EP2322847A2 - Variables LED-downlight - Google Patents
Variables LED-downlight Download PDFInfo
- Publication number
- EP2322847A2 EP2322847A2 EP10191374A EP10191374A EP2322847A2 EP 2322847 A2 EP2322847 A2 EP 2322847A2 EP 10191374 A EP10191374 A EP 10191374A EP 10191374 A EP10191374 A EP 10191374A EP 2322847 A2 EP2322847 A2 EP 2322847A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat sink
- reflector
- support structure
- downlight
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 claims abstract description 20
- 238000009434 installation Methods 0.000 claims abstract description 12
- 230000000712 assembly Effects 0.000 claims description 25
- 238000000429 assembly Methods 0.000 claims description 25
- 125000006850 spacer group Chemical group 0.000 claims description 18
- 238000003491 array Methods 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000002105 tongue Anatomy 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S8/00—Lighting devices intended for fixed installation
- F21S8/02—Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V14/00—Controlling the distribution of the light emitted by adjustment of elements
- F21V14/02—Controlling the distribution of the light emitted by adjustment of elements by movement of light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V17/00—Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
- F21V17/002—Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages with provision for interchangeability, i.e. component parts being especially adapted to be replaced by another part with the same or a different function
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V17/00—Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
- F21V17/10—Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
- F21V17/18—Latch-type fastening, e.g. with rotary action
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V19/00—Fastening of light sources or lamp holders
- F21V19/02—Fastening of light sources or lamp holders with provision for adjustment, e.g. for focusing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
- F21V29/74—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
- F21V29/75—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with fins or blades having different shapes, thicknesses or spacing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
- F21V29/74—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
- F21V29/77—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
- F21V29/773—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/85—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
- F21V29/89—Metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/04—Optical design
- F21V7/041—Optical design with conical or pyramidal surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the invention relates to a downlight which utilizes LEDs as light sources (light emitting diodes, which also include organic light emitting diodes).
- Downlights are often used as recessed ceiling luminaires (or ceiling mounted luminaires) to illuminate interiors. As built-in or surface-mounted luminaires, these must have a compact design. When using LEDs as bulbs in downlights there is the particular difficulty that the high-power LEDs require a large heat sink, which is not easily integrated into the downlight.
- a downlight comprising: a support structure for installation or mounting in or on a ceiling with an opening defined by a frame of the support structure for the light exit of the downlight, a heat sink, which is held on the frame structure, at least one LED assembly thermally connected to the heat sink and mechanically attached to the heat sink, and at least one reflector assembly extending from the LED array toward the opening of the support structure, the heat sink being attachable to the support structure in at least two different mounting positions, such that the LED array mounted on the heat sink is at different distances from the opening the carrying structure assumes.
- the heat sink can be attached to the support structure in at least two different installation positions
- the LED arrangement can be attached to the heat sink in at least two different installation positions, such that the LED attached to the heat sink -Anowski different distances relative to the opening of the support structure assumes.
- This construction makes it possible to use different reflector assemblies for the same downlights. For example, relatively long reflectors are necessary for particularly low-beam downlights. These can be mounted on the LED assembly when the heat sink is in the installed position in which it has a relatively large distance from the opening of the support structure. For broader downlights, a shorter reflector assembly is often desirable. This can be provided on the downlight according to the invention, when the heat sink is mounted in the installed position with a smaller distance from the opening of the support structure.
- the reflector assemblies extend at least over the entire distance between the LED array and the opening of the support structure.
- a reflector assembly that is shorter than the distance between the LED array and the opening of the support structure would result in a light exit above the lower edge of the downlights and thus light loss due to absorption in the housing or in a light trap on the housing. It is therefore preferred that the reflector assembly extends at least as far as the lower edge of the downlight. According to some embodiments, the edge of the reflector assembly may also project downward beyond the opening of the downlight.
- the edge of the reflector assembly which defines the light exit opening of the reflector assembly, in the same level as the edge of the opening of the support structure, which is located, for example, in the installed state of the downlight at the level of the underside of the ceiling, in which the downlight is installed.
- the LED arrangement is attached to a surface of the heat sink facing the opening of the support structure, preferably removable.
- the surface of the heat sink may extend parallel to the plane defining the opening in the support structure.
- the surface of the heat sink may have a plurality of positions for mounting the LED array or for attaching a plurality of LED arrays.
- one or more LED arrays can be mounted in different positions in the downlight within the downlight, whereby different light distributions can be achieved with the same or different reflector assemblies.
- the same downlights can be equipped with a different number of LED assemblies to produce downlights of different light intensity and light distribution.
- the plurality of positions for attaching LED arrays each have separate, preferably separately controllable, electrical connection means for the LED arrays.
- the wiring may be attached to the heatsink or loosely routed.
- the downlight can be variably equipped with LED arrangements at the installation site without having to change the wiring.
- the separate controllability of the connection means it is also possible, the same downlight with multiple LED arrangements for different lighting tasks, for example lighter or darker, or for different light distributions, or different light colors use.
- the reflector assembly has a rotationally symmetrical reflector surface.
- These reflectors are suitable for generating a circular light field contour of the illumination plane.
- the reflector surface may also be asymmetrically shaped.
- a wall which is adjacent to the position of the downlight in the ceiling can be illuminated.
- the same downlight can be equipped with different reflector assemblies. The different heights of the reflector assemblies can be compensated by the inventive different installation positions of the heat sink in the support structure.
- the LED assembly is mounted in a plane on the heat sink, which is inclined relative to a plane which defines the opening of the support structure.
- This arrangement is preferred for asymmetrically radiating downlights. Inclination angles between 10 ° and 80 °, preferably between 20 ° and 60 °, in particular preferably between 30 ° and 60 °, can be provided.
- the LED array can be attached to the heat sink either directly or via a planar board which is plugged into a surface of the heat sink.
- the surface of the heat sink to which the LED array is attached may be inclined to the predetermined angle relative to the plane defining the opening of the support structure.
- the LED arrangement may also be attached to the heat sink via a carrier, for example via an angled circuit board or metal body.
- the surface of the heat sink which is adapted for mounting the LEDs, parallel to the plane which defines the opening of the support structure may be provided.
- This embodiment is particularly suitable for use with different LED arrays and reflector assemblies.
- the same downlight ie with the same heat sink, can be used with a surface-mounted LED array for emitting light vertically downwards or with an asymmetric light output LED array mounted on an angled board.
- the LED array for a downlight of the present invention may include a plurality of colored LEDs, particularly LEDs having different colors, e.g. Red, green and blue.
- the colors red, green and blue for example, produce white light.
- the LED arrangement or a plurality of LED arrangements can also be controlled differently, so that color effects of the downlight can be set by the differently colored LEDs.
- LEDs with white light can also be used.
- the cooling body has a plurality of cooling ribs, wherein some cooling ribs are shortened with respect to the other cooling ribs of the cooling body or have recesses in order to adapt the peripheral shape of the cooling body to the support structure.
- the support structure includes, for example, a plurality of approximately perpendicular to the ceiling support. These limit the space available for the heat sink. In order to provide a heat sink with the largest possible surface, correspondingly long cooling fins are desired. By shortening or cutting out only a few cooling fins, however, the total cooling capacity of the heat sink is not significantly reduced. However, the heat sink can thereby be adapted to the available space in the support structure.
- the maximum diameter of the heat sink in cross-section parallel to a plane defined by the opening of the support structure is smaller than the maximum diameter of the opening in the support structure in said plane.
- the heat sink has a copper core and / or a copper base side.
- the copper core extends in particular in the longitudinal direction of the heat sink vertically to the mounting plane of the downlight. This allows long heatsinks produce with a small diameter. Due to the vertical mounting direction, the mounting and removal of the heat sink and the mounting of the heat sink in different mounting positions is possible because no projections of the heat sink protrude over the support structure in a vertical direction relative to the mounting plane of the downlight.
- the heat sink is partially surrounded by a jacket which has fastening means for fastening to the support structure.
- the fastening means such as e.g. Hooks or boards, also be integrated directly on the heat sink.
- a downlight system which comprises at least one downlight according to one of the previously described embodiments, wherein the downlight system further comprises at least two reflector assemblies that produce a different light distribution, in particular at least two reflector assemblies with different height and / or with rotationally symmetrical and asymmetrical reflector. If the reflector system has at least two reflector assemblies, but both have the same height, according to an independent aspect of the invention, the support structure of the downlight can also provide only a mounting position of the heat sink.
- FIGS. 1 and 2 is a complete view of an embodiment of the downlight according to the invention.
- the illustrated embodiment is intended for installation in a section of a false ceiling.
- the downlight can be introduced directly into a ceiling cutout in the embodiment shown.
- the illustrated Downlight can also be mounted in a mounting frame, which in turn is mounted in the ceiling.
