EP2333031A1 - Procédé de production de carburants kérosène et diesel de haute qualité et de coproduction d'hydrogène à partir de coupes saturées légères - Google Patents

Procédé de production de carburants kérosène et diesel de haute qualité et de coproduction d'hydrogène à partir de coupes saturées légères Download PDF

Info

Publication number
EP2333031A1
EP2333031A1 EP10290586A EP10290586A EP2333031A1 EP 2333031 A1 EP2333031 A1 EP 2333031A1 EP 10290586 A EP10290586 A EP 10290586A EP 10290586 A EP10290586 A EP 10290586A EP 2333031 A1 EP2333031 A1 EP 2333031A1
Authority
EP
European Patent Office
Prior art keywords
effluent
oligomerization
unit
hydrogen
kerosene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10290586A
Other languages
German (de)
English (en)
Other versions
EP2333031B1 (fr
Inventor
Jean Cosyns
Annick Pucci
Quentin Debuisschert
Fabienne Le Peltier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2333031A1 publication Critical patent/EP2333031A1/fr
Application granted granted Critical
Publication of EP2333031B1 publication Critical patent/EP2333031B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/12Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step
    • C10G69/126Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one polymerisation or alkylation step polymerisation, e.g. oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • C10G35/09Bimetallic catalysts in which at least one of the metals is a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel

