EP2325453B1 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
EP2325453B1
EP2325453B1 EP10187422A EP10187422A EP2325453B1 EP 2325453 B1 EP2325453 B1 EP 2325453B1 EP 10187422 A EP10187422 A EP 10187422A EP 10187422 A EP10187422 A EP 10187422A EP 2325453 B1 EP2325453 B1 EP 2325453B1
Authority
EP
European Patent Office
Prior art keywords
cooling
slot
coolant
cylinder
cylinder head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10187422A
Other languages
German (de)
French (fr)
Other versions
EP2325453A1 (en
Inventor
Bernd Steiner
Guenther Bartsch
Ingo Lenz
Urban Morawitz
Richard Fritsche
Jeroen Slotman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of EP2325453A1 publication Critical patent/EP2325453A1/en
Application granted granted Critical
Publication of EP2325453B1 publication Critical patent/EP2325453B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/028Cooling cylinders and cylinder heads in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops

Definitions

  • the invention relates to an internal combustion engine having the features of the preamble of claim 1, wherein the internal combustion engine has a coolant circuit which is divided into a cylinder block side coolant region and a cylinder head side coolant region.
  • the cylinder-head-side coolant region may be divided into an outlet-side cooling region and an inlet-side cooling region, wherein a coolant flow in the respective coolant or coolant region is separately controllable.
  • the US 5,558,048 discloses an internal combustion engine having a coolant circuit split into a cylinder block side coolant region and a cylinder head side coolant region, the cylinder block having at least one cylinder block land in which a cooling slot is disposed, with a spout disposed in the cylinder head that communicates with the cylinder head side coolant region communicates.
  • the cooling slot is circular.
  • JP 5 141307 A discloses a cooling slot.
  • the EP 1 375 857 A discloses a cooling device for an internal combustion engine.
  • the cooling device has a plurality of cooling cells in a cylinder head, which are separated from each other and can be traversed by a cooling liquid.
  • the cooling device further comprises at least first and second means for controlling the flow rate, the means being connected to at least one first cooling cell of the cylinder head and to at least one second cooling cell of the cylinder head.
  • the first and second means are capable of controlling the amount of cooling liquid flowing through each first cooling cell and every second cooling cell, respectively.
  • the DE 10 2005 033 338 A1 relates to an internal combustion engine having a cylinder housing with a plurality of juxtaposed cylinders and a cylinder head.
  • the cylinder head closes off the cylinder housing on a cover surface, a cylinder head gasket being arranged between these two components.
  • a first main liquid space is arranged, which is the cooling of the cylinder and the Coolant transport is used.
  • a first cooling liquid gap is arranged at or near the top surface of the cylinder housing as a flow connection, which extends in a land area between two cylinders.
  • the cooling in the region of the cylinder land and the cylinder head gasket should be substantially improved.
  • the second cooling liquid gap is in flow communication with a main liquid space in the cylinder head.
  • the EP 0 197 365 A2 discloses a device for the technical production of a cooling device of webs between adjacent, extremely closely cogged cylinders of a cylinder block of an internal combustion engine, the cylinder walls are surrounded on both longitudinal sides and end faces of the cylinder block of a cooling water jacket, with a core for forming the cooling water jacket.
  • the EP 1 217 198 B1 is concerned with a cooling system for cooling a cylinder web, wherein at least one water channel extends exclusively on one side of a vertical axis through the center of the cylinder web.
  • the EP 1 698 770 A1 deals with the split-cooling system, not only cylinder block and cylinder head are controlled separately by coolant technology, but also the cylinder head is divided into separate cooling areas. This is advantageous in that a well controllable and optimized heat balance, in particular of the cylinder head, is achieved, the warm-up behavior of the internal combustion engine being decisively improved.
  • the invention has for its object to provide an internal combustion engine of the type mentioned above, the cooling or warm-up behavior is further improved by simple means.
  • a cooling slot is arranged, wherein in the cylinder head a crossing is arranged and, wherein in the cylinder head an outlet is arranged, which is in communication with the cylinder head side coolant area, wherein the block water jacket on the passage with the Cooling slot is in communication, which is in communication with the outlet and, wherein coolant from the block water jacket over the passage into the cooling slot and from here via the outlet in the cylinder head side coolant region is feasible.
  • the cylinder-head-side coolant area is divided into an outlet-side cooling area and an inlet-side cooling area, wherein coolant from the inlet-side cooling area can be guided into an outlet housing, in which the outlet-side cooling area opens.
  • the invention is based on the finding that the split-colling system can be improved to the extent that the cooling system is not only divided into a cylinder block area and a cylinder head area, but the Cylinder head is further divided into an outlet-side cooling region and an inlet-side cooling region.
  • skilful cooling strategy so different areas of the engine, especially in its warm-up phase can be controlled by controls. For example, a coolant flow in a first phase has a magnitude of zero, wherein in a second phase, the outlet side of the cylinder head is cooled. Only in a third phase of the cylinder block is cooled. This has proved to be practical in that the internal combustion engine can be led to the required operating temperature as quickly as possible.
  • the coolant flow through the cylinder block is controlled by means of a block thermostat. But flows z. B. during the warm-up phase, no coolant through the cylinder block, because the block thermostat is closed, the resulting heat, such as frictional heat, which is not dissipated, a warming example of lubricant, which is indeed desirable to improve the warm-up properties.
  • the coolant can be warmed up in such a way that vapor or air bubbles form, which collect in the upper area of the cylinder block, and displace the coolant actually present there. Between the liners of the cylinder, the so-called cylinder web or cylinder block web is arranged, which separates adjacent liners from each other.
  • the cylinder-head-side coolant region preferably its inlet-side cooling region is coupled to the block water jacket; because the block water jacket is about the transition in the cylinder head, the cooling slot in the cylinder web and the crossing seen in cross-section opposite arranged outlet in Cylinder head indirectly in connection with the cylinder-head side coolant region, or preferably with the inlet-side cooling region, so that a derivation of the vapor bubbles in the cylinder head can be reached, even if the block thermostat is closed. The resulting vapor bubbles are thus transported into the cylinder head, in particular in the inlet-side cooling region.
  • Another advantage of the invention lies in the fact that when the block thermostat is open a significantly improved cooling of the cylinder web is achievable.
  • the coolant follows the previously described path from the block water jacket, via the crossing, the cooling slot and the outlet in the cylinder-head-side coolant region or its inlet-side cooling region.
  • the coolant cools the cylinder head or preferably the inlet side of the cylinder head, and enters an outlet housing without having previously in contact with the coolant jacket of the outlet-side cooling region.
  • the coolant for cooling the outlet side flows through z. B. the upper and lower shell of the outlet side cooling region and then also enters the outlet housing, in which mixes the coolant flow from the inlet-side cooling region and from the outlet-side cooling region.
  • the block thermostat controls the coolant flow through the cylinder block, wherein the coolant flow is divided before the block thermostat at least in a partial flow, which enters the outlet side cooling region of the cylinder head side coolant region.
  • the block thermostat is integrated with its housing in the cylinder block, but can also be designed as a separate component.
  • a coolant pump output is advantageously connected directly to the cylinder block.
  • the outlet side or the outlet-side cooling area is connected directly to the pump outlet.
  • a turbocharger can also be connected directly to the coolant pump.
  • the cooling slot is not directly, but indirectly connected via the passage with the block water jacket, the passage is carried out in a preferred embodiment quasi slot-like.
  • a cylinder head gasket is arranged, which advantageously has in the region of the crossing inlet and outlet openings, wherein the inlet opening is associated with the block water jacket or a corresponding mouth opening of the block water jacket, and the outlet opening of the cooling slot.
  • the cylinder head gasket is provided with an opening corresponding to the passage.
  • the cross-section arranged opposite to the passage arranged outlet associated with a corresponding opening in the cylinder head gasket.
  • the coolant enters the transition from the block water jacket from bottom to top through the cylinder head gasket, flows along the passage in the cylinder head in the direction of the cooling slot, and flows through the cylinder head gasket from top to bottom into the cooling slot.
  • the coolant preferably flows from the passage in cross section along the cylinder block web toward the outlet, and there again from bottom to top through the cylinder head gasket into the outlet, ie into the cylinder head or into the cylinder head side coolant area.
  • the block-side coolant region comprises web cooling channels, which are introduced into the cylinder block web, and which are preferably in communication with the block water jacket, wherein the web cooling channels are designed to taper in the direction of the cylinder head, so that balconies on the cylinder block web are formed, which are oriented towards screw pipes.
  • the web cooling channels have a first section and at least one second section, the second section, with respect to the first section, continuously tapering in its cross section except for a remaining cross section, the second section preferably tapering eccentrically.
  • the respective web cooling channel with an inner side, which is oriented in cross-section to the central axis of the cylinder block web, running in its second portion of this running away oriented, with the opposite side of the web cooling channel in both the first section and in the second section preferred runs parallel to the central axis of the web cooling channel.
  • the web cooling channels can be designed in their second section so that the balconies are locally associated with screw pipes.
  • Another advantage of the invention is to be seen in the advantage that the coolant can be brought as close as possible to the critical thermal web portion, while in an upper region, or seen in cross-section laterally of the cylinder block web, the balconies are formed.
  • the cooling slot seen in cross-section circular section each seen in cross section to the left and right of the quasi-circular cooling slot a security area or the balconies are formed or remain.
  • optimum cooling is thus achieved both in the upper region of the cooling slot and in the lower region of the cooling slot (near cooling water).
  • the cooling slot is arranged in the cylinder block web, which is covered opposite to its slot bottom of the cylinder head gasket. It is within the meaning of the invention to pour in the transition, the cooling slot, and / or the outlet either with production of the respective components, or to introduce them mechanically separately.
  • the cooling slot can be achieved by simple mechanical milling z. B. generated by means of a disc milling cutter. It is also conceivable to reduce the radius of the side milling cutter and to carry out a horizontal movement along the planned cooling slot after vertical retraction. It is also possible to use a suitable pin milling cutter instead of the side milling cutter.
  • the cooling slot thus has a slot opening with slot walls and the slot bottom.
  • the slot opening is covered by the cylinder head gasket, wherein preferably each adapted to the transition and the outlet openings may be provided in the cylinder head gasket.
  • the opposing slot walls are spaced apart from each other with the slot width and pass into the slot bottom in each case.
  • the bottom of the slot is rounded with a radius which is smaller than the slot width.
  • the radius has an amount which corresponds to half the slot width.
  • the radius has an amount which corresponds to up to a quarter of the slot width.
  • the cooling slot is in this case carried out with a slot tool, which has a "tip" with a correspondingly large rounding.
  • the slot bottom instead of the circular configuration parabolic.
  • the cooling slot is designed in a transverse direction of the internal combustion engine analogous to the embodiment in the longitudinal direction described above. This means that as large a radius as possible is selected for the geometry of the cooling slot, which is limited only by the slot width and the slot depth.
  • FIG. 1 shows an internal combustion engine 1, which has a coolant circuit 2.
  • the coolant circuit 2 is divided into a cylinder block-side coolant region 3 or cylinder block water jacket and into a cylinder head-side coolant region 4 or headwater jacket, so that a split-cooling system is formed.
  • the cylinder-head-side coolant area 4 is further divided by way of example into an outlet-side cooling area 6 and an inlet-side cooling area 7, which of course is not intended to be limiting, wherein a coolant flow in the respective cooling or coolant area 2, 3, 4, 6, 7 is separately controllable ,
  • the in FIG. 1 Coolant circuit 2 shown by way of example will be described in more detail below.
  • FIG. 2 shows, in at least one cylinder block web 8 and in a cylinder web 8 of the cylinder block 45, a cooling slot 9 is arranged, wherein in the cylinder head 44 a passage 11 is arranged. Further, an outlet 12 is arranged in the cylinder head 44, which is in communication with the cylinder-head-side coolant region 4 or preferably with the inlet-side cooling region 7.
  • the block water jacket, or the cylinder block-side coolant area 3 is indirectly connected via the passage 11 with the cooling slot 9, wherein the cooling slot 9 is in communication with the outlet 12.
  • the outlet 12 is arranged opposite to the passage 11 in the cross section shown.
  • the coolant is thus from the block water jacket or the cylinder block side coolant region 3 via the passage 11 in the cooling slot 9, along the cylinder block web 8 toward the outlet 12, and from here via the outlet 12 in the cylinder head side coolant region 4 and in the inlet side cooling region 7 feasible.
  • the block water jacket is coupled via the transition 11 and the cooling slot 9 with the cylinder head side coolant region 4 and the inlet-side cooling region 7, or indirectly connected.
  • the block water jacket is connected to a web cooling channel 57 in connection, the advantageous embodiment will be described in more detail below.
  • the coolant circuit 2 according to FIG. 1 a coolant pump 13.
  • a block thermostat 14 is integrated, wherein before the block thermostat 14, for example, two branches 16,17 are arranged.
  • the block thermostat 14 is z. B. executed as a wax element, which allows the coolant flow to pass only in one direction, so that a backflow of the coolant is avoided in the closed or open block thermostat in the direction of the coolant pump 13.
  • One of the branches 16 is directly connected to a turbocharger 18, wherein an output connection 19 of the turbocharger 18 opens into a connecting line 21, which opens into a surge tank 22.
  • the connecting line 21 is shown in dotted, and is based on a thermostat 22.
  • the output connection 19 of the turbocharger 18 can also be connected directly to a coolant pump inlet 23 or a coolant return 24.
  • the other branch 17 is connected to the outlet side cooling portion 6 of the cylinder head.
  • the block thermostat 14 is meaningfully required for the split-cooling system.
  • the coolant which passes through this block thermostat 14 flows through the cylinder block-side cooling region 3, enters the cylinder head, in particular the inlet-side cooling region 7, flows through the inlet-side cooling region 7, cools the inlet side 27 of the internal combustion engine 1 and passes without previously having contact with the coolant flowing in the outlet-side cooling region 6, into an outlet housing 28 (arrow 29).
  • the coolant for cooling the outlet side 31 of the cylinder head flows through the outlet-side cooling region 6 and also enters the outlet housing 28 (arrow 32). In the outlet housing 28, both coolant streams are mixed in front of the thermostat 22.
  • a return of the coolant can then take place, for example via a vent valve 34, an EGR cooler 36, a cabin heater 37, an oil heat exchanger 38 and main cooler 39 back to the coolant pump 13.
  • this return should only be exemplary, with a different order or bypass lines as in FIG. 1 shown are conceivable.
  • the thermostat 22 may also be connected, as shown, to the main radiator 39, which is connected to the coolant pump inlet 23 via a connecting line 41. It is also possible to connect the thermostat 22 via a bypass 42 with the coolant pump inlet 23. As shown, the oil heat exchanger 38 also opens into the coolant pump inlet 23. Dotted is a connection 43 from the main cooler 39 to the expansion tank 22.
  • the thermostat 22 can be electrically controlled, or z. B. be executed as a map thermostat.
  • the housing of the block thermostat 14 is integrated in the cylinder block.
  • the block thermostat 14 can also be designed as a separate component.
  • the coolant pump outlet is connected directly to the cylinder block or to the cylinder block-side coolant region 3.
  • the line for supplying the exhaust side 31 of the cylinder head and also the turbocharger 18 (branch 16, 17) is connected directly to thedemittepumpenaustritt.
  • outlet housing 28 is exemplified as a separate component, but may still have an EGR valve with appropriate lines to supply the EGR cooler.
  • the block thermostat 14 can remain closed longer, since possibly forming vapor or air bubbles from the cylinder block or its upper portion via the previously described path crossing 11, cooling slot 9 and outlet 12 in the cylinder head or can be derived in the inlet-side cooling region 7.
  • a warm-up behavior of the internal combustion engine is decidedly improved because the block thermostat 14 must be opened only when an exchange of the coolant in the cylinder block side coolant area 3 or in the water jacket is actually required.
  • cooling slot 9 is not directly, but indirectly connected via the passage 11 with the cylinder block side coolant area 3.
  • the passage 11 is quasi slot-like executed.
  • a cylinder head gasket 46 is arranged, which advantageously has an opening 47 adapted to the passage 11, which, as shown, has a corresponding longitudinal extent corresponding to the slot-like configuration ( FIG. 3 ).
  • a corresponding to the outlet 12 running opening 48 opposite to the opening 47 in the cylinder head gasket 46 is provided.
  • the cooling slot 9 is advantageously introduced into the cylinder block web 8 in such a way that it has no direct connection to the block water jacket or the cylinder block side coolant region 3 in the cylinder block 45.
  • a safety area 49 or balcony 50 is advantageously formed in the transverse direction of the cooling slot 9 on both sides of the cooling slot 9. This can be performed optimally each casting technology, and should, if the cooling slot 9 is mechanically introduced, not be injured.
  • the coolant guide thus takes place from the block water jacket or from the cylinder block side coolant region 3 from bottom to top through the cylinder head gasket 46 through the opening 47 in the passage 11.
  • the coolant flows along the transition 11 and from there through the opening 47 from top to bottom through the Cylinder head gasket 46 in the cooling slot 11, along this towards the outlet 12 and there again from bottom to top through the opening 48 in the cylinder head gasket 46 in the outlet 12, which is in communication with the cylinder head side cooling region 4 and with the inlet side cooling region 7 , As in FIG. 2
  • both cooling slot 9/11 crossing
  • FIG. 2 can be seen further, in each case on both sides of the cylinder block web 8, based on its central axis X, a web cooling channel 57 is arranged, which, as described above with the block water jacket in combination.
  • the respective web cooling channel 57 has two sections 58 and 59 in the illustrated drawing plane.
  • the first section 58 extends in the illustrated plane of the drawing from bottom to top and merges into the second section 59, which is oriented in the direction of the cylinder head.
  • the second section 59 is preferably designed to be eccentrically tapered in the illustrated embodiment, so that in each case the balconies 50 are formed on both sides of the central axis X.
  • the second portion 59 of the right in the plane of the web cooling channel 57 is guided so that it opens into the passage 11 (through the seal opening 47).
  • the opposite second section 59 of the left in the plane of the web web cooling channel 57 is preferably guided in the direction of the cylinder head gasket 46, or covered by this.
  • the cooling slot 9 can be cast in the manufacture of the cylinder block 45 with. But it is also possible a mechanical introduction, as already indicated above. In the mechanical introduction of the cooling slot 9, a side milling cutter can be used, so that the cooling slot 9 is generated by simply vertical retraction. It is also conceivable, the radius of the To reduce the side milling cutter, and perform a horizontal movement along the planned cooling slot 9 after vertical retraction. Of course, a suitable pin milling cutter can be used instead of the disc milling cutter.
  • the cooling slot 9 is seen in cross-section preferably designed circular section.
  • an optimal cooling of the cylinder block web 8 area of the cooling slot 9 is achieved with the illustrated embodiment.
  • pulling in the lower area of the material requirement of the cylinder block 45 is additionally reduced, which at the same weight and cost are reduced.
  • screw pipes 51 are provided in the cylinder head 44 and in the cylinder block 45 screw pipes 51 are provided. It is possible to design the web cooling channels 57 so that the balconies 50 have local contact with the screw pipes 51.
  • the cooling slot 9 is off FIG. 4 as a detail in a longitudinal section, of course not shown to scale.
  • the cooling slot 9 has a slot opening 52 with slot walls 53 and a slot bottom 54. Opposite the slot bottom 54 of the cooling slot 9 is covered by the cylinder head gasket 46, wherein in the cylinder head gasket 46 preferably the openings 47 and 48 are arranged.
  • the opposing slot walls 53 are spaced apart from each other with the slot width 56 and pass into the slot base 54 in each case.
  • the slot base 54 is made rounded with a radius whose magnitude is smaller than the slot width 56.
  • the radius has an amount which corresponds to half the slot width 56.
  • the radius has an amount which corresponds to up to a quarter of the slot width 56.
  • the cooling slot 9 is in this case carried out with a slot tool, which has a "tip" with a correspondingly large rounding.
  • the cooling slot 9 is in a cross section of the internal combustion engine ( FIG. 2 ) executed analogously to the embodiment in the longitudinal section described above. That means, that for the geometry of the cooling slot 9 as large a radius as possible is selected, which is limited only by the slot width 56 and the slot depth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft einen Verbrennungsmotor, mit den Merkmalen des Oberbegriffs des Anspruchs 1, wobei der Verbrennungsmotor einen Kühlmittelkreislauf aufweist, der in einen zylinderblockseitigen Kühlmittelbereich und in einen zylinderkopfseitigen Kühlmittelbereich aufgeteilt ist. Der zylinderkopfseitige Kühlmittelbereich kann in einen auslaßseitigen Kühlbereich und in einen einlaßseitigen Kühlbereich aufgeteilt sein, wobei eine Kühlmittelströmung in dem jeweiligen Kühl- bzw. Kühlmittelbereich separat steuerbar ist.The invention relates to an internal combustion engine having the features of the preamble of claim 1, wherein the internal combustion engine has a coolant circuit which is divided into a cylinder block side coolant region and a cylinder head side coolant region. The cylinder-head-side coolant region may be divided into an outlet-side cooling region and an inlet-side cooling region, wherein a coolant flow in the respective coolant or coolant region is separately controllable.