- a support structure 2 has a circular circumference, wherein the side walls of the support structure on the outside of cut-outs are approximately cylindrical and on the downwardly facing in the installation side of the support structure, a circumferential flange 4 is provided, which extends beyond the cutout in the ceiling or beyond the clear width of a ceiling mounting frame, which in turn is secured in the ceiling cutout, protrudes.
- the opening 6 is sized so that all components of the downlight, which are fastened within the support structure 2, can be mounted through the opening.
- the opening may be smaller, in which case the components are mounted in the support structure before the downlight is inserted into the ceiling.
- the support structure 2 comprises, on two opposite sides along its circumference on the side opposite the light exit side, two support arms 8, which on the side facing inwards have fastening means for holding the components in the support structure.
- two support arms 8 are provided which extend upwardly from the support structure 2.
- a plurality of support arms 8 may be provided.
- the fastening elements on the inside of the support arms can also be integrated in a continuous wall of the support structure 2.
- the support arms 8 have on the inwardly directed side (not shown in the figures) projections which cooperate with spring elements 10.
- the support arms in particular have two projections or indentations in which spring tongues 12 of the spring element 10 can engage and engage.
- the locking mechanism is designed that lying in the interior of the support structure components can be engaged in two different heights H and H '.
- FIGS. 4a and 4b only the components of the downlight are shown, which are arranged in the interior of the support structure 2.
- the spring elements 10 are mounted on the outside of a cylindrical shell 14, on projections of this.
- the cylindrical shell 14 receives in the interior of a heat sink 16, which as a single component in the FIGS. 3a and 3b is shown.
- the heat sink 16 which is formed of aluminum with a copper core 20 is approximately star-shaped in cross-section, as in the FIG. 3b , which shows the view from below of the heat sink, can be seen.
- the fins 18, 19 of the heat sink are different lengths.
- the fins 18 on two opposite sides of the core 20 are made slightly longer than the fins 19, which adjoin two other areas of the core 20.
- the shape of the fins is tuned so that the heat sink fits into the two-cut cylindrical shell 14 and can be firmly connected to it.
- the total diameter of the combination of cylindrical jacket 14 and the heat sink 16 is determined so that it can be passed through the opening 6 of the support structure 2.
- the advantage of the uneven cooling fins 18 and 19 is that the available space within the support structure 2 can be utilized as best as possible.
- the core 20 of the heat sink 16 is formed in the illustrated embodiment of copper. This has the advantage that the base side of the core 20 is in good thermal contact with the fins over the entire height of the heat sink. As a result, relatively long heat sinks can be formed, which are able to dissipate the heat which is introduced at the base side of the heat sink, ie, the side facing the light exit side of the core 20.
- electrical connection means 22 as well as mechanical fastening means for an LED arrangement or the LED arrangement are directly attached.
- a position is available to which an LED arrangement (not shown in the figures) can be attached.
- a plurality of such positions can also be provided, to which optionally LED arrangements can be attached.
- connection means 22 are also for fixing a reflector assembly 24, which, for example, in FIG. 4b can be seen, set up.
- the reflector assembly 24 extends in the mounted state of the downlight between the side facing toward the light exit side of the heat sink 16 up to the height of the opening 6, which is defined within the flange 4.
- various reflector assemblies 24 are provided which may optionally be provided on the downlight to produce the desired light distribution of the downlight.
- the FIGS. 5a to 5d show in cross section various embodiments of reflector assemblies 24 to 24 ''', which are attached to the downlight.
- the reflector assemblies 24 and 24 '(in the FIGS. 5b and 5c shown) have a rotationally symmetrical reflector surface 25 or 25 ', which extend along an optical axis which is aligned with the downlight along the mid-perpendicular of the luminaire.
- the reflector assembly 24 'further has a cylindrical projection which connects directly to the side of the heat sink 16, on which the LEDs are arranged.
- the heights ie the longitudinal extent of the reflector assemblies along the optical axis, are different.
- the reflector assemblies with greater height H, such as the reflector assembly 24, is intended for low-beam downlight, while the reflector assembly 24 'is provided with a lesser height H' for wide-beam downlights.
- the height H or H ' can be compensated by the adjustability of the heat sink 16 within the support structure 2.
- at least two locking positions are provided, in which the heat sink can be held within the support structure 2. According to further embodiments, however, more locking positions or even a continuous adjustment of the heat sink 16 may be provided within the support structure 2.
- FIGS. 5a and 5d show examples of reflector assemblies 24 "and 24"', respectively, which have an asymmetrical reflector wall 25 "and 25", respectively.
- These downlights are preferred when an object which is attached to a wall or the wall itself is to be illuminated, which is located next to the installation location of the downlight FIG. 5a is the reflector assembly, as well as in the FIGS. 5b and 5c , at the base of the heat sink, which is aligned parallel to the mounting plane of the downlight attached.
- the LEDs are arranged on an angled support plate 26 or a metal sheet, for example of aluminum, which is attached to the base side of the heat sink.
- the support plate 22 is angled at an angle ⁇ , which may for example be between 20 ° and 60 °.
- This embodiment is particularly preferred in combination with a reflector assembly 24 "'having an asymmetric reflector wall 25'". These reflectors can also be made rectangular.
- the reflector assemblies 24 may be connected in a component to the LED array.
- the angled support board 26 may also be connected to the reflector assembly 24 "in one component
- the reflector assemblies, including the LED arrays, may be plugged into and electrically connected to the heatsink connectors 22 Reflector assemblies are attached to the connection means on the heat sink or on the LED assembly regardless of the LED arrangements.
- FIGS. 6 to 9 represent in different arrangements, the components which in the support structure 2 according to FIG. 1 be inserted.
- the support structure is for a better overview in the FIGS. 6 to 9 not shown.
- a heat sink 116 which has LEDs on the side facing the light exit surface (not shown in the figures).
- a reflector 124 which, however, in contrast to the previously described embodiments is not directly connected to the heat sink or the LED assemblies, but by means of a reflector retaining ring 130 on a cylindrical shell 114 is fixed, wherein the cylindrical shell 114 receives the heat sink 116.
- the reflector retaining ring 130 consists of two ring half-shells 132, each having a semicircular groove 134 in the lower region, in which the reflector 124 engages at its largest diameter on the light exit side.
- the final fixation of the reflector 124 to the reflector retaining ring 130 is achieved when both ring half-shells 132 are joined together and locked together.
- a latching nose 136 or on the opposite end face a latching recess 138 is provided at the front edges of the ring half shells 132, respectively.
- a spring clip 142 is furthermore provided in each annular half shell 132, which additionally presses the reflector against the lower edge of the semicircular groove 134.
- this subassembly may be connected to the cylindrical shell 114 and thereby also indirectly to the heat sink 116.
- locking lugs 144 are provided on the reflector retaining ring 130 on the side opposite the light exit surface of the reflector, which latch into opposite recesses in the cylindrical shell 114 (see FIG FIG. 7 ).
- the heat sink 116 can be received in the cylindrical shell 114 at different heights depending on the height of the reflector 124.
- a spacer ring 150 (see FIG. 8 ), which is disposed between the reflector retaining ring 130 and the heat sink 116.
- the spacer ring 150 is located with its lower edge on the upper edge 139 of the reflector retaining ring 130. On the opposite edge of the spacer ring 150 of the heat sink 116 is located.
- the height of the spacer ring 150 is matched to the height of the reflector 124, so that the upper edge of the reflector 124 is approximately flush with the lower surface of the heat sink, on which the LEDs are arranged, adjacent.
- the spacer ring 150 can be modified. For this purpose, at the top of the spacer ring 150 in the perimeter several tabs 152 attached, which can be canceled if necessary.
- the height of the spacer ring 150 and, consequently, the distance between the lower edge of the heat sink 116 and the reflector retaining ring 130 changes.
- various spacer rings 150 may be provided depending on the reflectors 124 used, which define a height, with or without tabs 152 is adapted to the height of the reflector 124.
- a spring 160 is provided (see FIG. 6 ), which is supported on the cylindrical shell 114 and presses the heat sink 116 in the direction of the spacer ring 150, so that the heat sink is held in the cylindrical shell 114 at the desired height.
- the spacer ring 150 may also be supported on the cylindrical shell, for example on a step or a projection of the cylindrical shell.
- This embodiment has the particular advantage that the spring force which is exerted by the spring 160 on the heat sink 116, not the latching connection between the reflector retaining ring 130 and the cylindrical shell 114 charged.
- the spacer ring 150 may be configured as described in the previous embodiment.
- the preassembled subassembly comprising the heat sink 116, the cylindrical shell 114, the spacer ring 150 and the reflector retaining ring 130 can then be arranged in the support structure 2, in principle as in FIG FIG. 1 shown inserted.
- this embodiment can be any desired reflector assembly mounted so that the lower edge of the reflector is flush with the light exit surface of the downlight.
