EP2326905B1 - Échangeur de chaleur à faisceau tubulaire destiné à la régulation d'une large plage de puissance - Google Patents

Échangeur de chaleur à faisceau tubulaire destiné à la régulation d'une large plage de puissance Download PDF

Info

Publication number
EP2326905B1
EP2326905B1 EP09748948.8A EP09748948A EP2326905B1 EP 2326905 B1 EP2326905 B1 EP 2326905B1 EP 09748948 A EP09748948 A EP 09748948A EP 2326905 B1 EP2326905 B1 EP 2326905B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
way valve
tube bundle
bundle heat
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09748948.8A
Other languages
German (de)
English (en)
Other versions
EP2326905A2 (fr
Inventor
Jiri Jekerle
Klaus Dieter Rothenpieler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2326905A2 publication Critical patent/EP2326905A2/fr
Application granted granted Critical
Publication of EP2326905B1 publication Critical patent/EP2326905B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction

Definitions

  • the invention relates to a shell and tube heat exchanger for controlling a wide power range.
  • heat exchangers for the cooling of medium streams, especially gases in numerous process engineering systems, such. B. gasification plants, thermal and catalytic cracking systems, steam reforming plants, etc.
  • heat exchangers in particular shell and tube heat exchanger (cooler), used in which the streams to be cooled flow through straight Schundrohre and thereby the existing heat of the hot medium flow through the pipe wall deliver to the cooling medium surrounding the tubes.
  • the main object of such a heat exchanger or shell-and-tube heat exchanger is the transfer of heat between two media, wherein one medium (hot medium) dissipates a certain amount of heat and the other medium (cooling medium) is supplied with an adequate amount of heat.
  • the amount of heat transferred is known to depend on the size of the heat exchanger, the heat transfer coefficients of the two media, and the temperature difference between the two media. With single-phase media, the medium temperature changes with the heat supply or heat dissipation.
  • the temperature profile over the length of the apparatus of the heat exchanger is in this case similar to an exponential function.
  • a shell-and-tube heat exchanger generally comprises a large number of heating surface tubes, a pressure jacket surrounding the heating surface tubes and forming a jacket space, and two tube plates, between which the heating surface tubes are arranged.
  • the one medium flows through the tube inlet chamber of the heat exchanger, then through the Schundrohre and the tube outlet chamber of the heat exchanger.
  • the second medium flows through a nozzle into the shell space of the Heat exchanger, flows around the individual Schuvidrohre several times and then flows through a second nozzle out of the heat exchanger.
  • the two media can flow in a heat exchanger or tube bundle heat exchanger in the same axial direction of the heat exchanger (DC) or one of the two media in the opposite direction to the other medium (countercurrent) within the heat exchanger.
  • the temperature profile of the heat exchange of the media in the countercurrent and direct current is different and therefore leads to a different high mean logarithmic temperature difference between the two media.
  • the amount of heat transferred between the two media is therefore different for both circuits, i. Countercurrent or DC circuit, different sizes.
  • the performance of the heat exchanger or shell-and-tube heat exchanger can be changed by fouling (deposits or contaminants within the heating surface tubes) or other influences with the operating time of the shell-and-tube heat exchanger, resulting in a need for control intervention.
  • the thermal performance of the tube bundle heat exchanger is often a bypass control, consisting of a bypass line and a three-way mixing valve, that is a controlled three-way valve used.
  • a part of the medium stream is taken from the main stream before being introduced into the tube bundle heat exchanger and guided or bypassed around the tube bundle heat exchanger.
  • the reduced flow rate of a medium reduces the heat transfer and influences the average logarithmic temperature difference via the changed medium outlet temperature.
  • the achievable with this bypass arrangement control range or control intervention is relatively small.
  • Shell-and-tube heat exchangers with similar control arrangements are described, for example, in US Pat JP 58 189478 U and DE 29 12321 A1 disclosed.
  • the object of the present invention is to provide a tube bundle heat exchanger with a bypass system, in which the aforementioned disadvantages are avoided or in which the outlet temperatures of the media and the amount of heat to be transferred in a very wide range is regulated.
  • controllable three-way valve is arranged with respect to the cooling medium flow in the discharge side of the tube bundle heat exchanger.