Die US 5,558,048 offenbart einen Verbrennungsmotor, der einen Kühlmittelkreislauf aufweist, der in einen zylinderblockseitigen Kühlmittelbereich und in einen zylinderkopfseitigen Kühlmittelbereich aufgeteilt ist, wobei der Zylinderblock zumindest einen Zylinderblocksteg aufweist, in dem ein Kühlschlitz angeordnet ist, wobei im Zylinderkopf ein Auslauf angeordnet ist, der mit dem zylinderkopfseitigen Kühlmittelbereich in Verbindung steht. Der Kühlschlitz ist zirkular gestaltet. Auch die Zusammenfassung der JP 5 141307 A offenbart einen Kühlschlitz.The US 5,558,048 discloses an internal combustion engine having a coolant circuit split into a cylinder block side coolant region and a cylinder head side coolant region, the cylinder block having at least one cylinder block land in which a cooling slot is disposed, with a spout disposed in the cylinder head that communicates with the cylinder head side coolant region communicates. The cooling slot is circular. Also the summary of JP 5 141307 A discloses a cooling slot.

Die EP 1 375 857 A offenbart eine Kühlvorrichtung für einen Verbrennungsmotor. Die Kühlvorrichtung weist mehrere Kühlzellen in einem Zylinderkopf auf, die voneinander getrennt sind und von einer Kühlflüssigkeit durchflossen werden können. Die Kühlvorrichtung umfaßt weiter mindestens erste und zweite Mittel zur Regelung der Durchflußmenge, wobei die Mittel an mindestens eine erste Kühlzelle des Zylinderkopfes und an mindestens eine zweite Kühlzelle des Zylinderkopfes angeschlossen sind. Die ersten und zweiten Mittel sind in der Lage, die Menge an Kühlflüssigkeit zu regeln, die jeweils durch jede erste Kühlzelle und durch jede zweite Kühlzelle fließt.The EP 1 375 857 A discloses a cooling device for an internal combustion engine. The cooling device has a plurality of cooling cells in a cylinder head, which are separated from each other and can be traversed by a cooling liquid. The cooling device further comprises at least first and second means for controlling the flow rate, the means being connected to at least one first cooling cell of the cylinder head and to at least one second cooling cell of the cylinder head. The first and second means are capable of controlling the amount of cooling liquid flowing through each first cooling cell and every second cooling cell, respectively.