- the position of the cylindrical shell 114 with respect to the support structure 2 in this embodiment also remains the same for different reflector heights H.
- various embodiments of the previously described downlights are provided as a downlight system.
- the different reflector assemblies are interchangeable and can each be connected to the same downlight, ie in particular the same support structure 2 and the same heat sink 16 or 116.
- the selection of the light distribution to be generated can still be selected on site during assembly, because all the components are compatible with each other and in particular the installation position of the heat sink can be selected according to the reflector assembly provided.
- each in a support structure in the Figures 10a-c and 11a-c not shown
- the basic components of a heat sink 216 and a reflector 224 are formed, which is attached by means of a mechanical connection to the heat sink 216 at a predetermined distance to a contact surface for the lamps.
- the modifications of the three embodiments consist in different light sources and reflector attachments. In the embodiment according to FIG.
- the light source is formed by an LED module 222 which directly adjoins a plane of the heat sink 216 and extends to an upper edge of the reflector 224.
- a lower level LED module 222 ' is provided which is mounted in a socket 221 located at the bottom of the heat sink 216.
- an LED module 222 is provided directly on the support board 226 attached to the heat sink 216.
- the LED module further includes a scattering dome 228 that extends across the LEDs and provides light scattering Module 222 "of the last embodiment has a significantly lower height than the other LED modules.
- the final embodiment provides an auxiliary reflector 224 'which fills the gap between the reflector 224 and the LED module 222 ". preferably as in the FIG. 11c shown, can be joined together seamlessly and form a uniform reflector surface.
- the same reflector component 224 may also be used individually for the other embodiments with the LED modules 222 and 222 '. According to the Embodiment after FIG.
- Abblendring 227 is arranged, which forms a gap-free connection between the LED module 222' and the reflector upper edge to prevent light leakage.
- the heat sink 216 can be mounted in at least two different heights in the support structure that can be mounted on the ceiling side, so that the arrangement of the LEDs, which is integrated in the LED module of the various embodiments, different heights compared to Assume carrying structure. Furthermore, given the modular design of the reflector assembly of at least one reflector and optionally an intermediate reflector or Abblendring given the opportunity to attach different height LED assembly to each of the same heat sink. In this way, z. B. use different LED light sources of different geometries or different performance classes.
- the design allows the LED assembly to be mounted at different heights with respect to the mounting surface of the heat sink. In this way, the distance between the attached to the heat sink LED assembly and the opening of the support structure can also be adjusted.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
Abstract
Description
- Die Erfindung betrifft ein Downlight, welches als Leuchtmittel LEDs (Light Emitting Diods, worunter auch Organic Light Emitting Diods zu verstehen sind) nutzt.
- Downlights werden häufig als Deckeneinbauleuchten (oder Deckenanbauleuchten) zur Beleuchtung von Innenräumen genutzt. Als Einbau- oder Anbauleuchten müssen diese eine kompakte Bauform aufweisen. Bei der Verwendung von LEDs als Leuchtmittel in Downlights besteht die besondere Schwierigkeit, dass die Hochleistungs-LEDs einen großen Kühlkörper benötigen, der nicht ohne Weiteres in das Downlight zu integrieren ist.
- Ein Beispiel eines Downlights, welches die LED-Technik nutzt, ist in
DE 10 2008 009 814 A1 beschrieben. - Für unterschiedliche Raumhöhen und verschiedene Beleuchtungsaufgaben sind verschiedene Optiken für Downlights wünschenswert. Jedoch sind die bekannten Konstruktionen in dieser Hinsicht wenig flexibel.
- Es ist die Aufgabe der vorliegenden Erfindung ein Downlight basierend auf LED-Technik zu schaffen, welches für unterschiedliche Beleuchtungsaufgaben variabel angepasst werden kann.
- Die Aufgabe wird erfindungsgemäß gelöst durch ein Downlight, das Folgendes aufweist: eine Tragestruktur zum Einbau oder Anbau in bzw. an einer Decke mit einer durch einen Rahmen der Tragestruktur festgelegten Öffnung für den Lichtaustritt des Downlights, einem Kühlkörper, welcher an der Rahmenstruktur gehalten ist,
wenigstens eine LED-Anordnung, die mit dem Kühlkörper thermisch verbunden ist und an dem Kühlkörper mechanisch angebracht ist,
sowie wenigstens eine Reflektorbaugruppe, die sich von der LED-Anordnung in Richtung zu der Öffnung der Tragestruktur erstreckt, wobei der Kühlkörper an der Tragestruktur in wenigstens zwei verschiedenen Einbaulagen anbringbar ist, so dass die an dem Kühlkörper angebrachte LED-Anordnung unterschiedliche Abstände gegenüber der Öffnung der Tragestruktur annimmt. - Alternativ oder zusätzlich zu dem Merkmal, dass der Kühlkörper an der Tragestruktur in wenigstens zwei verschiedenen Einbaulagen anbringbar ist, kann auch vorgesehen sein, dass die LED-Anordnung an dem Kühlkörper in wenigstens zwei verschiedenen Einbaulagen anbringbar ist, so dass die an dem Kühlkörper angebrachte LED-Anordnung unterschiedliche Abstände gegenüber der Öffnung der Tragestruktur annimmt.
- Diese Konstruktion erlaubt es, unterschiedliche Reflektorbaugruppen für die gleichen Downlights einzusetzen. Beispielsweise sind für besonders tiefstrahlende Downlights verhältnismäßig lange Reflektoren notwendig. Diese können an der LED-Anordnung angebracht werden, wenn der Kühlkörper sich in der Einbaulage befindet, in der er einen verhältnismäßig großen Abstand zu der Öffnung der Tragestruktur aufweist. Für breitstrahlendere Downlights ist häufig eine kürzere Reflektorbaugruppe wünschenswert. Diese lässt sich an dem erfindungsgemäßen Downlight vorsehen, wenn der Kühlkörper in der Einbaulage mit geringerem Abstand zur Öffnung der Tragestruktur angebracht ist.
- Gemäß einer bevorzugten Ausführungsform erstreckt sich die Reflektorbaugruppen wenigstens über den gesamten Abstand zwischen der LED-Anordnung und der Öffnung der Tragestruktur. Eine Reflektorbaugruppe, die kürzer als der Abstand zwischen der LED-Anordnung und der Öffnung der Tragestruktur ist, würde zu einem Lichtaustritt oberhalb des unteren Randes der Downlights und damit zu Lichtverlusten durch Absorption in dem Gehäuse oder in einer Lichtfalle an dem Gehäuse führen. Es ist daher bevorzugt, dass die Reflektorbaugruppe wenigstens bis an die Unterkante des Downlights reicht. Gemäß einiger Ausführungsformen kann der Rand der Reflektorbaugruppe auch über die Öffnung des Downlights nach unten hervorstehen. Gemäß einer bevorzugten Ausführungsform liegt jedoch der Rand der Reflektorbaugruppe, welcher die Lichtaustrittsöffnung der Reflektorbaugruppe definiert, in der gleichen Ebene wie der Rand der Öffnung der Tragestruktur, der beispielsweise im eingebauten Zustand des Downlights auf Höhe der Unterseite der Decke, in der das Downlight eingebaut ist, liegt. Dadurch ergibt sich bei Betrachtung der Decke von unten ein einheitliches Bild, weil keine Teile hervorstehen. Durch die erfindungsgemäße Befestigung des Kühlkörpers in wenigstens zwei verschiedenen Höhen innerhalb des Downlights können die Downlights für unterschiedliche Reflektorbaugruppen eingestellt werden, so dass der Rand der Reflektorbaugruppe und der Rand der Öffnung in der Tragestruktur immer auf gleicher Höhe liegen oder einen vorbestimmten Abstand, z.B. zur Aufnahme einer Abdeckscheibe oder zur Bildung einer Schattenfuge, aufweisen.
- Gemäß einer bevorzugten Ausführungsform ist die LED-Anordnung an einer zur Öffnung der Tragestruktur weisenden Oberfläche des Kühlkörpers, vorzugsweise abnehmbar, angebracht. Beispielsweise kann sich die Oberfläche des Kühlkörpers parallel zu der Ebene, welche die Öffnung in der Tragestruktur definiert, erstrecken. Dadurch lassen sich LED-Anordnungen mit ihrer Hauptanstrahlrichtung nach unten an dem Kühlkörper in gutem thermischen Kontakt zu diesem anbringen.
- Gemäß einer Ausführungsform der Erfindung kann die Oberfläche des Kühlkörpers mehrere Positionen zum Anbringen der LED-Anordnung oder zum Anbringen mehrerer LED-Anordnungen aufweisen. Bei dieser Ausführungsform kann innerhalb des Downlights eine oder mehrere LED-Anordnungen in unterschiedlichen Positionen im Downlight angebracht werden, wodurch sich unterschiedliche Lichtverteilungen mit dem gleichen oder unterschiedlichen Reflektorbaugruppen erzielen lassen. Ferner können die gleichen Downlights mit einer unterschiedlichen Anzahl von LED-Anordnungen bestückt werden, um Downlights unterschiedlicher Lichtstärke und Lichtverteilung zu erzeugen.