Definitions

  • the present invention provides an attractive solution allowing from light naphtha (including any proportion of cut C3 and C4 called "LPG") to meet an increased demand for diesel fuel and kerosene, without involving new and expensive units of hydrocracking.
  • light naphtha including any proportion of cut C3 and C4 called "LPG”
  • the solution described in the present invention is particularly suitable for remodeling of existing refining schemes.
  • refiners face excess gasoline whose exports in deficit geographic areas are uncertain at short term with increased refining capacity and / or lower consumption in the areas concerned.
  • This hydrogen production unit is generally a steam reforming unit for methane or petroleum gas (LPG), more rarely an oxy-fuel combustion unit of various petroleum fractions.
  • the present solution can be defined as an alternative to the "hydrocracking" solution involving only smaller investment units and moreover generating hydrogen.
  • the present invention makes it possible to produce mainly a kerosene or diesel fuel of high quality by using a sequence of processes also allowing the production of hydrogen.
  • This last aspect is very important because, in general, the needs of the hydrogen refinery are increasing due to the development of different hydrotreatment units required to reach the ultimate sulfur specifications (10 ppm weight).
  • the charge consists of a so-called light naphtha section to which can be added any proportion of C3 or C4 cut called "LPG" cut.
  • the "light naphtha” cut noted (NL) in the process diagram) corresponds to a number of carbon atoms ranging from 5 to 7, and correspondingly to a boiling point ranging from 50 ° C. to 120 ° C.
  • a charge of the present process is called a hydrocarbon feedstock ranging from C3 to C7.
  • C3-C7 is sent to a separation unit of normal and iso-paraffins (1).
  • paraffins are called linear paraffins and paraffins are paraffins with at least one branch.
  • This separation unit of normal and iso paraffins (1) is installed when higher octane diesels higher than 45 are targeted with the use of zeolites in the oligomerization unit (3).
  • This arrangement also offers the advantage of producing gasoline with a much improved octane number compared to the starting naphtha, corresponding to the flow of iso paraffins (F8).
  • paraffins thus obtained (F1) are then sent to a dehydrogenation unit (2) which makes it possible to produce hydrogen (H2), and an effluent (F2) containing predominantly olefins and unconverted paraffins.
  • the olefin-rich fraction (F2) obtained at the end of step 2 is then sent to an oligomerization unit (3), which produces, for the most part, a carbon atom-containing olefin (F3) fraction ranging from typically from C10 to C24, boiling in the distillate range, ie in a temperature range between 150 ° C and 380 ° C.
  • F3 carbon atom-containing olefin
  • the effluent section of the oligomerization unit (3) is hereinafter referred to as the diesel cut text. It can optionally be restricted by fractionation or by varying the severity of the oligomerization unit (3) to a distillation range cut of between 150 ° C and 310 ° C, called kerosene.
  • a gasoline fraction having a boiling point of less than 150 ° C. is produced in a smaller quantity than the light naphtha starting, and having, in addition, an improved octane number, or even a much improved one. when using the optional separation unit normal / isoparaffins (1).
  • any olefinic cut from the refinery from C3 to C10 (denoted by ES), for example olefinic cuts from a catalytic cracking unit (abbreviated as FCC). ), or a unit of steam cracking, or a unit of coquéfaction or visbreduction or from a Fischer Tropsch unit.
  • FCC catalytic cracking unit
  • a unit of steam cracking or a unit of coquéfaction or visbreduction or from a Fischer Tropsch unit.
  • the diesel or kerosene fraction (F3) derived from the oligomerization unit (3) is sent to a hydrogenation stage (4), which makes it possible to obtain, depending on the catalytic system used, an excellent kerosene fuel or a diesel fuel cut.
  • Part of the hydrogen produced in step (2) can serve as a booster to the hydrogenation step (4).
  • the present invention makes it possible to simultaneously treat in the hydrogenation unit (4) any section with a boiling point greater than 150 ° C., and preferably between 150 ° and 380 °, coming from the refinery (denoted F7), by examples of the cuts directly from the atmospheric distillation unit of the crude, or from a catalytic cracking unit (abbreviated FCC), or from hydrocracking unit or from a catalytic reforming unit gasolines (in addition to olefins) with a beneficial effect on the quality of the resulting kerosene (improvement of the smoke point) or the resulting diesel (improvement of the cetane number).
  • FCC catalytic cracking unit
  • hydrocracking unit or from a catalytic reforming unit gasolines (in addition to olefins)
  • a beneficial effect on the quality of the resulting kerosene improvement of the smoke point
  • the resulting diesel improvement of the cetane number
  • the hydrogenation unit (4) preferably uses a low-temperature technology, mainly in the liquid phase, which allows a saving in investment and an improvement of the cetane performance of the diesel fraction compared to conventional methods of hydrotreatment operating in the gas phase. Nevertheless, if such a conventional hydrotreating unit is available on the site, it can be used to carry out the hydrogenation step (4).
  • the sulfur content of the feedstock to the hydrogenation unit will be less than 5 ppm by weight, and preferably lower at 1 ppm weight.
  • the catalyst used in the dehydrogenation step (2) consists of platinum and tin deposited on an alumina neutralized with an alkali.
  • the hydrogen used during the hydrogenation step (4) comes at least in part from the hydrogen generated in step (2).
  • the method according to the invention may be more particularly oriented towards the production of kerosene fuel with JET A1 specifications.
  • the oligomerization step (3) is carried out on resins at temperatures of between 20 ° C. and 200 ° C., and preferably between 70 ° C. and 180 ° C., and under pressures of 10 bar to 100 ° C. bars, and preferably from 30 bars to 65 bars.
  • the oligomerization step (3) can be carried out on silica-alumina at temperatures between 20 ° C and 300 ° C, and preferably between 120 ° C and 250 ° C, and at pressures of 10 bar to 100 bar, and preferably 20 bar to 65 bar.
  • the process according to the invention can be further characterized by introducing into the oligomerization step (3) at least one gasoline cut (ES) and / or at least one cut containing C3 and C4 from a catalytic cracking unit (FCC), a coker, a visbreaking unit, a Fischer Tropsch synthesis unit or a steam cracking unit which is treated in admixture with the effluent (F2) of the dehydrogenation stage (2).
  • FCC catalytic cracking unit
  • FCC catalytic cracking unit
  • coker a coker
  • visbreaking unit a visbreaking unit
  • Fischer Tropsch synthesis unit or a steam cracking unit which is treated in admixture with the effluent (F2) of the dehydrogenation stage (2).
  • F2 catalytic cracking unit
  • the process according to the invention can also be characterized by the introduction in the hydrogenation step (4) of a section (F7) 150 ° C + containing sulfur contents of less than 5 ppm (preferably less than 1 ppm). , for example cuts directly from the atmospheric distillation unit of the crude, or from the catalytic cracking unit (FCC), or from hydrocracking unit or catalytic reforming.
  • a section (F7) 150 ° C + containing sulfur contents of less than 5 ppm (preferably less than 1 ppm). for example cuts directly from the atmospheric distillation unit of the crude, or from the catalytic cracking unit (FCC), or from hydrocracking unit or catalytic reforming.
  • the dehydrogenation step (2) and / or the oligomerization step (3) can operate in regenerative or semi-regenerative mode.
  • the notation and / or means that one or the other of the steps (2) or (3), or the two steps (2) and (3) are concerned by the implementation in regenerative or semi-regenerative mode.
  • the hydrogen produced by the dehydrogenation step (2) may be sent, at least in part, to the unit operations that consume the refinery, possibly after passage in purification unit using a membrane or sieve (PSA).
  • PSA membrane or sieve
  • the process according to the present invention uses as feedstock a light naphtha (NL) having a distillation range generally between 30 ° C and 120 ° C, to which can be added any proportion of C3 and / or C4 cut called "LPG" cut. .
  • NL light naphtha
  • light naphtha is understood to mean a petroleum cut having generally from 3 to 10 carbon atoms, preferably from 4 to 7 carbon atoms, and composed of various chemical families, mainly paraffins and a certain proportion of aromatics and dicarboxylic acids. olefins.
  • LPG is understood to mean a section having a distillation range of -40 ° C. to + 10 ° C., predominantly consisting of propane and butane and a certain proportion of olefins.
  • a desulfurization and denitrogenation step is carried out in a hydrotreatment unit (HDT) according to a technology known to those skilled in the art, so as to avoid the poisoning of the catalysts involved in the downstream units.
  • HDT hydrotreatment unit
  • the light naphtha section with the LPG cut, noted (F1) is then sent to a separation unit of the normal and iso paraffins (1) using a molecular sieve.
  • This technology well known to those skilled in the art, preferably uses small-pore alkaline zeolites such as those referred to as 5A which make it possible to obtain a mixture composed mainly of normal paraffins (F1) ".
  • any method for producing a paraffin enriched cut such as those using membranes or molecular sieves or combinations thereof, may be contemplated within the context of the present process.
  • the branched paraffin stream (F8) which has an improved octane number relative to the incoming light naphtha (NL), is used to supply the gasoline pool.
  • the hydrogen / hydrocarbon molar ratio is generally between 0.1 and 20, preferably between 0.5 and 10.
  • the mass flow rate of feed (F1) treated per unit mass of catalyst is generally between 0.5 and 200 kg / (kg.hour).
  • the catalysts used in the dehydrogenation unit (2) generally consist of a Group VIII noble metal M selected from the group consisting of platinum, palladium, iridium, and rhodium, and at least one selected promoter in the group consisting of tin, germanium, lead, gallium, indium, thallium.
  • the catalysts of the dehydrogenation unit (2) may also contain an alkaline or alkaline earth compound.
  • the noble metal M and the promoter are deposited on an inert support chosen from the group formed by silica, alumina, titanium oxide, silica magnesia, or any mixture of said elements.
  • the catalyst according to the invention preferably contains from 0.01% to 10% by weight, more preferably from 0.02% to 2% by weight, and very preferably from 0.05% to 0.7% by weight.
  • at least one noble metal M selected from the group consisting of platinum, palladium, rhodium and iridium.
  • the metal M is platinum or palladium, and very preferably platinum.
  • the promoter content is preferably between 0.01% and 10% by weight, more preferably between 0.05% and 5% by weight, and very preferably between 0.1% and 2% by weight.
  • the catalyst of the dehydrogenation unit (2) can advantageously contain both platinum and tin.
  • the alkaline compound is selected from the group consisting of lithium, sodium, potassium, rubidium and cesium. Lithium, sodium or potassium are the preferred alkalis, and lithium or potassium are even more preferred alkalis.
  • the content of alkaline compound is preferably between 0.05% and 10% by weight, more preferably between 0.1% and 5% by weight, and even more preferably between 0.15% and 2% by weight. .
  • the alkaline earth compound is selected from the group consisting of magnesium, calcium, strontium or barium. Magnesium or calcium are the preferred alkaline earths and magnesium is the most preferred alkaline earth metal.
  • the content of alkaline earth compound is preferably between 0.05% and 10% by weight, more preferably between 0.1% and 5% by weight, and even more preferably between 0.15% and 2%. % weight
  • the catalyst of the dehydrogenation unit (2) may further optionally contain at least one halogen or halogenated compound in proportions of the order of 0.1% to 3% by weight.
  • a metalloid such as sulfur in proportions of the order of 0.1% to 2% by weight of the catalyst.
  • the sulfur in the form of hydrogen sulphide is then recovered at the top of the stabilization column with the cracked gases.
  • the catalyst of the dehydrogenation unit (2) is deactivated by deposition of carbon on the surface of said catalyst, generally called “coke” deposit, it is necessary to regenerate it by burning this coke. To ensure continuous operation of the dehydrogenation unit (2), it is then necessary to have at least two reactors, one of the reactors being in the reaction phase, the other reactor in the regeneration phase.
  • this technology well known to those skilled in the art, can be very expensive, and one can also use a semi-regenerative or continuous regeneration technology such as that well known in catalytic reforming which consists in transferring in a "batch” manner. or continuously the catalyst of the reactor operating in another capacity in which is carried out the regeneration of the catalyst by coke roping.
  • An important advantage of the continuous regeneration technology is that it greatly reduces the catalyst inventory, and thus reduces the initial investment.
  • a second advantage is that it keeps the catalyst constantly in its state of maximum activity.
  • the olefinic effluent (F2) from the dehydrogenation unit (2) is then sent to an oligomerization unit (3) for converting the C5 to C7 olefins into heavier olefins, namely C10 to C24.
  • any olefinic cut (ES) of the refinery ranging from C3 to C10, for example a gasoline cut after catalytic cracking (FCC). , a petrol cut from a steam-cracking unit, a gasoline of co-filtration or visbreaking, or a Fischer Tropsch gasoline.
  • FCC catalytic cracking
  • the effluent (F3) of the oligomerization unit (3) is composed of a mixture of olefinic oligomers of C 10 to C 24 and a light fraction preferably of C 5 to C 10 containing unconverted C 5 to C 7 olefins, a fraction of the initial C 5 to C 7 paraffins of the feed, and products resulting from cracking and recombination reactions which are easy to separate by simple distillation.
  • reaction effluent or the gasoline fraction preferentially C5 to C10 with the residual LPG, (noted F4) is recycled at the same time. entry of the oligomerization unit (3).
  • a lighter fraction (F5) ranging from C5 to C7 with the residual LPG, in order to totally or almost totally convert the normal paraffins into olefins, and thus maximize the diesel fuel efficiency relative to the starting load.
  • the semi-continuous or continuous regeneration sections of the dehydrogenation unit (2) and the oligomerization unit (3) can be integrated, that is to say use common equipment.
  • the mixture of heavy olefins (F3) from the oligomerization unit (3) is then sent to a hydrogenation unit (4).
  • a hydrogenation unit (4) To do this, one part of the hydrogen (H2) produced by the dehydrogenation unit (2) is used, the other part, the largest part, being able to be exported to the various hydrotreatment units of the refinery.
  • the hydrogenation (4) can be carried out in a manner known to those skilled in the art in a hydrotreatment pathway over NiMo, CoMo or NiCoMo catalyst.
  • the hydrogenation (4) is carried out on catalysts based on Group VIII metals deposited on an inert support, such as, for example, silica or alumina.
  • Group VIII metals that can be used as hydrogenation catalysts include nickel, palladium or platinum.
  • the hydrogenation (4) generally takes place in the liquid phase in a fixed bed reactor at temperatures between 50 ° C and 300 ° C, and preferably between 100 ° C and 200 ° C, and under pressures of 5 to 50 bar, and preferably 10 to 30 bar.
  • the cetane number of the resulting diesel cut is generally between 45 and 55 with the use of zeolites in the oligomerization unit (3).
  • KT / yr light naphtha
  • LN light naphtha
  • RON engine octane
  • the light C4-C5-C6 mixture is directed to a dehydrogenation unit (2) operating at a pressure of 1.3 bar and at an average temperature of 550 ° C. on a platinum and tin catalyst deposited on alumina, with a H2 / HC molar recycle rate of 0.5.
  • the effluent of the dehydrogenation unit (2) with a recycle at 1/1 rate relative to the fresh feed of the normal C4 -C6 paraffins from the oligomerization unit (3) has the following general composition: Effluent of the dehydrogenation unit KT / year olefins N C4 " 70.1 olefins N C5 "+ NC6" 176.4 paraffins NC4 40.8 paraffins N C5 + NC6 51 Total 338.3
  • the effluent from the dehydrogenation unit (2) containing the olefins and paraffins is then directed to an oligomerization plant for olefins (3) operating at about 300 ° C. over a zeolite catalyst based on ZSM5.
  • the total amount of C5-C10 gasoline produced containing the starting C5-C6 paraffins amounts to 88 KT / year with an RON motor octane measured at 78.
  • the saturated C4-C5-C6 cut can be sent as a naphtha to a petrochemical site reducing the amount of gasoline produced to 61.3 KT / year.
  • the effluent of the oligomerization (3) is sent to the hydrogenation unit (4).
  • the hydrogenation unit (4) operates on a nickel-based catalyst at temperatures between 150 ° and 200 ° C.
  • the effluent from the hydrogenation unit (4) has a cetane number of 41, ie a cetane number of 46.
  • the hydrogen consumed in the hydrogenation (4) is equal to 2.0 KT / year.
  • the net quantity of hydrogen produced by the process according to the invention is therefore 5.1 KT / year.
  • the gasoline amount was reduced by 62% relative to the incoming light naphtha (NL) with a simultaneous 10 octane gain point (RON) relative to the incoming light naphtha (NL).
  • the process described in the present invention thus makes it possible not only to produce a good quality diesel fuel, but also to produce hydrogen, contrary to conventional processes, and to reduce the quantities of gasolines and butane currently in excess, in particular on the European market.
  • the light starting naphtha has an engine octane (RON) of 68.
  • This light naphtha is directed to a normal / iso paraffin separation unit (1) operating on a 5A molecular sieve. This gives 83.5 KT / year of nC5 + nC6 paraffins, the isofparaffin rich fraction (F8) being sent to the gasoline pool.
  • nC4 + nC5 + nC6 is sent to a dehydrogenation unit (2) operating at a pressure of 1.3 bar and at an average temperature of 550 ° C on a platinum-tin catalyst on alumina, with a rate of H2 / HC molar recycle of 0.5.
  • the effluent from the dehydrogenation unit (2) with a 1/1 cycle recycle of normal C4-C6 paraffins from the oligomerization unit (3) has the following general composition: Effluent of the unit of dehydrogenation (2) KT / year olefins N C4 " 70.1 olefins N C5 "+ NC6" 63.7 paraffins NC4 40.8 paraffins N C5 + NC6 18.5 Total 193.1
  • the effluent from the dehydrogenation unit (2) containing the olefins and paraffins is then directed to an oligomerization plant for olefins (3) operating at about 300 ° C. over a zeolite catalyst based on ZSM5.
  • the total amount of C5-C10 gasoline produced containing the starting C5-C6 paraffins amounts to 38.6 KT / year with an RON motor octane measured at 80.
  • the saturated C4-C5-C6 cut can be sent as a naphtha to a petrochemical site reducing the amount of gasoline produced at the oligomerization (3) to 33.4 KT / year.
  • the effluent of the oligomerization (3) is sent to the hydrogenation unit (4).
  • the hydrogenation unit (4) operates on a nickel-based catalyst at temperatures between 150 ° and 200 ° C.
  • the effluent of the hydrogenation unit (4) has a cetane number of 46, ie a cetane number of 51.
  • the hydrogen consumed in the hydrogenation (4) is equal to 1.1 KT / year.
  • the net quantity of hydrogen produced by the process according to the invention is therefore 2.7 KT / year.
  • the method described in the present invention not only makes it possible to produce a good quality diesel fuel, but also to produce hydrogen in contrast to conventional processes, and to reduce the quantities of gasoline and butane currently in surplus especially in the European market.
  • the 187.1 KT / year of gasoline produced comprises the C5-C6 iso paraffins and the C5-C10 fraction produced during oligomerization.
  • the amount of gasoline produced is 20% lower than the amount of light incoming naphtha (NL) with simultaneously an improved octane number of 20 points relative to the incoming light naphtha (NL).
  • KT / yr light naphtha
  • NL light naphtha
  • RON engine octane
  • the light C4-C5-C6 mixture is directed to a dehydrogenation unit (2) operating at a pressure of 1.3 bar and at an average temperature of 550 ° C, with an H2 / HC molar recycle ratio of 0.5.
  • the dehydrogenation (2) is carried out on a catalyst based on platinum and tin deposited on alumina.
  • the effluent of the dehydrogenation unit (2) with a recycle at a rate of 1/1 relative to the fresh feedstock of the C4-C6 n paraffins from the oligomerization unit (3) has the following general composition: Effluent of the unit of dehydrogenation KT / year olefins N C4 " 70.1 olefins N C5 "+ NC6" 176.4 paraffins NC4 40.8 paraffins N C5 + NC6 51 Total 338.3
  • the total amount of C5-C10 gasoline produced containing the starting C5-C6 paraffins and unconverted olefins amounts to 139.2 Kt / yr.
  • the effluent of the oligomerization (3) boiling in the range of kerosene and diesel is highly olefinic is sent to the hydrogenation unit (4).
  • the hydrogenation unit (4) operates on a nickel-based catalyst at temperatures between 150 ° and 200 ° C.
  • the kerosene produced at the hydrogenation unit (4) has a smoke point of 35 mm, a vanishing point of the crystals below -60 ° C, and an ASTM D86 end point of less than 300 ° C, in line with the specifications required for kerosene meeting the JET A1 standard.
  • the hydrogen consumed in the hydrogenation (4) is equal to 1.6 KT / year.
  • the small amount of diesel produced is generally injected into the diesel pool without any significant impact on the pool cetane despite its low cetane number of 30.
  • the net quantity of hydrogen produced by the process according to the invention is therefore 5.5 KT / year.
  • the amount of gasoline produced was reduced by 40% relative to the incoming light naphtha (NL) feed simultaneously with a 20 octane (RON) gain still relative to the incoming light naphtha ( NL).
  • the method described in the present invention therefore makes it possible not only to produce a good quality kerosene fuel, but also to produce hydrogen in contrast to conventional processes, and to reduce the quantities of gasolines and butane currently in excess, particularly on the European market.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Procédé de production majoritaire de carburants kérosène et diesel de haute qualité et de coproduction d'hydrogène à partir d'une coupe dite naphta léger à laquelle on peut ajouter une quantité quelconque de coupe LPG, faisant appel à l'enchaînement d'étapes suivant : déshydrogénation des paraffines, oligomerisation des oléfines et hydrogénation des oléfines oligomérisées, ledit procédé permettant la production de carburants kérosène et diesel aux spécifications du marché, voire améliorées par rapport à ces dernières.