  • the advantage of this arrangement is the exact controllability of the medium outlet temperature.
  • the other three-way valve is formed as a changeover next to a regulated three-way valve. With the three-way valve designed as a reversing valve, the complete cooling medium flow can be clearly directed into the front or rear end of the jacket space or out of the front or rear end of the jacket space and thus a direct or countercurrent flow of the cooling medium to the first medium flow in the jacket space accomplished.
  • the three-way valve designed as a reversing valve with respect to the cooling medium flow in the inlet side of the tube bundle heat exchanger.
  • the other three-way valves in addition to the one regulated three-way valve, also a regulated three-way valve.
  • control technology can be controlled, which works as a switching valve of both three-way valves.
  • a flow measuring device is arranged within the bypass line.
  • this flow measuring device (s)
  • the partial mass flows within the bypass line can be precisely recorded and thus act as controlled variables on the control process and the controlled three-way valves.
  • the nozzle at the rear end of the pressure jacket and / or the nozzle at the front end of the pressure jacket in the direction of the longitudinal axis L of the tube bundle heat exchanger seen are each gleichholz. This results in a short path when flowing through the jacket space in the case of bypassing a partial mass flow of the cooling medium.
  • nozzle at the rear end of the pressure jacket and / or the nozzle at the front end of the pressure jacket relative to a lying perpendicular to the longitudinal axis L of the tube bundle heat exchanger level E lie on the latter in each case at an arbitrary angle ,
  • the resistance or the pressure loss of the bypassing partial flow of the cooling medium flow can be reduced or kept small.
  • FIG. 1 shows a tube bundle heat exchanger 1 shown schematically in longitudinal section.
  • Such tube bundle heat exchanger 1 are used in numerous process engineering systems, such. As gasification plants, thermal and catalytic crackers, steam reforming plants, etc., required, in which a process gas, an exhaust gas or the like. Is produced.
  • the tube bundle heat exchanger 1 is generally used for cooling the aforementioned hot gas or a first medium stream 7, which is introduced through a pipe, not shown, in the pipe inlet chamber 9 of the tube bundle heat exchanger 1 and passed from here through a plurality of straight Schuzan 2 , then collected in the tube outlet chamber 10 of the tube bundle heat exchanger 1 and discharged by means not shown line from the tube bundle heat exchanger 1.
  • the Schuvidrohre 2 takes place through which an indirect heat exchange with the Schuvidrohre 2 surrounding cooling medium 8, are each spaced from each other between two tube plates 3, 4 and with these firm and gas-tight - usually welded - connected.
  • the entire Schuphilrohre 2 are covered by a jacket 5 forming a pressure jacket 6.
  • a jacket 5 forming a pressure jacket 6.
  • the better assignment because here is the adjacent to the tube outlet chamber 10 end of the pressure jacket 6 as the rear end 15th and the end of the pressure jacket 6 adjoining the tube inlet chamber 9 is referred to as the front end 16.
  • two nozzles 11, 12 at the rear End 15 and two ports 13, 14 arranged at the front end 16, wherein the respective first port 11, 13 at the rear and at the front end 15, 16 for the supply of the cooling medium flow 8 in the shell space 5 and the respective second port 12, 14 am rear and at the front end 15, 16 for the discharge of the cooling medium flow 8 from the shell space 5 is used.
  • the two ports 11, 13 for the supply of the cooling medium flow 8 are each connected to a first and second bypass line 21 a, 21 b, both bypass lines 21 a, 21 b lead to a first three-way valve 19 and are each connected to this.
  • the feed line 17 is connected to the three-way valve 19, through which the cooling medium flow m 0 8 the tube bundle heat exchanger 1 is supplied.
  • the two connecting pieces 12, 14 are each connected to a third and fourth bypass line 22a, 22b, whereby both bypass lines 22a, 22b lead to a second three-way valve 20 and respectively to this for the discharge of the cooling medium flow 8 are connected.
  • the drain line 18 is connected to the three-way valve 20, through which the cooling medium flow m 0 8 is discharged from the tube bundle heat exchanger 1.
  • one of the two three-way valves 19, 20 is designed to be adjustable.
  • FIGS. 1 and 2 show circuits of the tube bundle heat exchanger 1 according to the invention, in which the cooling medium flow 8 flows through the heat exchanger in countercurrent to the first medium flow 7.
