EP3333398B1 - Cylinder head - Google Patents

Cylinder head Download PDF

Info

Publication number
EP3333398B1
EP3333398B1 EP17202118.0A EP17202118A EP3333398B1 EP 3333398 B1 EP3333398 B1 EP 3333398B1 EP 17202118 A EP17202118 A EP 17202118A EP 3333398 B1 EP3333398 B1 EP 3333398B1
Authority
EP
European Patent Office
Prior art keywords
cylinder head
cylinder axis
cylinder
section
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17202118.0A
Other languages
German (de)
French (fr)
Other versions
EP3333398A1 (en
Inventor
Andreas Zurk
Martin KLAMPFER
Jürgen GELTER
Manfred Breitenberger
Christof Knollmayr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL List GmbH
Original Assignee
AVL List GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL List GmbH filed Critical AVL List GmbH
Publication of EP3333398A1 publication Critical patent/EP3333398A1/en
Application granted granted Critical
Publication of EP3333398B1 publication Critical patent/EP3333398B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/38Cylinder heads having cooling means for liquid cooling the cylinder heads being of overhead valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/14Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/16Arrangements for cooling other engine or machine parts for cooling fuel injectors or sparking-plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads

Definitions

  • the invention relates to a cylinder head of a liquid-cooled internal combustion engine, the cylinder head having a cooling chamber arrangement which borders on a fire deck and is divided into a fire compartment-side lower partial cooling chamber and an upper partial cooling chamber by an intermediate deck arranged essentially parallel to the fire deck, the upper partial cooling chamber being in one In the direction of a cylinder axis, the side of the intermediate deck facing away from the fire deck is arranged, and the upper partial cooling space and the lower partial cooling space are fluidly connected via at least one overflow opening which extends around the cylinder axis and is preferably arranged on a receiving sleeve.
  • the invention also relates to an internal combustion engine with such a cylinder head.
  • an inflow channel is provided between an upper and lower partial cooling space, which has a ring or ring segment-shaped inlet opening in a central region.
  • JP2866259B discloses another cylinder head.
  • the known arrangements have the disadvantage that only inadequate adaptation of the cooling of regions of the cylinder head which are subject to high thermal stress is possible, which may prove necessary in certain applications.
  • the flow distribution to the various radial cooling channels can only be adjusted via the size of the overflow openings to the cylinder housing.
  • the radial cooling channels on the inlet side are cooled as well as on the outlet side, but this is disadvantageous in relation to the temperature distribution on the fire deck.
  • the resulting uneven temperature distribution on the fire deck results in material stresses in the cylinder head.
  • the cross-sectional area of the overflow openings can only be expanded to a limited extent for reasons of strength of the cylinder head, so that there is an undersupply of coolant or adverse pressure conditions can come.
  • a specific flow around the receiving sleeve in the lower cooling compartment is not possible due to an annular overflow opening, since the cooling water flows in a vertical direction through the overflow opening onto the fire deck and subsequently into the radial cooling channels.
  • the object of the invention is to avoid these disadvantages and to ensure optimal cooling of thermally highly stressed areas of the fire deck and the receiving sleeve.
  • the overflow opening has at least one ring segment section which extends in the form of an annular segment around the cylinder axis and a bulging section which extends away from the cylinder axis in the radial direction.
  • the overflow opening has a first section which extends in the form of a segment of a circle around the cylinder axis and from which a second section extends, which is designed as a radial bulge section which points away from the cylinder axis in the radial direction.
  • a circular ring segment in the sense of the invention is a circular ring section which extends over an angular range of less than 360 °.
  • a cylinder axis is understood to mean a longitudinal center axis of a cylinder, which runs essentially normal to a fire deck or a cylinder head sealing plane.
  • the limited expansion of the ring segment section and bulge section increases the flow velocities in the transition between the partial cooling rooms and this concentrated flow, in particular due to the bulge section, increases the cooling of thermally highly stressed areas on the fire deck and in the area of valve bridges and thus reduces the temperature.
  • the ring segment section extends over a first angle around the cylinder axis, which is between 20 ° and 180 °, preferably between 30 ° and 90 ° and particularly preferably 40 ° to 50 °.
  • the bulge section extends over a second angle around the cylinder axis, which is between 5 ° and 45 °, preferably between 5 ° and 20 °.
  • the second angle is advantageously smaller than the first angle.
  • the overflow opening is arranged to extend from the receiving sleeve in the direction of an outlet channel — preferably between two exhaust valves.
  • the entire coolant flow in the upper partial cooling space is concentrated on the outlet side and improved cooling of the outlet channel wall and an outlet valve guide is achieved.
  • the flow through the inlet side is somewhat reduced. This creates a slight temperature rise in the inlet valve bridge, which means that the temperature level on the entire fire deck is very even and the material tensions can be drastically reduced.
  • a particularly focused flow with a favorable cooling effect can be achieved if the width of the ring segment section running in the radial direction is less than the width of the bulge section running in the circumferential direction.
  • the width of the ring segment section is defined as its extension in the radial direction while the width of the bulge section is defined as an extension in the circumferential direction around the cylinder axis.
  • the ring segment section has a greater extent in the circumferential direction around the cylinder axis (hereinafter referred to as the length of the ring segment section) than in the radial direction (extent in the radial direction hereinafter referred to as the width of the ring segment section).
  • the bulge section has a greater extent in the radial direction (hereinafter referred to as the length of the bulge section) than in the circumferential direction around the cylinder axis (this extent in the circumferential direction is hereinafter referred to as the width of the bulge section).
  • the overflow opening extends in the circumferential direction around the cylinder axis essentially between two connecting lines extending from the cylinder axis to one valve axis each of two different valves, preferably between connecting lines from the cylinder axis to the exhaust valve axes of the two exhaust valves.
  • the bulge section extends along a valve symmetry plane that runs normal to the fire deck between two valve axes, preferably the valve axes of the exhaust valves.
  • the extension of the bulge section advantageously ends in the radial direction in front of a connecting plane between the two valve axes. This results in a favorable balance between the cooling effect and the strength of the cylinder head.
  • the bulge section extends in the direction leading away from the cylinder axis over a radial cooling channel running through an exhaust valve bridge. As a result, the region of the exhaust valve bridge which is subject to high thermal stress can be cooled particularly effectively.
  • the overflow opening is flow-connected in the lower partial cooling space via a distribution ring arranged in the lower partial cooling space around the receiving sleeve with cooling channels leading radially away from the distribution ring. This allows specific flow around the receiving sleeve in the lower part of the cooling chamber.
  • the object of the invention is also achieved by an internal combustion engine with a cylinder head according to one of the variants described above.
  • Fig. 1 shows in a section of an internal combustion engine 100 a liquid-cooled cylinder head 1 with at least one cylinder, not shown, which is arranged along a cylinder axis 2.
  • the cylinder head 1 has a fire deck 3 in the direction of a combustion chamber of the cylinder.
  • An intermediate deck 4 divides a cooling space arrangement 5 into a lower partial cooling space 5a near the fire deck 3 and an upper partial cooling space 5b adjoining in the direction of the cylinder axis 2.