Description

    INTRODUCTION
  • L'évolution des moteurs automobiles entraîne actuellement une augmentation de la demande en carburant diesel au dépend de celle de l'essence.
  • Les prévisions concernant l'évolution du marché des carburants automobiles indiquent une diminution quasi généralisée dans le monde de la demande en essence. Ainsi, alors qu'en 2000 le rapport de consommation d'essence par rapport au diesel était de 2, on prévoit qu'il sera proche de 1,5 en 2015. Pour l'union européenne, cette diminution est extrêmement forte, puisque ce rapport qui était de 1 en 2000 devrait passer à 0,5 en 2012.
  • Par ailleurs, la demande en kérosène devrait également significativement augmenter dans les prochaines années en liaison avec l'évolution du marché du transport aérien.
  • Cette évolution inéluctable vers une demande accrue en distillats moyens, et la diminution de la demande en essence pose à l'industrie du raffinage un grave problème d'adaptation de l'offre à la demande, et ceci dans un délai très court peu compatible avec la construction de nouvelles installations coûteuses et longues à mettre en oeuvre, telles que les hydrocraquages de gasoil sous vide.
  • La présente invention propose une solution attractive permettant à partir de naphta léger (incluant une proportion quelconque de coupe C3 et C4 dite "LPG") de répondre à une demande accrue en carburant diesel et kérosène, sans impliquer d'unités neuves et couteuses d'hydrocraquage.
  • La solution décrite dans la présente invention est particulièrement adaptée à des remodelages de schémas de raffinage existants.
  • Elle permet en plus de générer de l'hydrogène, dont la demande s'accroît dans les raffineries pour répondre à l'accroissement des capacités des unités d'hydrotraitement pour produire des carburants reformulés (spécifications Euro 3, 4, 5 ou CARB I, II).
  • ART ANTERIEUR
  • Dans un marché dominé par la consommation d'essence, comme c'est le cas par exemple aux États-Unis, la production de carburant diesel est assurée essentiellement à partir des distillats moyens dit "straight run", c'est à dire provenant de la distillation directe du pétrole brut.
  • Ces distillats moyens doivent être hydrotraités pour répondre aux spécifications maintenant très sévères de teneur en soufre (10 ppm max) et de teneurs en aromatiques. Actuellement cette production est notoirement insuffisante et oblige les raffineurs dans certaines zones géographiques, et notamment en Europe, à importer du carburant diesel pour satisfaire à la demande intérieure.
  • Inversement, et particulièrement en Europe, les raffineurs font face à des excédents d'essence dont les exportations dans les zones géographiques déficitaires sont incertaines à court terme avec l'augmentation des capacités de raffinage et/ou la baisse de consommation dans les zones concernées.
  • Pour toutes ces raisons, un certain nombre de raffineurs ont construit des installations d'hydrocraquage qui permettent de transformer des coupes lourdes telles que le gasoil sous-vide en carburant diesel de très bonne qualité. Néanmoins, ce procédé est très coûteux en investissement et utilités car il fonctionne à très haute pression (supérieures à 100 bars), et entraîne une très forte consommation d'hydrogène (de l'ordre de 10 kg à 30 kg d'hydrogène par tonne de charge), nécessitant d'implanter une installation spécifique de production d'hydrogène.
  • Cette unité de production d'hydrogène est généralement une unité de vaporéformage de méthane ou de gaz de pétrole (LPG), plus rarement une unité d'oxycombustion de diverses coupes pétrolières.
  • Quelle que soit l'unité de production d'hydrogène retenue, cette installation représente un investissement très lourd et nécessite l'importation de matières premières coûteuses.
  • La présente solution peut se définir comme une alternative à la solution "hydrocraquage" ne faisant appel qu'à des unités d'investissement moindre et de surcroit générant de l'hydrogène.
  • Parmi l'art antérieur concernant la production d'essence à partir de coupes contenues dans la gamme C3- C7, on peut citer:
    • le brevet GB 2 186 287 qui divulgue un procédé de production d'une coupe essence et d'une coupe kérosène à partir d'une charge comprenant 4 atomes de carbone, telle qu'une fraction butane issue d'un craquage catalytique, le dit procédé comprenant une déshydrogénation de la charge, suivie d'une oligomérisation de l'effluent de déshydrogénation et d'une séparation de l'effluent d'oligomérisation en hydrogène.
    • le brevet US 2003/073875 A1 qui décrit un procédé de production d'essence comprenant la séparation des iso alcanes et normales alcanes avant la déshydrogénation des normales alcanes en oléfines et comprenant une réaction d'alkylation des oléfines sur les iso alcanes.
    • le document "Dealing with dieselisation " de Stockle Mike et Knight Tina, issu du 14 ième congrès ERTC de Berlin du 11 novembre 2009 qui divulgue un procédé de production de kérosène par déshydrogénation d'une coupe naphta légère et d'une coupe LPG saturée, oligomérisation du produit et recyclage de la fraction C5-C8 de l'effluent oligomérisé.
    DESCRIPTION SOMMAIRE DE L'INVENTION
  • La présente invention permet de produire majoritairement un carburant kérosène ou diesel de haute qualité en utilisant un enchaînement de procédés permettant également la production d'hydrogène. Ce dernier aspect est très important car, de manière générale, les besoins de la raffinerie en hydrogène vont en croissant en raison du développement des différentes unités d'hydrotraitement requises pour atteindre les spécifications ultimes en soufre (10 ppm poids).
  • Dans la présente invention, la charge est constituée d'une coupe dite naphta léger auquel on peut ajouter une proportion quelconque de coupe C3 ou C4 dite coupe "LPG". La coupe "naphta léger" notée (NL) sur le schéma du procédé) correspond à un nombre d'atomes de carbone allant de 5 à 7, et corrélativement à un point d'ébullition allant de 50°C à 120°C. Dans la suite du texte, on appelle charge du présent procédé une charge hydrocarbure allant de C3 à C7.
  • On fait l'hypothèse que la coupe naphta léger (NL) est préalablement hydrotraitée de manière à la libérer de toutes les impuretés azotés et soufrés qu'elle peut contenir.
  • La charge C3-C7 est envoyée dans une unité de séparation des normales et iso paraffines (1). Pour éviter toute ambiguïté, on appelle normale paraffines les paraffines linéaires, et iso paraffines les paraffines présentant au moins un branchement.
  • Cette unité de séparation des normales et iso paraffines (1) est installée quand on vise des diesels à haut indice d'octane supérieur à 45 avec utilisation de zéolithes dans l'unité d'oligomérisation (3). Cet arrangement offre aussi l'avantage de produire de l'essence avec un indice d'octane très amélioré par rapport au naphta de départ, correspondant au flux d'iso paraffines (F8).
  • Les normales paraffines ainsi obtenues (F1)" sont ensuite envoyées dans une unité de déshydrogénation (2) qui permet de produire de l'hydrogène (H2), et un effluent (F2) contenant majoritairement des oléfines ainsi que des paraffines non transformées.
  • La coupe (F2) riche en oléfines obtenue à l'issue de l'étape 2, est ensuite envoyée dans une unité d'oligomérisation (3) qui produit majoritairement une coupe d'oléfines (F3) à nombre d'atome de carbone allant typiquement de C10 à C24, bouillant dans la gamme des distillats, c'est à dire dans un intervalle de température compris entre 150°C et 380°C.
  • La coupe effluent de l'unité d'oligomérisation (3), est appelé dans la suite du texte coupe diesel. Elle peut éventuellement être restreinte par fractionnement ou en jouant sur la sévérité de l'unité d'oligomérisation (3) à une coupe d'intervalle de distillation compris entre 150°C et 310°C, appelé kérosène.
  • On produit par ailleurs en sortie de l'oligomérisation (3) une fraction essence de point d'ébullition inférieur à 150°C en quantité moindre que le naphta léger de départ, et ayant de surcroît un indice d'octane amélioré, voir très amélioré quand on utilise l'unité optionnelle de séparation normales/isoparaffines (1).
  • Il est possible de traiter simultanément dans l'unité d'oligomérisation (3) toute coupe oléfinique de la raffinerie allant de C3 à C10 (notée ES), par exemple les coupes oléfiniques issues d'une unité de craquage catalytique (notée en abrégé FCC), ou d'une unité de vapocraquage, ou encore d'une unité de coquéfaction ou de viscoréduction ou encore issue d'une unité Fischer Tropsch.
  • La coupe diesel ou kérosène (F3) issue de l'unité d'oligomérisation (3) est envoyée dans une étape d'hydrogénation (4), qui permet d'obtenir selon le système catalytique utilisé un excellent carburant kérosène ou une coupe diesel de nombre de cétane supérieur à 45 ne contenant ni soufre, ni poly aromatiques, et ayant une teneur en aromatiques inférieure à 10 %.
  • Une partie de l'hydrogène produit à l'étape (2) peut servir d'appoint à l'étape (4) d'hydrogénation.
  • La présente invention permet de traiter simultanément dans l'unité d'hydrogénation (4) toute coupe de point d'ébullition supérieur à 150 °C, et préférentiellement compris entre 150° et 380°, provenant de la raffinerie (notée F7), par exemple des coupes directement issues de l'unité de distillation atmosphérique du brut, ou issues d'une unité de craquage catalytique (notée en abrégé FCC), ou encore issues d'unité d'hydrocraquage ou issues d'une unité de réformage catalytique des essences, de manière à en hydrogéner les aromatiques (en plus des oléfines) avec une incidence bénéfique sur la qualité du kérosène résultant (amélioration du point de fumée) ou du diesel résultant (amélioration de l'indice de cétane).
  • L'unité d'hydrogénation (4) utilise de préférence une technologie travaillant à basse température, principalement en phase liquide, permettant une économie d'investissement et une amélioration des performances en terme de cétane de la coupe diesel par rapport à des procédés conventionnels d'hydrotraitement opérant en phase gazeuse. Néanmoins si une telle unité d'hydrotraitement conventionnelle est disponible sur le site, elle peut être utilisée pour réaliser l'étape (4) d'hydrogénation.
  • Dans le cas d'une unité d'hydrogénation (4) faisant appel à la technologie basse température et phase liquide, la teneur en soufre de la charge à l'unité d'hydrogénation sera inférieure à 5 ppm poids, et de manière préférée inférieure à 1 ppm poids.
  • Les caractéristiques de la coupe diesel améliorée et débarrassée de soufre produite en utilisant des zéolithes dans l'unité d'oligomérisation (3) sont les suivantes:
    • point 95% vol ASTM D86 inférieur à 360°C
    • nombre de cétane supérieur à 45
    • point d'éclair supérieur à 55°C
    • teneur en polyaromatiques inférieure à 5% volume.
  • Les caractéristiques de la coupe kérosène améliorée et débarrassée de soufre produite en utilisant des catalyseurs acides non zéolithiques tels que décrits précédemment dans l'unité d'oligomérisation (3), sont les suivantes :
    • point final ASTM D86 inférieure à 300°C
    • point de fumée supérieur à 30 mm
    • point de disparition des cristaux inférieure à -60°C
    • point d'éclair supérieur à 38°C.
  • De manière plus précise, la présente invention peut se définir comme un procédé de production de carburants kérosène et diesel et de coproduction d'hydrogène à partir d'une charge insaturée légère (F1) de nombre d'atomes de carbone compris entre C3 et C7 et constituée:
    1. a) d'une coupe naphta léger (NL) à nombre d'atome de carbone allant de 5 à 7 provenant d'unités de distillation primaire, d'hydrocracking ou d'unité Fischer Tropsch, d'intervalle de distillation compris entre 30°C et 120°C, ladite coupe naphta léger étant préalablement hydrotraitée ou débarrassée des composées oxygénés, azotés, et soufrés et
    2. b) d'une coupe en C3 /C4 (dite "LPG") présente en proportion quelconque, ledit procédé comprenant la suite d'étapes suivantes:
      • une étape de déshydrogénation (2) de la charge opérant à pression comprise entre 1,3 et 5 bars absolus, et à une température comprise entre 400°C et 700 °C, de préférence comprise entre 500°C et 600 °C, et faisant appel à un catalyseur de déshydrogénation constitué d'un métal noble du groupe VIII choisi parmi le platine, l'iridium, le rhodium, et d'au moins un promoteur sélectionné dans le groupe constitué par l'étain, le germanium, le plomb, le gallium, l'indium, le thallium, ledit métal noble et ledit promoteur étant déposés sur un support inerte choisi dans le groupe formé par la silice, l'alumine, l'oxyde de titane, la silice magnésie, ou un mélange quelconque desdits éléments, ladite étape de déshydrogénation (2) permettant de récupérer un effluent (F2) essentiellement constitué d'oléfines à nombre d'atomes de carbone compris entre 3 et 7, dit effluent oléfinique (F2),
      • une étape d'oligomérisation (3) de tout ou partie de l'effluent oléfinique (F2) obtenu à l'étape (2) dans une unité d'oligomérisation (3) faisant appel à un catalyseur d'oligomérisation choisi dans le groupe formé par l'acide phosphorique solide, les résines échangeuses d'ions, les silices alumines ou les silico aluminates tels que les zéolithes pures ou supportées sur alumine, la dite étape d'oligomérisation (3) permettant de récupérer un effluent (F3) majoritairement constitué d'oléfines allant de C10 à C25, et un effluent "essence" (F4) constitué majoritairement de paraffines allant de C5 à C10 qui est séparé de l'effluent (F3) par distillation et recyclé à l'entrée de l'unité d'oligomérisation (3),
      • une étape d'hydrogénation (4) de l'effluent oléfinique (F3) issu de l'étape d'oligomérisation (3) réalisée en phase liquide dans un ou plusieurs réacteurs à lit fixe, à des températures comprises entre 50°C et 300 °C, et de préférence entre 100°C et 200°C, et sous des pressions de 5 à 50 bars, et de préférence de 10 à 30 bars (1 bar = 105 Pascals), et faisant appel à un catalyseur d'hydrogénation à base de d'un métal choisi dans le groupe formé par le platine, le palladium ou le nickel déposés sur un support inerte tel que la silice ou l'alumine, ou tout mélange de ces deux composants, ladite étape d'hydrogénation permettant de récupérer un effluent (F6) qui est une coupe carburant diesel ou kérosène majoritairement paraffinique.
  • Dans une première variante du procédé selon l'invention, le catalyseur utilisé dans l'étape de déshydrogénation (2) est constitué de platine et d'étain déposé sur une alumine neutralisée par un alcalin.
  • Dans une autre variante du procédé selon l'invention, l'hydrogène utilisé lors de l'étape (4) d'hydrogénation provient au moins en partie de l'hydrogène généré à l'étape (2).