  • the FIGS. 1 and 2 show in this case preferred variants, which provides a three-way valve in the second three-way valve 20 in the drain line 18 and a three-way valve designed as a three-way valve in the first three-way valve 19 in the supply line 17. According to the FIG.
  • FIG. 1 is designed as a switching valve three-way valve 19 controlled such that the inlet of the cooling medium flow 8 is passed through the supply line 17 and the first bypass line 21 a in the rear end 15 of the jacket space 5 and the three-way valve 20 is controlled such that the complete mass flow supplied m 0 the cooling medium flow 8 is passed through the jacket space 5 and discharged through the third bypass line 22a and the drain line 18.
  • FIG. 2 shows with respect to the switching valve designed as a three-way valve 19 no change compared to the circuit of FIG.
  • the Figures 3 and 4 show circuits of erfindungsgemä ⁇ en tube bundle heat exchanger 1, in which the cooling medium flow 8 flows through the tube bundle heat exchanger 1 in cocurrent to the first medium flow 7, ie both medium streams 7, 8 have the same direction within the tube bundle heat exchanger 1.
  • the Figures 3 and 4 show as before with the FIGS. 1 and 2 preferred variants, which in the second three-way valve 20 in the drain line 18, a regulated three-way valve and the first three-way valve 19 in the supply line 17 as a switching valve designed three-way valve provides. Deviating from FIG. 1 is designed as a switching valve three-way valve 19 according to the FIG.
  • FIG. 4 shows with respect to the switching valve designed as a three-way valve 19 no change compared to the circuit of FIG.
  • the first three-way valve 19, ie the three-way valve located in the supply line 17, can be designed as a regulated three-way valve and the second three-way valve 20, ie the three-way valve located in the discharge line 18, can be designed as a three-way valve designed as a reversing valve.
  • FIG. 1 the first three-way valve 19, ie the three-way valve located in the supply line 17, can be designed as a regulated three-way valve and the second three-way valve 20, ie the three-way valve located in the discharge line 18, can be designed as a three-way valve designed as a reversing valve.
  • the three-way valve 19 controls the inflow through the feed line 17 mass flow m 0 of the coolant stream 8 by a partial mass flow m 1 through the first bypass line 21 a the jacket space 5 and a partial mass flow m 2 through the second bypass line 21st b and thus on the jacket space 5 of the tube bundle heat exchanger 1 over and in the front end 16 of the shell space 5 passes.
  • the complete mass flow m 0 then exits from the tube bundle heat exchanger 1 under the appropriate position of the three-way valve 20 designed as a changeover valve through the third bypass line 22 a and the drain line 18.
  • the controlled three-way valve 19 is arranged in the inlet and thus in the cold region of the cooling medium flow 8.
  • a further controlled three-way valve can be used, which would mean that both three-way valves 19, 20 are formed regulated. In such a case, however, it makes sense that one of the two controlled three-way valves 19, 20 takes over the function of a pure change-over valve.
  • FIGS. 1 to 5 are the stub 11, 12 at the rear end 15 of the pressure jacket 6 and the nozzle 13, 14 at the front end 16 of the pressure jacket 6 in the direction of the longitudinal axis L of the tube bundle heat exchanger 1 each gleichholz. It is also possible, the respective stub 11, 12 at the rear end 15 and / or the respective stub 13, 14 at the front end 16 in the direction of the longitudinal axis L of the tube bundle heat exchanger 1 to arrange offset.
  • FIGS. 1 to 5 While at the FIGS. 1 to 5 the nozzle 11, 12 at the rear end 15 and the nozzle 13, 14 are arranged at the front end 16, at least in the schematic representation in each case opposite, ie lie on the circumference of the pressure jacket at 180 ° to each other, shows FIG. 6 a further possibility, in which the nozzles 11, 12 are for example on a plane E, which is perpendicular to the longitudinal axis L of the tube bundle heat exchanger 1, at 45 ° to each other.
  • This angle between the two nozzles can be designed as desired and depends inter alia on the narrowness of the passages between the Edel vomrohren 2 within the jacket space 5 from.
  • Tube bundle heat exchanger heating surface 3 Tube plate, input side 4 Tube plate, output side 5 shell space 6 pressure shroud 7 First medium current 8th Coolant flow 9
  • Pipe inlet chamber 10 Pipe outlet chamber 11 First nozzle at the rear end of the pressure jacket 12 Second connection at the rear end of the pressure jacket 13 First nozzle at the front end of the pressure jacket 14 Second connection at the front end of the pressure jacket 15 Rear end of the pressure jacket 16 Front end of the pressure jacket 17 supply line 18 drain line 19 First three-way valve 20 Second three-way valve 21a First bypass line 21b Second bypass line 22a Third bypass line 22b Fourth bypass line 23 Flow meter 24 Flow meter