Die DE 10 2005 033 338 A1 betrifft eine Brennkraftmaschine, die ein Zylindergehäuse mit mehreren nebeneinander angeordneten Zylindern und einen Zylinderkopf aufweist. Der Zylinderkopf schließt das Zylindergehäuse an einer Deckfläche ab, wobei zwischen diesen beiden Bauteilen eine Zylinderkopfdichtung angeordnet ist. Jeweils rechts und links der Zylinderreihe ist ein erster Hauptflüssigkeitsraum angeordnet, welcher der Kühlung der Zylinder und dem Kühlmitteltransport dient. Zwischen den beiden Seiten des ersten Hauptflüssigkeitsraumes ist an oder nahe der Deckfläche des Zylindergehäuses als Strömungsverbindung ein erster Kühlflüssigkeitszwischenraum angeordnet, der in einem Stegbereich zwischen zwei Zylindern verläuft. Durch einen zweiten Kühlflüssigkeitszwischenraum oberhalb der Zylinderkopfdichtung im Zylinderkopf, der korrespondierend zum ersten Kühlflüssigkeitszwischenraum ausgeführt und über mindestens eine Öffnung mit diesem verbunden ist, soll die Kühlung im Bereich des Zylindersteges und der Zylinderkopfdichtung wesentlich verbessert werden. Hierbei steht der zweite Kühlflüssigkeitszwischenraum mit einem Hauptflüssigkeitsraum im Zylinderkopf in Strömungsverbindung.The DE 10 2005 033 338 A1 relates to an internal combustion engine having a cylinder housing with a plurality of juxtaposed cylinders and a cylinder head. The cylinder head closes off the cylinder housing on a cover surface, a cylinder head gasket being arranged between these two components. In each case, right and left of the row of cylinders, a first main liquid space is arranged, which is the cooling of the cylinder and the Coolant transport is used. Between the two sides of the first main liquid space a first cooling liquid gap is arranged at or near the top surface of the cylinder housing as a flow connection, which extends in a land area between two cylinders. By a second cooling liquid gap above the cylinder head gasket in the cylinder head, which is executed corresponding to the first cooling liquid gap and connected via at least one opening with this, the cooling in the region of the cylinder land and the cylinder head gasket should be substantially improved. Here, the second cooling liquid gap is in flow communication with a main liquid space in the cylinder head.

Die EP 0 197 365 A2 offenbart eine Vorrichtung zur gießtechnischen Herstellung einer Kühleinrichtung von Stegen zwischen benachbarten, extrem engständig zusammengegossenen Zylindern eines Zylinderblocks einer Brennkraftmaschine, deren Zylinderwände auf beiden Längsseiten und Stirnseiten des Zylinderblocks von einem Kühlwassermantel umgeben sind, mit einem Kern zur Bildung des Kühlwassermantels. Es sind separate Kerne zur Bildung von Kühlwasserkanälen in den Stegen vorgesehen, die in Höhe des Zylinderbrennraumes die beiden gegenüber liegenden Längsseiten des Mantelkernes überbrücken und entweder in diesen beidendig eingepaßt sind oder in einem oberen Sohlenkern fixiert sind.The EP 0 197 365 A2 discloses a device for the technical production of a cooling device of webs between adjacent, extremely closely cogged cylinders of a cylinder block of an internal combustion engine, the cylinder walls are surrounded on both longitudinal sides and end faces of the cylinder block of a cooling water jacket, with a core for forming the cooling water jacket. There are separate cores for the formation of cooling water channels provided in the webs, which bridge the height of the cylinder combustion chamber, the two opposite longitudinal sides of the sheath core and are either fitted at both ends or fixed in an upper sole core.

Die EP 1 217 198 B1 befaßt sich mit einem Kühlsystem für die Kühlung eines Zylindersteges, bei dem sich mindestens ein Wasserkanal ausschließlich auf einer Seite einer vertikalen Achse durch das Zentrum des Zylindersteges erstreckt.The EP 1 217 198 B1 is concerned with a cooling system for cooling a cylinder web, wherein at least one water channel extends exclusively on one side of a vertical axis through the center of the cylinder web.

Bekannt ist, den Motorblock und den Zylinderkopf des Verbrennungsmotors jeweils getrennt voneinander mit einem Kühlmittel eines Kühlmittelkreislaufs durchströmen zu lassen. Auf diese Weise können der Zylinderkopf, der thermisch vor allem durch die Brennraum- und Kanalwände mit der Verbrennungsluft gekoppelt ist, und der Motorblock, der thermisch vor allem mit den Reibstellen gekoppelt ist, unterschiedlich gekühlt werden. Durch ein so genanntes "Split-Cooling-System" (getrennter Kühlmittelkreislauf) soll erreicht werden, daß in der Warmlaufphase des Verbrennungsmotors der Zylinderkopf gekühlt wird, wobei der Motorblock zunächst noch nicht gekühlt werden soll, so daß der Motorblock schneller auf die erforderliche Betriebstemperatur geführt werden kann.It is known to allow the engine block and the cylinder head of the internal combustion engine to flow separately from each other with a coolant of a coolant circuit. In this way, the cylinder head, which is thermally coupled primarily by the combustion chamber and channel walls with the combustion air, and the engine block, which is thermally coupled above all with the friction points, can be cooled differently. By a so-called "split-cooling system" (separate coolant circuit) to be achieved that in the warm-up phase of the engine, the cylinder head is cooled, the engine block first not yet to be cooled, so that the engine block can be performed faster to the required operating temperature.

Die EP 1 698 770 A1 befaßt sich mit dem Split-Cooling-System, wobei nicht nur Zylinderblock und Zylinderkopf kühlmitteltechnisch getrennt ansteuerbar sind, sondern zusätzlich der Zylinderkopf in getrennte Kühlbereiche unterteilt ist. Dies ist dahingehend vorteilhaft, als ein gut regelbarer und optimierter Wärmehaushalt, insbesondere des Zylinderkopfes, erreicht wird, wobei das Warmlaufverhalten des Verbrennungsmotors entschieden verbessert wird.The EP 1 698 770 A1 deals with the split-cooling system, not only cylinder block and cylinder head are controlled separately by coolant technology, but also the cylinder head is divided into separate cooling areas. This is advantageous in that a well controllable and optimized heat balance, in particular of the cylinder head, is achieved, the warm-up behavior of the internal combustion engine being decisively improved.

Der Erfindung liegt die Aufgabe zugrunde, einen Verbrennungsmotor der Eingangs genannten Art zur Verfügung zu stellen, dessen Kühlung bzw. Warmlaufverhalten mit einfachen Mitteln weiter verbessert wird.The invention has for its object to provide an internal combustion engine of the type mentioned above, the cooling or warm-up behavior is further improved by simple means.

Erfindungsgemäß wird die Aufgabe gelöst durch einen Verbrennungsmotor mit den Merkmalen des Anspruchs 1.According to the invention the object is achieved by an internal combustion engine having the features of claim 1.

Günstig ist, wenn in dem zumindest einen Zylinderblocksteg des Zylinderblocks ein Kühlschlitz angeordnet ist, wobei im Zylinderkopf ein Übertritt angeordnet ist und, wobei im Zylinderkopf ein Auslauf angeordnet ist, der mit dem zylinderkopfseitigen Kühlmittelbereich in Verbindung steht, wobei der Blockwassermantel über den Übertritt mit dem Kühlschlitz in Verbindung steht, der mit dem Auslauf in Verbindung steht und, wobei Kühlmittel aus dem Blockwassermantel über den Übertritt in den Kühlschlitz und von hier über den Auslauf in den zylinderkopfseitigen Kühlmittelbereich führbar ist.It is advantageous if in the at least one cylinder block web of the cylinder block, a cooling slot is arranged, wherein in the cylinder head a crossing is arranged and, wherein in the cylinder head an outlet is arranged, which is in communication with the cylinder head side coolant area, wherein the block water jacket on the passage with the Cooling slot is in communication, which is in communication with the outlet and, wherein coolant from the block water jacket over the passage into the cooling slot and from here via the outlet in the cylinder head side coolant region is feasible.

In günstiger Ausgestaltung kann vorgesehen sein, dass der zylinderkopfseitige Kühlmittelbereich in einen auslaßseitigen Kühlbereich und in einen einlaßseitigen Kühlbereich aufgeteilt ist, wobei Kühlmittel aus dem einlaßseitigen Kühlbereich in ein Auslaßgehäuse führbar ist, in dem der auslaßseitige Kühlbereich mündet.In a favorable embodiment, it can be provided that the cylinder-head-side coolant area is divided into an outlet-side cooling area and an inlet-side cooling area, wherein coolant from the inlet-side cooling area can be guided into an outlet housing, in which the outlet-side cooling area opens.

Der Erfindung liegt die Erkenntnis zugrunde, dass das Split-Colling-System dahingehend verbessert werden kann, als das Kühlsystem nicht nur in einen Zylinderblockbereich und einen Zylinderkopfbereich aufgeteilt wird, sondern der Zylinderkopf zudem in einen auslaßseitigen Kühlbereich und einen einlaßseitigen Kühlbereich unterteilt wird. Mittels geschickter Kühlstrategie können so unterschiedliche Bereiche des Verbrennungsmotors, insbesondere in seiner Warmlaufphase über Steuerelemente angesteuert werden. Beispielsweise weist eine Kühlmittelströmung in einer ersten Phase einen Betrag von null auf, wobei in einer zweiten Phase die Auslaßseite des Zylinderkopfes gekühlt wird. Erst in einer dritten Phase wird der Zylinderblock gekühlt. Dies hat sich dahingehend als praktisch erwiesen, als der Verbrennungsmotor schnellstmöglich auf die erforderliche Betriebstemperatur geführt werden kann.The invention is based on the finding that the split-colling system can be improved to the extent that the cooling system is not only divided into a cylinder block area and a cylinder head area, but the Cylinder head is further divided into an outlet-side cooling region and an inlet-side cooling region. Using skilful cooling strategy so different areas of the engine, especially in its warm-up phase can be controlled by controls. For example, a coolant flow in a first phase has a magnitude of zero, wherein in a second phase, the outlet side of the cylinder head is cooled. Only in a third phase of the cylinder block is cooled. This has proved to be practical in that the internal combustion engine can be led to the required operating temperature as quickly as possible.