  • Le procédé selon l'invention peut être plus particulièrement orienté vers la production de carburant diesel à haut indice de cétane. Dans ce cas, la charge (F1) est introduite en amont de l'unité de déshydrogénation (2) dans une unité de séparation des normales et iso paraffines (1), faisant appel à un tamis moléculaire à base de zéolithes alcalines à petits pores tels que celles dénommées 5A, permettant de récupérer un premier effluent (F1)" essentiellement constitué de normales paraffines envoyé à l'étape de déshydrogénation (2) et un second effluent (F8) essentiellement constitué d'iso paraffines qui est envoyé au pool essence ou valorisé sous forme de naphta pétrochimique,
    • l'étape de déshydrogénation (2) étant réalisée à pression comprise entre 1,3 et 5 bars absolus, et à une température comprise entre 400°C et 700°C, et de préférence comprise entre 500°C et 600 °C, et faisant appel à un catalyseur de déshydrogénation constitué d'un métal noble du groupe VIII choisi parmi le platine, l'iridium, le rhodium, et d'un promoteur sélectionné dans le groupe constitué par l'étain, le germanium, le plomb, le gallium, l'indium, le thallium, ledit métal noble et ledit promoteur étant déposés sur un support inerte choisi dans le groupe formé par la silice, l'alumine, l'oxyde de titane, la silice magnésie, ou un mélange quelconque desdits éléments,
    • l'étape d'oligomérisation (3) étant réalisée sur catalyseur zéolithique à des températures comprises entre 150°C et 500°C et préférentiellement entre 200°C et 350°C, et sous des pressions de 10 à 100 bars, et préférentiellement de 20 à 65 bars,
    • l'étape d'hydrogénation (4) étant réalisée en phase liquide, à des températures comprises entre 50°C et 300 °C, et de préférence entre 100°C et 200°C, et sous des pressions de 5 bars à 50 bars, et de préférence de 10 bars à 30 bars, et faisant appel à un catalyseur d'hydrogénation à base d'un métal choisi dans le groupe formé par le platine, le palladium ou le nickel déposés sur un support inerte tel que la silice ou l'alumine, ou tout mélange de ces deux composants.
  • Dans une autre variante de la présente invention, le procédé selon l'invention peut être plus particulièrement orienté vers la production de carburant kérosène aux spécifications JET A1. Dans ce cas, l'étape d'oligomérisation (3) est réalisée sur résines à des températures comprises entre 20°C et 200°C, et préférentiellement entre 70°C et 180°C, et sous des pressions de 10 bars à 100 bars, et préférentiellement de 30 bars à 65 bars.
  • Toujours dans le cas d'un procédé orienté vers la production de kérosène aux spécifications JET A1, l'étape d'oligomérisation (3) peut être réalisée sur silice alumine à des températures comprises entre 20°C et 300°C, et préférentiellement entre 120°C et 250°C, et sous des pressions de 10 bars à 100 bars, et préférentiellement de 20 bars à 65 bars.
  • Le procédé selon l'invention peut encore se particulariser par l'introduction à l'étape d'oligomérisation (3) d'au moins une coupe essence (ES) et/ou d'au moins une coupe contenant des C3 et des C4 provenant d'une unité de craquage catalytique (FCC), de cokéfaction, de viscoréduction, d'une unité de synthèse Fischer Tropsch ou d'une unité de vapocraquage qui est traitée en mélange avec l'effluent (F2) de l'étape de déshydrogénation (2).
  • Le procédé selon l'invention peut également se particulariser par l'introduction à l'étape d'hydrogénation (4) d'une coupe (F7) 150 °C+ contenant des teneurs en soufre inférieures à 5 ppm (préférentiellement inférieur à 1 ppm), par exemple des coupes directement issues de l'unité de distillation atmosphérique du brut, ou issues de l'unité de craquage catalytique (FCC), ou encore issues d'unité d'hydrocraquage ou du reformage catalytique.
  • Dans une autre variante du procédé selon l'invention, l'étape de déshydrogénation (2) et/ou l'étape d'oligomérisation (3) peuvent fonctionner en mode régénératif ou semi régénératif. La notation et/ou signifie que l'une ou l'autre des étapes (2) ou (3), ou les deux étapes (2) et (3) sont concernées par la mise en oeuvre en mode régénératif ou semi régénératif.
  • Enfin dans une variante du procédé de production de carburants kérosène et diesel selon la présente invention, l'hydrogène produit par l'étape de déshydrogénation (2) peut être envoyé, au moins en partie, vers les opérations unitaires consommatrices de la raffinerie éventuellement après passage dans unité de purification utilisant une membrane ou un tamis (PSA).
  • DESCRIPTION DETAILLEE DE L'INVENTION
  • La présente description fait référence à la figure 1 qui représente le schéma du procédé dans laquelle les unités et flux marqués en pointillé sont optionnelles.
  • Le procédé selon la présente invention utilise comme charge un naphta léger (NL) ayant un intervalle de distillation généralement compris entre 30°C et 120°C, auquel on peut rajouter une proportion quelconque de coupe C3 et/ou C4 dite coupe "LPG".
  • On entend par naphta léger une coupe pétrolière ayant généralement de 3 à 10 atomes de carbone, de manière préférée de 4 à 7 atomes de carbone, et composée de diverses familles chimiques, principalement des paraffines ainsi qu'une certaine proportion d'aromatiques et d'oléfines.
  • On entend par coupe "LPG" une coupe ayant un intervalle de distillation de -40°C à +10°C, majoritairement constituée de propane et de butane ainsi qu'une certaine proportion d'oléfines.
  • Le plus souvent la coupe "naphta léger" notée en abrégé (NL), provient de la distillation d'un naphta long (30°C - 200°C), préalablement désulfurée en vue de la production d'essence par reformage catalytique. Si nécessaire, on peut également utiliser directement un naphta léger provenant de la distillation directe du brut.
  • Dans ce cas, on procède à une étape de désulfuration et de déazotation dans une unité d'hydrotraitement (HDT) selon une technologie connue de l'homme du métier, de manière à éviter l'empoisonnement des catalyseurs intervenant dans les unités en aval.
  • La coupe naphta léger additionnée de la coupe LPG, notée (F1), est alors envoyée dans une unité de séparation des normales et iso paraffines (1) faisant appel à un tamis moléculaire. Cette technologie bien connue de l'homme de l'art, utilise préférentiellement des zéolithes alcalines à petits pores tels que celles dénommées 5A qui permettent d'obtenir un mélange composé majoritairement de normales paraffines (F1)".
  • Plus généralement, tout procédé permettant de produire une coupe enrichie en normales paraffines, tel que ceux utilisant des membranes ou des tamis moléculaires ou leurs combinaisons, peut être envisagé dans le cadre du présent procédé.
  • Le flux de paraffines ramifiées (F8) qui possède un indice d'octane amélioré par rapport au naphta léger entrant (NL), permet d'alimenter le pool essence.
  • La partie contenant majoritairement des molécules linéaires (F1)' est ensuite envoyée dans une unité de déshydrogénation (2) opérant à une pression comprise entre 2 bars et 20 bars absolus, de préférence comprise entre 1 bar et 5 bars (1 bar= 105 Pascals) absolus, et de manière encore plus préférée à la pression atmosphérique (à plus ou moins 0,5 bar près), et à une température comprise entre 400°C et 700 °C, de préférence comprise entre 500°C et 600°C.
  • Dans l'unité de déshydrogénation (2), Il peut être avantageux d'utiliser l'hydrogène comme diluant. Le rapport molaire hydrogène/ hydrocarbure est généralement compris entre 0,1 et 20, de préférence entre 0,5 et 10.
  • Le débit massique de charge (F1) traitée par unité de masse de catalyseur est généralement compris entre 0,5 et 200 kg/(kg.heure).
  • Les catalyseurs utilisés dans l'unité de déshydrogénation (2) sont généralement constitués d'un métal noble M du groupe VIII choisi dans le groupe formé par le platine, le palladium, l'iridium, et le rhodium, et au moins un promoteur sélectionné dans le groupe constitué par l'étain, le germanium, le plomb, le gallium, l'indium, le thallium.
  • Les catalyseurs de l'unité de déshydrogénation (2) peuvent contenir également un composé alcalin ou alcalino-terreux.
  • Le métal noble M et le promoteur sont déposés sur un support inerte choisi dans le groupe formé par la silice, l'alumine, l'oxyde de titane, la silice magnésie, ou un mélange quelconque desdits éléments.
  • Le catalyseur selon l'invention contient préférentiellement de 0,01% à 10 % poids, de manière plus préférée de 0,02% à 2 % poids, et de manière très préférée de 0,05% à 0,7 % poids d'au moins un métal noble M sélectionné dans le groupe constitué par le platine, le palladium, le rhodium et l'iridium. De préférence le métal M est du platine ou de palladium, et de manière très préférée du platine.
  • La teneur en promoteur est de préférence comprise entre 0,01% et 10% poids, de manière plus préférée entre 0,05% et 5% poids, et de manière très préférée entre 0,1% et 2% poids. Selon une variante préférée du procédé selon l'invention, le catalyseur de l'unité de déshydrogénation (2) peut avantageusement contenir à la fois du platine et de l'étain.
  • Le composé alcalin est sélectionné dans le groupe constitué par le lithium, le sodium, le potassium, le rubidium et le césium. Le lithium, le sodium ou le potassium sont les alcalins préférés, et le lithium ou le potassium sont les alcalins encore plus préférés.
  • La teneur en composé alcalin est de préférence comprise entre 0,05% et 10 % poids, de manière plus préférée comprise entre 0,1% et 5% poids, et de manière encore plus préférée comprise entre 0,15% et 2% poids.
  • Le composé alcalino-terreux est sélectionné dans le groupe constitué par le magnésium, le calcium, le strontium ou le baryum. Le magnésium ou le calcium sont les alcalino-terreux préférés et le magnésium est l'alcalino-terreux le plus préféré.
  • La teneur en composé alcalino-terreux est de préférence comprise entre 0,05% et 10% poids, de manière plus préférée comprise entre 0,1% et 5 % poids, et de manière encore plus préférée comprise entre 0,15% et 2 % poids.
  • Le catalyseur de l'unité de déshydrogénation (2) peut en outre contenir éventuellement, au moins un halogène ou composé halogéné dans des proportions de l'ordre de 0,1% à 3% poids.
  • Il peut aussi éventuellement contenir un métalloïde tel que le soufre dans des proportions de l'ordre de 0,1% à 2 % pds du catalyseur.
  • Selon les coupes envoyées à l'unité de déshydrogénation (2), on peut obtenir des productions d'hydrogène (H2) comprises entre 1 et 3 tonnes pour 100 tonnes de charge.
  • Il est possible dans le cadre de la présente invention de traiter simultanément dans l'unité de déshydrogénation (2) toute coupe majoritairement paraffinique plus légère que les C5, et de manière préférée, des coupes butane et propane.
  • Quand on travaille à forte proportion de propane et butane, on peut être amené à injecter quelques dizaines de ppm de soufre, préférentiellement sous forme DMDS.
  • On récupère alors le soufre sous forme d'hydrogène sulfuré en tête de la colonne de stabilisation avec les gaz craqués.
  • Le catalyseur de l'unité de déshydrogénation (2) se désactivant par dépôt de carbone à la surface dudit catalyseur, dépôt généralement appelé "coke", il est nécessaire de le régénérer par brûlage de ce coke. Pour assurer un fonctionnement continu de l'unité de déshydrogénation (2), il est alors nécessaire de disposer d'au moins deux réacteurs, un des réacteurs étant en phase de réaction, l'autre réacteur en phase de régénération. Cependant cette technologie, bien connue de l'homme du métier, peut être très coûteuse, et l'on peut aussi utiliser une technologie semi régénérative ou à régénération continue comme celle bien connue dans le reformage catalytique qui consiste à transférer de manière "batch" ou continu le catalyseur du réacteur en opération dans une autre capacité dans laquelle est réalisée la régénération du catalyseur par rulage du coke.
  • Un avantage important de la technologie de régénération continue est qu'elle permet de réduire fortement l'inventaire de catalyseur, et donc de réduire l'investissement initial. Un deuxième avantage est qu'elle permet de maintenir constamment le catalyseur dans son état d'activité maximale.
  • Dans le cas de la déshydrogénation des paraffines, on peut ainsi maintenir leur conversion en oléfines à un niveau très proche ou égal à la limite permise par la thermodynamique. Ainsi pour les paraffines de C5 à C7 une conversion moyenne en oléfines de 45% à 80 % est accessible.
  • L'effluent oléfinique (F2) de l'unité de déshydrogénation (2) est ensuite envoyé vers une unité d'oligomérisation (3) permettant de transformer les oléfines de C5 à C7 en oléfines plus lourdes à savoir de C10 à C24 environ.
  • Il est possible dans le cadre de la présente invention de traiter simultanément dans l'unité d'oligomérisation (3) toute coupe oléfinique (ES) de la raffinerie allant de C3 à C10, par exemple une coupe essence issue du craquage catalytique (FCC), une coupe essence issue d'une unité de vapocraquage, une essence de coquéfaction ou de viscoréduction, ou encore une essence de Fischer Tropsch.
  • Tout type de catalyseur acide choisi dans le groupe formé par l'acide phosphorique imprégné sur silice de type SPA (acide phosphorique supporté), les résines échangeuses d'ions, les silices alumines ou les silico aluminates telles que les zéolithes pures ou supportées sur support alumine, peut être envisagé pour l'étape d'oligomérisation (3).
    1. a) Les catalyseurs de type SPA produisent majoritairement des essences et sont de fait mal adaptés à la production massive de distillats. Ils opèrent dans des gammes de températures comprises entre 100°C et 300 °C, et de préférence entre 160°C et 250 °C à des pressions comprises entre 20 et 100 bars et de préférence entre 30 et 65 bars.
    2. b) Quand on veut maximiser les oligomères à nombre d'atomes de carbone supérieur à 10, on utilise préférentiellement des résines échangeuses d'ion ou des silices alumines ou des zéolithes.
      Seules les zéolithes qui permettent grâce à leur porosité particulière d'obtenir des oléfines lourdes linéaires ou peu branchées sont adaptées à la production de diesel de haute qualité, c'est à dire, après hydrogénation, ayant un nombre de cétane supérieur à 45.
      Avec l'utilisation d'un catalyseur zéolithique, l'unité d'oligomérisation (3) est opérée à des températures comprises entre 150°C et 500 °C, et de préférence entre 200°C et 350°C, et à des pressions comprises entre 20 et 100 bars, et de préférence entre 30 et 65 bars.