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (8)

  1. Échangeur de chaleur à faisceau tubulaire comprenant des tubes de surface chauffante (2) dont les extrémités sont retenues dans des plaques tubulaires (3, 4) et une enveloppe de pression (6) entourant les tubes de surface chauffante (2) et formant un espace d'enveloppe (5), un flux de fluide réfrigérant (8) pouvant être guidé à travers l'espace d'enveloppe (5) pour refroidir un premier flux de fluide (7) guidé à travers les tubes de surface chauffante (2),
    comprenant au moins une chambre d'entrée de tube (9) à partir de laquelle le premier flux de fluide (7) est introduit dans les tubes individuels de surface chauffante (2) et au moins une chambre de sortie de tube (10) dans laquelle le premier flux de fluide (7) guidé à travers les tubes de surface chauffante (2) est collecté et évacué,
    comprenant deux supports (11, 12) pour l'admission et l'évacuation du flux de fluide réfrigérant (8), lesquels sont disposés à l'extrémité arrière (15) de l'enveloppe de pression (6) adjacente à la chambre de sortie de tube (10),
    comprenant deux supports (13, 14) pour l'admission et l'évacuation du flux de fluide réfrigérant (8), lesquels sont disposés à l'extrémité avant (16) de l'enveloppe de pression (6) adjacente à la chambre d'entrée de tube (9),
    comprenant une conduite d'entrée (17) et un premier distributeur à trois voies (19) disposé sur celle-ci, à partir duquel une première conduite de dérivation (21a) est reliée au premier support (11) à l'extrémité arrière (15) de l'enveloppe de pression (6) et une deuxième conduite de dérivation (21b) est reliée au premier support (13) à l'extrémité avant (16) de l'enveloppe de pression (6),
    et comprenant une conduite de sortie (18) et un deuxième distributeur à trois voies (20) disposé sur celle-ci, à partir duquel une troisième conduite de dérivation (22a) est reliée au deuxième support (14) à l'extrémité avant (16) de l'enveloppe de pression (6) et une quatrième conduite de dérivation (22b) est reliée au deuxième support (12) à l'extrémité arrière (15) de l'enveloppe de pression (6),
    l'un des deux distributeurs à trois voies (19, 20) étant réalisé de manière commandable et celui-ci guidant le flux de fluide réfrigérant m0 (8) à travers l'espace d'enveloppe (5) ou, en tant que flux massique partiel régulé m1, m2 du flux de fluide réfrigérant m0 (8), à travers l'espace d'enveloppe (5) et à travers la/les conduite(s) de dérivation (21a, 21b, 22a, 22b) et, au moyen de l'autre distributeur à trois voies (19, 20), le flux de fluide réfrigérant (8) pouvant être guidé dans le même sens ou à contre-courant par rapport au premier flux de fluide (7) à travers l'espace d'enveloppe (5).
  2. Échangeur de chaleur à faisceau tubulaire selon la revendication 1, caractérisé en ce que le distributeur à trois voies (19, 20) réalisé de manière commandable est disposé, par rapport au flux de fluide réfrigérant (8), dans le côté de sortie de l'échangeur de chaleur à faisceau tubulaire (1).
  3. Échangeur de chaleur à faisceau tubulaire selon la revendication 1, caractérisé en ce qu'en plus de l'un des distributeurs à trois voies (19, 20) commandés, l'autre distributeur à trois voies (19, 20) est réalisé sous forme de soupape d'inversion.
  4. Échangeur de chaleur à faisceau tubulaire selon la revendication 3, caractérisé en ce que le distributeur à trois voies réalisé sous forme de soupape d'inversion est disposé, par rapport au flux de fluide réfrigérant (8), dans le côté d'entrée de l'échangeur de chaleur à faisceau tubulaire (1).
  5. Échangeur de chaleur à faisceau tubulaire selon la revendication 1, caractérisé en ce qu'en plus de l'un des distributeurs à trois voies (19, 20) commandés, l'autre distributeur à trois voies (19, 20) est également un distributeur à trois voies commandé.
  6. Échangeur de chaleur à faisceau tubulaire selon la revendication 1, caractérisé en ce qu'un dispositif de mesure de débit (23, 24) est disposé à l'intérieur de la conduite de dérivation (21a, 21b, 22a, 22b).
  7. Échangeur de chaleur à faisceau tubulaire selon la revendication 1, caractérisé en ce que les supports (11, 12) à l'extrémité arrière (15) de l'enveloppe de pression (6) et/ou les supports (13, 14) à l'extrémité avant (16) de l'enveloppe de pression (6) sont à chaque fois au même niveau, vu dans la direction de l'axe longitudinal (L) de l'échangeur de chaleur à faisceau tubulaire (1).
  8. Échangeur de chaleur à faisceau tubulaire selon la revendication 1 ou 7, caractérisé en ce que les supports (11, 12) à l'extrémité arrière (15) de l'enveloppe de pression (6) et/ou les supports (13, 14) à l'extrémité avant (16) de l'enveloppe de pression (6) se situent, par rapport à un plan (E) situé perpendiculairement à l'axe longitudinal (L) de l'échangeur de chaleur à faisceau tubulaire (1), sur ce plan à chaque fois suivant un angle quelconque l'un par rapport à l'autre.
EP09748948.8A 2008-09-23 2009-09-18 Échangeur de chaleur à faisceau tubulaire destiné à la régulation d'une large plage de puissance Active EP2326905B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008048405A DE102008048405B3 (de) 2008-09-23 2008-09-23 Rohrbündel-Wärmetauscher zur Regelung eines breiten Leistungsbereiches
PCT/DE2009/001317 WO2010034292A2 (fr) 2008-09-23 2009-09-18 Échangeur de chaleur à faisceau tubulaire destiné à la régulation d'une large plage de puissance