- Gemäß einer bevorzugten Ausführungsform weisen die mehreren Positionen zum Anbringen von LED-Anordnungen jeweils separate, vorzugsweise separat ansteuerbare, elektrische Anschlussmittel für die LED-Anordnungen auf. Die Verkabelung kann an dem Kühlkörper befestigt sein oder lose verlegt sein. Dadurch lässt sich noch am Montageort das Downlight variabel mit LED-Anordnungen bestücken, ohne die Verkabelung ändern zu müssen. Durch die separate Ansteuerbarkeit der Anschlussmittel ist es ferner möglich, das gleiche Downlight mit mehreren LED-Anordnungen für verschiedene Beleuchtungsaufgaben, beispielsweise heller oder dunkler, oder für verschiedene Lichtverteilungen, oder unterschiedliche Lichtfarben, nutzen.
- Gemäß einer Ausführungsform weist die Reflektorbaugruppe eine rotationssymmetrische Reflektorfläche auf. Diese Reflektoren sind dafür geeignet, eine kreisrunde Lichtfeldkontur der Beleuchtungsebene zu erzeugen. Gemäß einer anderen Ausführungsform kann die Reflektorfläche jedoch auch asymmetrisch geformt sein. Beispielsweise können mit derartigen Downlights eine Wand, die der Position des Downlights in der Decke benachbart ist, angestrahlt werden. Von besonderem Vorteil ist dabei, dass das gleiche Downlight mit unterschiedlichen Reflektorbaugruppen bestückt werden kann. Die unterschiedlichen Höhen der Reflektorbaugruppen können durch die erfindungsgemäßen unterschiedlichen Einbaupositionen des Kühlkörpers in der Tragestruktur ausgeglichen werden.
- Gemäß einer Ausführungsform ist die LED-Anordnung in einer Ebene am Kühlkörper angebracht, die gegenüber einer Ebene, welche die Öffnung der Tragestruktur definiert, geneigt ist. Diese Anordnung ist für asymmetrisch abstrahlende Downlights bevorzugt. Dabei können Neigungswinkel zwischen 10° und 80°, bevorzugt zwischen 20° und 60°, insbesondere bevorzugt zwischen 30° und 60°, vorgesehen sein. Die LED-Anordnung kann entweder direkt oder über eine flächige Platine, die an einer Oberfläche des Kühlkörpers eingesteckt wird, an den Kühlkörper angebracht sein. Bei diesen Ausführungsformen kann die Oberfläche des Kühlkörpers, an welcher die LED-Anordnung angebracht wird, gegenüber der Ebene, welche die Öffnung der Tragestruktur definiert, entsprechenden dem vorgegebenen Winkel geneigt sein. Gemäß einer alternativen Ausführungsform kann die LED-Anordnung jedoch auch über einen Träger, beispielsweise über eine abgewinkelte Platine oder Metallkörper, an dem Kühlkörper angebracht sein. In dieser Ausführung kann sich die Oberfläche des Kühlkörpers, welcher zum Anbringen der LEDs eingerichtet ist, parallel zur Ebene, welche die Öffnung der Tragestruktur definiert, vorgesehen sein. Diese Ausführungsform eignet sich besonders zur Verwendung von unterschiedlichen LED-Anordnungen und Reflektorbaugruppen. Das gleiche Downlight, d.h. mit dem gleichen Kühlkörper, kann mit einer flächig montierten LED-Anordnung zur Lichtabgabe senkrecht nach unten oder mit einer auf einer abgewinkelten Platine montierten LED-Anordnung zur asymmetrischen Lichtabgabe verwendet werden.
- Die LED-Anordnung für ein Downlight der vorliegenden Erfindung kann mehrere farbige LEDs, insbesondere LEDs mit unterschiedlichen Farben, z.B. Rot, Grün und Blau, aufweisen. Durch die Farben Rot, Grün und Blau lässt sich beispielsweise weißes Licht erzeugen. Die LED-Anordnung oder mehrere LED-Anordnungen können auch unterschiedlich angesteuert werden, so dass sich durch die verschiedenfarbigen LEDs Farbeffekte des Downlights einstellen lassen. Gemäß einer alternativen Ausführungsform können auch LEDs mit weißem Licht eingesetzt werden.
- Gemäß einer Ausführungsform der vorliegenden Erfindung weist der Kühlkörper mehrere Kühlrippen auf, wobei einige Kühlrippen gegenüber den übrigen Kühlrippen des Kühlkörpers verkürzt sind oder Aussparungen aufweisen, um die Umfangsform des Kühlkörpers an die Tragestruktur anzupassen. Die Tragestruktur umfasst beispielsweise mehrere etwa senkrecht zur Decke verlaufende Träger. Diese schränken den für den Kühlkörper zur Verfügung stehenden Platz ein. Um einen Kühlkörper mit möglichst großer Oberfläche zu versehen, sind entsprechend lange Kühlrippen gewünscht. Durch das Verkürzen oder Ausschneiden von nur einigen Kühlrippen wird jedoch die gesamte Kühlleistung des Kühlkörpers nicht wesentlich reduziert. Allerdings kann der Kühlkörper dadurch an den zur Verfügung stehenden Platz in der Tragestruktur angepasst werden.
- Nach einer bevorzugten Ausführungsform ist der maximale Durchmesser des Kühlkörpers im Querschnitt parallel zu einer durch die Öffnung der Tragestruktur definierten Ebene kleiner als der maximale Durchmesser der Öffnung in der Tragestruktur in besagter Ebene. Bei dieser Konstruktion lässt sich der Kühlkörper selbst im montierten Zustand des Downlights noch durch die Öffnung, welche die Tragestruktur definiert, ein- und ausbauen. Ein Ersetzen der elektronischen Bauteile, die am Kühlkörper angebracht sind, ist daher möglich, ohne die Tragestruktur aus der Decke entfernen zu müssen.
- Gemäß einer bevorzugten Ausführungsform weist der Kühlkörper einen Kupferkern und/oder eine Kupfergrundseite auf. Durch das Material Kupfer, im Vergleich zu dem sonst üblichen Aluminium, wird eine noch höhere Wärmeleitfähigkeit erzielt, so dass eine ausreichende Kühlung der LEDs selbst bei verhältnismäßig geringer Baugröße des Kühlkörpers noch erreicht werden kann. Der Kupferkern erstreckt sich dabei insbesondere in Längsrichtung des Kühlkörpers vertikal zur Einbauebene des Downlights. Dadurch lassen sich lange Kühlkörper mit geringem Durchmesser erzeugen. Durch die vertikale Montagerichtung ist das Ein- und Ausbauen des Kühlkörpers und das Montieren des Kühlkörpers in unterschiedlichen Einbaulagen möglich, weil keine Überstände des Kühlkörpers über die Tragestruktur in einer vertikalen Richtung bezogen auf die Einbauebene des Downlights hervorstehen.
- Gemäß einer Ausführungsform der Erfindung ist der Kühlkörper teilweise von einem Mantel umgeben, welcher Befestigungseinrichtungen zum Befestigen an der Tragestruktur aufweist. Gemäß einer alternativen Ausführungsform können die Befestigungseinrichtungen, wie z.B. Haken oder Vorstände, auch direkt an dem Kühlkörper integriert sein.
- Gemäß einem weiteren Aspekt der Erfindung ist auch ein Downlightsystem vorgesehen, das wenigstens ein Downlight nach einem der vorhergehend beschriebenen Ausführungsformen umfasst, wobei das Downlightsystem ferner wenigstens zwei Reflektorbaugruppen umfasst, die eine unterschiedliche Lichtverteilung erzeugen, insbesondere wenigstens zwei Reflektorbaugruppen mit unterschiedlicher Höhe und/oder mit rotationssymmetrischem und asymmetrischem Reflektor. Sofern das Reflektorsystem wenigstens zwei Reflektorbaugruppen aufweist, die jedoch beide die gleiche Bauhöhe aufweisen, kann gemäß einem unabhängigen Aspekt der Erfindung die Tragestruktur des Downlights auch nur eine Einbaulage des Kühlkörpers vorsehen.
- Eine bevorzugte Ausführungsform der Erfindung wird im Folgenden anhand der beigefügten Figuren beschrieben. In den Figuren ist Folgendes dargestellt:
- Figur 1
- zeigt ein Downlight in perspektivischer Ansicht von der Seite.