    3. c) Il est aussi possible d'obtenir des productions importantes de distillats en opérant sur des catalyseurs de type résine ou silice alumine. Dans ce cas, le cétane de la fraction diesel reste faible, inférieur à 35. On vise alors à valoriser la coupe distillat moyen essentiellement sous forme de kérosène qui présente alors d'excellentes propriétés compatibles avec la norme JET A1, aussi bien en termes de propriétés à froid que de point de fumée.
      Les catalyseurs de types résines sont choisis pour leur bonne tenue mécanique dans des gammes de température de 20°C à 250°C, et de préférence entre 70°C et 180°C, à des pressions comprises entre 20 bars et 100 bars, de préférence entre 30 bars et 65 bars.
      Ces catalyseurs de type résines, peu coûteux et non régénérables, présentent l'avantage d'avoir des durées de cycles acceptables dans une opération en lit fixe car ils sont moins sensibles aux contaminants que les zéolithes et les silices alumines.
      Par rapport aux résines, les catalyseurs de type silice alumine présentent l'avantage d'être régénérables de sorte que, malgré leur coûts supérieurs aux résines, des économies substantielles sont réalisés en terme de consommation de catalyseur.
      On minimise les opérations de chargement et déchargement en utilisant une régénération in situ.
    4. d) Avec l'utilisation d'un catalyseur silice alumine, l'unité d'oligomérisation (3) est opérée à des températures comprises entre 20°C et 300°C, et préférentiellement entre 120°C et 250°C, et sous des pressions de 10 bars à 100 bars, et préférentiellement de 20 bars à 65 bars.
  • L'effluent (F3) de l'unité d'oligomérisation (3) est composé d'un mélange d'oligomères oléfiniques de C10 à C24 et d'une fraction légère préférentiellement de C5 à C10 contenant les oléfines C5 à C7 non converties, d'une fraction des paraffines initiales C5 à C7 de la charge, et des produits résultant de réactions de craquage et recombinaison qu'il est facile de séparer par simple distillation.
  • Pour contrôler l'exothermicité de la réaction d'oligomérisation (3), et favoriser la production de fraction lourde, l'effluent de réaction ou la fraction essence préférentiellement de C5 à C10 avec les LPG résiduel, (noté F4) est recyclée à l'entrée de l'unité d'oligomérisation (3).
  • De façon préférée, on pourra recycler à l'unité de déshydrogénation (2) une fraction (F5) plus légère allant de C5 à C7 avec les LPG résiduels, afin de convertir totalement ou quasi totalement les normales paraffines en oléfines, et ainsi maximiser le rendement en carburant diesel par rapport à la charge de départ.
  • Pour assurer un fonctionnement continu de l'unité de d'oligomérisation, il est alors nécessaire de disposer d'au moins deux réacteurs ou train de réacteurs, un des réacteurs (ou un des train de réacteurs) étant en phase de réaction, l'autre réacteur (ou un des train de réacteurs) étant en phase de régénération.
  • Avec l'utilisation de zéolithes pures ou sur support alumine, on peut aussi mettre en oeuvre une technologie semi régénérative ou à régénération continue comme celle bien connue dans le reformage catalytique des essences qui consiste à transférer de manière "batch" ou continu le catalyseur contenu dans un ou plusieurs réacteurs en opération dans une autre capacité dans laquelle est réalisée la régénération du catalyseur par combustion du coke déposé.
  • De manière optionnelle, les sections de régénération semi continue ou continue de l'unité de déshydrogénation (2) et de l'unité d'oligomérisation (3) pourront être intégrées, c'est à dire utiliser des équipements communs.
  • Le mélange d'oléfines lourdes (F3) issues de l'unité d'oligomérisation (3) est ensuite envoyé dans une unité d'hydrogénation (4). Pour ce faire, on utilise une partie de l'hydrogène (H2) produit par l'unité de déshydrogénation (2), l'autre partie, la plus importante, pouvant être exportée vers les diverses unités d'hydrotraitement de la raffinerie.
  • L'hydrogénation (4) peut être réalisée de manière connue de l'homme de l'art selon une voie hydrotraitement sur catalyseur NiMo, CoMo ou NiCoMo.
  • De préférence dans le cadre de la présente invention, l'hydrogénation (4) est réalisée sur des catalyseurs à base de métaux du groupe VIII déposés sur un support inerte, tel que par exemple la silice ou l'alumine.
  • Les métaux du groupe VIII utilisable comme catalyseur d'hydrogénation sont notamment le nickel, le palladium ou le platine.
  • L'hydrogénation (4) se déroule généralement en phase liquide dans un réacteur à lit fixe à des températures comprises entre 50°C et 300 °C, et de préférence entre 100°C et 200°C, et sous des pressions de 5 à 50 bars, et de préférence de 10 à 30 bars.
  • On réalise un taux d'hydrogénation d'au moins 25 %, de manière préférée égal ou supérieur à 75 %, et de manière très préférée égal ou supérieur à 95 %.
  • Le nombre de cétane de la coupe diesel résultante est généralement compris entre 45 et 55 avec l'utilisation de zéolithes dans l'unité d'oligomérisation (3).
  • EXEMPLE Exemple 1 (cas général)
  • On dispose dans une raffinerie de 232 Kilotonnes par an (KT/an) de naphta léger (LN) contenant 36 % de n paraffines à 5 et 6 atomes de carbone ainsi que 113,4 KT/an de n-butane. Le naphta léger de départ possède un octane moteur (RON) de 68.
  • Le mélange léger C4-C5-C6 est dirigé vers une unité de déshydrogénation (2) opérant à pression de 1,3 bar et à une température moyenne de 550 °C sur un catalyseur à base de platine et étain déposé sur alumine, avec un taux de recycle molaire H2/HC de 0,5. L'effluent de l'unité de déshydrogénation (2) avec un recycle à taux 1/1 par rapport à la charge fraîche des normales paraffines C4 -C6 provenant de l'unité d'oligomérisation (3) a la composition générale suivante :
    Effluent de l'unité de déshydrogénation KT/an
    Oléfines
    N C4"
    70,1
    Oléfines
    N C5" + NC6 "
    176,4
    Paraffines
    NC4
    40,8
    Paraffines
    N C5 + NC6
    51
    Total 338,3
  • On produit également 7,1 KT/an d'hydrogène.
  • L'effluent de l'unité de déshydrogénation (2) contenant les oléfines et paraffines est alors dirigé vers une installation d'oligomérisation des oléfines (3) opérant vers 300°C environ sur un catalyseur zéolithique à base de ZSM5.
  • La quasi-totalité des oléfines est transformée en oligomères
    • 85 % est transformé en oligomères bouillant dans la gamme diesel à savoir de C10 à C24, ce qui correspond à 209,5 KT/an produites
    • 15 % est transformé en essence (C5 à C10) bouillant dans la gamme essence, à savoir 37 KT/an produites
  • La quantité totale d'essence C5-C10 produite contenant les paraffines C5-C6 de départ se monte à 88 KT/an avec un octane moteur RON mesurée à 78.
  • On produit aussi 40,8 KT/an de butane résiduel.
  • Optionnellement la coupe saturée C4-C5-C6 peut être envoyée comme naphta à un site pétrochimique réduisant la quantité d'essence produite à 61,3 KT/an.
  • L'effluent de l'oligomérisation (3) est envoyé dans l'unité d'hydrogénation (4).
  • L'unité d'hydrogénation (4) fonctionne sur un catalyseur à base de nickel à des températures comprises entre 150° et 200°C.
  • L'effluent de l'unité d'hydrogénation (4) a un indice de cétane de 41, soit un indice de cétane moteur de 46.
  • L'hydrogène consommé dans l'hydrogénation (4) est égal à 2,0 KT/an.
  • La quantité nette d'hydrogène produite par le procédé selon l'invention est donc de 5,1 KT/an.
  • Dans l'exemple traité, on a réduit de 62% la quantité d'essence par rapport au naphta léger entrant (NL) avec simultanément 10 point de gain d'octane (RON) par rapport au naphta léger entrant (NL).
  • Le procédé décrit dans la présente invention permet donc non seulement de produire un carburant diesel de bonne qualité, mais également de produire de l'hydrogène, contrairement aux procédés conventionnels, et de diminuer les quantités d'essences et de butane actuellement excédentaires, en particulier sur le marché européen.
  • Exemple 2 " marche diesel maxi indice de cétane"
  • On dispose dans une raffinerie de 232 Kilotonnes par an (KT/an) de naphta léger (LN) contenant 36 % de normales paraffines à 5 et 6 atomes de carbone.
  • Le naphta léger de départ possède un octane moteur (RON) de 68.
  • Ce naphta léger est dirigé vers une unité de séparation normales/iso paraffines (1) opérant sur un tamis moléculaire de type 5A. On obtient ainsi 83,5 KT/ an de nC5 + nC6 paraffines, la fraction riche en iso paraffine (F8) étant envoyée au pool essence.
  • On dispose également de 113,4 KT/an de n butane.
  • Le mélange de nC4 + nC5 + nC6 est envoyé dans une unité de déshydrogénation (2) opérant à pression de 1,3 bars et à une température moyenne de 550 °C sur un catalyseur à base de platine et étain sur alumine, avec un taux de recycle molaire H2/HC de 0,5.
  • L'effluent de l'unité de déshydrogénation (2) avec un recycle à taux 1/1 des normales paraffines C4-C6 provenant de l'unité d'oligomérisation (3) a la composition générale suivante :
    Effluent de l'unité de
    déshydrogénation (2)
    KT/an
    Oléfines
    N C4"
    70,1
    Oléfines
    N C5" + NC6 "
    63,7
    Paraffines
    NC4
    40,8
    Paraffines
    N C5 + NC6
    18,5
    Total 193,1
  • On produit également 3,8 KT/an d'hydrogène.
  • L'effluent de l'unité de déshydrogénation (2) contenant les oléfines et paraffines est alors dirigé vers une installation d'oligomérisation des oléfines (3) opérant à 300 °C environ sur un catalyseur zéolithique à base de ZSM5.
  • La quasi-totalité des oléfines est transformée en oligomères.
    • 85 % est transformé en oligomères bouillant dans la gamme diesel à savoir de C10 à C24, ce qui correspond à 113,7 KT/an produites
    • 15 % est transformé en essence (C5 à C10) bouillant dans la gamme essence, à savoir 20,1 KT/an produites.
  • La quantité totale d'essence C5-C10 produite contenant les paraffines C5-C6 de départ se monte à 38,6 KT/an avec un octane moteur RON mesurée à 80.
  • On produit aussi 40,8 tonnes/an de butane résiduel.
  • Optionnellement, la coupe saturée C4-C5-C6 peut être envoyée comme naphta à un site pétrochimique réduisant la quantité d'essence produite à l'oligomérisation (3) à 33,4 KT/an. L'effluent de l'oligomérisation (3) est envoyé à l'unité d'hydrogénation (4).
  • l'unité d'hydrogénation (4) fonctionne sur un catalyseur à base de nickel à des températures comprises entre 150° et 200°C. L'effluent de l'unité d'hydrogénation (4) a un indice de cétane de 46, soit un indice de cétane moteur de 51.
  • L'hydrogène consommé dans l'hydrogénation (4) est égal à 1,1 KT/an.
  • La quantité nette d'hydrogène produite par le procédé selon l'invention est donc de 2,7 KT/an.
  • Le procédé décrit dans la présente invention permet non seulement de produire un carburant diesel de bonne qualité, mais également de produire de l'hydrogène contrairement aux procédés conventionnels, et de diminuer les quantités d'essences et de butane actuellement excédentaires en particulier sur le marché européen.
  • Selon le procédé décrit dans la présente invention les 187,1 KT/an d'essence produite comprend les iso paraffines C5-C6 et la fraction C5-C10 produite à l'oligomérisation.
  • La quantité d'essence produite est de 20% inférieur à la quantité de naphta léger entrant (NL) avec simultanément un indice d'octane amélioré de 20 point par rapport au naphta léger entrant (NL).
  • Exemple 3 charge C4/C5/C6 "maxi kérosène"
  • On dispose dans une raffinerie de 232 Kilotonnes par an (KT/an) de naphta léger (NL) contenant 36 % de n paraffines à 5 et 6 atomes de carbone ainsi que 113,4 KT/an de n-butane. Le naphta léger de départ possède un octane moteur (RON) de 68.
  • Le mélange léger C4-C5-C6 est dirigé vers une unité de déshydrogénation (2) opérant à pression de 1,3 bars et à une température moyenne de 550 °C, avec un taux de recycle molaire H2/HC de 0,5.
  • La déshydrogénation (2) est réalisée sur un catalyseur à base de platine et étain déposé sur alumine.
  • L'effluent de l'unité de déshydrogénation (2) avec un recycle à taux 1/1 par rapport à la charge fraîche des n paraffines C4 -C6 provenant de l'unité d'oligomérisation (3) a la composition générale suivante :
    Effluent de l'unité de
    déshydrogénation
    KT/an
    Oléfines
    N C4"
    70,1
    Oléfines
    N C5" + NC6 "
    176,4
    Paraffines
    NC4
    40,8
    Paraffines
    N C5 + NC6
    51
    Total 338,3
  • On produit également 7,1 KT/an d'hydrogène.
  • L'effluent de l'unité de déshydrogénation (2) contenant les oléfines et paraffines est alors dirigé vers une installation d'oligomérisation des oléfines (3) opérant à 180°C environ sur catalyseur silice alumine, et avec un recyclage des coupes C4 à C6.
    • 63 % de la charge d'oligomérisation (F2) est transformé en oligomères bouillant dans la gamme du kérosène à savoir de C10 à C20, ce qui correspond à 140 KT/an produites
    • 7% de la charge d'oligomérisation (F2) est transformé en oligomères bouillant dans la gamme du diesel à savoir de C20 à C24, ce qui correspond à 15,1 KT/an produites
    • 30 % de la charge d'oligomérisation est transformé en essence (C5 à C10) bouillant dans la gamme essence, à savoir 66,7 KT/an produites.
  • On produit aussi 44 Kt/an de butane résiduel contenant les oléfines C4 non converties.
  • La quantité totale d'essence C5-C10 produite contenant les paraffines C5-C6 de départ et les oléfines non converties se monte à 139,2 Kt/an.
  • L'effluent de l'oligomérisation (3) bouillant dans la gamme du kérosène et du diesel est très oléfinique est envoyée sur l'unité d'hydrogénation (4).
  • L'unité d'hydrogénation (4) fonctionne sur un catalyseur à base de nickel à des températures comprises entre 150° et 200°C.
  • Après fractionnement, le kérosène produit à l'unité d'hydrogénation (4) a un point de fumée de 35 mm, un point de disparition des cristaux inférieur à -60°C, et un point final ASTM D86 inférieur à 300°C, en ligne avec les spécifications requises pour un kérosène respectant la norme JET A1.
  • L'hydrogène consommé dans l'hydrogénation (4) est égal à 1,6 KT/an.
  • La faible quantité de diesel produite est généralement injectée dans le pool diesel sans incidence importante sur le cétane du pool malgré son faible cétane de 30.
  • La quantité nette d'hydrogène produite par le procédé selon l'invention est donc de 5,5 KT/an.
  • Dans l'exemple traité, on a réduit de 40% la quantité d'essence produite par rapport à la charge naphta léger entrante (NL) avec simultanément un gain de 20 points d'octane (RON) toujours par rapport au naphta léger entrant (NL).
  • Le procédé décrit dans la présente invention permet donc non seulement de produire un carburant kérosène de bonne qualité, mais également de produire de l'hydrogène contrairement aux procédés conventionnels, et de diminuer les quantités d'essences et de butane actuellement excédentaires, en particulier sur le marché européen.

