten enthaltenden wasserloeslichen copolymerisaten und deren verwendung als nass- und trockenverfestigungsmittel fuer papier
GB8602121D0 (en) * 1986-01-29 1986-03-05 Allied Colloids Ltd Paper & paper board
DE68921053T3 (de) 1988-12-19 2004-07-22 Cytec Technology Corp., Wilmington Hochleistungs-Polymer-Flokkuliermittel.
DK80390D0 (de) 1990-03-29 1990-03-29 Novo Nordisk As
KR100237148B1 (ko) 1990-05-09 2000-01-15 한센 핀 베네드 엔도글루칸아제 효소를 함유하는 셀룰라제 제조물
US5167766A (en) 1990-06-18 1992-12-01 American Cyanamid Company Charged organic polymer microbeads in paper making process
DE4127733A1 (de) * 1991-08-22 1993-02-25 Basf Ag Pfropfpolymerisate aus saccharidstrukturen enthaltenden naturstoffen oder deren derivaten und ethylenisch ungesaettigten verbindungen und ihre verwendung
US5169497A (en) * 1991-10-07 1992-12-08 Nalco Chemical Company Application of enzymes and flocculants for enhancing the freeness of paper making pulp
FR2692292B1 (fr) * 1992-06-11 1994-12-02 Snf Sa Procédé de fabrication d'un papier ou d'un carton à rétention améliorée.
DE4240110A1 (de) * 1992-11-28 1994-06-01 Basf Ag Kondensationsprodukte von Polyalkylenpolyaminen, Verfahren zu ihrer Herstellung und ihre Verwendung bei der Herstellung von Papier
DE4244194A1 (de) * 1992-12-24 1994-06-30 Basf Ag Wasserlösliche Kondensationsprodukte aus Aminogruppen enthaltenden Verbindungen und Vernetzern, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1995303A3 (de) 1994-10-06 2008-12-31 Novozymes A/S Ein Enzympräparat mit Enduglucanase-Aktivität
US20030192664A1 (en) * 1995-01-30 2003-10-16 Kulick Russell J. Use of vinylamine polymers with ionic, organic, cross-linked polymeric microbeads in paper-making
CN1182451A (zh) * 1995-03-17 1998-05-20 诺沃挪第克公司 新的内切葡聚糖酶
US5688874A (en) 1995-12-22 1997-11-18 Eastman Chemical Company Process for preparing blends of poly(ethylene terephthalate) and poly(ethylene 2,6-naphthalenedicarboxylate)
ATE186932T1 (de) 1996-01-08 1999-12-15 Basf Ag Verfahren zur herstellung von wasserlöslichen, aminogruppen enthaltenden kondensaten und additionsprodukten und ihre verwendung
AUPN909696A0 (en) 1996-04-03 1996-04-26 Participant Project Ip Limited Paper pulp drainage aid
DE19627553A1 (de) * 1996-07-09 1998-01-15 Basf Ag Verfahren zur Herstellung von Papier und Karton
CN101085985B (zh) 1996-09-17 2012-05-16 诺沃奇梅兹有限公司 纤维素酶变体
US5981689A (en) * 1997-11-19 1999-11-09 Amcol International Corporation Poly(vinylamine)-based superabsorbent gels and method of manufacturing the same
US6087448A (en) * 1997-11-19 2000-07-11 Amcol International Corporation Solid superabsorbent material containing a poly(vinylguanidine) and an acidic water-absorbing resin
FR2779452B1 (fr) 1998-06-04 2000-08-11 Snf Sa Procede de fabrication de papier et carton et nouveaux agents de retention et d'egouttage correspondants, et papiers et cartons ainsi obtenus
US20030150575A1 (en) * 1998-06-04 2003-08-14 Snf Sa Paper and paperboard production process and corresponding novel retention and drainage aids, and papers and paperboards thus obtained
FR2779752B1 (fr) 1998-06-12 2000-08-11 Snf Sa Procede de fabrication de papier et carton et nouveaux agents de retention correspondants, et papiers et cartons ainsi obtenus
DE19851024A1 (de) 1998-11-05 2000-05-11 Basf Ag Wäßrige Dispersionen von wasserlöslichen Polymerisaten von N-Vinylcarbonsäureamiden, Verfahren zu ihrer Herstellung und ihre Verwendung
US6103065A (en) * 1999-03-30 2000-08-15 Basf Corporation Method for reducing the polymer and bentonite requirement in papermaking
BR0009873A (pt) 1999-04-20 2002-04-23 Basf Ag Mistura de polìmero de formação de hidrogel, e, processo para uso da mesma
DE19921507A1 (de) * 1999-05-10 2000-11-16 Basf Ag Verfahren zur Fraktionierung von in Wasser löslichen oder dispergierbaren aminogruppenhaltigen Polymeren mit breiter Molmassenverteilung
TW483970B (en) 1999-11-08 2002-04-21 Ciba Spec Chem Water Treat Ltd A process for making paper and paperboard
MY140287A (en) * 2000-10-16 2009-12-31 Ciba Spec Chem Water Treat Ltd Manufacture of paper and paperboard
DE10236252B4 (de) 2002-08-07 2005-06-30 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton
DE10334133A1 (de) 2003-07-25 2005-02-24 Basf Ag Wässrige Zusammensetzung und deren Verwendung zur Papierherstellung
DE102004050585A1 (de) 2004-10-15 2006-04-20 Degussa Ag Mikroreaktor und Verfahren zur Synthese von Vinylacetat-Monomer (VAM) in der Gasphase
DE102004058587A1 (de) * 2004-12-03 2006-06-14 Basf Ag Verfahren zur Herstellung von Papieren mit hohen Flächengewichten
DE102005043800A1 (de) * 2005-09-13 2007-03-22 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2691384T3 (es) 2018-11-27
BRPI0917678A2 (pt) 2015-12-01
US20110168344A1 (en) 2011-07-14
CA2735371A1 (en) 2010-03-11
WO2010026101A1 (de) 2010-03-11
BRPI0917678B1 (pt) 2019-09-10
EP2334871A1 (de) 2011-06-22
US8394237B2 (en) 2013-03-12
CA2735371C (en) 2013-10-15