  • the intermediate deck 4 has at least one overflow opening 6 for the flow connection between the upper partial cooling chamber 5b and the lower partial cooling chamber 5a, which is formed between the intermediate deck 4 and a receiving sleeve 7.
  • the receiving sleeve 7 serves, for example, to receive a fuel injection device or a spark plug and is arranged essentially concentrically with the cylinder axis 2.
  • Fig. 2 connects the overflow opening 6 starting from the cylinder axis 2 in the radial direction to the receiving sleeve 7 and, according to the invention, has an annular segment section 6a which extends at least partially around the cylinder axis 2 or the receiving sleeve 7, with an additional bulging section 6b running in the radial direction.
  • top-down cooling that is, when the coolant flows from the upper 5b into the lower partial cooling space 5a, a favorable distribution of the coolant and cooling, in particular of the thermally highly stressed areas, can thus be achieved.
  • the ring segment section 6a has the shape of a circular ring segment and extends in the circumferential direction over a first angle ⁇ about the cylinder axis 2 or the receiving sleeve 7.
  • the first angle ⁇ is between 20 ° and 180 °, an angle of approximately 65 in the exemplary embodiment shown ° is realized.
  • the substantially radially extending bulge section 6b extends in the circumferential direction over a second angle ⁇ , which is between 5 ° and 45 °, with approximately 16 ° being implemented in the exemplary embodiment shown.
  • the second angle ⁇ is preferably small compared to the first angle ⁇ . This allows the coolant to be directed specifically to the areas of the valve axes that are particularly thermally highly stressed on the outlet side.
  • the ring segment section 6a has a larger extent in the circumferential direction than in the radial direction in all design variants.
  • the extent in the radial direction is the width of the ring segment section 6a.
  • the bulge section 6b can be designed differently depending on the design variant: the width of the bulge section 6b, i.e. its extent in the circumferential direction around the cylinder axis 2, can either be smaller, the same size or greater than the extent of the bulge section 6b in the radial direction (starting from the cylinder axis 2).
  • the width of the bulge section 6b is essentially equal to the length, that is to say to extend in the radial direction.
  • a favorable coolant distribution when flowing through the overflow opening 6 can be achieved if - as implemented in the exemplary embodiment shown - the width of the ring segment section 6a running in the radial direction is smaller than the width of the bulge section 6b running around the cylinder axis 2 in the circumferential direction.
  • the overflow opening 6 in particular the ring segment section 6a, is between two connecting lines A extending from the cylinder axis 2 to one valve axis 8a, 8b each from two different valves are arranged.
  • these can be the exhaust valve axes 8a and the intake valve axes 8b, or each a connecting line A to an exhaust valve axis 8a and an intake valve axis 8b run, in the illustrated embodiment according to Fig.
  • the connecting lines A are arranged between the cylinder axis 2 and the exhaust valve axes 8a. This is advantageous because the highest thermal loads occur during operation on the outlet side.
  • the connecting line A connects as a valve axis 8a, 8b to the cylinder axis 2.
  • the bulge section 6b extends along a valve symmetry plane Z running between two valve axes 8a, 8b - in the exemplary embodiment shown between the exhaust valve axes 8a - normal to the fire deck 3.
  • the valve symmetry plane Z runs normal to the fire deck 3 or to the cylinder head sealing plane and parallel to the valve axes 8a, 8b through the cylinder axis 2.
  • the figures show the flow of a coolant in a cylinder head 1 according to the invention.
  • the coolant passes from a pressure source (not shown), for example a coolant pump, through a coolant inlet into the upper partial cooling space 5b, flows through the overflow opening 6 in the vertical direction into the lower partial cooling space 5a, where it strikes the fire deck 3 directly and cools it.
  • a pressure source for example a coolant pump
  • the coolant is shown in the lower partial cooling space 5a via a distribution ring 10 on, for example, four radial cooling channels 9a, 9b, 9c, 9d and flows further through openings 11a, 11b, 11c, 11d into a crankcase.
  • a distribution ring 10 on, for example, four radial cooling channels 9a, 9b, 9c, 9d and flows further through openings 11a, 11b, 11c, 11d into a crankcase.
  • fewer radial cooling channels and fewer openings can also be provided.
  • the radial cooling channels 9a, 9b, 9c, 9d are arranged in particular in the region of valve bridges - due to the design of the overflow opening 6 with ring segment section 6a and bulge section 6b, the coolant flow is directed and in particular the outlet valve bridge 90, i.e. the first radial cooling channel 9a between the outlet channels 8, efficiently cooled.
  • the bulge section 6b runs in a direction leading radially away from the cylinder axis 2 over the first radial cooling channel 9a running through an exhaust valve bridge 90.
  • the positioning “above” is to be understood here in a direction leading away from the fire deck 3 along the cylinder axis 2.
  • the first radial cooling duct 9a is part of the lower partial cooling space 5a and the bulge section 6b is carried out in the area of the intermediate deck 4.
  • the outlet valve bridge 90 is additionally cooled in the area of the intermediate deck 4.
  • the geometry shown in the exemplary embodiment in the figures and positioning of the overflow opening 6 on the outlet side results in concentrated cooling of the outlet side both in the upper partial cooling space 5b and in the lower partial cooling space 5a. This ensures optimal cooling of the outlet channel 8 or the outlet channels, of outlet valve guides 7a, 7b (see Fig. 2 ) and subsequently reached the fire deck 3 in the thermally highly stressed area of an exhaust valve bridge 90. This results in a homogeneous temperature level on the entire fire deck 3 and thus lower material stresses occur in the cylinder head 1.
  • the valve bridge or exhaust valve bridge 90 is understood to mean the accumulation of material between the gas exchange valves (not shown) or the exhaust valves.
  • the exhaust valve bridge 90 is very thermally stressed.
  • the bulge section 6b is arranged in the region of the inlet valve bridge or the inlet-outlet valve bridge or that further ring segment sections are provided, which are each connected or partially connected to bulge sections.
  • the invention thus permits an increase in the flow velocities in the transition between the partial cooling rooms 5a, 5b, and through this concentrated flow, in particular due to the bulge section 6b, the cooling of thermally highly stressed areas on the fire deck 3 and in the area of valve bridges - especially the exhaust valve bridge 90 - increased and thus the temperature reduced. This prevents thermal stresses and consequent damage to the cylinder heads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft einen Zylinderkopf einer flüssigkeitsgekühlten Brennkraftmaschine, wobei der Zylinderkopf eine Kühlraumanordnung aufweist, die an ein Feuerdeck grenzt und durch ein im Wesentlichen parallel zum Feuerdeck angeordnetes Zwischendeck in einen feuerdeckseitigen unteren Teilkühlraum und einen oberen Teilkühlraum unterteilt ist, wobei der obere Teilkühlraum auf einer in Richtung einer Zylinderachse vom Feuerdeck abgewandten Seite des Zwischendecks angeordnet ist und der obere Teilkühlraum und der untere Teilkühlraum über zumindest eine sich um die Zylinderachse erstreckende Überströmöffnung strömungsverbunden sind, die vorzugsweise an einer Aufnahmehülse angeordnet ist. Die Erfindung betrifft außerdem eine Brennkraftmaschine mit einem derartigen Zylinderkopf.The invention relates to a cylinder head of a liquid-cooled internal combustion engine, the cylinder head having a cooling chamber arrangement which borders on a fire deck and is divided into a fire compartment-side lower partial cooling chamber and an upper partial cooling chamber by an intermediate deck arranged essentially parallel to the fire deck, the upper partial cooling chamber being in one In the direction of a cylinder axis, the side of the intermediate deck facing away from the fire deck is arranged, and the upper partial cooling space and the lower partial cooling space are fluidly connected via at least one overflow opening which extends around the cylinder axis and is preferably arranged on a receiving sleeve. The invention also relates to an internal combustion engine with such a cylinder head.