Claims (11)

  1. Procédé de production de carburants kérosène et diesel et de coproduction d'hydrogène à partir d'une charge saturée légère (F1) de nombre de carbone compris entre C3 et C7 constituée:
    a) d'une coupe naphta léger (NL) à nombre d'atome de carbone allant de 5 à 7 provenant d'unités de distillation primaire, d'hydrocracking ou d'unité Fischer Tropsch, d'intervalle de distillation compris entre 30°C et 120°C, ladite coupe naphta léger étant préalablement hydrotraitée de manière à être débarrassée des composées oxygénés azoté et soufrés et,
    b) d'une coupe en C3 /C4 (LPG) présente en proportion quelconque, débarrassée des composés oxygénés et soufrés, ledit procédé comprenant la suite d'étapes suivantes:
    - une étape de séparation (1) des normales et iso paraffines, faisant appel à un tamis moléculaire à base de zéolithes alcalines à petits pores tels que celles dénommées 5A, permettant de récupérer un premier effluent (F1)" essentiellement constitué de normales paraffines envoyé à l'étape de déshydrogénation (2) et un second effluent (F8) essentiellement constitué d'iso paraffines qui est envoyé au pool essence ou valorisé sous forme de naphta pétrochimique,
    - une étape de déshydrogénation (2) des normales paraffines issues de l'étape de séparation opérant à pression comprise entre 1,3 et 5 bars absolus, et à une température comprise entre 400°C et 700 °C, et faisant appel à un catalyseur de déshydrogénation constitué d'un métal noble du groupe VIII choisi parmi le platine, l'iridium, le rhodium, et d'au moins un promoteur sélectionné dans le groupe constitué par l'étain, le germanium, le plomb, le gallium, l'indium, le thallium, ledit métal noble et ledit promoteur étant déposés sur un support inerte choisi dans le groupe formé par la silice, l'alumine, l'oxyde de titane, la silice magnésie, ou un mélange quelconque desdits éléments, et ladite étape de déshydrogénation (2) permettant de récupérer un effluent (F2) essentiellement constitué d'oléfines à nombre d'atome de carbone compris entre 3 et 7, dit effluent oléfinique (F2),
    - une étape d'oligomérisation (3) de tout ou partie de l'effluent oléfinique (F2) obtenu à l'étape (2) dans une unité d'oligomérisation (3) faisant appel à un catalyseur d'oligomérisation choisi dans le groupe formé par l'acide phosphorique solide, les résines échangeuses d'ions, les silices alumines ou les silico aluminates tels que les zéolithes pures ou supportées sur alumine, la dite étape d'oligomérisation (3) permettant de récupérer un effluent (F3) majoritairement constitué d'oléfines allant de C10 à C25, et un effluent "essence" (F4) constitué majoritairement de paraffines allant de C5 à C10 qui est séparé de l'effluent (F3) par distillation et recyclé à l'entrée de l'unité d'oligomérisation (3),
    - une étape d'hydrogénation (4) de tout ou partie l'effluent oléfinique (F3) issu de l'étape d'oligomérisation (3) réalisée en phase liquide dans un ou plusieurs réacteurs à lit fixe, à des températures comprises entre 50°C et 350 °C, et sous des pressions de 5 à 50 bars, et faisant appel à un catalyseur d'hydrogénation à base d'un métal choisi dans le groupe formé par le platine, le palladium ou le nickel déposé sur un support inerte tel que la silice ou l'alumine ou tout mélange de ces deux composants, ladite étape d'hydrogénation (4) permettant de récupérer un effluent (F6) qui est une coupe carburant diesel ou kérosène majoritairement paraffinique.
  2. Procédé de production de carburants kérosène et diesel, et de coproduction d'hydrogène selon la revendication 1, dans lequel le catalyseur utilisé dans l'étape de déshydrogénation (2) est constitué de platine et d'étain déposés sur une alumine neutralisée par un alcalin.
  3. Procédé de production de carburants kérosène et diesel, et de coproduction d'hydrogène selon l'une quelconque des revendications 1 à 2, dans lequel l'hydrogène utilisé lors de l'étape (4) d'hydrogénation provient au moins en partie de l'hydrogène généré à l'étape (2).
  4. Procédé de production de carburants kérosène aux spécifications JETA1, et de coproduction d'hydrogène selon la revendication1, dans lequel l'étape d'oligomérisation (3) est réalisée sur résines à des températures comprises entre 20°C et 200°C, et préférentiellement entre 70°C et 180°C, et sous des pressions de 10 bars à 100 bars, et préférentiellement de 30 bars à 65 bars.
  5. Procédé de production de carburants kérosène aux spécifications JET A1, et de coproduction d'hydrogène selon la revendication 1, dans lequel l'étape d'oligomérisation (3) est réalisée sur silice alumine à des températures comprises entre 120°C et 250°C, et sous des pressions de 20 bars à 65 bars.
  6. Procédé de production de carburants kérosène et diesel, et de coproduction d'hydrogène selon la revendication 1, dans lequel on introduit à l'étape d'oligomerisation (3) une coupe essence (ES) ou au moins une coupe contenant des C3 et des C4 provenant d'une unité de craquage catalytique (FCC), de cokéfaction, de viscoréduction, ou d'une unité Fischer Tropsch, ou d'une unité de vapocraquage, qui est traitée en mélange avec l'effluent (F2) de l'étape 2.
  7. Procédé de production de carburants kérosène et diesel, et de coproduction d'hydrogène selon la revendication 1, dans lequel on introduit à l'étape d'oligomerisation (3) une coupe contenant des C3 et des C4 provenant d'une unité de craquage catalytique (FCC), de cokéfaction, de viscoréduction, ou d'une unité Fischer Tropsch, ou d'une unité de vapocraquage, qui est traitée en mélange avec l'effluent (F2) de l'étape 2.
  8. Procédé de production de carburants kérosène et diesel, et de coproduction d'hydrogène selon la revendication 1, dans lequel on introduit à l'étape d'hydrogénation (4) une coupe (F7) de point d'ébullition supérieur à 150 °C, contenant des teneurs en soufre inférieures à 5 ppm, par exemple des coupes directement issues de l'unité de distillation atmosphérique du brut, ou issues de l'unité de craquage catalytique (FCC), ou issues d'unité d'hydrocraquage ou de reformage catalytique.
  9. Procédé de production de carburants kérosène et diesel, et de coproduction d'hydrogène selon l'une quelconque des revendications 1 à 8, dans lequel l'étape de déshydrogénation (2) fonctionne en mode régénératif ou semi régénératif.
  10. Procédé de production de carburants kérosène et diesel, et de coproduction d'hydrogène selon l'une quelconque des revendications 1 à 9, dans lequel l'étape d'oligomérisation (3) fonctionne en mode régénératif ou semi régénératif.
  11. Procédé de production de carburants kérosène et diesel, et de coproduction d'hydrogène selon l'une quelconque des revendications 1 à 10, dans lequel l'hydrogène produit par l'étape 2 est envoyé au moins en partie vers les opérations unitaires consommatrices de la raffinerie, après passage sur une unité de purification telle que membrane ou tamis (PSA).
EP10290586A 2009-11-13 2010-10-28 Procédé de production de carburants kérosène et diesel de haute qualité et de coproduction d'hydrogène à partir de coupes saturées légères Active EP2333031B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0905465A FR2952646B1 (fr) 2009-11-13 2009-11-13 Procede de production de carburants kerosene et diesel de haute qualite et de coproduction d'hydrogene a partir de coupes saturees legeres