Üblicherweise wird der Kühlmittelstrom durch den Zylinderblock dabei mittels eines Blockthermostaten gesteuert. Strömt aber z. B. während der Warmlaufphase kein Kühlmittel durch den Zylinderblock, weil der Blockthermostat geschlossen ist, bewirkt die entstehende Wärme, beispielsweise Reibungswärme, welche nicht abgeführt wird, eine Aufwärmung beispielsweise von Schmiermittel, was ja durchaus zur Verbesserung der Warmlaufeigenschaften gewünscht ist. Allerdings kann das Kühlmittel dabei so aufgewärmt werden, dass Dampf- bzw. Luftblasen entstehen, welche sich im oberen Bereich des Zylinderblocks sammeln, und das dort eigentlich vorhandene Kühlmittel verdrängen. Zwischen den Laufbüchsen der Zylinder ist der so genannte Zylindersteg bzw. Zylinderblocksteg angeordnet, welcher benachbarte Laufbüchsen von einander trennt. Zur besseren Kühlung ist dieser mit einer Bohrung oder einem Schlitz versehen, wobei der Schlitz direkt mit dem Blockwassermantel verbunden ist. Die Dampfblasen verdrängen das Kühlmittel nun gerade in dieser Kühlvorrichtung innerhalb des Steges. Damit können Temperatur bedingte Schäden entstehen, so dass das Blockthermostat geöffnet werden muß, um ein Verdrängen des Kühlmittels im oberen Bereich durch Austausch des Kühlmittels zu vermeiden. Mit der erfindungsgemäßen Lösung dagegen ist es möglich, den Blockthermostat, insbesondere in der Warmlaufphase des Verbrennungsmotors länger geschlossen zu halten, da die entstehenden Dampfblasen aus dem oberen Bereich des Zylinderblocks abgeleitet werden können. Dies wird vorteilhaft dadurch erreicht, dass der zylinderkopfseitige Kühlmittelbereich, bevorzugt dessen einlaßseitiger Kühlbereich mit dem Blockwassermantel gekoppelt ist; denn der Blockwassermantel steht über den Übertritt im Zylinderkopf, den Kühlschlitz in Zylindersteg und den zum Übertritt im Querschnitt gesehen gegenüberliegend angeordneten Auslauf im Zylinderkopf indirekt in Verbindung mit dem zylinderkopfseitigen Kühlmittelbereich, bzw. bevorzugt mit dessen einlaßseitigen Kühlbereich, so dass ein Ableiten der Dampfblasen in den Zylinderkopf erreichbar ist, auch wenn der Blockthermostat geschlossen ist. Die entstehenden Dampfblasen werden also in den Zylinderkopf, insbesondere in den einlaßseitigen Kühlbereich transportiert.Usually, the coolant flow through the cylinder block is controlled by means of a block thermostat. But flows z. B. during the warm-up phase, no coolant through the cylinder block, because the block thermostat is closed, the resulting heat, such as frictional heat, which is not dissipated, a warming example of lubricant, which is indeed desirable to improve the warm-up properties. However, the coolant can be warmed up in such a way that vapor or air bubbles form, which collect in the upper area of the cylinder block, and displace the coolant actually present there. Between the liners of the cylinder, the so-called cylinder web or cylinder block web is arranged, which separates adjacent liners from each other. For better cooling this is provided with a hole or a slot, wherein the slot is connected directly to the block water jacket. The vapor bubbles displace the coolant now just in this cooler within the web. This can cause temperature-related damage, so that the block thermostat must be opened to prevent displacement of the coolant in the upper area by replacing the coolant. With the solution according to the invention, however, it is possible to keep the block thermostat, especially in the warm-up phase of the internal combustion engine longer closed because the resulting vapor bubbles can be derived from the upper region of the cylinder block. This is advantageously achieved in that the cylinder-head-side coolant region, preferably its inlet-side cooling region is coupled to the block water jacket; because the block water jacket is about the transition in the cylinder head, the cooling slot in the cylinder web and the crossing seen in cross-section opposite arranged outlet in Cylinder head indirectly in connection with the cylinder-head side coolant region, or preferably with the inlet-side cooling region, so that a derivation of the vapor bubbles in the cylinder head can be reached, even if the block thermostat is closed. The resulting vapor bubbles are thus transported into the cylinder head, in particular in the inlet-side cooling region.

Ein weiterer Vorteil der Erfindung ist darin zu sehen, dass bei geöffnetem Blockthermostat eine wesentlich verbesserte Kühlung des Zylindersteges erreichbar ist. Hierbei folgt das Kühlmittel dabei dem zuvor beschriebenen Pfad aus dem Blockwassermantel, über den Übertritt, den Kühlschlitz und den Auslauf in den zylinderkopfseitigen Kühlmittelbereich bzw. dessen einlaßseitigem Kühlbereich. Dabei kühlt das Kühlmittel den Zylinderkopf bzw. bevorzugt die Einlaßseite des Zylinderkopfs, und tritt in ein Auslaßgehäuse ohne vorher in Kontakt mit dem Kühlmittelmantel des auslaßseitigen Kühlbereiches zu haben.Another advantage of the invention lies in the fact that when the block thermostat is open a significantly improved cooling of the cylinder web is achievable. In this case, the coolant follows the previously described path from the block water jacket, via the crossing, the cooling slot and the outlet in the cylinder-head-side coolant region or its inlet-side cooling region. In this case, the coolant cools the cylinder head or preferably the inlet side of the cylinder head, and enters an outlet housing without having previously in contact with the coolant jacket of the outlet-side cooling region.

Das Kühlmittel zur Kühlung der Auslaßseite durchströmt z. B. die Ober- und Unterschale des auslaßseitigen Kühlbereiches und tritt dann ebenfalls in das Auslaßgehäuse ein, in dem sich der Kühlmittelstrom aus dem einlaßseitigen Kühlbereich und aus dem auslaßseitigen Kühlbereich vermischt.The coolant for cooling the outlet side flows through z. B. the upper and lower shell of the outlet side cooling region and then also enters the outlet housing, in which mixes the coolant flow from the inlet-side cooling region and from the outlet-side cooling region.

Insofern ist vorteilhaft vorgesehen, dass der Blockthermostat den Kühlmittelstrom durch den Zylinderblock steuert, wobei der Kühlmittelstrom vor dem Blockthermostaten zumindest in einen Teilstrom aufgeteilt wird, der in den auslaßseitigen Kühlbereich des zylinderkopfseitigen Kühlmittelbereiches eintritt.In this respect, it is advantageously provided that the block thermostat controls the coolant flow through the cylinder block, wherein the coolant flow is divided before the block thermostat at least in a partial flow, which enters the outlet side cooling region of the cylinder head side coolant region.

In weiter vorteilhafter Ausgestaltung ist der Blockthermostat mit seinem Gehäuse in dem Zylinderblock integriert, kann aber auch als separates Bauteil ausgeführt sein. Somit ist ein Kühlmittelpumpenausgang vorteilhaft direkt mit dem Zylinderblock verbunden. Aber auch die Auslaßseite bzw. der auslaßseitige Kühlbereich ist direkt mit dem Pumpenausgang verbunden. Weiter kann auch ein Turbolader direkt mit der Kühlmittelpumpe verbunden werden.In a further advantageous embodiment of the block thermostat is integrated with its housing in the cylinder block, but can also be designed as a separate component. Thus, a coolant pump output is advantageously connected directly to the cylinder block. But also the outlet side or the outlet-side cooling area is connected directly to the pump outlet. Furthermore, a turbocharger can also be connected directly to the coolant pump.

Günstiger Weise ist der Kühlschlitz nicht direkt, sondern indirekt über den Übertritt mit dem Blockwassermantel verbunden, wobei der Übertritt in bevorzugter Ausgestaltung quasi langlochartig ausgeführt ist.Conveniently, the cooling slot is not directly, but indirectly connected via the passage with the block water jacket, the passage is carried out in a preferred embodiment quasi slot-like.

Zwischen dem Zylinderkopf und dem Zylinderblock ist eine Zylinderkopfdichtung angeordnet, welche vorteilhaft im Bereich des Übertritts Ein- und Auslaßöffnungen aufweist, wobei die Einlaßöffnung dem Blockwassermantel bzw. einer entsprechenden Mündungsöffnung des Blockwassermantels, und die Auslaßöffnung dem Kühlschlitz zugeordnet ist. Natürlich liegt es im Sinne der Erfindung, die Zylinderkopfdichtung mit einer an den Übertritt korrespondierend ausgeführten Öffnung zu versehen. Natürlich ist auch dem im Querschnitt gesehen gegenüberliegend zum Übertritt angeordneten Auslauf eine entsprechende Öffnung in der Zylinderkopfdichtung zugeordnet.Between the cylinder head and the cylinder block, a cylinder head gasket is arranged, which advantageously has in the region of the crossing inlet and outlet openings, wherein the inlet opening is associated with the block water jacket or a corresponding mouth opening of the block water jacket, and the outlet opening of the cooling slot. Of course, it is within the meaning of the invention to provide the cylinder head gasket with an opening corresponding to the passage. Of course, also the cross-section arranged opposite to the passage arranged outlet associated with a corresponding opening in the cylinder head gasket.

Insofern ist vorteilhaft vorgesehen, dass das Kühlmittel aus dem Blockwassermantel von unten nach oben durch die Zylinderkopfdichtung in den Übertritt eintritt, entlang des Übertritts im Zylinderkopf in Richtung Kühlschlitz strömt, und durch die Zylinderkopfdichtung von oben nach unten in den Kühlschlitz strömt. In dem Kühlschlitz strömt das Kühlmittel vorzugsweise von dem Übertritt im Querschnitt gesehen entlang des Zylinderblocksteges in Richtung zum Auslauf, und dort wiederum von unten nach oben durch die Zylinderkopfdichtung in den Auslauf, also in den Zylinderkopf bzw. in den zylinderkopfseitigen Kühlmittelbereich.In this respect, it is advantageously provided that the coolant enters the transition from the block water jacket from bottom to top through the cylinder head gasket, flows along the passage in the cylinder head in the direction of the cooling slot, and flows through the cylinder head gasket from top to bottom into the cooling slot. In the cooling slot, the coolant preferably flows from the passage in cross section along the cylinder block web toward the outlet, and there again from bottom to top through the cylinder head gasket into the outlet, ie into the cylinder head or into the cylinder head side coolant area.

Zweckmäßig im Sinne der Erfindung ist vorgesehen, dass der blockseitige Kühlmittelbereich Stegkühlkanäle aufweist, die in dem Zylinderblocksteg eingebracht sind, und welche bevorzugt mit dem Blockwassermantel in Verbindung stehen, wobei die Stegkühlkanäle sich in Richtung zum Zylinderkopf verjüngend ausgeführt sind, so dass an dem Zylinderblocksteg Balkone ausgebildet sind, welche in Richtung zu Schraubenpfeifen orientiert sind.It is expedient for the purposes of the invention that the block-side coolant region comprises web cooling channels, which are introduced into the cylinder block web, and which are preferably in communication with the block water jacket, wherein the web cooling channels are designed to taper in the direction of the cylinder head, so that balconies on the cylinder block web are formed, which are oriented towards screw pipes.

Vorteilhaft weisen die Stegkühlkanäle einen ersten Abschnitt und zumindest einen zweiten Abschnitt auf, wobei der zweite Abschnitt sich, bezogen auf den ersten Abschnitt, in seinem Querschnitt bis auf einen Restquerschnitt kontinuierlich verjüngt, wobei sich der zweite Abschnitt bevorzugt exzentrisch verjüngt. Dies bedeutet, dass sich der jeweilige Stegkühlkanal mit einer Innenseite, welche im Querschnitt gesehen zur Mittelachse des Zylinderblocksteges orientiert ist, in seinem zweiten Abschnitt von dieser wegorientiert verlaufend ausgeführt ist, wobei die dazu jeweils gegenüberliegende Seite des Stegkühlkanals sowohl in dem ersten Abschnitt als auch in dem zweiten Abschnitt bevorzugt parallel zur Mittelachse des Stegkühlkanals verläuft. Die Stegkühlkanäle können in ihrem zweiten Abschnitt so ausgeführt sein, dass die Balkone lokal mit Schraubenpfeifen in Verbindung stehen.Advantageously, the web cooling channels have a first section and at least one second section, the second section, with respect to the first section, continuously tapering in its cross section except for a remaining cross section, the second section preferably tapering eccentrically. This means that the respective web cooling channel with an inner side, which is oriented in cross-section to the central axis of the cylinder block web, running in its second portion of this running away oriented, with the opposite side of the web cooling channel in both the first section and in the second section preferred runs parallel to the central axis of the web cooling channel. The web cooling channels can be designed in their second section so that the balconies are locally associated with screw pipes.

Günstig im Sinne der Erfindung ist, wenn einer der beidseitig der Mittelachse angeordneten Stegkühlkanäle mit seinem zweiten Abschnitt in dem Übertritt mündet.Favorable in the context of the invention is when one of the web cooling channels arranged on both sides of the central axis opens with its second section in the passage.

Ein weiterer Vorteil der Erfindung ist vorteilhaft darin zu sehen, als das Kühlmittel möglichst dicht an den in thermischer Hinsicht kritischen Stegbereich herangeführt werden kann, während in einem oberen Bereich, bzw. im Querschnitt gesehen seitlich des Zylinderblocksteges die Balkone gebildet werden. Insofern ist es durchaus vorteilhaft, den Kühlschlitz im Querschnitt gesehen kreisabschnittsartig auszuführen, wobei jeweils im Querschnitt gesehen links und rechts des quasi kreisabschnittsartigen Kühlschlitzes ein Sicherheitsbereich bzw. die Balkone gebildet werden bzw. stehen bleiben. Vorteilhaft wird so eine optimale Kühlung sowohl im oberen Bereich des Kühlschlitzes als auch im unteren Bereich des Kühlschlitzes (nahes Kühlwasser) erreicht. Durch das Einziehen im unteren Bereich wird zusätzlich der Materialbedarf des Zylinderblocks reduziert, wodurch gleichzeitig Gewicht und Kosten reduziert werden.Another advantage of the invention is to be seen in the advantage that the coolant can be brought as close as possible to the critical thermal web portion, while in an upper region, or seen in cross-section laterally of the cylinder block web, the balconies are formed. In this respect, it is quite advantageous to make the cooling slot seen in cross-section circular section, each seen in cross section to the left and right of the quasi-circular cooling slot a security area or the balconies are formed or remain. Advantageously, optimum cooling is thus achieved both in the upper region of the cooling slot and in the lower region of the cooling slot (near cooling water). By pulling in at the bottom, the material requirements of the cylinder block are reduced, which simultaneously reduces weight and costs.