- Figur 2
- zeigt das Downlight nach
Figur 1 in perspektivischer Ansicht von schräg oben. - Figuren 3a und 3b
- zeigen den Kühlkörper des Downlights nach
Figur 1 in perspektivischer Ansicht bzw. in Aufsicht von unten. - Figuren 4a und 4b
- zeigen den Kühlkörper des Downlights nach
Figur 1 mit Mantel mit bzw. ohne Reflektorbaugruppe. - Figuren 5a bis 5d
- zeigen Querschnitte durch verschiedene Ausführungsformen des Down- lights, wobei das Gehäuse und der Kühlkörper des Downlights nur schematisch dargestellt sind.
- Figur 6
- zeigt einen Kühlkörper mit einem Mantel und einem Reflektorhaltering gemäß einer weiteren Ausführungsform.
- Figur 7
- zeigt den Mantel, den Reflektor und den Reflektorhaltering nach
Figur 6 in Explosionsansicht. - Figur 8
- zeigt einen Distanzring der alternativen Ausführungsform nach
Figur 6 . - Figur 9
- zeigt den Kühlkörper, den Distanzring und den Reflektorhaltering nach der alternativen Ausführungsform der
Figur 6 . - Figuren 10a-10c
- zeigen Querschnitte durch drei weitere Ausführungsformen von jeweils einem Kühlkörper und alternativen Leuchtmitteln und Reflektorbau- gruppen.
- Figuren 11a-11c
- zeigen perspektivische Ansichten der Ausführungsformen nach den
Figuren 10a-10c . - Bezug nehmend auf die
Figuren 1 und2 ist eine vollständige Ansicht einer Ausführungsform des erfindungsgemäßen Downlights zu sehen. Die dargestellte Ausführungsform ist zum Einbau in einem Ausschnitt einer Zwischendecke vorgesehen. Dabei kann das Downlight in der gezeigten Ausführungsform direkt in einen Deckenausschnitt eingebracht werden. Alternativ kann das dargstellte Downlight auch in einen Montagerahmen, der seinerseits in der Decke befestigt ist, montiert werden. - Eine Tragestruktur 2 besitzt einen kreisrunden Umfang, wobei die Seitenwände der Tragestruktur an der Außenseite von Ausschnitten abgesehen etwa zylindrisch sind und an der sich im Einbau nach unten gewandten Seite der Tragestruktur ein umlaufender Flansch 4 vorgesehen ist, der über den Ausschnitt in der Decke bzw. über die lichte Weite eines Deckeneinbaurahmens, der seinerseits in dem Deckenausschnitt befestigt ist, hinaussteht. Der Flansch 4 bildet zusammen mit dem unteren Abschnitt in der zylindrischen Seitenwand der Tragestruktur 2 einen durchgehenden Rahmen, der eine Öffnung 6 auf der Innenseite festlegt, die für den Lichtaustritt des Downlights bestimmt ist.
- Gemäß der gezeigten Ausführungsform ist die Öffnung 6 so groß bemessen, dass sämtliche Komponenten des Downlights, die innerhalb der Tragestruktur 2 befestigt werden, durch die Öffnung montiert werden können. In einer alternativen Ausführungsform kann die Öffnung jedoch auch kleiner sein, wobei in diesem Fall die Komponenten in der Tragestruktur montiert werden, bevor das Downlight in die Decke eingesetzt wird.
- Die Tragestruktur 2 umfasst auf zwei gegenüberliegenden Seiten entlang ihres Umfangs auf der der Lichtaustrittsseite gegenüberliegenden Seite zwei Trägerarme 8, welche auf der nach innen gewandten Seite Befestigungsmittel zum Halten der Komponenten in der Tragestruktur aufweisen. In der dargestellten Ausführungsform sind zwei Trägerarme 8 vorgesehen, die sich aus der Tragestruktur 2 nach oben erstrecken. Gemäß einer alternativen Ausführungsform, insbesondere bei schwereren und größeren Downlights, können auch mehrere Trägerarme 8 vorgesehen sein. Die Befestigungselemente auf der Innenseite der Trägerarme können auch in einer durchgängigen Wandung der Tragestruktur 2 integriert sein.
- Die Trägerarme 8 weisen auf der nach innen gerichteten Seite (in den Figuren nicht dargestellt) Vorsprünge auf, die mit Federelementen 10 zusammenwirken. Die Trägerarme weisen dabei insbesondere zwei Vorsprünge oder Einkerbungen auf, in denen Federzungen 12 des Federelements 10 eingreifen und einrasten können. Der Rastmechanismus ist so gestaltet, dass die im Inneren der Tragestruktur liegenden Bauteile in zwei verschiedenen Höhen H und H' eingerastet werden können.
- Bezug nehmend auf die
Figuren 4a und 4b sind nur die Komponenten des Downlights dargestellt, die im Inneren der Tragestruktur 2 angeordnet sind. Die Federelemente 10 sind auf der Außenseite eines zylindrischen Mantels 14, an Vorsprüngen von diesem, befestigt. Der zylindrische Mantel 14 nimmt im Inneren einen Kühlkörper 16 auf, welcher als einzelnes Bauteil in denFiguren 3a und 3b dargestellt ist. - Der Kühlkörper 16, welcher aus Aluminium mit einem Kupferkern 20 gebildet ist, ist im Querschnitt etwa sternförmig, wie in der
Figur 3b , welche die Aufsicht von unten auf den Kühlkörper zeigt, zu sehen ist. Dabei sind die Lamellen 18, 19 des Kühlkörpers unterschiedlich lang. Die Lamellen 18 an zwei gegenüberliegenden Seiten des Kerns 20 sind etwas länger ausgeführt als die Lamellen 19, die sich an zwei weiteren Bereichen des Kerns 20 anschließen. Die Form der Lamellen ist so abgestimmt, dass der Kühlkörper in den mit zwei Ausschnitten versehenen zylindrischen Mantel 14 passt und mit diesem fest verbunden werden kann. Dabei ist der Gesamtdurchmesser der Kombination aus zylindrischem Mantel 14 und dem Kühlkörper 16 so bestimmt, dass er durch die Öffnung 6 der Tragestruktur 2 hindurchgeführt werden kann. Der Vorteil von den ungleichmäßig langen Kühlrippen 18 bzw. 19 besteht darin, dass der zur Verfügung stehende Platz innerhalb der Tragestruktur 2 bestmöglichst ausgenutzt werden kann. In dem Bereich der Tragearme 8, innerhalb derer die Befestigungsmittel zum Tragen der Federn 12 angeordnet sein müssen, steht weniger Platz zur Verfügung, so dass die Kühlrippen 19 in diesem Umfangsbereich kürzer sind. In den übrigen Abschnitten, in denen der zylindrische Mantel auch ausgeschnitten ist, steht mehr Platz im Durchmesser zur Verfügung, so dass die entsprechenden Kühlrippen 18 etwas länger ausgeführt sein können. Der vorhandene Raum wird dadurch optimal ausgenutzt. - Der Kern 20 des Kühlkörper 16 ist in der dargestellten Ausführungsform aus Kupfer ausgebildet. Dies hat den Vorteil, dass die Grundseite des Kerns 20 in gutem thermischer Kontakt zu den Lamellen über die gesamte Höhe des Kühlkörpers steht. Dadurch lassen sich verhältnismäßig lange Kühlkörper bilden, welche in der Lage sind, die Wärme abzuführen, die an der Grundseite des Kühlkörpers, d.h. der zur Lichtaustrittsseite gewandten Seite des Kerns 20, eingebracht wird.
- Auf der Grundseite des Kerns 20 sind elektrische Anschlussmittel 22 sowie mechanische Befestigungsmittel für eine LED-Anordnung oder die LED-Anordnung direkt angebracht. In der gezeigten Ausführungsform steht eine Position zur Verfügung, an der eine LED-Anordnung (in den Figuren nicht dargestellt) angebracht werden kann. In alternativen Ausführungsformen können auch mehrere derartige Positionen vorgesehen sein, an welcher wahlweise LED-Anordnungen angebracht werden können.