Publications (2)

Publication Number Publication Date
EP2333031A1 true EP2333031A1 (fr) 2011-06-15
EP2333031B1 EP2333031B1 (fr) 2012-08-22

Family

ID=42226106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10290586A Active EP2333031B1 (fr) 2009-11-13 2010-10-28 Procédé de production de carburants kérosène et diesel de haute qualité et de coproduction d'hydrogène à partir de coupes saturées légères

Country Status (5)

Country Link
US (1) US8470165B2 (fr)
EP (1) EP2333031B1 (fr)
CN (1) CN102061195A (fr)
FR (1) FR2952646B1 (fr)
ZA (1) ZA201007637B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012076758A3 (fr) * 2010-12-10 2012-10-04 Neste Oil Oyj Procédé pour la production de composants de distillat moyen à partir de composants d'essence
WO2013104614A1 (fr) * 2012-01-09 2013-07-18 Total Raffinage Marketing Procédé pour la conversion d'une charge de départ d'hydrocarbures contenant des oléfines de faible point d'ébullition

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9649626B2 (en) 2009-07-29 2017-05-16 The United States Of America As Represented By The Secretary Of The Navy Process for the dehydration of aqueous bio-derived terminal alcohols to terminal alkenes
US9522854B2 (en) 2009-07-29 2016-12-20 The United States Of America As Represented By The Secretary Of The Navy Process and apparatus for the selective dimerization of terpenes and poly-alpha-olefins with a single-stage reactor and a single-stage fractionation system
US9242226B2 (en) 2009-07-29 2016-01-26 The Government Of The United States Of America As Represented By The Secretary Of The Navy Process for the dehydration of aqueous bio-derived terminal alcohols to terminal alkenes
US8785702B2 (en) 2009-07-29 2014-07-22 The United States Of America As Represented By The Secretary Of The Navy Turbine and diesel fuels and methods for making the same
US8969636B2 (en) * 2009-07-29 2015-03-03 The United States Of America As Represented By The Secretary Of The Navy Homogeneous metallocene ziegler-natta catalysts for the oligomerization of olefins in aliphatic-hydrocarbon solvents
US8912373B2 (en) 2009-07-29 2014-12-16 The United States Of America As Represented By The Secretary Of The Navy Process for the dehydration of aqueous bio-derived terminal alcohols to terminal alkenes
US9278894B2 (en) * 2011-09-13 2016-03-08 Chevron U.S.A. Inc. Process for alkane oligomerization
FR2984916B1 (fr) * 2011-12-23 2014-01-17 IFP Energies Nouvelles Procede ameliore de conversion d'une charge lourde en distillat moyen faisant appel a un pretraitement en amont de l'unite de craquage catalytique
WO2013106065A1 (fr) * 2012-01-12 2013-07-18 The Government Of The United States Of America As Represented By The Secretary Of The Navy Catalyseurs ziegler-natta de métallocène homogène pour l'oligomérisation d'oléfines dans des solvants aliphatiques-hydrocarbonés
CN103361116B (zh) * 2012-04-05 2016-04-06 中国石油天然气股份有限公司 富含碳四碳五碳六烷烃原料生产高辛烷值汽油的方法
CN103361115B (zh) * 2012-04-05 2016-02-10 中国石油天然气股份有限公司 一种用富含c4、c5、c6烷烃原料生产高辛烷值汽油的方法
CN103361114B (zh) * 2012-04-05 2016-04-06 中国石油天然气股份有限公司 富含碳四碳五碳六烷烃原料生产高辛烷值汽油的工艺
AU2013342997B2 (en) 2012-11-09 2017-04-27 Council Of Scientific & Industrial Research A single step catalytic process for the conversion of n-paraffins and naphtha to diesel range hydrocarbons
US9644159B2 (en) 2012-11-12 2017-05-09 Uop Llc Composition of oligomerate
US9434891B2 (en) 2012-11-12 2016-09-06 Uop Llc Apparatus for recovering oligomerate
US10508064B2 (en) 2012-11-12 2019-12-17 Uop Llc Process for oligomerizing gasoline without further upgrading
US9567267B2 (en) 2012-11-12 2017-02-14 Uop Llc Process for oligomerizing light olefins including pentenes
US9522373B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for oligomerizing light olefins
US9914673B2 (en) 2012-11-12 2018-03-13 Uop Llc Process for oligomerizing light olefins
US9834492B2 (en) 2012-11-12 2017-12-05 Uop Llc Process for fluid catalytic cracking oligomerate
US9663415B2 (en) 2012-11-12 2017-05-30 Uop Llc Process for making diesel by oligomerization of gasoline
US9522375B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for fluid catalytic cracking oligomerate
WO2014074833A1 (fr) 2012-11-12 2014-05-15 Uop Llc Procédé de fabrication d'essence par oligomérisation
US9441173B2 (en) 2012-11-12 2016-09-13 Uop Llc Process for making diesel by oligomerization
CN104449901A (zh) * 2013-09-18 2015-03-25 西安艾姆高分子材料有限公司 环境友好型生物柴油/石化柴油热值提高剂
WO2015085128A1 (fr) * 2013-12-05 2015-06-11 Uop Llc Appareillage pour l'intégration d'une déshydrogénation et d'une oligomérisation
US20150159099A1 (en) * 2013-12-05 2015-06-11 Uop Llc Light olefin oligomerization process for the production of liquid fuels from paraffins
US9670425B2 (en) 2013-12-17 2017-06-06 Uop Llc Process for oligomerizing and cracking to make propylene and aromatics
US9732285B2 (en) 2013-12-17 2017-08-15 Uop Llc Process for oligomerization of gasoline to make diesel
US9199893B2 (en) 2014-02-24 2015-12-01 Uop Llc Process for xylenes production
CN105238464A (zh) * 2014-05-30 2016-01-13 西安艾姆高分子材料有限公司 超纳米级氢化超支化聚烯烃减排、节能燃油添加剂
KR102127644B1 (ko) 2014-06-10 2020-06-30 삼성전자 주식회사 반도체 소자의 제조 방법
AU2016220415B2 (en) * 2015-02-18 2018-05-31 Exxonmobil Research And Engineering Company Upgrading paraffins to distillates and lube basestocks
EP3507348A1 (fr) * 2016-09-01 2019-07-10 The Petroleum Oil and Gas Corporation of South Africa (Pty) Ltd. Procédé de production d'un carburéacteur différent obtenu par synthèse - kérosène paraffinique synthétique (spk)
WO2018045396A1 (fr) * 2016-09-01 2018-03-08 The Petroleum Oil & Gas Corporation Of South Africa (Pty) Ltd Oligomérisation de naphta oléfinique
CN111492039A (zh) * 2017-12-21 2020-08-04 埃克森美孚研究工程公司 烷烃和烯烃改质
CN109433233B (zh) * 2018-09-25 2021-04-13 蚌埠知博自动化技术开发有限公司 用于异丁烯二聚制备异辛烯的催化剂及其制备方法
US10829702B1 (en) 2019-06-27 2020-11-10 Uop Llc Dehydrogenation process for gasoline production
US10851315B1 (en) 2019-06-27 2020-12-01 Uop Llc Processes for increasing an octane value of a gasoline component
US11066345B2 (en) 2019-06-27 2021-07-20 Uop Llc Processes for increasing an octane value of a gasoline component
US10941352B2 (en) 2019-06-27 2021-03-09 Uop Llc Processes for increasing an octane value of a gasoline component
US11021422B1 (en) 2019-12-04 2021-06-01 Saudi Arabian Oil Company Integrated processes to produce gasoline blending components from light naphtha
US11279891B2 (en) * 2020-03-05 2022-03-22 Saudi Arabian Oil Company Systems and processes for direct crude oil upgrading to hydrogen and chemicals
JP2021155313A (ja) * 2020-03-30 2021-10-07 Eneos株式会社 水素供給システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909451A (en) * 1973-03-05 1975-09-30 Universal Oil Prod Co Dehydrogenation catalyst
GB2186287A (en) 1986-02-11 1987-08-12 Inst Francais Du Petrole Process for obtaining premium-grade petrol and jet aircraft fuel
WO1993003116A1 (fr) * 1991-07-31 1993-02-18 Mobil Oil Corporation Deshydrogenation et isomerisation/oligomerisation de charges d'alimentation composees de paraffine legere
US5998685A (en) * 1996-07-24 1999-12-07 Huels Aktiengesellschaft Process for preparing butene oligomers from field butanes
US20030073875A1 (en) 2001-10-15 2003-04-17 Catalytic Distillation Technologies Process for the conversion of mixed C4 and C5 streams to motor fuel