Aus der AT 005 939 U1 der Anmelderin ist ein Zylinderkopf bekannt bei dem das Kühlmittel vom oberen Teilkühlraum über eine ringförmige Überströmöffnung zwischen dem Zwischendeck und einer Aufnahmehülse für einen zentralen Bauteil in den unteren Teilkühlraum strömt. Von dort wird das Kühlmittel über Überströmöffnungen in den Kühlraum des Kurbelgehäuses abgeführt. Dabei werden die Ventilbrücken zwar gleichmäßig, aber ohne spezielle Richtwirkung durchströmt, was in gewissen Anwendungen Nachteile bei der Kühlwirkung mit sich bringen kann. Eine vergleichbare Lösung zeigt die AT 503 182 A2 .From the AT 005 939 U1 the applicant is aware of a cylinder head in which the coolant flows from the upper part of the cooling chamber through an annular overflow opening between the intermediate deck and a receiving sleeve for a central component into the lower part of the cooling chamber. From there, the coolant is discharged into the cooling chamber of the crankcase via overflow openings. The valve bridges are flowed through evenly, but without any special directivity, which in certain applications can have disadvantages in terms of the cooling effect. A comparable solution shows the AT 503 182 A2 ,

In der AT 510 857 B1 ist ein Zuströmkanal zwischen einem oberen und unteren Teilkühlraum vorgesehen, der in einem zentralen Bereich eine ring- oder ringsegmentförmige Eintrittsöffnung aufweist. Dadurch wird eine Anpassung an die lokalen thermischen Anforderungen der nachfolgenden Ventilbrückenpassagen angestrebt, um die Wärmeabfuhr im Bereich der Auslassventilsitze und der Ventilbrücken zu verbessern.In the AT 510 857 B1 an inflow channel is provided between an upper and lower partial cooling space, which has a ring or ring segment-shaped inlet opening in a central region. As a result, an adaptation to the local thermal requirements of the subsequent valve bridge passages is sought in order to improve the heat dissipation in the area of the exhaust valve seats and the valve bridges.

JP2866259B offenbart einen weiteren Zylinderkopf. JP2866259B discloses another cylinder head.

Die bekannten Anordnungen haben den Nachteil, dass nur eine unzureichende Anpassung der Kühlung thermisch stark belasteter Bereiche des Zylinderkopfes möglich ist, die sich in bestimmten Anwendungsfällen als notwendig erweisen kann. Die Strömungsverteilung auf die verschiedenen radialen Kühlkanäle ist nur über die Größe der Überströmöffnungen zum Zylindergehäuse einstellbar. Hierdurch werden die radialen Kühlkanäle der Einlassseite gleich gut gekühlt wie auf der Auslassseite, dies ist aber nachteilig in Bezug auf die Temperaturverteilung am Feuerdeck. Durch die dadurch entstehende ungleiche Temperaturverteilung am Feuerdeck ergeben sich Materialspannungen im Zylinderkopf. Gleichzeitig kann die Querschnittsfläche der Überströmöffnungen aus Festigkeitsgründen des Zylinderkopfs nur begrenzt erweitert werden, so dass es zu einer Kühlmittelunterversorgung bzw. nachteiligen Druckverhältnissen kommen kann. Des Weiteren ist durch eine ringförmige Überströmöffnung keine gezielte Umströmung der Aufnahmehülse im unteren Teilkühlraum möglich, da das Kühlwasser in vertikaler Richtung durch die Überströmöffnung auf das Feuerdeck und in weiterer Folge direkt in die radialen Kühlkanäle strömt.The known arrangements have the disadvantage that only inadequate adaptation of the cooling of regions of the cylinder head which are subject to high thermal stress is possible, which may prove necessary in certain applications. The flow distribution to the various radial cooling channels can only be adjusted via the size of the overflow openings to the cylinder housing. As a result, the radial cooling channels on the inlet side are cooled as well as on the outlet side, but this is disadvantageous in relation to the temperature distribution on the fire deck. The resulting uneven temperature distribution on the fire deck results in material stresses in the cylinder head. At the same time, the cross-sectional area of the overflow openings can only be expanded to a limited extent for reasons of strength of the cylinder head, so that there is an undersupply of coolant or adverse pressure conditions can come. Furthermore, a specific flow around the receiving sleeve in the lower cooling compartment is not possible due to an annular overflow opening, since the cooling water flows in a vertical direction through the overflow opening onto the fire deck and subsequently into the radial cooling channels.

Aufgabe der Erfindung ist es, diese Nachteile zu vermeiden und eine optimale Kühlung von thermisch hoch beanspruchten Bereichen des Feuerdecks und der Aufnahmehülse zu gewährleisten.The object of the invention is to avoid these disadvantages and to ensure optimal cooling of thermally highly stressed areas of the fire deck and the receiving sleeve.

Diese Aufgabe wird durch einen eingangs erwähnten Zylinderkopf erfindungsgemäß dadurch gelöst, dass die Überströmöffnung zumindest einen sich kreisringsegmentförmig um die Zylinderachse erstreckenden Ringsegmentabschnitt und einen davon ausgehenden, in radialer Richtung von der Zylinderachse wegweisenden Ausbuchtungsabschnitt aufweist. Mit anderen Worten weist also die Überströmöffnung einen ersten Abschnitt auf, der sich kreissegmentförmig um die Zylinderachse erstreckt und von dem ein zweiter Abschnitt ausgeht, der als sich in radialer Richtung von der Zylinderachse wegweisender radialer Ausbuchtungsabschnitt ausgeführt ist.This object is achieved according to the invention by a cylinder head mentioned at the outset in that the overflow opening has at least one ring segment section which extends in the form of an annular segment around the cylinder axis and a bulging section which extends away from the cylinder axis in the radial direction. In other words, the overflow opening has a first section which extends in the form of a segment of a circle around the cylinder axis and from which a second section extends, which is designed as a radial bulge section which points away from the cylinder axis in the radial direction.

Ein Kreisringsegment im Sinne der Erfindung ist ein Kreisringabschnitt, der sich über einen Winkelbereich von weniger als 360° erstreckt.A circular ring segment in the sense of the invention is a circular ring section which extends over an angular range of less than 360 °.

Als Zylinderachse wird im Rahmen der vorliegenden Offenbarung eine Längsmittelachse eines Zylinders verstanden, die im Wesentlichen normal zu einem Feuerdeck bzw. einer Zylinderkopfdichtebene verläuft.In the context of the present disclosure, a cylinder axis is understood to mean a longitudinal center axis of a cylinder, which runs essentially normal to a fire deck or a cylinder head sealing plane.

Durch die begrenzte Ausdehnung von Ringsegmentabschnitt und Ausbuchtungsabschnitt erhöhen sich die Strömungsgeschwindigkeiten im Übergang zwischen den Teilkühlräumen und durch diese konzentrierte Durchströmung, insbesondere aufgrund des Ausbuchtungsabschnitts, wird die Kühlung von thermisch hoch belasteten Bereichen am Feuerdeck und im Bereich von Ventilbrücken erhöht und somit die Temperatur reduziert.The limited expansion of the ring segment section and bulge section increases the flow velocities in the transition between the partial cooling rooms and this concentrated flow, in particular due to the bulge section, increases the cooling of thermally highly stressed areas on the fire deck and in the area of valve bridges and thus reduces the temperature.