Vorteilhaft ist also in dem Zylinderblocksteg der Kühlschlitz angeordnet, der gegenüberliegend zu seinem Schlitzgrund von der Zylinderkopfdichtung abgedeckt ist. Es liegt im Sinne der Erfindung, den Übertritt, den Kühlschlitz, und/oder den Auslauf entweder mit Herstellung der jeweiligen Komponenten einzugießen, oder separat mechanisch einzubringen. Beispielsweise der Kühlschlitz kann durch einfaches mechanisches Einfräsen z. B. mittels eines Scheibenfräsers erzeugt werden. Denkbar ist aber auch, den Radius des Scheibenfräsers zu reduzieren und nach dem vertikalen Einfahren eine horizontale Verfahrbewegung entlang des geplanten Kühlschlitzes auszuführen. Möglich ist auch, anstelle des Scheibenfräsers einen geeigneten Stiftfräser zu verwenden.Advantageously, therefore, the cooling slot is arranged in the cylinder block web, which is covered opposite to its slot bottom of the cylinder head gasket. It is within the meaning of the invention to pour in the transition, the cooling slot, and / or the outlet either with production of the respective components, or to introduce them mechanically separately. For example, the cooling slot can be achieved by simple mechanical milling z. B. generated by means of a disc milling cutter. It is also conceivable to reduce the radius of the side milling cutter and to carry out a horizontal movement along the planned cooling slot after vertical retraction. It is also possible to use a suitable pin milling cutter instead of the side milling cutter.

Der Kühlschlitz weist also eine Schlitzöffnung mit Schlitzwänden und dem Schlitzgrund auf. Die Schlitzöffnung ist von der Zylinderkopfdichtung abgedeckt, wobei vorzugsweise die jeweils an den Übertritt und den Auslauf angepaßten Öffnungen in der Zylinderkopfdichtung vorgesehen sein können. Die einander gegenüberliegenden Schlitzwände sind mit der Schlitzbreite zueinander beabstandet und gehen jeweils in den Schlitzgrund über.The cooling slot thus has a slot opening with slot walls and the slot bottom. The slot opening is covered by the cylinder head gasket, wherein preferably each adapted to the transition and the outlet openings may be provided in the cylinder head gasket. The opposing slot walls are spaced apart from each other with the slot width and pass into the slot bottom in each case.

Erfindungsgemäß ist vorgesehen, dass der Schlitzgrund verrundet mit einem Radius ausgeführt ist, der kleiner ist als die Schlitzbreite. In bevorzugter Ausgestaltung weist der Radius einen Betrag auf, welcher der Hälfte der Schlitzbreite entspricht. In weiter bevorzugter Ausgestaltung weist der Radius einen Betrag auf, welcher bis zu einem Viertel der Schlitzbreite entspricht. Günstiger Weise wird der Kühlschlitz hierbei mit einem Schlitzwerkzeug ausgeführt, welches eine "Spitze" mit entsprechend großer Verrundung aufweist. Selbstverständlich ist es möglich, den Schlitzgrund anstelle der kreisförmigen Ausgestaltung parabelartig auszuführen. Mit der vorteilhaften Ausgestaltung des Schlitzgrundes wird ein harmonischer Übergang der Schlitzwände zum Schlitzgrund erreicht, welcher eine Reduzierung von Spannungsspitzen im Zylinderblock und eine Erhöhung der Bauteilbelastbarkeit bedingt. Der Kühlschlitz ist in einer Querrichtung des Verbrennungsmotors analog zur Ausgestaltung in der zuvor beschriebenen Längsrichtung ausgeführt. Das bedeutet, dass für die Geometrie des Kühlschlitzes ein möglichst großer Radius wählbar ist, welcher lediglich durch die Schlitzbreite und die Schlitztiefe beschränkt ist.According to the invention it is provided that the bottom of the slot is rounded with a radius which is smaller than the slot width. In a preferred embodiment, the radius has an amount which corresponds to half the slot width. In a further preferred embodiment, the radius has an amount which corresponds to up to a quarter of the slot width. Conveniently, the cooling slot is in this case carried out with a slot tool, which has a "tip" with a correspondingly large rounding. Of course, it is possible to perform the slot bottom instead of the circular configuration parabolic. With the advantageous embodiment of the slot base a harmonious transition of the slot walls is achieved to the slot bottom, which causes a reduction of voltage peaks in the cylinder block and an increase in the component load capacity. The cooling slot is designed in a transverse direction of the internal combustion engine analogous to the embodiment in the longitudinal direction described above. This means that as large a radius as possible is selected for the geometry of the cooling slot, which is limited only by the slot width and the slot depth.

Weiter werden mit der Erfindung vorteilhaft z.B. folgende Vorteile erreicht:

  • Verringerung der Bohrungsverzüge
  • Geringere Kosten, geringeres Gewicht, geringere Bauteilbelastung, geringere
  • Klopfneigung, geringerer Kraftstoffverbrauch,
  • geringere Ölalterung/Verkokungen,
  • Entlastung der Zylinderkopfdichtung
  • einfache Herstellung
  • Verbesserte Kühlung in kritischen Bauteilbereichen durch Vergrößerung der Wärme abführenden Oberfläche, bzw. kurze Wärmeleitwege
  • Verbesserte Kühlung hinsichtlich der Gefahr des Ablösens von Büchse und
  • Wand insbesondere bei Aluminiumblöcken, wobei bei Graugußbüchsen eine Verminderung der Gefahr des Büchsenabsinkens und ein Versagen der Kopfdichtung reduziert ist.
Furthermore, the invention advantageously achieves the following advantages, for example:
  • Reduction of the bore distortion
  • Lower costs, lower weight, lower component load, lower
  • Knock tendency, lower fuel consumption,
  • lower oil aging / coking,
  • Relief of the cylinder head gasket
  • simple production
  • Improved cooling in critical component areas by enlarging the heat dissipating surface, or short heat conduction paths
  • Improved cooling with regard to the risk of detaching the sleeve and
  • Wall in particular aluminum blocks, with gray cast iron bushes a reduction in the risk of rivet sinking and failure of the head gasket is reduced.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen und der folgenden Figurenbeschreibung offenbart. Es zeigen:

Fig. 1
einen beispielhaften Kühlmittelkreislauf eines Verbrennungsmotors,
Fig. 2
einen Querschnitt durch den Verbrennungsmotor aus Figur 1,
Fig. 3
eine Ansicht auf eine Zylinderkopfdichtung von unten,
Fig. 4
einen Längsschnitt durch einen Zylinderblock und einen erfindungsgemäßen Kühlschlitz, und
Fig. 5
den Kühlschlitz aus Figur 4 als Einzelheit.
Further advantageous embodiments of the invention are disclosed in the subclaims and the following description of the figures. Show it:
Fig. 1
an exemplary coolant circuit of an internal combustion engine,
Fig. 2
a cross section through the internal combustion engine FIG. 1 .
Fig. 3
a view of a cylinder head gasket from below,
Fig. 4
a longitudinal section through a cylinder block and a cooling slot according to the invention, and
Fig. 5
the cooling slot FIG. 4 as a detail.

In den unterschiedlichen Figuren sind gleiche Teile stets mit denselben Bezugszeichen versehen, so daß diese in der Regel auch nur einmal beschrieben werden.In the different figures, the same parts are always provided with the same reference numerals, so that these are usually described only once.

Figur 1 zeigt einen Verbrennungsmotor 1, der einen Kühlmittelkreislauf 2 aufweist. Der Kühlmittelkreislauf 2 ist in einen zylinderblockseitigen Kühlmittelbereich 3 bzw. Zylinderblockwassermantel und in einen zylinderkopfseitigen Kühlmittelbereich 4 bzw. Kopfwassermantel aufgeteilt, so dass ein Split-Cooling-System gebildet ist. Der zylinderkopfseitige Kühlmittelbereich 4 ist beispielhaft weiter in einen auslaßseitigen Kühlbereich 6 und in einen einlaßseitigen Kühlbereich 7 aufgeteilt, was natürlich nicht beschränkend wirken soll, wobei eine Kühlmittelströmung in dem jeweiligen Kühl- bzw. Kühlmittelbereich 2, 3, 4, 6, 7 separat steuerbar ist. Der in Figur 1 beispielhaft dargestellte Kühlmittelkreislauf 2 wird weiter unten näher beschrieben. FIG. 1 shows an internal combustion engine 1, which has a coolant circuit 2. The coolant circuit 2 is divided into a cylinder block-side coolant region 3 or cylinder block water jacket and into a cylinder head-side coolant region 4 or headwater jacket, so that a split-cooling system is formed. The cylinder-head-side coolant area 4 is further divided by way of example into an outlet-side cooling area 6 and an inlet-side cooling area 7, which of course is not intended to be limiting, wherein a coolant flow in the respective cooling or coolant area 2, 3, 4, 6, 7 is separately controllable , The in FIG. 1 Coolant circuit 2 shown by way of example will be described in more detail below.

Wie Figur 2 zeigt, ist in zumindest einem Zylinderblocksteg 8 bzw. in einem Zylindersteg 8 des Zylinderblocks 45 ein Kühlschlitz 9 angeordnet, wobei in dem Zylinderkopf 44 ein Übertritt 11 angeordnet ist. Weiter ist im Zylinderkopf 44 ein Auslauf 12 angeordnet, der mit dem zylinderkopfseitigen Kühlmittelbereich 4 bzw. bevorzugt mit dem einlaßseitigen Kühlbereich 7 in Verbindung steht. Der Blockwassermantel, bzw. der zylinderblockseitige Kühlmittelbereich 3 steht über den Übertritt 11 mit dem Kühlschlitz 9 indirekt in Verbindung, wobei der Kühlschlitz 9 mit dem Auslauf 12 in Verbindung steht. Der Auslauf 12 ist in dem gezeigten Querschnitt gegenüberliegend zum Übertritt 11 angeordnet. Das Kühlmittel ist so aus dem Blockwassermantel bzw. dem zylinderblockseitigen Kühlmittelbereich 3 über den Übertritt 11 in den Kühlschlitz 9, entlang dem Zylinderblocksteg 8 in Richtung zum Auslauf 12, und von hier über den Auslauf 12 in den zylinderkopfseitigen Kühlmittelbereich 4 bzw. in den einlaßseitigen Kühlbereich 7 führbar. Insofern ist der Blockwassermantel über den Übertritt 11 und den Kühlschlitz 9 mit dem zylinderkopfseitigen Kühlmittelbereich 4 bzw. dem einlaßseitigen Kühlbereich 7 gekoppelt, bzw. indirekt verbunden. In bevorzugter Ausgestaltung steht der Blockwassermantel mit einem Stegkühlkanal 57 in Verbindung, dessen vorteilhafte Ausgestaltung weiter unten näher beschrieben wird.As FIG. 2 shows, in at least one cylinder block web 8 and in a cylinder web 8 of the cylinder block 45, a cooling slot 9 is arranged, wherein in the cylinder head 44 a passage 11 is arranged. Further, an outlet 12 is arranged in the cylinder head 44, which is in communication with the cylinder-head-side coolant region 4 or preferably with the inlet-side cooling region 7. The block water jacket, or the cylinder block-side coolant area 3 is indirectly connected via the passage 11 with the cooling slot 9, wherein the cooling slot 9 is in communication with the outlet 12. The outlet 12 is arranged opposite to the passage 11 in the cross section shown. The coolant is thus from the block water jacket or the cylinder block side coolant region 3 via the passage 11 in the cooling slot 9, along the cylinder block web 8 toward the outlet 12, and from here via the outlet 12 in the cylinder head side coolant region 4 and in the inlet side cooling region 7 feasible. In this respect, the block water jacket is coupled via the transition 11 and the cooling slot 9 with the cylinder head side coolant region 4 and the inlet-side cooling region 7, or indirectly connected. In a preferred embodiment of the block water jacket is connected to a web cooling channel 57 in connection, the advantageous embodiment will be described in more detail below.