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036745A (en) * 1975-09-24 1977-07-19 Uop Inc. Process for separating normal and isoparaffins
US4006197A (en) * 1975-11-19 1977-02-01 Uop Inc. Process for separating normal paraffins
US4423269A (en) * 1981-09-25 1983-12-27 Chevron Research Company Oligomerization of gaseous olefins
US4542247A (en) * 1984-09-14 1985-09-17 Mobil Oil Corporation Conversion of LPG hydrocarbons to distillate fuels or lubes using integration of LPG dehydrogenation and MOGDL
US4678645A (en) * 1984-09-14 1987-07-07 Mobil Oil Corporation Conversion of LPG hydrocarbons to distillate fuels or lubes using integration of LPG dehydrogenation and MOGDL
US4677237A (en) * 1984-11-29 1987-06-30 Uop Inc. Dehydrogenation catalyst compositions
US5847252A (en) * 1995-12-15 1998-12-08 Uop Llc Process for integrated oligomer production and saturation
US5714661A (en) * 1996-05-31 1998-02-03 Tuli; Deepak Kumar Process for the preparation of synthetic lubricant base stocks
US5856604A (en) * 1997-09-23 1999-01-05 Uop Llc Process for integrated oligomer production and saturation
US6025533A (en) * 1998-04-10 2000-02-15 Uop Llc Oligomer production with catalytic distillation
US6398946B1 (en) * 1999-12-22 2002-06-04 Chevron U.S.A., Inc. Process for making a lube base stock from a lower molecular weight feedstock
EP1178029A1 (fr) * 2000-07-31 2002-02-06 Oxeno Olefinchemie GmbH Procédé pour la préparation de di-isobutanes, de di-iosbutènes et de di-n-butènes à partir de butane naturel
US6875900B2 (en) * 2000-10-12 2005-04-05 Uop Llc Upflow oligomerization reaction process
IT1319642B1 (it) * 2000-11-09 2003-10-23 Snam Progetti Procedimento per la produzione di idrocarburi altoottanici a partireda miscele n-butano/isobutano quali i butani da campo.
US6872300B1 (en) * 2002-03-29 2005-03-29 Uop Llc Reforming catalyst with chelated promotor
JP2007514702A (ja) * 2003-12-18 2007-06-07 エクソンモービル・ケミカル・パテンツ・インク 触媒反応の改良
FR2871168B1 (fr) * 2004-06-04 2006-08-04 Inst Francais Du Petrole Procede d'amelioration de coupes essences et de transformation en gazoles avec traitement complementaire permettant d'augmenter le rendement de la coupe gazole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909451A (en) * 1973-03-05 1975-09-30 Universal Oil Prod Co Dehydrogenation catalyst
GB2186287A (en) 1986-02-11 1987-08-12 Inst Francais Du Petrole Process for obtaining premium-grade petrol and jet aircraft fuel
WO1993003116A1 (fr) * 1991-07-31 1993-02-18 Mobil Oil Corporation Deshydrogenation et isomerisation/oligomerisation de charges d'alimentation composees de paraffine legere
US5998685A (en) * 1996-07-24 1999-12-07 Huels Aktiengesellschaft Process for preparing butene oligomers from field butanes
US20030073875A1 (en) 2001-10-15 2003-04-17 Catalytic Distillation Technologies Process for the conversion of mixed C4 and C5 streams to motor fuel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STOCKLE MIKE AND KNIGHT TINA: "Dealing with Dieselisation", ERTC 14TH ANNUAL MEETING-BERLIN-NOVEMBER 2009, 11 November 2009 (2009-11-11), XP002587070, Retrieved from the Internet <URL:http://www.fwc.com/publications/tech_papers/files/Dealing%20with%20dieselisation%20ERTC%202009.pdf> [retrieved on 20100611] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012076758A3 (fr) * 2010-12-10 2012-10-04 Neste Oil Oyj Procédé pour la production de composants de distillat moyen à partir de composants d'essence
WO2013104614A1 (fr) * 2012-01-09 2013-07-18 Total Raffinage Marketing Procédé pour la conversion d'une charge de départ d'hydrocarbures contenant des oléfines de faible point d'ébullition

Also Published As

Publication number Publication date
FR2952646A1 (fr) 2011-05-20
US20110114538A1 (en) 2011-05-19
CN102061195A (zh) 2011-05-18
FR2952646B1 (fr) 2012-09-28
EP2333031B1 (fr) 2012-08-22
US8470165B2 (en) 2013-06-25
ZA201007637B (en) 2011-08-31

Similar Documents

Publication Publication Date Title
EP2333031B1 (fr) Procédé de production de carburants kérosène et diesel de haute qualité et de coproduction d&#39;hydrogène à partir de coupes saturées légères
EP3018188B1 (fr) Procede de conversion de charges petrolieres comprenant une etape d&#39;hydrotraitement en lit fixe, une etape d&#39;hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
CA2239827C (fr) Procede de conversion de fractions lourdes petrolieres comprenant une etape de conversion en lit bouillonnant et une etape d&#39;hydrocraquage
WO2018073018A1 (fr) Procédé de conversion comprenant un hydrotraitement en lit fixe, une separation d&#39;une fraction residu hydrotraitee, une etape de craquage catalytique pour la production de combustibles marins
FR3014897A1 (fr) Nouveau procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre et en sediments
FR2910486A1 (fr) Procede de conversion de charges issues de sources renouvelables pour produire des bases carburants gazoles de faible teneur en soufre et de cetane ameliore
FR2964387A1 (fr) Procede de conversion de residu integrant une etape de desasphaltage et une etape d&#39;hydroconversion avec recycle de l&#39;huile desasphaltee
FR3067037A1 (fr) Procede de conversion comprenant un hydrotraitement en lit fixe, une separation d&#39;un distillat sous vide, une etape d&#39;hydrocraquage de distillat sous vide
FR3053047A1 (fr) Procede ameliore d&#39;hydroconversion profonde au moyen d&#39;une extraction des aromatiques et resines avec valorisation de l&#39;extrait a l&#39;hydroconversion et du raffinat aux unites aval.
FR2866897A1 (fr) Utilisation de gaz pour le preraffinage de petrole conventionnel et optionnellement sequestration de co2
EP1849850A1 (fr) Procédé de désulfuration d&#39;essences oléfiniques comprenant au moins deux étapes distinctes d&#39;hydrodésulfuration
FR2964386A1 (fr) Procede de conversion de residu integrant une etape de desashphaltage et une etape d&#39;hydroconversion
WO2013093227A1 (fr) Procede ameliore de conversion d&#39;une charge lourde en distillat moyen faisant appel a un pretraitement en amont de l&#39;unite de craquage catalytique
EP2636661A1 (fr) Procédé de conversion d&#39;une charge lourde, mettant en oeuvre une unité de craquage catalytique et une étape d&#39;hydrogénation sélective de l&#39;essence issue du craquage catalytique
FR2782728A1 (fr) Procede de traitement d&#39;hydrogenation de petrole brut et petrole brut reforme par celui-ci
WO2008017742A1 (fr) Procede et installation de traitement de petrole brut avec conversion de résidu asphalténique
EP0773981A1 (fr) Carbureacteur et procede de preparation de ce carbureacteur
FR3076296A1 (fr) Procede d’hydrocraquage deux etapes comprenant au moins une etape de separation haute pression a chaud
EP1336649B1 (fr) Procédé d&#39;amélioration de coupes gazoles aromatiques et naphteno-aromatiques
FR2789691A1 (fr) Procede de synthese de distillat atmospherique comprenant l&#39;utilisation de la technologie fischer-tropsch
EP3312260B1 (fr) Procede d&#39;hydrodesulfuration d&#39;une essence olefinique
EP2426189B1 (fr) Procédé de production de carburants kérosène et diesel à partir de coupes insaturées légeres et de coupes aromatiques riches en BTX
WO2017108295A1 (fr) Procede de conversion d&#39;une charge pour la production d&#39;hydrocarbures par voie de synthese fischer-tropsch
FR3089518A1 (fr) Procede ameliore de conversion d’une charge lourde en distillats moyens faisant appel a un enchainement d’unites d’hydrocraquage, de vapocraquage et d’oligomerisation
FR2830870A1 (fr) Procede d&#39;hydrocraquage&#34;une etape&#34; de charges hydrocarbonees a fortes teneurs en azote

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20111215

17Q First examination report despatched

Effective date: 20120210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 572018

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010002523

Country of ref document: DE

Effective date: 20121018

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120822

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 572018

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120822

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

BERE Be: lapsed

Owner name: IFP ENERGIES NOUVELLES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121203

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121122

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010002523

Country of ref document: DE

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121028

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101028

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120822

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141028

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 14