In einer Variante der Erfindung erstreckt sich der Ringsegmentabschnitt über einen ersten Winkel um die Zylinderachse, der zwischen 20° und 180° beträgt, vorzugsweise zwischen 30° und 90° und besonders vorzugsweise 40° bis 50°. Der Ausbuchtungsabschnitt erstreckt sich über einen zweiten Winkel um die Zylinderachse, der zwischen 5° und 45° beträgt, vorzugsweise zwischen 5° und 20°. Günstigerweise ist der zweite Winkel kleiner als der erste Winkel.In a variant of the invention, the ring segment section extends over a first angle around the cylinder axis, which is between 20 ° and 180 °, preferably between 30 ° and 90 ° and particularly preferably 40 ° to 50 °. The bulge section extends over a second angle around the cylinder axis, which is between 5 ° and 45 °, preferably between 5 ° and 20 °. The second angle is advantageously smaller than the first angle.

Es ist besonders günstig, wenn die Überströmöffnung ausgehend von der Aufnahmehülse in Richtung eines Auslasskanals verlaufend angeordnet ist - vorzugsweise zwischen zwei Auslassventilen. Dadurch ist die gesamte Kühlmittelströmung im oberen Teilkühlraum auf die Auslassseite konzentriert und eine verbesserte Kühlung der Auslasskanalwand und einer Auslassventilführungen wird erreicht. Weiters wird auf Grund der konzentrierten Durchströmung der Auslassseite die Durchströmung der Einlassseite etwas reduziert. Hierdurch entsteht ein geringfügiger Temperaturanstieg in der Einlassventilbrücke, der dazu führt dass das Temperaturniveau am gesamten Feuerdeck sehr ausgeglichen ist und somit die Materialspannungen drastisch reduziert werden können.It is particularly expedient if the overflow opening is arranged to extend from the receiving sleeve in the direction of an outlet channel — preferably between two exhaust valves. As a result, the entire coolant flow in the upper partial cooling space is concentrated on the outlet side and improved cooling of the outlet channel wall and an outlet valve guide is achieved. Furthermore, due to the concentrated flow through the outlet side, the flow through the inlet side is somewhat reduced. This creates a slight temperature rise in the inlet valve bridge, which means that the temperature level on the entire fire deck is very even and the material tensions can be drastically reduced.

Eine besonders fokussierte Strömung mit günstiger Kühlwirkung lässt sich erreichen, wenn die in radialer Richtung verlaufende Breite des Ringsegmentabschnitts geringer ist als die in Umfangsrichtung verlaufende Breite des Ausbuchtungsabschnitts. Mit anderen Worten ist die Breite des Ringsegmentabschnitts definiert als dessen Erstreckung in radialer Richtung während die Breite des Ausbuchtungsabschnitts definiert ist als Erstreckung in Umfangsrichtung um die Zylinderachse.A particularly focused flow with a favorable cooling effect can be achieved if the width of the ring segment section running in the radial direction is less than the width of the bulge section running in the circumferential direction. In other words, the width of the ring segment section is defined as its extension in the radial direction while the width of the bulge section is defined as an extension in the circumferential direction around the cylinder axis.

Der Ringsegmentabschnitt weist dabei in Umfangrichtung um die Zylinderachse eine größere Ausdehnung (nachfolgend als Länge des Ringsegmentabschnitts bezeichnet) auf als in radialer Richtung (Ausdehnung in radialer Richtung nachfolgend als Breite des Ringsegmentabschnitts bezeichnet). Im Gegensatz dazu weist der Ausbuchtungsabschnitt in radialer Richtung eine größere Ausdehnung (nachfolgend als Länge des Ausbuchtungsabschnitts bezeichnet) auf als in Umfangsrichtung um die Zylinderachse (diese Ausdehnung in Umfangsrichtung wird nachfolgend als Breite des Ausbuchtungsabschnitts bezeichnet). Eine für die Strömungsverhältnisse günstige Anordnung ergibt sich, wenn sich die Überströmöffnung in Umfangsrichtung um die Zylinderachse im Wesentlichen zwischen zwei von der Zylinderachse zu je einer Ventilachse von zwei verschiedenen Ventilen reichenden Verbindungslinien erstreckt, vorzugsweise zwischen Verbindungslinien von der Zylinderachse zu den Auslassventilachsen der beiden Auslassventile. In einer Variante der Erfindung erstreckt sich der Ausbuchtungsabschnitt entlang einer zwischen zwei Ventilachsen, vorzugsweise den Ventilachsen der Auslassventile, normal zum Feuerdeck verlaufenden Ventilsymmetrieebene. Vorteilhafterweise endet die Erstreckung des Ausbuchtungsabschnitts in radialer Richtung vor einer Verbindungsebene zwischen den beiden Ventilachsen. Dadurch wird ein günstiger Abgleich zwischen Kühlwirkung und Festigkeit des Zylinderkopfs erreicht.The ring segment section has a greater extent in the circumferential direction around the cylinder axis (hereinafter referred to as the length of the ring segment section) than in the radial direction (extent in the radial direction hereinafter referred to as the width of the ring segment section). In contrast, the bulge section has a greater extent in the radial direction (hereinafter referred to as the length of the bulge section) than in the circumferential direction around the cylinder axis (this extent in the circumferential direction is hereinafter referred to as the width of the bulge section). An arrangement which is favorable for the flow conditions results when the overflow opening extends in the circumferential direction around the cylinder axis essentially between two connecting lines extending from the cylinder axis to one valve axis each of two different valves, preferably between connecting lines from the cylinder axis to the exhaust valve axes of the two exhaust valves. In a variant of the invention, the bulge section extends along a valve symmetry plane that runs normal to the fire deck between two valve axes, preferably the valve axes of the exhaust valves. The extension of the bulge section advantageously ends in the radial direction in front of a connecting plane between the two valve axes. This results in a favorable balance between the cooling effect and the strength of the cylinder head.

Es ist vorteilhaft, wenn der Ausbuchtungsabschnitt in von der Zylinderachse wegführender Richtung über einem durch eine Auslassventilbrücke verlaufenden radialen Kühlkanal verläuft. Dadurch kann der thermisch stark beanspruchte Bereich der Auslassventilbrücke besonders effektiv gekühlt werden.It is advantageous if the bulge section extends in the direction leading away from the cylinder axis over a radial cooling channel running through an exhaust valve bridge. As a result, the region of the exhaust valve bridge which is subject to high thermal stress can be cooled particularly effectively.

Zur guten Kühlung ist es außerdem vorteilhaft, wenn die Überströmöffnung über einen im unteren Teilkühlraum um die Aufnahmehülse angeordneten Verteilring mit vom Verteilring radial wegführenden Kühlkanälen im unteren Teilkühlraum strömungsverbunden ist. Dadurch kann die Aufnahmehülse im unteren Teilkühlraum gezielt umströmt werden.For good cooling, it is also advantageous if the overflow opening is flow-connected in the lower partial cooling space via a distribution ring arranged in the lower partial cooling space around the receiving sleeve with cooling channels leading radially away from the distribution ring. This allows specific flow around the receiving sleeve in the lower part of the cooling chamber.