Zunächst weist der Kühlmittelkreislauf 2 gemäß Figur 1 eine Kühlmittelpumpe 13 auf. In dem Zylinderblock ist ein Blockthermostat 14 integriert, wobei vor dem Blockthermostat 14 beispielhaft zwei Abzweige 16,17 angeordnet sind. Der Blockthermostat 14 ist z. B. als Wachselement ausgeführt, welches den Kühlmittelstrom nur in einer Richtung passieren läßt, so dass ein Zurückströmen des Kühlmittels bei geschlossenem oder geöffnetem Blockthermostaten in Richtung zur Kühlmittelpumpe 13 vermieden ist. Einer der Abzweige 16 ist direkt mit einem Turbolader 18 verbunden, wobei eine Ausgangsverbindung 19 des Turboladers 18 in eine Verbindungsleitung 21 mündet, welche in einem Ausgleichsbehälter 22 mündet. Die Verbindungsleitung 21 ist punktiert dargestellt, und geht von einem Thermostaten 22 aus. Die Ausgangsverbindung 19 des Turboladers 18 kann aber auch direkt mit einem Kühlmittelpumpeneinlauf 23 bzw. einem Kühlmittelrücklauf 24 verbunden sein.First, the coolant circuit 2 according to FIG. 1 a coolant pump 13. In the cylinder block, a block thermostat 14 is integrated, wherein before the block thermostat 14, for example, two branches 16,17 are arranged. The block thermostat 14 is z. B. executed as a wax element, which allows the coolant flow to pass only in one direction, so that a backflow of the coolant is avoided in the closed or open block thermostat in the direction of the coolant pump 13. One of the branches 16 is directly connected to a turbocharger 18, wherein an output connection 19 of the turbocharger 18 opens into a connecting line 21, which opens into a surge tank 22. The connecting line 21 is shown in dotted, and is based on a thermostat 22. However, the output connection 19 of the turbocharger 18 can also be connected directly to a coolant pump inlet 23 or a coolant return 24.

Der andere Abzweig 17 ist mit dem auslaßseitigen Kühlbereich 6 des Zylinderkopfes verbunden.The other branch 17 is connected to the outlet side cooling portion 6 of the cylinder head.

Der Blockthermostat 14 ist sinnvoller Weise für das Split-Cooling-System erforderlich. Das Kühlmittel, welches diesen Blockthermostat 14 passiert (Pfeil 26) durchströmt den zylinderblockseitigen Kühlbereich 3, tritt in den Zylinderkopf, insbesondere in den einlaßseitigen Kühlbereich 7 über, strömt durch den einlaßseitigen Kühlbereich 7, kühlt dabei die Einlaßseite 27 des Verbrennungsmotors 1 und tritt, ohne vorher Kontakt mit dem in dem auslaßseitigen Kühlbereich 6 strömenden Kühlmittel zu haben, in ein Auslaßgehäuse 28 ein (Pfeil 29). Das Kühlmittel zur Kühlung der Auslaßseite 31 des Zylinderkopfes durchströmt den auslaßseitigen Kühlbereich 6 und tritt ebenfalls in das Auslaßgehäuse 28 ein (Pfeil 32) ein. In dem Auslaßgehäuse 28 werden beide Kühlmittelströme vor dem Thermostaten 22 vermischt. Ein Rücklauf des Kühlmittels kann dann beispielsweise über ein Entlüftungsventil 34, einen AGR-Kühler 36, eine Kabinenheizung 37, einen Ölwärmetauscher 38 bzw. Hauptkühler 39 zurück zur Kühlmittelpumpe 13 erfolgen. Selbstverständlich soll dieser Rücklauf nur beispielhaft sein, wobei eine andere Reihenfolge oder Umgehungsleitungen wie in Figur 1 dargestellt denkbar sind.The block thermostat 14 is meaningfully required for the split-cooling system. The coolant which passes through this block thermostat 14 (arrow 26) flows through the cylinder block-side cooling region 3, enters the cylinder head, in particular the inlet-side cooling region 7, flows through the inlet-side cooling region 7, cools the inlet side 27 of the internal combustion engine 1 and passes without previously having contact with the coolant flowing in the outlet-side cooling region 6, into an outlet housing 28 (arrow 29). The coolant for cooling the outlet side 31 of the cylinder head flows through the outlet-side cooling region 6 and also enters the outlet housing 28 (arrow 32). In the outlet housing 28, both coolant streams are mixed in front of the thermostat 22. A return of the coolant can then take place, for example via a vent valve 34, an EGR cooler 36, a cabin heater 37, an oil heat exchanger 38 and main cooler 39 back to the coolant pump 13. Of course, this return should only be exemplary, with a different order or bypass lines as in FIG. 1 shown are conceivable.

Beispielsweise kann das Thermostat 22 auch, wie dargestellt, mit dem Hauptkühler 39 verbunden sein, welcher über eine Verbindungsleitung 41 mit dem Kühlmittelpumpeneinlauf 23 verbunden ist. Möglich ist auch, den Thermostaten 22 über einen Bypaß 42 mit dem Kühlmittelpumpeneinlauf 23 zu verbinden. Wie dargestellt mündet auch der Ölwärmetauscher 38 in dem Kühlmittelpumpeneinlauf 23. Punktiert ist eine Verbindung 43 vom Hauptkühler 39 zum Ausgleichsbehälter 22 dargestellt. Das Thermostat 22 kann elektrisch angesteuert werden, oder kann z. B. als Kennfeldthermostat ausgeführt sein.For example, the thermostat 22 may also be connected, as shown, to the main radiator 39, which is connected to the coolant pump inlet 23 via a connecting line 41. It is also possible to connect the thermostat 22 via a bypass 42 with the coolant pump inlet 23. As shown, the oil heat exchanger 38 also opens into the coolant pump inlet 23. Dotted is a connection 43 from the main cooler 39 to the expansion tank 22. The thermostat 22 can be electrically controlled, or z. B. be executed as a map thermostat.

Wie dargestellt ist das Gehäuse des Blockthermostaten 14 im Zylinderblock integriert. Das Blockthermostat 14 kann aber auch als separates Bauteil ausgeführt sein. Vorteilhaft ist der Kühlmittelpumpenaustritt direkt mit dem Zylinderblock, bzw. dem zylinderblockseitigen Kühlmittelbereich 3 verbunden. Ebenfalls die Leitung zur Versorgung der Auslaßseite 31 des Zylinderkopfes und auch des Turboladers 18 (Abzweig 16, 17) ist direkt mit dem Kühlmittepumpenaustritt verbunden. Das Auslaßgehäuse 28 dagegen ist beispielhaft als separates Bauteil ausgeführt, kann aber noch ein AGR-Ventil mit entsprechenden Leitungen aufweisen, um den AGR-Kühler zu versorgen.As shown, the housing of the block thermostat 14 is integrated in the cylinder block. The block thermostat 14 can also be designed as a separate component. Advantageously, the coolant pump outlet is connected directly to the cylinder block or to the cylinder block-side coolant region 3. Also, the line for supplying the exhaust side 31 of the cylinder head and also the turbocharger 18 (branch 16, 17) is connected directly to the Kühlmittepumpenaustritt. The By contrast, outlet housing 28 is exemplified as a separate component, but may still have an EGR valve with appropriate lines to supply the EGR cooler.

Insbesondere in einer Warmlaufphase des Verbrennungsmotors 1 kann der Blockthermostat 14 länger geschlossen bleiben, da sich möglicherweise bildende Dampf- bzw. Luftblasen aus dem Zylinderblock bzw. seinem oberen Bereich über den zuvor beschriebenen Pfad Übertritt 11, Kühlschlitz 9 und Auslauf 12 in den Zylinderkopf bzw. in den einlaßseitigen Kühlbereich 7 ableiten lassen. Damit ist ein Warmlaufverhalten des Verbrennungsmotors entschieden verbessert, da das Blockthermostat 14 erst geöffnet werden muß, wenn tatsächlich ein Austausch des Kühlmittels im zylinderblockseitigen Kühlmittelbereich 3 bzw. im Blockwassermantel erforderlich ist.In particular, in a warm-up phase of the internal combustion engine 1, the block thermostat 14 can remain closed longer, since possibly forming vapor or air bubbles from the cylinder block or its upper portion via the previously described path crossing 11, cooling slot 9 and outlet 12 in the cylinder head or can be derived in the inlet-side cooling region 7. Thus, a warm-up behavior of the internal combustion engine is decidedly improved because the block thermostat 14 must be opened only when an exchange of the coolant in the cylinder block side coolant area 3 or in the water jacket is actually required.

Wie der Figur 2 weiter zu entnehmen ist, ist der Kühlschlitz 9 nicht direkt, sondern indirekt über den Übertritt 11 mit zylinderblockseitigen Kühlmittelbereich 3 verbunden. Der Übertritt 11 ist quasi langlochartig ausgeführt.Again FIG. 2 can be seen further, the cooling slot 9 is not directly, but indirectly connected via the passage 11 with the cylinder block side coolant area 3. The passage 11 is quasi slot-like executed.

Zwischen dem Zylinderkopf 44 und dem Zylinderblock 45 ist eine Zylinderkopfdichtung 46 angeordnet, welche vorteilhaft eine an den Übertritt 11 angepaßte Öffnung 47 aufweist, die wie dargestellt, entsprechend der langlochartigen Ausgestaltung eine entsprechende Längserstreckung aufweist (Figur 3). Selbstverständlich ist eine entsprechende zum Auslauf 12 ausgeführte Öffnung 48 gegenüberliegend zur Öffnung 47 in der Zylinderkopfdichtung 46 vorgesehen.Between the cylinder head 44 and the cylinder block 45, a cylinder head gasket 46 is arranged, which advantageously has an opening 47 adapted to the passage 11, which, as shown, has a corresponding longitudinal extent corresponding to the slot-like configuration ( FIG. 3 ). Of course, a corresponding to the outlet 12 running opening 48 opposite to the opening 47 in the cylinder head gasket 46 is provided.

Insofern ist der Kühlschlitz 9 vorteilhaft so in den Zylinderblocksteg 8 eingebracht, dass dieser im Zylinderblock 45 keine direkte Verbindung zum Blockwassermantel bzw. zum zylinderblockseitigen Kühlmittelbereich 3 aufweist. Somit ist vorteilhaft in Querrichtung des Kühlschlitzes 9 jeweils beidseitig des Kühlschlitzes 9 ein Sicherheitsbereich 49 bzw. Balkon 50 gebildet. Dieser kann jeweils gußtechnisch optimal ausgeführt werden, und sollte, wenn der Kühlschlitz 9 mechanisch eingebracht wird, nicht verletzt werden.In this respect, the cooling slot 9 is advantageously introduced into the cylinder block web 8 in such a way that it has no direct connection to the block water jacket or the cylinder block side coolant region 3 in the cylinder block 45. Thus, a safety area 49 or balcony 50 is advantageously formed in the transverse direction of the cooling slot 9 on both sides of the cooling slot 9. This can be performed optimally each casting technology, and should, if the cooling slot 9 is mechanically introduced, not be injured.