- Ferner sind die Anschlussmittel 22 auch zur Befestigung einer Reflektorbaugruppe 24, die beispielsweise in
Figur 4b zu sehen ist, eingerichtet. Die Reflektorbaugruppe 24 erstreckt sich im montierten Zustand des Downlight zwischen der zur Lichtaustrittsseite gewandten Seite des Kühlkörpers 16 bis zu der Höhe der Öffnung 6, die innerhalb des Flansches 4 festgelegt ist. - Gemäß einem Aspekt der Erfindung sind verschiedene Reflektorbaugruppen 24 vorgesehen, die wahlweise an dem Downlight vorgesehen werden können, um die gewünschte Lichtverteilung des Downlights zu erzeugen. Die
Figuren 5a bis 5d zeigen im Querschnitt verschiedene Ausführungsformen von Reflektorbaugruppen 24 bis 24''', die an dem Downlight angebracht sind. Die Reflektorbaugruppen 24 und 24' (in denFiguren 5b und 5c dargestellt) besitzen eine rotationssymmetrische Reflektorfläche 25 bzw. 25', die sich entlang einer optischen Achse, welche bei dem Downlight entlang der Mittelsenkrechten der Leuchte ausgerichtet ist, erstrecken. Die Reflektorbaugruppe 24' besitzt ferner einen zylindrischen Ansatz, der sich unmittelbar an der Seite des Kühlkörpers 16, an dem die LEDs angeordnet sind, anschließt. Die Höhen, d.h. die Längserstreckung der Reflektorbaugruppen entlang der optischen Achse, sind unterschiedlich. Die Reflektorbaugruppen mit größerer Höhe H, wie die Reflektorbaugruppe 24, ist für tiefstrahlende Downlight vorgesehen, während die Reflektorbaugruppe 24' mit geringerer Höhe H' für breitstrahlende Downlights vorgesehen ist. Die Höhe H bzw. H' kann durch die Verstellbarkeit des Kühlkörpers 16 innerhalb der Tragestruktur 2 ausgeglichen werden. In der dargestellten Ausführungsform sind wenigstens zwei Rastpositionen vorgesehen, in die der Kühlkörper innerhalb der Tragestruktur 2 gehalten werden kann. Gemäß weiteren Ausführungsformen können jedoch auch mehr Rastpositionen oder sogar eine kontinuierliche Verstellung des Kühlkörpers 16 innerhalb der Tragestruktur 2 vorgesehen sein. - Die
Figuren 5a und5d zeigen Beispiele von Reflektorbaugruppen 24" bzw. 24''', die eine asymmetrische Reflektorwand 25" bzw. 25'" aufweisen. Diese Downlights sind bevorzugt, wenn ein Objekt, welches an einer Wand angebracht ist, oder die Wand selbst beleuchtet werden soll, die sich neben dem Einbauort des Downlights befindet. Gemäß der Ausführungsform nachFigur 5a ist die Reflektorbaugruppe, genauso wie in denFiguren 5b und 5c , an der Grundfläche des Kühlkörpers, die parallel zur Einbauebene des Downlights ausgerichtet ist, angebracht. Gemäß der Ausführungsform nachFigur 5d sind die LEDs an einer abgewinkelten Trägerplatine 26 oder einem Metallblech, z.B. aus Aluminium, angeordnet, die an der Grundseite des Kühlkörpers angebracht ist. Die Trägerplatine 22 ist in einem Winkel α, der beispielsweise zwischen 20° und 60° liegen kann, abgewinkelt. Diese Ausführungsform ist besonders bevorzugt in Kombination mit einer Reflektorbaugruppe 24"', die eine asymmetrische Reflektorwand 25'" aufweist. Diese Reflektoren können auch rechteckig ausgeführt sein. - Die Reflektorbaugruppen 24 können in einem Bauteil mit der LED-Anordnung verbunden sein. Bei der Ausführungsform nach
Figur 5d kann ferner die abgewinkelte Trägerplatine 26 ebenfalls mit der Reflektorbaugruppe 24'" in einem Bauteil verbunden sein. Die Reflektorbaugruppen einschließlich der LED-Anordnungen können an die Anschlussmittel 22 am Kühlkörper eingesteckt werden und werden mit diesen gleichzeitig elektrisch verbunden. Gemäß einer alternativen Ausführungsform können auch die Reflektorbaugruppen unabhängig von den LED-Anordnungen an die Anschlussmittel am Kühlkörper oder an der LED-Anordnung befestigt werden. - Mit Bezug auf die
Figuren 6 bis 9 wird eine weitere alternative Ausführungsform der Erfindung im Folgenden beschrieben. DieFiguren 6 bis 9 stellen in unterschiedlichen Anordnungen die Bauteile dar, welche in die Tragestruktur 2 gemäßFigur 1 eingefügt werden. Die Tragestruktur ist zur besseren Übersicht in denFiguren 6 bis 9 nicht dargestellt. - Bei der alternativen Ausführungsform gemäß der
Figuren 6 bis 9 ist ein Kühlkörper 116 vorgesehen, welcher auf der zur Lichtaustrittfläche weisenden Seite LEDs aufweist (in den Figuren nicht dargestellt). Daran schließt sich ein Reflektor 124 an, der jedoch im Unterschied zu den vorhergehend beschriebenen Ausführungsformen mit dem Kühlkörper oder den LED-Baugruppen nicht direkt verbunden ist, sondern mittels eines Reflektorhalterings 130 an einem zylindrischem Mantel 114 befestigt ist, wobei der zylindrische Mantel 114 den Kühlkörper 116 aufnimmt. - In der Explosionsansicht gemäß
Figur 7 wird die Verbindung zwischen dem Reflektorhaltering 130, dem Reflektor 124 und dem zylindrischen Mantel 114 erläutert. Der Reflektorhaltering 130 besteht aus zwei Ring-Halbschalen 132, die im unteren Bereich jeweils eine halbkreisförmige Nut 134 aufweisen, in welche der Reflektor 124 an seinem größten Durchmesser an der Lichtaustrittseite einrastet. Die endgültige Fixierung des Reflektors 124 an dem Reflektorhaltering 130 wird erreicht, wenn beide Ring-Halbschalen 132 zusammengefügt sind und miteinander verrastet sind. Zu diesem Zweck ist an den stirnseitigen Rändern der Ring-Halbschalen 132 jeweils eine Rastnase 136 bzw. auf der gegenüberliegenden Stirnseite eine Rastvertiefung 138 vorgesehen. Ferner sind zum einfachen Zusammenfügen der Ring-Halbschalen 132 an deren Stirnseiten Führungsbolzen 140 vorgesehen, die in Aussparungen auf der gegenüberliegenden Seite der anderen Ring-Halbschale 132 eingreifen. Um den Reflektor 124 spielfrei in den Reflektorhaltering 130 zu fixieren, ist weiterhin in jeder Ring-Halbschale 132 eine Federlasche 142 vorgesehen, welche den Reflektor zusätzlich an die Unterkante der halbkreisförmigen Nut 134 drückt. - Sobald der Reflektor 124 in dem zusammengesetzten Reflektorhaltering 130 montiert ist, kann diese Unterbaugruppe mit dem zylindrischen Mantel 114 und dadurch indirekt auch an dem Kühlkörper 116 verbunden werden. Zu diesem Zweck sind an dem Reflektorhaltering 130 auf der der Lichtaustrittsfläche des Reflektors gegenüberliegenden Seite Rastnasen 144 vorgesehen, die in gegenüberliegende Aussparungen im zylindrischen Mantel 114 einrasten (siehe
Figur 7 ). Der Kühlkörper 116 kann in dem zylindrischen Mantel 114 in unterschiedlichen Höhen aufgenommen werden abhängig von der Höhe des Reflektors 124. Zu diesem Zweck ist ein Distanzring 150 (sieheFigur 8 ) vorgesehen, der zwischen dem Reflektorhaltering 130 und dem Kühlkörper 116 angeordnet wird. Der Distanzring 150 liegt mit seiner Unterkante auf dem oberen Rand 139 des Reflektorhalterings 130 auf. Auf der entgegengesetzten Kante des Distanzrings 150 liegt der Kühlkörper 116 auf. Die Höhe des Distanzrings 150 ist auf die Höhe des Reflektors 124 abgestimmt, so dass der obere Rand des Reflektors 124 etwa bündig an der unteren Fläche des Kühlkörpers, an der auch die LEDs angeordnet sind, angrenzt. Für unterschiedlich hohe Reflektoren 134 lässt sich der Distanzring 150 modifizieren. Zu diesem Zweck sind am oberen Rand des Distanzrings 150 im Umfang mehrere Laschen 152 angebracht, die bedarfsweise abgebrochen werden können. Dadurch ändert sich die Höhe des Distanzrings 150 und demzufolge der Abstand zwischen dem unteren Rand des Kühlkörpers 116 und dem Reflektorhaltering 130. Selbstverständlich können auch verschiedene Distanzringe 150 abhängig von den eingesetzten Reflektoren 124 vorgesehen sein, die mit oder ohne Laschen 152 eine Höhe definieren, die an die Höhe des Reflektors 124 angepasst ist. - Auf der oberen Seite des Kühlkörpers 116 ist eine Feder 160 vorgesehen (siehe
Figur 6 ), die sich an dem zylindrischen Mantel 114 abstützt und den Kühlkörper 116 in Richtung auf den Distanzring 150 drückt, so dass der Kühlkörper in dem zylindrischen Mantel 114 in der gewünschten Höhe gehalten wird. - Gemäß einer alternativen Ausführungsform kann der Distanzring 150 auch an dem zylindrischen Mantel, beispielsweise auf einer Stufe oder einem Vorsprung des zylindrischen Mantels abgestützt sein. Diese Ausführungsform hat insbesondere den Vorteil, dass die Federkraft, welche durch die Feder 160 auf den Kühlkörper 116 ausgeübt wird, nicht die Rastverbindung zwischen dem Reflektorhaltering 130 und dem zylindrischen Mantel 114 belastet. Der Distanzring 150 kann wie in der vorhergehenden Ausführungsform beschrieben ausgeführt sein.