Die Aufgabe der Erfindung wird außerdem durch eine eingangs erwähnte Brennkraftmaschine mit einem Zylinderkopf nach einer der oben beschriebenen Varianten gelöst.The object of the invention is also achieved by an internal combustion engine with a cylinder head according to one of the variants described above.

Die Erfindung wird im Folgenden anhand eines nicht einschränkenden Ausführungsbeispiels, das in den Figuren dargestellt ist, näher erläutert. Darin zeigen:

Fig.1
eine schematische Darstellung eines erfindungsgemäßen Zylinderkopfs in einem Schnitt gemäß der Linie I-I in Fig. 2;
Fig. 2
den Zylinderkopf aus Fig. 1 in einem Schnitt im Bereich eines oberen Teilkühlraumes gemäß der Linie II-II in Fig. 1; und
Fig. 3
den Zylinderkopf aus Fig. 1 in einem Schnitt im Bereich eines unteren Teilkühlraumes gemäß der Linie III-III in Fig. 1.
The invention is explained in more detail below on the basis of a non-restrictive exemplary embodiment, which is shown in the figures. In it show:
Fig.1
is a schematic representation of a cylinder head according to the invention in a section along the line II in Fig. 2 ;
Fig. 2
the cylinder head Fig. 1 in a section in the area of an upper sub-refrigerator according to line II-II in Fig. 1 ; and
Fig. 3
the cylinder head Fig. 1 in a section in the area of a lower partial cold room according to the line III-III in Fig. 1 ,

Fig. 1 zeigt in einem Ausschnitt einer Brennkraftmaschine 100 einen flüssigkeitsgekühlten Zylinderkopf 1 mit zumindest einem nicht näher dargestellten Zylinder, der entlang einer Zylinderachse 2 angeordnet ist. Der Zylinderkopf 1 weist in Richtung eines Brennraums des Zylinders ein Feuerdeck 3 auf. Ein Zwischendeck 4 teilt eine Kühlraumanordnung 5 in einen unteren Teilkühlraum 5a nahe dem Feuerdeck 3 und einen in Richtung der Zylinderachse 2 anschließenden oberen Teilkühlraum 5b. Fig. 1 shows in a section of an internal combustion engine 100 a liquid-cooled cylinder head 1 with at least one cylinder, not shown, which is arranged along a cylinder axis 2. The cylinder head 1 has a fire deck 3 in the direction of a combustion chamber of the cylinder. An intermediate deck 4 divides a cooling space arrangement 5 into a lower partial cooling space 5a near the fire deck 3 and an upper partial cooling space 5b adjoining in the direction of the cylinder axis 2.

Das Zwischendeck 4 weist pro Zylinder zumindest eine Überströmöffnung 6 zur Strömungsverbindung zwischen dem oberen Teilkühlraum 5b und dem unteren Teilkühlraum 5a auf, die zwischen dem Zwischendeck 4 und einer Aufnahmehülse 7 ausgebildet ist. Die Aufnahmehülse 7 dient beispielsweise zur Aufnahme einer Kraftstoffeinspritzeinrichtung oder einer Zündkerze und ist im Wesentlichen konzentrisch mit der Zylinderachse 2 angeordnet. Gemäß Fig. 2 schließt die Überströmöffnung 6 ausgehend von der Zylinderachse 2 in radialer Richtung an die Aufnahmehülse 7 an und weist erfindungsgemäß einen sich zumindest teilweise um die Zylinderachse 2 bzw. die Aufnahmehülse 7 erstreckenden Ringsegmentabschnitt 6a mit einem zusätzlichen, in radialer Richtung verlaufenden Ausbuchtungsabschnitt 6b auf. Bei der Ausführung als Top-Downkühlung, wenn also das Kühlmittel aus dem oberen 5b in den unteren Teilkühlraum 5a strömt, lässt sich so eine günstige Verteilung des Kühlmittels und Kühlung insbesondere der thermisch hochbelasteten Bereichen erzielen.The intermediate deck 4 has at least one overflow opening 6 for the flow connection between the upper partial cooling chamber 5b and the lower partial cooling chamber 5a, which is formed between the intermediate deck 4 and a receiving sleeve 7. The receiving sleeve 7 serves, for example, to receive a fuel injection device or a spark plug and is arranged essentially concentrically with the cylinder axis 2. According to Fig. 2 connects the overflow opening 6 starting from the cylinder axis 2 in the radial direction to the receiving sleeve 7 and, according to the invention, has an annular segment section 6a which extends at least partially around the cylinder axis 2 or the receiving sleeve 7, with an additional bulging section 6b running in the radial direction. In the case of top-down cooling, that is, when the coolant flows from the upper 5b into the lower partial cooling space 5a, a favorable distribution of the coolant and cooling, in particular of the thermally highly stressed areas, can thus be achieved.

Der Ringsegmentabschnitt 6a hat die Form eines Kreisringsegmentes und erstreckt sich in Umfangsrichtung über einen ersten Winkel α um die Zylinderachse 2 bzw. die Aufnahmehülse 7. Der erste Winkel α beträgt dabei zwischen 20° und 180°, wobei im dargestellten Ausführungsbeispiel ein Winkel von etwa 65° realisiert ist. Der im Wesentlichen radial verlaufende Ausbuchtungsabschnitt 6b erstreckt sich in Umfangsrichtung über einen zweiten Winkel β, der zwischen 5° und 45° beträgt, wobei im dargestellten Ausführungsbeispiel ca. 16° umgesetzt sind.The ring segment section 6a has the shape of a circular ring segment and extends in the circumferential direction over a first angle α about the cylinder axis 2 or the receiving sleeve 7. The first angle α is between 20 ° and 180 °, an angle of approximately 65 in the exemplary embodiment shown ° is realized. The substantially radially extending bulge section 6b extends in the circumferential direction over a second angle β, which is between 5 ° and 45 °, with approximately 16 ° being implemented in the exemplary embodiment shown.

Der zweite Winkel β ist vorzugsweise klein gegenüber dem ersten Winkel α. Damit lässt sich das Kühlmittel gezielt auf die Bereiche der Ventilachsen lenken, die insbesondere auslassseitig thermisch hoch belastet sind.The second angle β is preferably small compared to the first angle α. This allows the coolant to be directed specifically to the areas of the valve axes that are particularly thermally highly stressed on the outlet side.