Die Kühlmittelführung erfolgt somit vom Blockwassermantel bzw. von dem zylinderblockseitigen Kühlmittelbereich 3 von unten nach oben durch die Zylinderkopfdichtung 46 durch die Öffnung 47 in den Übertritt 11. Das Kühlmittel strömt entlang des Übertritts 11 und von diesem durch die Öffnung 47 von oben nach unten durch die Zylinderkopfdichtung 46 in den Kühlschlitz 11, entlang diesem in Richtung zum Auslauf 12 und dort wiederum von unten nach oben durch die Öffnung 48 in der Zylinderkopfdichtung 46 in den Auslauf 12, welcher mit dem zylinderkopfseitigen Kühlbereich 4 bzw. mit dem einlaßseitigen Kühlbereich 7 in Verbindung steht. Wie in Figur 2 angedeutet, fluchtet der Übertritt 11 mit dem Kühlschlitz 9. Natürlich liegt es im Sinne der Erfindung, dass beide (Kühlschlitz 9/ Übertritt 11) nicht unbedingt fluchten müssen, wobei aber dennoch eine Kühlmittelführung im Sinne der Erfindung möglich ist.The coolant guide thus takes place from the block water jacket or from the cylinder block side coolant region 3 from bottom to top through the cylinder head gasket 46 through the opening 47 in the passage 11. The coolant flows along the transition 11 and from there through the opening 47 from top to bottom through the Cylinder head gasket 46 in the cooling slot 11, along this towards the outlet 12 and there again from bottom to top through the opening 48 in the cylinder head gasket 46 in the outlet 12, which is in communication with the cylinder head side cooling region 4 and with the inlet side cooling region 7 , As in FIG. 2 Of course, it is within the meaning of the invention that both (cooling slot 9/11 crossing) do not necessarily have to be aligned, but still a coolant guide in the context of the invention is possible.

Wie der Figur 2 weiter zu entnehmen ist, ist jeweils beidseitig des Zylinderblocksteges 8, bezogen auf seine Mittelachse X, ein Stegkühlkanal 57 angeordnet, welche, wie oben beschrieben mit dem Blockwassermantel in Verbindung stehen. Der jeweilige Stegkühlkanal 57 weist in der dargestellten Zeichnungsebene zwei Abschnitte 58 und 59 auf. Der erste Abschnitt 58 erstreckt sich in der dargestellten Zeichnungsebene von unten nach oben und geht in den zweiten Abschnitt 59 über, welcher in Richtung zum Zylinderkopf orientiert ist. Der zweite Abschnitt 59 ist in dem dargestellten Ausführungsbeispiel bevorzugt sich exzentrisch verjüngend ausgeführt, so dass jeweils beidseitig der Mittelachse X die Balkone 50 ausgebildet sind. In dem dargestellten Ausführungsbeispiel ist der zweite Abschnitt 59 des in der Zeichnungsebene rechten Stegkühlkanals 57 so geführt, dass dieser in den Übertritt 11 (durch die Dichtungsöffnung 47) mündet. Der dazu gegenüberliegende zweite Abschnitt 59 des in der Zeichnungsebene linken Stegkühlkanals 57 ist vorzugsweise in Richtung zur Zylinderkopfdichtung 46 geführt, bzw. von dieser abgedeckt.Again FIG. 2 can be seen further, in each case on both sides of the cylinder block web 8, based on its central axis X, a web cooling channel 57 is arranged, which, as described above with the block water jacket in combination. The respective web cooling channel 57 has two sections 58 and 59 in the illustrated drawing plane. The first section 58 extends in the illustrated plane of the drawing from bottom to top and merges into the second section 59, which is oriented in the direction of the cylinder head. The second section 59 is preferably designed to be eccentrically tapered in the illustrated embodiment, so that in each case the balconies 50 are formed on both sides of the central axis X. In the illustrated embodiment, the second portion 59 of the right in the plane of the web cooling channel 57 is guided so that it opens into the passage 11 (through the seal opening 47). The opposite second section 59 of the left in the plane of the web web cooling channel 57 is preferably guided in the direction of the cylinder head gasket 46, or covered by this.

Der Kühlschlitz 9 kann bei der Herstellung des Zylinderblockes 45 mit eingegossen werden. Möglich ist aber auch ein mechanisches Einbringen, wie oben bereits angedeutet. Bei dem mechanischen Einbringen des Kühlschlitzes 9 kann ein Scheibenfräser verwendet werden, so dass der Kühlschlitz 9 durch einfaches vertikales Einfahren erzeugt wird. Denkbar ist aber auch, den Radius des Scheibenfräsers zu reduzieren, und nach dem vertikalen Einfahren eine horizontale Verfahrbewegung entlang des geplanten Kühlschlitzes 9 durchzuführen. Anstelle des Scheibenfräsers kann natürlich auch ein geeigneter Stiftfräser verwendet werden.The cooling slot 9 can be cast in the manufacture of the cylinder block 45 with. But it is also possible a mechanical introduction, as already indicated above. In the mechanical introduction of the cooling slot 9, a side milling cutter can be used, so that the cooling slot 9 is generated by simply vertical retraction. It is also conceivable, the radius of the To reduce the side milling cutter, and perform a horizontal movement along the planned cooling slot 9 after vertical retraction. Of course, a suitable pin milling cutter can be used instead of the disc milling cutter.

Wie der Figur 2 zu entnehmen ist, ist der Kühlschlitz 9 im Querschnitt gesehen bevorzugt kreisabschnittsartig ausgeführt. Vorteilhaft wird mit dem dargestellten Ausführungsbeispiel eine optimale Kühlung des Zylinderblocksteges 8 Bereich des Kühlschlitzes 9 erreicht. Durch das Einziehen im unteren Bereich wird zusätzlich der Materialbedarf des Zylinderblocks 45 reduziert, wodurch gleichzeitig Gewicht und Kosten reduziert werden.Again FIG. 2 can be seen, the cooling slot 9 is seen in cross-section preferably designed circular section. Advantageously, an optimal cooling of the cylinder block web 8 area of the cooling slot 9 is achieved with the illustrated embodiment. By pulling in the lower area of the material requirement of the cylinder block 45 is additionally reduced, which at the same weight and cost are reduced.

Im Zylinderkopf 44 und im Zylinderblock 45 sind Schraubenpfeifen 51 vorgesehen. Möglich ist, die Stegkühlkanäle 57 so auszuführen, dass die Balkone 50 lokal Kontakt zu den Schraubenpfeifen 51 haben.In the cylinder head 44 and in the cylinder block 45 screw pipes 51 are provided. It is possible to design the web cooling channels 57 so that the balconies 50 have local contact with the screw pipes 51.

In Figur 5 ist der Kühlschlitz 9 aus Figur 4 als Einzelheit in einem Längsschnitt, selbstverständlich nicht maßstabsgerecht gezeigt. Der Kühlschlitz 9 weist eine Schlitzöffnung 52 mit Schlitzwänden 53 und einen Schlitzgrund 54 auf. Gegenüberliegend zum Schlitzgrund 54 ist der Kühlschlitz 9 von der Zylinderkopfdichtung 46 abgedeckt, wobei in der Zylinderkopfdichtung 46 vorzugsweise die Öffnungen 47 und 48 angeordnet sind. Die einander gegenüberliegenden Schlitzwände 53 sind mit der Schlitzbreite 56 zueinander beabstandet und gehen jeweils in den Schlitzgrund 54 über.In FIG. 5 the cooling slot 9 is off FIG. 4 as a detail in a longitudinal section, of course not shown to scale. The cooling slot 9 has a slot opening 52 with slot walls 53 and a slot bottom 54. Opposite the slot bottom 54 of the cooling slot 9 is covered by the cylinder head gasket 46, wherein in the cylinder head gasket 46 preferably the openings 47 and 48 are arranged. The opposing slot walls 53 are spaced apart from each other with the slot width 56 and pass into the slot base 54 in each case.

Erfindungsgemäß ist vorgesehen, dass der Schlitzgrund 54 verrundet mit einem Radius ausgeführt ist, dessen Betrag kleiner ist als die Schlitzbreite 56. In bevorzugter Ausgestaltung weist der Radius einen Betrag auf, welcher der Hälfte der Schlitzbreite 56 entspricht. In weiter bevorzugter Ausgestaltung weist der Radius einen Betrag auf, welcher bis zu einem Viertel der Schlitzbreite 56 entspricht. Günstiger Weise wird der Kühlschlitz 9 hierbei mit einem Schlitzwerkzeug ausgeführt, welches eine "Spitze" mit entsprechend großer Verrundung aufweist. Der Kühlschlitz 9 ist in einem Querschnitt des Verbrennungsmotors (Figur 2) analog zur Ausgestaltung in dem zuvor beschriebenen Längsschnitt ausgeführt. Das bedeutet, dass für die Geometrie des Kühlschlitzes 9 ein möglichst großer Radius wählbar ist, welcher lediglich durch die Schlitzbreite 56 und die Schlitztiefe beschränkt ist.According to the invention, it is provided that the slot base 54 is made rounded with a radius whose magnitude is smaller than the slot width 56. In a preferred embodiment, the radius has an amount which corresponds to half the slot width 56. In a further preferred embodiment, the radius has an amount which corresponds to up to a quarter of the slot width 56. Conveniently, the cooling slot 9 is in this case carried out with a slot tool, which has a "tip" with a correspondingly large rounding. The cooling slot 9 is in a cross section of the internal combustion engine ( FIG. 2 ) executed analogously to the embodiment in the longitudinal section described above. That means, that for the geometry of the cooling slot 9 as large a radius as possible is selected, which is limited only by the slot width 56 and the slot depth.

Claims (3)

  1. Internal combustion engine, which has a coolant circuit (2) which is divided into a cylinder block-side coolant region (3) and a cylinder head-side coolant region (4), the cylinder block having at least one cylinder block web (8), in which a cooling slot (9) is arranged, which is covered, opposite to its slot bottom (54), by a cylinder head gasket (46), characterized in that the cooling slot (9) has at its slot bottom (54) a radius, the amount of which is smaller than its slot width (56).
  2. Internal combustion engine according to Claim 1,
    characterized in that
    the cooling slot (9) is cast in the cylinder block web (8) and/or is introduced mechanically into the cylinder block web (8).
  3. Internal combustion engine according to Claim 1 or 2,
    characterized in that
    the cooling slot (9) is designed in the manner of a segment of a circle, as seen in cross section, so that safety regions (49) are formed in each case laterally with respect to the cooling slot (9).
EP10187422A 2009-07-30 2009-07-30 Cooling system Active EP2325453B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09166865A EP2309114B1 (en) 2009-07-30 2009-07-30 Cooling system

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP09166865.7 Division 2009-07-30
EP09166865A Division-Into EP2309114B1 (en) 2009-07-30 2009-07-30 Cooling system

Publications (2)

Publication Number Publication Date
EP2325453A1 EP2325453A1 (en) 2011-05-25
EP2325453B1 true EP2325453B1 (en) 2012-07-18

Family

ID=41820478

Family Applications (3)

Application Number Title Priority Date Filing Date
EP10187421.2A Active EP2322785B1 (en) 2009-07-30 2009-07-30 Cooling system
EP10187422A Active EP2325453B1 (en) 2009-07-30 2009-07-30 Cooling system
EP09166865A Active EP2309114B1 (en) 2009-07-30 2009-07-30 Cooling system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10187421.2A Active EP2322785B1 (en) 2009-07-30 2009-07-30 Cooling system

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09166865A Active EP2309114B1 (en) 2009-07-30 2009-07-30 Cooling system

Country Status (3)

Country Link
US (1) US8555825B2 (en)
EP (3) EP2322785B1 (en)
CN (1) CN201891481U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016104442U1 (en) 2016-08-02 2016-08-18 Ford Global Technologies, Llc Cylinder block for a multi-cylinder internal combustion engine
DE102016214224A1 (en) 2016-08-02 2018-02-08 Ford Global Technologies, Llc Cylinder block for a multi-cylinder internal combustion engine
DE102016214226A1 (en) 2016-08-02 2018-02-08 Ford Global Technologies, Llc Cylinder block for a multi-cylinder internal combustion engine
DE102017206716A1 (en) 2017-04-21 2018-10-25 Ford Global Technologies, Llc Cylinder block of an internal combustion engine