Publications (2)

Publication Number Publication Date
EP2326905A2 EP2326905A2 (fr) 2011-06-01
EP2326905B1 true EP2326905B1 (fr) 2013-07-17

Family

ID=42035253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09748948.8A Active EP2326905B1 (fr) 2008-09-23 2009-09-18 Échangeur de chaleur à faisceau tubulaire destiné à la régulation d'une large plage de puissance

Country Status (8)

Country Link
US (1) US9170055B2 (fr)
EP (1) EP2326905B1 (fr)
JP (1) JP5528458B2 (fr)
CN (1) CN102150003B (fr)
CA (1) CA2735836C (fr)
DE (1) DE102008048405B3 (fr)
WO (1) WO2010034292A2 (fr)
ZA (1) ZA201102100B (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010048065A1 (de) * 2010-10-12 2012-04-12 Martin GmbH für Umwelt- und Energietechnik Vorrichtung mit einem Wärmetauscher und Verfahren zum Betreiben eines Wärmetauschers einer Dampferzeugungsanlage
US20160054064A1 (en) * 2013-04-10 2016-02-25 Outotec (Finland) Oy Gas slide heat exchanger
FR3010781B1 (fr) * 2013-09-18 2017-11-10 Kp1 Systeme de purge d'echangeur thermique equipant un recuperateur de chaleur de douche
CH708685A2 (de) * 2013-10-14 2015-04-15 Weidmann Plastics Tech Ag Kraftfahrzeug mit einer Klimaanlage.
FR3013823B1 (fr) * 2013-11-28 2018-09-21 F2A - Fabrication Aeraulique Et Acoustique Echangeur air/air a double flux, installation de traitement d'air et methode de nettoyage d'un tel echangeur
DE102014103691A1 (de) * 2014-03-18 2015-09-24 Basf Se Wärmetauscher, Reaktoranordnung umfassend diesen Wärmetauscher und Verfahren zum Temperieren eines Reaktors
CN106090988A (zh) * 2016-08-05 2016-11-09 宁波天净科环保科技有限公司 一种防冻型热管暖风器系统
DE102016013459A1 (de) 2016-11-12 2018-05-17 Linde Aktiengesellschaft Verfahren zur Temperaturänderung eines Fluids mittels eines Rohrbündelwärmetauschers und Rohrbündelwärmetauscher
CN106679467B (zh) * 2017-02-28 2019-04-05 郑州大学 具有外接管箱的管壳式换热器
CN106855367B (zh) * 2017-02-28 2024-01-26 郑州大学 具有分布性出入口的管壳式换热器
CN107560471A (zh) * 2017-10-10 2018-01-09 河北建筑工程学院 一种可调顺逆流方式的高效换热系统
CN107560470A (zh) * 2017-10-10 2018-01-09 河北建筑工程学院 一种可调顺逆流方式高效换热系统的换热方法