Zusätzlich zu den genannten Winkelbereichen im Umfangsrichtung um die Zylinderachse 2 sind auch noch die Erstreckungen in radialer Richtung, ausgehend von der Zylinderachse 2, zu berücksichtigen: Der Ringsegmentabschnitt 6a weist in allen Ausführungsvarianten in Umfangsrichtung eine größere Erstreckung auf als in radialer Richtung. Die Erstreckung in radialer Richtung ist dabei die Breite des Ringsegmentabschnitts 6a. Der Ausbuchtungsabschnitt 6b kann je nach Ausführungsvariante unterschiedlich ausgeführt sein: Die Breite des Ausbuchtungsabschnitts 6b, also seine Erstreckung in Umfangsrichtung um die Zylinderachse 2, kann entweder kleiner, gleich groß oder größer sein als die Erstreckung des Ausbuchtungsabschnitts 6b in radialer Richtung (ausgehend von der Zylinderachse 2). Im dargestellten Ausführungsbeispiel gemäß Fig. 2 und Fig. 3 ist die Breite des Ausbuchtungsabschnitts 6b im Wesentlichen gleich zur Länge, also zur Erstreckung in radialer Richtung. Eine günstige Kühlmittelverteilung beim Durchströmen der Überströmöffnung 6 lässt sich erzielen, wenn - wie im dargestellten Ausführungsbeispiel umgesetzt - die in radialer Richtung verlaufende Breite des Ringsegmentabschnitts 6a geringer ist als die in Umfangsrichtung um die Zylinderachse 2 verlaufende Breite des Ausbuchtungsabschnitts 6b.In addition to the above-mentioned angular ranges in the circumferential direction around the cylinder axis 2, the extensions in the radial direction, starting from the cylinder axis 2, must also be taken into account: the ring segment section 6a has a larger extent in the circumferential direction than in the radial direction in all design variants. The extent in the radial direction is the width of the ring segment section 6a. The bulge section 6b can be designed differently depending on the design variant: the width of the bulge section 6b, i.e. its extent in the circumferential direction around the cylinder axis 2, can either be smaller, the same size or greater than the extent of the bulge section 6b in the radial direction (starting from the cylinder axis 2). In the illustrated embodiment according to Fig. 2 and Fig. 3 the width of the bulge section 6b is essentially equal to the length, that is to say to extend in the radial direction. A favorable coolant distribution when flowing through the overflow opening 6 can be achieved if - as implemented in the exemplary embodiment shown - the width of the ring segment section 6a running in the radial direction is smaller than the width of the bulge section 6b running around the cylinder axis 2 in the circumferential direction.

Um einen möglichst günstigen Abgleich zwischen dem Druckverlust beim Durchströmen der Überströmöffnung 6 und der Kühlwirkung im Bereich der thermisch hochbelasteten Bereiche wie Aufnahmehülse 7 und Ventilbrücken zu erzielen, ist die Dimensionierung der Überströmöffnung 6 wie folgt gewählt: Die Überströmöffnung 6, insbesondere der Ringsegmentabschnitt 6a ist zwischen zwei von der Zylinderachse 2 zu je einer Ventilachse 8a, 8b von zwei verschiedenen Ventilen reichenden Verbindungslinien A angeordnet. Grundsätzlich kann es sich dabei um die Auslassventilachsen 8a und die Einlassventilachsen 8b handeln bzw. auch je eine Verbindungslinie A zu einer Auslassventilachse 8a und einer Einlassventilachse 8b verlaufen, im dargestellten Ausführungsbeispiel gemäß Fig. 2 sind aber die Verbindungslinien A zwischen der Zylinderachse 2 und den Auslassventilachsen 8a angeordnet. Das ist vorteilhaft, weil auslassseitig die höchsten thermischen Belastungen im Betrieb auftreten. Die Verbindungslinie A verbindet als jeweils eine Ventilachse 8a, 8b mit der Zylinderachse 2. Gleichzeitig erstreckt sich der Ausbuchtungsabschnitt 6b entlang einer zwischen zwei Ventilachsen 8a, 8b - im dargestellten Ausführungsbeispiel zwischen den Auslassventilachsen 8a - normal zum Feuerdeck 3 verlaufenden Ventilsymmetrieebene Z. Die Ventilsymmetrieebene Z verläuft dabei normal zum Feuerdeck 3 bzw. zur Zylinderkopfdichtebene und parallel zu den Ventilachsen 8a, 8b durch die Zylinderachse 2. In radialer Richtung endet die Erstreckung der Überströmöffnung 6, insbesondere des Ausbuchtungsabschnitts 6b, vor einer Verbindungslinie zwischen den beiden der Ventilsymmetrieebene Z zugeordneten Ventilachsen 8a, 8b - im dargestellten Ausführungsbeispiel sind das die Auslassventilachsen 8a.In order to achieve the best possible balance between the pressure loss when flowing through the overflow opening 6 and the cooling effect in the area of the thermally highly stressed areas such as the receiving sleeve 7 and valve bridges, the dimensioning of the overflow opening 6 is selected as follows: The overflow opening 6, in particular the ring segment section 6a, is between two connecting lines A extending from the cylinder axis 2 to one valve axis 8a, 8b each from two different valves are arranged. Basically, these can be the exhaust valve axes 8a and the intake valve axes 8b, or each a connecting line A to an exhaust valve axis 8a and an intake valve axis 8b run, in the illustrated embodiment according to Fig. 2 however, the connecting lines A are arranged between the cylinder axis 2 and the exhaust valve axes 8a. This is advantageous because the highest thermal loads occur during operation on the outlet side. The connecting line A connects as a valve axis 8a, 8b to the cylinder axis 2. At the same time, the bulge section 6b extends along a valve symmetry plane Z running between two valve axes 8a, 8b - in the exemplary embodiment shown between the exhaust valve axes 8a - normal to the fire deck 3. The valve symmetry plane Z runs normal to the fire deck 3 or to the cylinder head sealing plane and parallel to the valve axes 8a, 8b through the cylinder axis 2. The extension of the overflow opening 6, in particular the bulge section 6b, ends in the radial direction in front of a connecting line between the two valve axes 8a assigned to the valve symmetry plane Z. , 8b - in the exemplary embodiment shown, these are the exhaust valve axes 8a.

Die Figuren zeigen anhand von Pfeilen P die Strömung eines Kühlmittels in einem erfindungsgemäßen Zylinderkopf 1. Entsprechend den Pfeilen P in Fig. 1 gelangt das Kühlmittel von einer nicht gezeigten Druckquelle, beispielsweise einer Kühlmittelpumpe, durch einen Kühlmitteleintritt in den oberen Teilkühlraum 5b, strömt durch die Überströmöffnung 6 in vertikaler Richtung in den unteren Teilkühlraum 5a, wobei es direkt auf das Feuerdeck 3 auftrifft und dieses kühlt.Using the arrows P, the figures show the flow of a coolant in a cylinder head 1 according to the invention. According to the arrows P in Fig. 1 the coolant passes from a pressure source (not shown), for example a coolant pump, through a coolant inlet into the upper partial cooling space 5b, flows through the overflow opening 6 in the vertical direction into the lower partial cooling space 5a, where it strikes the fire deck 3 directly and cools it.

Wie in Fig. 3 dargestellt ist teilt sich das Kühlmittel im unteren Teilkühlraum 5a über einen Verteilring 10 auf beispielsweise vier radiale Kühlkanäle 9a, 9b, 9c, 9d auf und strömt über Öffnungen 11a, 11b, 11c, 11d weiter in ein Kurbelgehäuse. Natürlich können auch weniger radiale Kühlkanäle und weniger Öffnungen vorgesehen sein.As in Fig. 3 The coolant is shown in the lower partial cooling space 5a via a distribution ring 10 on, for example, four radial cooling channels 9a, 9b, 9c, 9d and flows further through openings 11a, 11b, 11c, 11d into a crankcase. Of course, fewer radial cooling channels and fewer openings can also be provided.