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541371B2 (en) * 2010-12-13 2014-07-09 トヨタ自動車株式会社 Engine cooling system
US9222399B2 (en) 2012-05-14 2015-12-29 Ford Global Technologies, Llc Liquid cooled internal combustion engine with coolant circuit, and method for operation of the liquid cooled internal combustion engine
US9243545B2 (en) 2013-01-11 2016-01-26 Ford Global Technologies, Llc Liquid-cooled internal combustion engine with liquid-cooled cylinder head and with liquid-cooled cylinder block
JP5846135B2 (en) * 2013-01-31 2016-01-20 トヨタ自動車株式会社 Internal combustion engine
US9068496B2 (en) 2013-05-09 2015-06-30 Ford Global Technologies, Llc System for cooling an engine block cylinder bore bridge
US20160151202A1 (en) * 2013-07-19 2016-06-02 The General Hospital Corporation System, method and arrangements for modifying optical and mechanical properties of biological tissues
AT515143B1 (en) * 2013-12-12 2015-11-15 Avl List Gmbh Liquid-cooled internal combustion engine
DE102014201170A1 (en) * 2014-01-23 2015-07-23 Bayerische Motoren Werke Aktiengesellschaft Method and device for venting a thermal management system of an internal combustion engine
FR3017661A1 (en) * 2014-02-17 2015-08-21 Peugeot Citroen Automobiles Sa MOTOR VEHICLE THERMAL MOTOR WITH IMPROVED COOLING AT AN INTER-POST ZONE
US9488127B2 (en) 2014-04-16 2016-11-08 Ford Global Technologies, Llc Bore bridge and cylinder cooling
US9284875B2 (en) * 2014-06-12 2016-03-15 Ford Global Technologies, Llc Oil-cooled cylinder block with water-cooled bridge
US9334828B2 (en) * 2014-06-23 2016-05-10 Ford Global Technologies, Llc Bore bridge and cylinder cooling
US9470176B2 (en) * 2014-08-01 2016-10-18 Ford Global Technologies, Llc Bore bridge and cylinder cooling
US9670822B2 (en) * 2014-09-08 2017-06-06 Ford Global Technologies, Llc Bore bridge and cylinder cooling
KR101601224B1 (en) * 2014-10-29 2016-03-08 현대자동차주식회사 Engine cooling system that separately cools head and block
KR101619278B1 (en) * 2014-10-29 2016-05-10 현대자동차 주식회사 Engine system having coolant control valve
JP6071990B2 (en) * 2014-12-24 2017-02-01 本田技研工業株式会社 Internal combustion engine cooling structure
KR101646130B1 (en) * 2015-03-02 2016-08-05 현대자동차 주식회사 Engine cooling system having thermostat
US10371087B2 (en) 2015-08-11 2019-08-06 Exco Engineering Die cast closed deck engine block manufacture
US9810134B2 (en) * 2015-08-13 2017-11-07 Ford Global Technologies, Llc Internal combustion engine cooling system
JP6332218B2 (en) * 2015-09-29 2018-05-30 トヨタ自動車株式会社 Cooling device for internal combustion engine
JP6475360B2 (en) 2015-10-23 2019-02-27 本田技研工業株式会社 Cooling structure for water-cooled engine
DE102015121632A1 (en) 2015-12-11 2017-06-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for cooling an internal combustion engine
KR20180019410A (en) * 2016-08-16 2018-02-26 현대자동차주식회사 Engine system having coolant control valve
JP6610604B2 (en) * 2017-04-14 2019-11-27 トヨタ自動車株式会社 Cooling device for internal combustion engine
JP2019089524A (en) * 2017-11-17 2019-06-13 アイシン精機株式会社 Vehicular heat exchange device
DE102018201645B3 (en) 2018-02-02 2019-08-08 Ford Global Technologies, Llc block
RU2684768C1 (en) * 2018-03-12 2019-04-12 Публичное акционерное общество "АВТОВАЗ" Internal combustion engine cylinder block
CN113906209A (en) 2019-05-02 2022-01-07 Fca美国有限责任公司 Cylinder head with integrated turbocharger
DE102019210203A1 (en) * 2019-07-10 2021-01-14 Ford Global Technologies, Llc Cooling arrangement for cylinder bridges
DE102020202465A1 (en) 2020-02-26 2021-08-26 Ford Global Technologies, Llc Internal combustion engine with liquid-cooled cylinder block and method for producing an associated cylinder block
JP7085581B2 (en) * 2020-03-31 2022-06-16 本田技研工業株式会社 Water jacket
TWI749521B (en) * 2020-04-13 2021-12-11 大陸商蘇州雨竹機電有限公司 Multi-channel gas ejector with series cooling chamber
DE102020123021A1 (en) 2020-09-03 2022-03-03 Bayerische Motoren Werke Aktiengesellschaft Internal combustion engine for a motor vehicle, in particular for a motor vehicle
CN113123894B (en) * 2021-05-25 2024-01-12 张艳红 Enhanced cooling system for diesel engine cylinder block

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960974A (en) * 1959-04-27 1960-11-22 Deere & Co Internal-combustion engine cooling system
DE2007610A1 (en) * 1970-02-19 1971-08-26 Cast cylinder block for reciprocating internal combustion engines 4nm Daimler Benz AG, 7000 Stuttgart Unterturkheim
DE2756120A1 (en) * 1977-12-16 1979-06-21 Daimler Benz Ag CYLINDER BLOCK FOR A PARTICULAR AIR COMPRESSING COMBUSTION MACHINE
US4683844A (en) * 1984-12-11 1987-08-04 Honda Giken Kogyo Kabushiki Kaisha Cylinder block and head assembly for internal combustion engines
DE3512076C1 (en) 1985-04-02 1988-01-21 Halbergerhütte GmbH, 6600 Saarbrücken Device for the casting production of a cooling device for webs between adjacent cylinders of a cylinder block and a correspondingly produced cylinder block
DE3907099C1 (en) * 1989-03-04 1989-11-16 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart, De
JP3355635B2 (en) * 1991-11-21 2002-12-09 トヨタ自動車株式会社 Cylinder block for internal combustion engine
JP3077452B2 (en) * 1993-06-07 2000-08-14 トヨタ自動車株式会社 Cylinder block for internal combustion engine
JPH07259555A (en) 1994-03-18 1995-10-09 Toyota Motor Corp Cooling system of internal combustion engine
DE19654451C1 (en) * 1996-12-27 1998-05-14 Daimler Benz Ag Liquid-cooled multi-cylinder internal combustion engine
SE509077C2 (en) * 1997-05-30 1998-11-30 Volvo Ab Internal combustion engine
MY122487A (en) * 2000-12-21 2006-04-29 Petroliam Nasional Berhad Interbore cooling system
FR2841596B1 (en) 2002-06-27 2005-12-16 Renault Sa COOLING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2004150377A (en) * 2002-10-31 2004-05-27 Toyota Motor Corp Fluid passage structure in internal combustion engine
JP4279714B2 (en) * 2004-03-31 2009-06-17 トヨタ自動車株式会社 Cylinder block cooling structure
EP2128399A1 (en) 2005-03-04 2009-12-02 Ford Global Technologies, LLC Separate cooling of cylinder head
US7237511B2 (en) * 2005-03-25 2007-07-03 Mazda Motor Corporation Cooling device of engine
DE102005033338A1 (en) 2005-07-16 2007-01-25 Daimlerchrysler Ag Internal liquid-cooled combustion motor has an intermediate coolant zone, in the section between cylinders, and a corresponding zone in the cylinder head with a link through an opening in the gasket
FR2905423B1 (en) * 2006-09-06 2008-10-10 Peugeot Citroen Automobiles Sa DEVICE FOR DISPENSING COOLANT IN A MOTOR VEHICLE ENGINE
KR20090063993A (en) * 2007-12-14 2009-06-18 현대자동차주식회사 Cylinder head and cylinder head gasket
US8261702B2 (en) * 2009-06-26 2012-09-11 Ford Global Technologies Internal combustion engine with direct cooling of cylinder components

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016104442U1 (en) 2016-08-02 2016-08-18 Ford Global Technologies, Llc Cylinder block for a multi-cylinder internal combustion engine
DE102016214224A1 (en) 2016-08-02 2018-02-08 Ford Global Technologies, Llc Cylinder block for a multi-cylinder internal combustion engine
DE102016214226A1 (en) 2016-08-02 2018-02-08 Ford Global Technologies, Llc Cylinder block for a multi-cylinder internal combustion engine
DE102017206716A1 (en) 2017-04-21 2018-10-25 Ford Global Technologies, Llc Cylinder block of an internal combustion engine

Also Published As

Publication number Publication date
EP2322785B1 (en) 2018-09-19
US8555825B2 (en) 2013-10-15
US20110023799A1 (en) 2011-02-03
CN201891481U (en) 2011-07-06
EP2309114B1 (en) 2012-09-12
EP2325453A1 (en) 2011-05-25
EP2309114A1 (en) 2011-04-13
EP2322785A1 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
EP2325453B1 (en) Cooling system
EP2309106B1 (en) Cooling system
DE102004052788A1 (en) Cylinder head gasket for use in an internal combustion engine and thus equipped internal combustion engine
DE102014200190B4 (en) Cooling arrangement for an exhaust passage in a cylinder head
EP3379063B1 (en) Liquid-cooled combustion engine
AT519458B1 (en) CYLINDER HEAD FOR AN INTERNAL COMBUSTION ENGINE
AT5301U1 (en) CYLINDER HEAD FOR MULTIPLE CYLINDERS
DE102017206716B4 (en) Cylinder block of an internal combustion engine
EP3333398B1 (en) Cylinder head
DE112006002193T5 (en) Cooling structure for a cylinder head
DE102009023530A1 (en) Liquid-cooled internal-combustion engine i.e. four-cylinder internal-combustion engine, has supply channel provided from coolant supply channel in coolant channel in longitudinal side that opens out in wedge area of bar
DE102008047185A1 (en) Cooling agent flow path arrangement for cylinder head of internal-combustion engine, has partial flow path with path region assigned to valve, and another partial flow path with path section assigned to spark plug or diesel injector
AT514793B1 (en) Cooling system for an internal combustion engine
DE60116053T2 (en) Internal combustion engine
DE602004001614T2 (en) A multi-cylinder internal combustion engine and method of selectively manufacturing the multi-cylinder internal combustion engines
DE102016214224B4 (en) Cylinder block for a multi-cylinder internal combustion engine
AT524566B1 (en) Liquid-cooled internal combustion engine
DE60131487T2 (en) Cylinder head cooling water structure and method of manufacture
DE102018208898A1 (en) Reciprocating piston for a reciprocating internal combustion engine and use of a reciprocating piston in a reciprocating internal combustion engine
AT516742B1 (en) INTERNAL COMBUSTION ENGINE WITH A LIQUID COOLED CYLINDER BLOCK
AT523181B1 (en) COOLING SYSTEM FOR A COMBUSTION ENGINE
DE102006001522A1 (en) Internal combustion engine, has cooling medium space that is subdivided into partial spaces that are separated from each other, where partial spaces have cooling medium inflow and outflow
WO2015085333A1 (en) Engine block of a diesel engine with integrated cylinder head, and casting method
DE1950704B2 (en) Cylinder head for an air-cooled reciprocating internal combustion engine
DE102016216360A1 (en) Cylinder head for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2309114

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20111125

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 3/02 20060101AFI20111229BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2309114

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 567087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009004145

Country of ref document: DE

Effective date: 20120913

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120718

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120711

BERE Be: lapsed

Owner name: FORD GLOBAL TECHNOLOGIES, LLC

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121118

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121119

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121029

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

26N No opposition filed

Effective date: 20130419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121018

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009004145

Country of ref document: DE

Effective date: 20130419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090730

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 567087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140730

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190621

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190626

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200730

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230614

Year of fee payment: 15