DE102018117654A1 (de) * 2018-07-20 2019-10-17 Thyssenkrupp Ag Vorrichtung mit einem Dampfreformer, Verfahren unter Verwendung der Vorrichtung und eine entsprechende Verwendung der Vorrichtung
DE102019120096A1 (de) * 2019-07-25 2021-01-28 Kelvion Machine Cooling Systems Gmbh Rohrbündelwärmetauscher
US20210063092A1 (en) * 2019-08-30 2021-03-04 Trane International Inc. Heat transfer circuit with flow dependent heat exchanger
EP4328519A1 (fr) * 2022-08-25 2024-02-28 ERK Eckrohrkessel GmbH Procédé et dispositif de production d'énergie géothermique et procédé de production d'énergie électrique

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1776089A1 (de) * 1968-09-19 1971-09-16 Siemens Ag Wasserkuehler fuer gasfoermige Medien
US4007774A (en) * 1975-09-23 1977-02-15 Uop Inc. Heat exchange apparatus and method of controlling fouling therein
GB2018967B (en) 1978-03-28 1982-08-18 Osaka Gas Co Ltd Apparatus and process for vaporizing liquefied natural gas
JPS5564697U (fr) * 1978-10-27 1980-05-02
US4220011A (en) * 1978-12-22 1980-09-02 The Trane Company Air cooled centrifugal refrigeration system with water heat recovery
DE2913748C2 (de) * 1979-04-03 1983-09-29 Borsig Gmbh, 1000 Berlin Rohrbündelwärmetauscher zum Kühlen schlackenhaltiger Heißgase der Kohlevergasung
JPS58189478U (ja) * 1982-06-09 1983-12-16 株式会社クボタ 熱交換器
GB2169393B (en) * 1985-01-07 1988-09-01 Phillips Petroleum Co Method for cleaning heat exchangers
JP2726478B2 (ja) * 1989-02-21 1998-03-11 大阪瓦斯株式会社 冷房又は暖房用装置
US5615738A (en) * 1994-06-29 1997-04-01 Cecebe Technologies Inc. Internal bypass valve for a heat exchanger
JPH11142072A (ja) * 1997-11-07 1999-05-28 Mitsui Chem Inc 堅型の熱交換器
JP2002054511A (ja) * 2000-08-14 2002-02-20 Hino Motors Ltd Egrクーラ
EP1548267B1 (fr) * 2002-10-02 2012-04-25 Hino Motors, Ltd. Refroidisseur pour recirculation des gaz d'echappement
US6936112B2 (en) * 2002-11-26 2005-08-30 Refined Technologies, Inc. Heat exchanger cleaning process
CN1796923B (zh) * 2004-12-21 2010-05-26 张吉礼 内置滑动洁净器反冲洗壳管式换热器
CN100351604C (zh) * 2005-03-08 2007-11-28 大连理工大学 智能控制的热交换器
GB0509746D0 (en) * 2005-05-13 2005-06-22 Ashe Morris Ltd Variable plate heat exchangers
JP4253006B2 (ja) * 2006-03-27 2009-04-08 リンナイ株式会社 循環型給湯装置