Über den Verteilring 10 wird eine gezielte Umströmung und damit Kühlung der Aufnahmehülse 7 ermöglicht. Die radialen Kühlkanäle 9a, 9b, 9c, 9d sind dabei insbesondere im Bereich von Ventilbrücken angeordnet - aufgrund der Ausführung der Überströmöffnung 6 mit Ringsegmentabschnitt 6a und Ausbuchtungsabschnitt 6b wird eine Lenkung der Kühlmittelströmung erreicht und insbesondere die Auslassventilbrücke 90, also der erste radiale Kühlkanal 9a zwischen den Auslasskanälen 8, effizient gekühlt. Wie aus Fig. 2 in Zusammenschau mit Fig. 3 erkennbar ist, verläuft der Ausbuchtungsabschnitt 6b in von der Zylinderachse 2 radial wegführender Richtung über dem durch eine Auslassventilbrücke 90 verlaufenden ersten radialen Kühlkanal 9a. Die Positionierung "über" ist hier in einer vom Feuerdeck 3 entlang der Zylinderachse 2 wegführenden Richtung zu verstehen. Der erste radiale Kühlkanal 9a ist Teil des unteren Teilkühlraums 5a und der Ausbuchtungsabschnitt 6b ist im Bereich des Zwischendecks 4 ausgeführt. Damit wird einerseits diesem ersten Kühlkanal 9a eine größere Wassermenge zugeführt, andererseits wird die Auslassventilbrücke 90 schon im Bereich des Zwischendecks 4 zusätzlich gekühlt.A targeted flow around and thus cooling of the receiving sleeve 7 is made possible via the distribution ring 10. The radial cooling channels 9a, 9b, 9c, 9d are arranged in particular in the region of valve bridges - due to the design of the overflow opening 6 with ring segment section 6a and bulge section 6b, the coolant flow is directed and in particular the outlet valve bridge 90, i.e. the first radial cooling channel 9a between the outlet channels 8, efficiently cooled. How from Fig. 2 together with Fig. 3 As can be seen, the bulge section 6b runs in a direction leading radially away from the cylinder axis 2 over the first radial cooling channel 9a running through an exhaust valve bridge 90. The positioning “above” is to be understood here in a direction leading away from the fire deck 3 along the cylinder axis 2. The first radial cooling duct 9a is part of the lower partial cooling space 5a and the bulge section 6b is carried out in the area of the intermediate deck 4. On the one hand, a larger amount of water is supplied to this first cooling duct 9a, on the other hand, the outlet valve bridge 90 is additionally cooled in the area of the intermediate deck 4.

Dieser Lenkungseffekt wird verstärkt durch die Positionierung der Öffnungen 11a, 11b, 11c, 11d, durch die das Kühlmittel aus dem Zylinderkopf 1 in das Kurbelgehäuse abläuft.This steering effect is reinforced by the positioning of the openings 11a, 11b, 11c, 11d, through which the coolant flows out of the cylinder head 1 into the crankcase.

Durch die im Ausführungsbeispiel in den Figuren dargestellte Geometrie und auslassseitige Positionierung der Überströmöffnung 6 ergibt sich eine konzentrierte Kühlung der Auslassseite sowohl im oberen Teilkühlraum 5b als auch im unteren Teilkühlraum 5a. Hierdurch wird eine optimale Kühlung des Auslasskanals 8 bzw. der Auslasskanäle, von Auslassventilführungen 7a, 7b (siehe Fig. 2) und in weiterer Folge des Feuerdecks 3 im thermisch hochbelasteten Bereich einer Auslassventilbrücke 90 erreicht. Dadurch ergibt sich ein homogenes Temperaturniveau am gesamten Feuerdeck 3 und es treten somit geringere Materialspannungen im Zylinderkopf 1 auf. Unter Ventilbrücke, bzw. Auslassventilbrücke 90 versteht sich die Materialansammlung zwischen den nicht gezeigten Gaswechselventilen, bzw. den Auslassventilen. Die Auslassventilbrücke 90 ist thermisch sehr stark beansprucht.The geometry shown in the exemplary embodiment in the figures and positioning of the overflow opening 6 on the outlet side results in concentrated cooling of the outlet side both in the upper partial cooling space 5b and in the lower partial cooling space 5a. This ensures optimal cooling of the outlet channel 8 or the outlet channels, of outlet valve guides 7a, 7b (see Fig. 2 ) and subsequently reached the fire deck 3 in the thermally highly stressed area of an exhaust valve bridge 90. This results in a homogeneous temperature level on the entire fire deck 3 and thus lower material stresses occur in the cylinder head 1. The valve bridge or exhaust valve bridge 90 is understood to mean the accumulation of material between the gas exchange valves (not shown) or the exhaust valves. The exhaust valve bridge 90 is very thermally stressed.

Neben der im Ausführungsbeispiel in den Figuren dargestellten Variante sind auch andere Varianten möglich, wo beispielsweise der Ausbuchtungsabschnitt 6b im Bereich der Einlassventilbrücke oder der Einlass-Auslassventilbrücke angeordnet ist oder dass weitere Ringsegmentabschnitte vorgesehen sind, die jeweils oder teilweise mit Ausbuchtungsabschnitten verbunden sind.In addition to the variant shown in the exemplary embodiment in the figures, other variants are also possible where, for example, the bulge section 6b is arranged in the region of the inlet valve bridge or the inlet-outlet valve bridge or that further ring segment sections are provided, which are each connected or partially connected to bulge sections.

Die Erfindung erlaubt damit eine Erhöhung der Strömungsgeschwindigkeiten im Übergang zwischen den Teilkühlräumen 5a, 5b und durch diese konzentrierte Durchströmung, insbesondere aufgrund des Ausbuchtungsabschnitts 6b, wird die Kühlung von thermisch hoch belasteten Bereichen am Feuerdeck 3 und im Bereich von Ventilbrücken - speziell der Auslassventilbrücke 90 - erhöht und somit die Temperatur reduziert. Dadurch werden thermische Spannungen und dadurch bedingte Beschädigungen von Zylinderköpfen verhindert.The invention thus permits an increase in the flow velocities in the transition between the partial cooling rooms 5a, 5b, and through this concentrated flow, in particular due to the bulge section 6b, the cooling of thermally highly stressed areas on the fire deck 3 and in the area of valve bridges - especially the exhaust valve bridge 90 - increased and thus the temperature reduced. This prevents thermal stresses and consequent damage to the cylinder heads.

Claims (10)