- Die vormontierte Baugruppe, welche den Kühlkörper 116, den zylindrischen Mantel 114, den Distanzring 150 sowie den Reflektorhaltering 130 umfasst, kann anschließend in der Tragstruktur 2, im Prinzip wie in
Figur 1 dargestellt, eingefügt werden. Durch die Möglichkeit der Anpassung des Distanzringes an die Höhe des Reflektors lässt sich auch diese Ausführungsform jede gewünschte Reflektorbaugruppe so montieren, dass der untere Rand des Reflektors bündig mit der Lichtaustrittsfläche des Downlights abschließt. Die Position des zylindrischen Mantels 114 in Bezug auf die Tragestruktur 2 bleibt bei dieser Ausführungsform auch für verschiedene Reflektorhöhen H die gleiche. In anderen Ausführungsformen kann auch vorgesehen sein, dass zwischen der Lichtaustrittsfläche des Downlights und dem unteren Rand des Reflektors noch eine Abdeckscheibe oder eine Schattenfuge vorgesehen ist. In diesem Fall wird der Kühlkörper und der Reflektor entsprechend höher angeordnet. - Nach einem Aspekt der Erfindung sind verschiedene Ausführungsformen der vorhergehend beschriebenen Downlights als ein Downlightsystem vorgesehen. Bei dem Downlightsystem sind die verschiedenen Reflektorbaugruppen miteinander austauschbar und können jeweils mit dem gleichen Downlight, d.h. insbesondere der gleichen Tragestruktur 2 und dem gleichen Kühlkörper 16 oder 116, verbunden werden. Bei einem solchen Downlightsystem kann die Auswahl der zu erzeugenden Lichtverteilung noch vor Ort bei der Montage ausgewählt werden, weil alle Komponenten zueinander kompatibel sind und insbesondere die Einbaulage des Kühlkörpers entsprechend der vorgesehenen Reflektorbaugruppe ausgewählt werden kann.
- Bezug nehmend auf die
Figuren 10a-c und11a-c sind drei weitere Ausführungsformen von Downlightsystemen dargestellt, welche jeweils in einer Tragestruktur (in denFiguren 10a-c und11a-c nicht dargestellt) mittels Aufnahmen 211 in Form von hervorspringenden Elementen montiert werden können. Bei allen drei Ausführungsformen werden die Grundkomponenten aus einem Kühlkörper 216 und einem Reflektor 224 gebildet, der mittels einer mechanischen Verbindung an dem Kühlkörper 216 in einem vorgegebenen Abstand zu einer Anlagefläche für die Leuchtmittel angebracht ist. Die Abwandlungen der drei Ausführungsformen bestehen in unterschiedlichen Lichtquellen und Reflektoranbauteilen. In der Ausführungsform nachFigur 11a ist die Lichtquelle durch ein LED-Modul 222 gebildet, welches an einer Ebene des Kühlkörpers 216 direkt angrenzt und sich bis zu einer Oberkante des Reflektors 224 erstreckt. In der Ausführungsform nach denFiguren 10b und11b ist ein LED-Modul 222' mit geringerer Bauhöhe vorgesehen, welches in einer Fassung 221 montiert ist, die sich an der Unterseite des Kühlkörpers 216 befindet. Auch bei dieser Ausführungsform besteht eine thermische Verbindung zwischen dem LED-Modul 222' und dem Kühlkörper 216 über die Fassung 221. Bei der dritten Ausführungsform nach denFiguren 10c und11c ist ein LED-Modul 222" direkt an der Trägerplatine 226, die an dem Kühlkörper 216 angebracht ist, vorgesehen. Bei dieser Ausführungsform umfasst das LED-Modul ferner eine Streukalotte 228, die sich über die LEDs erstreckt und für eine Lichtstreuung sorgt. Das LED-Modul 222" der letzten Ausführungsform besitzt eine deutlich geringere Bauhöhe als die anderen LED-Module. Zum Ausgleich des Abstandes zu der Oberkante des Reflektors 224 ist bei der letzten Ausführungsform ein Zusatzreflektor 224' vorgesehen, der den Zwischenraum zwischen dem Reflektor 224 und dem LED-Modul 222" ausfüllt. Die Reflektorbaugruppe in dieser Ausführungsform umfasst demnach zwei Reflektoren 224 und 224', die vorzugsweise wie in derFigur 11c gezeigt, lückenlos aneinander gefügt werden können und eine einheitliche Reflektorfläche bilden. Das gleiche Reflektorbauteil 224 kann jedoch auch einzeln für die anderen Ausführungsformen mit den LED-Modulen 222 und 222' Anwendung finden. Gemäß der Ausführungsform nachFigur 10b und11b ist ferner zwischen dem LED-Modul 222' und der Oberkante des Reflektors 224 ein Abblendring 227 angeordnet, der einen lückenlosen Anschluss zwischen dem LED-Modul 222' und der Reflektoroberkante zur Vermeidung von Lichtaustritt bildet. - Bei allen drei Ausführungsformen der
Figuren 10a bis 10c bzw. 11a bis 11c kann der Kühlkörper 216 in wenigstens zwei unterschiedlichen Höhen in der Tragestruktur, die deckenseitig montiert werden kann, befestigt werden, so dass die Anordnung der LEDs, welche in dem LED-Modul der verschiedenen Ausführungsformen integriert ist, unterschiedliche Höhen gegenüber der Tragestruktur annehmen. Ferner ist durch den modularen Aufbau der Reflektorbaugruppe aus wenigstens einem Reflektor und optional einem Zwischenreflektor oder Abblendring die Möglichkeit gegeben, unterschiedlich hohe LED-Baugruppe an jeweils dem gleichen Kühlkörper anzubringen. Auf diese Weise lassen sich z. B. unterschiedliche LED-Lichtquellen verschiedener Geometrien oder verschiedener Leistungsklassen einsetzen. Ferner ermöglicht die Konstruktion durch Einsatz unterschiedlicher LED-Baugruppen bzw. dem Einsetzen eines Zwischenstückes, wie der Fassung 221, die LED-Anordnung in unterschiedlichen Höhen gegenüber der Anbaufläche des Kühlkörpers zu montieren. Auch auf diese Weise lässt sich der Abstand zwischen der an dem Kühlkörper angebrachten LED-Anordnung und der Öffnung der Tragestruktur ebenfalls einstellen. -
- 2
- Tragestruktur
- 4
- Flansch
- 6
- Öffnung
- 8
- Trägerarm
- 10
- Federelemente
- 12
- Federzunge
- 14
- zylindrischer Mantel
- 16
- Kühlkörper
- 18
- Lamellen, lang
- 19
- Lamellen, kurz
- 20
- Kern
- 22
- Anschlussmittel für LED-Anordnung
- 24, 24', 24", 24"'
- Reflektorbaugruppe
- 25, 25', 25", 25"'
- Reflektorwand
- 26
- Trägerplatine
- 114
- zylindrischer Matel
- 116
- Kühlkörper
- 124
- Reflektor
- 130
- Reflektorhaltering
- 132
- Ring-Halbschalen
- 134
- Nut
- 136
- Rastnase
- 138
- Rastvertiefung
- 139
- Rand
- 140
- Führungsbolzen
- 142
- Rastnase
- 144
- Rastnase
- 150
- Distanzstück
- 152
- Lasche
- 160
- Haltefeder
- 211
- Aufnahme für Tragestruktur
- 216
- Kühlkörper
- 221
- Fassung
- 222, 222', 222"
- LED-Modul
- 224, 224'
- Reflektorbaugruppe
- 226
- Trägerplatine
- 227
- Abblendring
- 228
- Streukalotte
Claims (15)
- Downlight, das Folgendes aufweist:eine Tragestruktur (2) zum Einbau oder Anbau in bzw. an einer Decke mit einer durch einen Rahmen der Tragestruktur (2) festgelegten Öffnung (6) für den Lichtaustritt des Downlights,einen Kühlkörper (16), welcher an der Tragestruktur (2) gehalten ist,wenigstens eine LED-Anordnung, die mit dem Kühlkörper (16) thermisch verbunden ist und an dem Kühlkörper (16) mechanisch angebracht ist,sowie wenigstens eine Reflektorbaugruppe (24, 24', 24", 24"', 124, 224, 224'), die sich von der LED-Anordnung in Richtung zur Öffnung (6) der Tragstruktur erstreckt,dadurch gekennzeichnet, dass der Kühlkörper (16) an der Tragestruktur (2) und/oder die LED-Anordnung an dem Kühlkörper in wenigstens zwei verschiedenen Einbaulagen anbringbar ist, so dass die an dem Kühlkörper (16) angebrachte LED-Anordnung unterschiedliche Abstände (H; H') gegenüber der Öffnung (6) der Tragestruktur (2) annimmt.