Also Published As

Publication number Publication date
US20110186275A1 (en) 2011-08-04
CN102150003B (zh) 2012-11-14
CA2735836A1 (fr) 2010-04-01
WO2010034292A3 (fr) 2010-12-02
JP2012503169A (ja) 2012-02-02
WO2010034292A2 (fr) 2010-04-01
EP2326905A2 (fr) 2011-06-01
JP5528458B2 (ja) 2014-06-25
US9170055B2 (en) 2015-10-27
ZA201102100B (en) 2012-06-27
DE102008048405B3 (de) 2010-04-22
CN102150003A (zh) 2011-08-10
CA2735836C (fr) 2015-09-15

Similar Documents

Publication Publication Date Title
EP2326905B1 (fr) Échangeur de chaleur à faisceau tubulaire destiné à la régulation d'une large plage de puissance
EP1939412B1 (fr) Echangeur thermique destiné au refroidissement de gaz de craquage
EP1384502B1 (fr) Mélangeur, échangeur de chaleur
EP2052199B1 (fr) Appareil combiné d'échange de chaleur et de mélange statique avec un liquide
DE2033128C3 (de) Wärmeaustauschaggregat mit Wärmetauschern, bei denen innerhalb eines Außenmantels Rohrreihen durch einen Zwischenmantel umschlossen sind
DE102006035552A1 (de) Wärmetauscher
EP1671779A2 (fr) Refroidissement d'une machine de transformation de matières plastiques
DE102005001952A1 (de) Rohrbündelreaktor zur Durchführung exothermer oder endothermer Gasphasenreaktionen
DE3217836A1 (de) Kuehler, insbesondere fuer brennkraftmaschinen
WO2014146795A1 (fr) Récupérateur à faisceaux de tubes sur un four de frittage, et procédé de transfert de chaleur au moyen d'un four de frittage et d'un récupérateur à faisceaux de tubes
DE102010049020A1 (de) Vorrichtung zum Kühlen von auf einer Förderstrecke geförderten Metallbändern oder -blechen
EP3536763B1 (fr) Système et procédé de refroidissement d'un gaz de craquage issu d'un four de craquage
DE102007054703B4 (de) Wärmetauscher
WO2003093661A1 (fr) Dispositif et procede pour le refroidissement d'un moteur a combustion interne
DE2551195C3 (de) Wärmeaustauscher zum Kühlen von Spaltgasen
DE102012007721B4 (de) Prozessgaskühler mit hebelgesteuerten Prozessgaskühlerklappen
EP1687579B1 (fr) Refroidisseur d'air de suralimentation/d'agent refrigerant
EP1724544A1 (fr) Procédé d'échanger de chaleur et échangeur de chaleur
DE3333735C2 (fr)
EP2912394B1 (fr) Échangeur de chaleur avec plusieures entrées et procédé d'adaption de la surface chauffante de l'échangeur thermique
EP2900401B1 (fr) Rouleau de guidage de barres refroidi, à plusieurs paliers
WO2018086759A1 (fr) Procédé de changement de température d'un fluide au moyen d'un échangeur de chaleur tubulaire et échangeur de chaleur tubulaire
DE10352881A1 (de) Wärmeübertrager, insbesondere Ladeluft-/Kühlmittel-Kühler
DE112017001907T5 (de) Energiewiedergewinnungseinheit für den Fahrzeuggebrauch
DE969923C (de) Anzapfdampf-Speisewasservorwaermer, insbesondere Hochdruckvorwaermer fuer Dampfturbinenanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110303

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009007603

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F28F0027020000

Ipc: F28D0007160000

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 7/16 20060101AFI20130128BHEP

Ipc: F28F 27/02 20060101ALI20130128BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 622462

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009007603

Country of ref document: DE

Effective date: 20130912

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131018

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131028

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

BERE Be: lapsed

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009007603

Country of ref document: DE

Effective date: 20140401

26N No opposition filed

Effective date: 20140422

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130918

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130918

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 622462

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140918

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160204 AND 20160210

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160211 AND 20160217

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ARVOS GMBH, DE

Effective date: 20160426

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: ARVOS GMBH; DE

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: ARVOS TECHNOLOGY LIMITED

Effective date: 20160825

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 15

Ref country code: GB

Payment date: 20230920

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230920

Year of fee payment: 15

Ref country code: FR

Payment date: 20230928

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 15