  1. A cylinder head (1) of a liquid-cooled internal combustion engine, wherein the cylinder head (1) has a cooling chamber arrangement (5) which adjoins a fire deck (3) and is divided by an intermediate deck (4) arranged substantially parallel to the fire deck (3) into a lower cooling compartment (5a) on the fire deck side and an upper cooling compartment (5b), wherein the upper cooling compartment (5b) is arranged on a side of the intermediate deck (4) facing away from the fire deck (3) in the direction of a cylinder axis (2), and the upper cooling compartment (5b) and the lower cooling compartment (5a) are flow-connected via at least one overflow opening (6) extending around the cylinder axis (2), which overflow opening (6) is preferably arranged adjacent to a receiving sleeve (7), characterised in that the overflow opening (6) has at least one ring segment section (6a) extending annularly around the cylinder axis (2) and a bulging section (6b) which originates therefrom and faces away from the cylinder axis (2) in the radial direction, wherein the ring segment section (6a) is arranged entirely within two diameters, and these diameters are at least tangent to the ring segment section (6a).
  2. A cylinder head (1) according to claim 1, characterised in that the ring segment section (6a) extends over a first angle (α) about the cylinder axis (2), which is between 20° and 180°, preferably between 30° and 90°, and particularly preferably 40° to 50°.
  3. A cylinder head (1) according to claim 1 or 2, characterised in that the bulging section (6b) extends over a second angle (β) about the cylinder axis (2), which is between 5° and 45°, preferably between 5° and 20°.
  4. A cylinder head (1) according to one of claims 1 to 3, characterised in that the bulging section (6b) extends over a second angle (β) about the cylinder axis (2), which is smaller than the first angle (α).
  5. A cylinder head (1) according to one of claims 1 to 4, characterised in that the width of the ring segment section (6a) extending in the radial direction [the direction originating from the cylinder axis (2)] is smaller than the width extending in the circumferential direction of the bulging section (6b).
  6. A cylinder head (1) according to one of claims 1 to 5, characterised in that the overflow opening (6) extends in the circumferential direction about the cylinder axis (2) substantially between two connecting lines (A) reaching from the cylinder axis (2) to a respective valve axis (8a, 8b) of two different valves, preferably between the connecting lines (A) from the cylinder axis (2) to the outlet valve axes (8a) of the two outlet valves.
  7. A cylinder head (1) according to one of claims 1 to 6, characterised in that the bulging section (6b) extends along a valve symmetry plane (Z) extending between two valve axes (8a, 8b), preferably the outlet valve axes (8a) of the outlet valves, normally to the fire deck (3).
  8. A cylinder head (1) according to one of claims 1 to 7, characterised in that the bulging section (6b) extends in the direction away from the cylinder axis (2) via a radial cooling channel (9a, 9b; 9c; 9d) extending through a valve bridge, in particular an outlet valve bridge (90).
  9. A cylinder head (1) according to one of claims 1 to 8, characterised in that the overflow opening (6) is flow-connected via a distribution ring (10) arranged in the lower cooling compartment (5a) around the receiving sleeve (7) to cooling channels (9a, 9b, 9c, 9d) leading radially away from the distribution ring (10) in the lower cooling compartment (5a).
  10. An internal combustion engine (100) with a cylinder head (1) according to one of claims 1 to 9.
EP17202118.0A 2016-12-07 2017-11-16 Cylinder head Active EP3333398B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA51113/2016A AT518998B1 (en) 2016-12-07 2016-12-07 CYLINDER HEAD

Publications (2)

Publication Number Publication Date
EP3333398A1 EP3333398A1 (en) 2018-06-13
EP3333398B1 true EP3333398B1 (en) 2020-02-12

Family

ID=60331516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17202118.0A Active EP3333398B1 (en) 2016-12-07 2017-11-16 Cylinder head

Country Status (4)

Country Link
EP (1) EP3333398B1 (en)
KR (1) KR102401326B1 (en)
CN (1) CN108167085A (en)
AT (1) AT518998B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521514B1 (en) * 2018-09-14 2020-02-15 Avl List Gmbh cylinder head
US11181032B2 (en) * 2018-09-18 2021-11-23 Deere & Company Cylinder head with improved valve bridge cooling
AT523273B1 (en) * 2020-03-16 2021-07-15 Avl List Gmbh CYLINDER HEAD
AT523950B1 (en) * 2020-06-18 2022-03-15 Avl List Gmbh Cylinder head for an internal combustion engine
AT526344B1 (en) 2022-08-23 2024-02-15 Avl List Gmbh Liquid-cooled cylinder head

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186923U (en) * 1987-05-26 1988-11-30
JP2941123B2 (en) * 1992-08-24 1999-08-25 ダイハツ工業株式会社 Structure of cylinder head in four-valve internal combustion engine
JP2866259B2 (en) * 1992-08-24 1999-03-08 ダイハツ工業株式会社 Structure of cylinder head in four-valve internal combustion engine
AT5939U1 (en) * 2002-01-25 2003-01-27 Avl List Gmbh CYLINDER HEAD
AT6654U1 (en) * 2002-10-31 2004-01-26 Avl List Gmbh CYLINDER HEAD FOR A LIQUID-COOLED MULTI-CYLINDER INTERNAL COMBUSTION ENGINE
AT503182B1 (en) * 2007-04-05 2008-10-15 Avl List Gmbh LIQUID-COOLED INTERNAL COMBUSTION ENGINE
AT508830B1 (en) * 2010-07-08 2012-03-15 Avl List Gmbh CYLINDER HEAD FOR A LIQUID-COOLED INTERNAL COMBUSTION ENGINE
AT510857B1 (en) * 2011-01-27 2012-07-15 Avl List Gmbh LIQUID-COOLED INTERNAL COMBUSTION ENGINE
US10001078B2 (en) * 2014-09-22 2018-06-19 Deere & Company Engine cooling system
CN106150746A (en) * 2016-08-30 2016-11-23 潍柴动力股份有限公司 A kind of cylinder and cylinder head thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3333398A1 (en) 2018-06-13
KR20180065940A (en) 2018-06-18
CN108167085A (en) 2018-06-15
KR102401326B1 (en) 2022-05-23
AT518998B1 (en) 2018-03-15
AT518998A4 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
EP3333398B1 (en) Cylinder head
EP1799987B1 (en) Piston for a combustion engine, and combustion engine
DE10350394B4 (en) Cylinder head for a liquid-cooled multi-cylinder internal combustion engine
EP1733132B1 (en) Water-cooled cylinder head for a multi-cylinder internal combustion engine
AT510857B1 (en) LIQUID-COOLED INTERNAL COMBUSTION ENGINE
DE1476804A1 (en) Turbine blade with aerofoil profile
EP2737188B1 (en) Cylinder head with liquid-type cooling
EP2788583B1 (en) Turbine vane with a throttling element
AT513383A4 (en) Cylinder head for an internal combustion engine
AT6342U1 (en) CYLINDER HEAD FOR A LIQUID-COOLED MULTI-CYLINDER INTERNAL COMBUSTION ENGINE
DE102018201556A1 (en) Reciprocating piston for a reciprocating internal combustion engine and use of a reciprocating piston in a reciprocating internal combustion engine
EP3292293B1 (en) Cylinder head for an internal combustion engine
AT513262A4 (en) Cylinder head for an internal combustion engine
AT524566B1 (en) Liquid-cooled internal combustion engine
AT516742B1 (en) INTERNAL COMBUSTION ENGINE WITH A LIQUID COOLED CYLINDER BLOCK
DE102015104591B4 (en) Exhaust duct of an internal combustion engine, in particular with an exhaust gas turbocharger, and internal combustion engine with such an exhaust duct
DE102010036392B4 (en) Liquid-cooled cylinder head for an internal combustion engine
WO2014180873A1 (en) Cylinder head for an internal combustion engine
DE102021128789B3 (en) Piston assembly for an internal combustion engine
DE102019212200A1 (en) CYLINDER HEAD WITH IMPROVED VALVE BRIDGE COOLING
DE102012112904A1 (en) Internal combustion engine with a cylinder head
AT526527B1 (en) Liquid-cooled internal combustion engine
WO2019036738A1 (en) Cylinder head
AT519991B1 (en) Cylinder head with valve seat ring cooling
DE102016216360A1 (en) Cylinder head for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181213

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 3/02 20060101ALN20190807BHEP

Ipc: F02F 1/36 20060101ALI20190807BHEP

Ipc: F02F 1/40 20060101AFI20190807BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190918

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1232421

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003761

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200705

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003761

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200212

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211116

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1232421

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231130

Year of fee payment: 7