Similar Documents

Publication Publication Date Title
EP2334871B1 (de) Verfahren zur herstellung von papier, pappe und karton unter verwendung von endo-beta-1,4-glucanasen als entwässerungsmittel
US8784611B2 (en) Process for production of paper
EP0223223B1 (de) Verfahren zur Herstellung von Papier und Karton
EP0948677B1 (de) Verfahren zur herstellung von papier
KR960002733B1 (ko) 종이와 판지의 제조방법
DE69908939T2 (de) Verfahren zur herstellung von papier
EP1926855B1 (de) Verfahren zur herstellung von papier, pappe und karton
EP1792010B1 (de) Verfahren zur herstellung von papier, pappe und karton
DE3644072A1 (de) Beschwertes papier
EP1819875B1 (de) Verfahren zur herstellung von papieren mit hohen flächengewichten
DE20220979U1 (de) Papierprodukt
DE19632079A1 (de) Verbessertes Verfahren zur Herstellung von Papier
DE60130451T2 (de) Papierfaserstoff und flockungsmittel, die ein saures wässriges aluminumoxidsol enthalten
EP0000922B1 (de) Verfahren zur Herstellung eines nicht-gewebten Faservlieses aus Fasern und einem Latex, und das so hergestellte nicht-gewebte Fasermaterial
EP1727938B1 (de) Verfahren zur herstellung von papier, pappe und karton
EP1831459B1 (de) Verfahren zur herstellung von papier, pappe und karton
DE69737945T2 (de) Hydrophile Dispersionspolymere für Papieranwendungen
DE4436317A1 (de) Verfahren zur Herstellung von Papier mit verbesserter Sieb-Entwässerung und Retention
DE69931343T2 (de) Mischung aus kieselsäure und saurem kolloid zu einem mikropartikelsystem für die papierherstellung
DE10236252B4 (de) Verfahren zur Herstellung von Papier, Pappe und Karton
US6719881B1 (en) Acid colloid in a microparticle system used in papermaking
DE3024257A1 (de) Stabiles, waessriges polyvinylalkohol/ melamin-formaldehyd-harz-reaktionsprodukt, verfahren zu seiner herstellung und seine verwendung
FI108060B (fi) Täytetyn paperin valmistus
DE20220980U1 (de) Vorrichtung zur Herstellung von Papier, Pappe und Karton

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: D21H 21/10 20060101AFI20180119BHEP

Ipc: D21H 17/00 20060101ALN20180119BHEP

Ipc: D21H 17/37 20060101ALN20180119BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: D21H 21/10 20060101AFI20180126BHEP

Ipc: D21H 17/00 20060101ALN20180126BHEP

Ipc: D21H 17/37 20060101ALN20180126BHEP

INTG Intention to grant announced

Effective date: 20180220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1019505

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015107

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180718

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2691384

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20181127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015107

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180828

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

26N No opposition filed

Effective date: 20190423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1019505

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 15

Ref country code: GB

Payment date: 20230822

Year of fee payment: 15

Ref country code: FI

Payment date: 20230828

Year of fee payment: 15

Ref country code: ES

Payment date: 20230912

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230823

Year of fee payment: 15

Ref country code: FR

Payment date: 20230824

Year of fee payment: 15

Ref country code: DE

Payment date: 20230828

Year of fee payment: 15