- Downlight nach Anspruch 1, wobei sich die Reflektorbaugruppe (24, 24', 24", 24"', 124, 224, 224') wenigstens über den gesamten Abstand zwischen der LED-Anordnung und der Öffnung (6) der Tragestruktur (2) erstreckt.
- Downlight nach einem der vorhergehenden Ansprüche, wobei die Öffnung (6) der Tragestruktur (2) und eine Lichtaustrittsöffnung, die durch einen Rand der Reflektorbaugruppe (24, 24', 24", 24"', 124, 224, 224') definiert wird, in der gleichen Ebene liegen.
- Downlight nach einem der vorhergehenden Ansprüche, wobei die LED-Anordnung an einer zur Öffnung (6) der Tragestruktur (2) weisenden Oberfläche des Kühlkörpers, vorzugsweise abnehmbar, angebracht ist.
- Downlight nach Anspruch 4, wobei die besagte Oberfläche des Kühlkörpers eine oder mehrere Positionen zum Anbringen der LED-Anordnung oder zum Anbringen mehrerer LED-Anordnungen aufweist, wobei die mehreren Positionen vorzugsweise separat ansteuerbare, elektrische Anschlussmittel (22) für die LED-Anordnung aufweisen.
- Downlight nach einem der vorhergehenden Ansprüche, wobei die Reflektorbaugruppe (24, 24', 24", 24"', 124, 224, 224') eine rotationssymmetrische (25, 25') oder eine asymmetrische (25", 25"') Reflektorfläche aufweist.
- Downlight nach einem der vorhergehenden Ansprüche, wobei die LED-Anordnung in einer Ebene an dem Kühlkörper (16) direkt oder indirekt angebracht ist, die gegenüber einer Ebene, welche die Öffnung (6) der Trägerstruktur definiert, geneigt ist, insbesondere zwischen 10° und 80°, bevorzugt zwischen 30° und 60°.
- Downlight nach einem der vorhergehenden Ansprüche, wobei der Kühlkörper (16) mehrere Kühlrippen (18; 19) aufweist, wobei einige der Kühlrippen gegenüber den übrigen Kühlrippen des Kühlkörpers verkürzt sind oder Aussparungen aufweisen, um eine Umfangsform des Kühlkörpers an die Tragestruktur (2) anzupassen.
- Downlight nach einem der vorhergehenden Ansprüche, wobei der maximale Durchmesser des Kühlkörpers (16) im Querschnitt parallel zu einer durch die Öffnung (6) der Tragestruktur (2) definierten Ebene kleiner ist als der maximale Durchmesser der Öffnung (6) der Tragestruktur (2) in besagter Ebene.
- Downlight nach einem der vorhergehenden Ansprüche, wobei der Kühlkörper (16, 116) teilweise von einem Mantel (14, 114) umgeben ist, welcher Befestigungseinrichtungen zum Befestigen der Tragestruktur (2) aufweist.
- Downlight nach einem der vorhergehenden Ansprüche, wobei der Kühlkörper (116) mittels eines Zwischenstücks, insbesondere eines zylindrischen Mantels (114), in der Tragstruktur (2) befestigt ist, wobei der Kühlkörper (116) in unterschiedlichen Höhen in dem Zwischenelement montierbar ist.
- Downlight nach einem der vorhergehenden Ansprüche, wobei die Reflektorbaugruppe einen Reflektor (124) und einen Reflektorhaltering (130) und/oder mehrere modular aneinanderfügbare Reflektoren (224, 224') umfasst.
- Downlight nach Anspruch 12, wobei der Reflektorhaltering (130) aus mehreren separaten Teilen zusammenfügbar ist, wobei der Reflektorhaltering insbesondere in Umfangsrichtung aus zwei oder mehr Ringteilen (132) zusammenfügbar ist.
- Downlight nach Anspruch 12 oder 13, wobei zwischen dem Reflektorhaltering (130) oder, mit Rückbezug auf Anspruch 11, zwischen einem Vorsprung des zylindrischen Mantels und dem Kühlkörper (116) ein Distanzstück (150), insbesondere ein Distanzstück mit veränderbarer Höhe, z.B. mit entfernbaren Laschen (152), angeordnet ist.
- Downlightsystem umfassend ein Downlight nach einem der vorhergehenden Ansprüche, wobei das Downlightsystem ferner wenigstens zwei Reflektorbaugruppen (24, 24', 24", 24"') umfasst, die unterschiedliche Lichtverteilung erzeugen, insbesondere wenigstens zwei Reflektorbaugruppen mit unterschiedlicher Höhe und/oder mit rotationssymmetrischen und asymmetrischen Reflektor aufweisen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009053577 | 2009-11-17 | ||
DE102010013690A DE102010013690A1 (de) | 2009-11-17 | 2010-04-01 | Variables LED-Downlight |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2322847A2 true EP2322847A2 (de) | 2011-05-18 |
EP2322847A3 EP2322847A3 (de) | 2012-08-01 |
EP2322847B1 EP2322847B1 (de) | 2013-03-27 |
Family
ID=43558058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10191374A Active EP2322847B1 (de) | 2009-11-17 | 2010-11-16 | Variables LED-downlight |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2322847B1 (de) |
DE (1) | DE102010013690A1 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013123374A1 (en) * | 2012-02-17 | 2013-08-22 | Lumenoptix, Llc | Light fixtures and processes for use thereof |
EP3293440A1 (de) * | 2016-09-12 | 2018-03-14 | Bartenbach Holding GmbH | Leuchtensatz sowie strahler hierfür |
EP3196540A4 (de) * | 2014-08-28 | 2018-03-28 | Modulex Inc. | Körper einer beleuchtungsvorrichtung und beleuchtungsvorrichtung |
GB2559635A (en) * | 2017-07-05 | 2018-08-15 | John Cullen Lighting Ltd | Luminaire |
CN109882775A (zh) * | 2019-03-20 | 2019-06-14 | 谢进华 | 一种弹簧夹间距可调的天花灯 |
WO2020057956A1 (en) * | 2018-09-17 | 2020-03-26 | Signify Holding B.V. | Adjustable recessed lighting apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011113653B4 (de) * | 2011-09-19 | 2016-02-18 | Rüdiger Lanz | LED-Hochleistungsspot |
DE102013107395B4 (de) | 2013-07-12 | 2016-08-25 | Rüdiger Lanz | LED-Hochleistungsspot |
DE102017113948A1 (de) * | 2017-06-23 | 2018-12-27 | Wolfgang Koerfer | Kühlkörper für ein LED Leuchtmittel und Verfahren zum Herstellen des Kühlkörpers |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008009814A1 (de) | 2008-02-19 | 2009-08-20 | Zumtobel Lighting Gmbh & Co. Kg | Leuchte, insbesondere Downlight |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7357541B2 (en) * | 2004-04-05 | 2008-04-15 | Genlyte Thomas Group, Llc | Enclosure for socket cup for snap-in electrical quick connectors |
WO2009039491A1 (en) * | 2007-09-21 | 2009-03-26 | Cooper Technologies Company | Light emitting diode recessed light fixture |
-
2010
- 2010-04-01 DE DE102010013690A patent/DE102010013690A1/de not_active Withdrawn
- 2010-11-16 EP EP10191374A patent/EP2322847B1/de active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008009814A1 (de) | 2008-02-19 | 2009-08-20 | Zumtobel Lighting Gmbh & Co. Kg | Leuchte, insbesondere Downlight |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013123374A1 (en) * | 2012-02-17 | 2013-08-22 | Lumenoptix, Llc | Light fixtures and processes for use thereof |
US9239153B2 (en) | 2012-02-17 | 2016-01-19 | Lumenoptix, Llc | Light fixtures and processes for use thereof |
EP3196540A4 (de) * | 2014-08-28 | 2018-03-28 | Modulex Inc. | Körper einer beleuchtungsvorrichtung und beleuchtungsvorrichtung |
US10359162B2 (en) | 2014-08-28 | 2019-07-23 | Modulex Inc. | Lighting device with off-axis reflector and light source |
EP3293440A1 (de) * | 2016-09-12 | 2018-03-14 | Bartenbach Holding GmbH | Leuchtensatz sowie strahler hierfür |
GB2559635A (en) * | 2017-07-05 | 2018-08-15 | John Cullen Lighting Ltd | Luminaire |
GB2559635B (en) * | 2017-07-05 | 2019-05-29 | John Cullen Lighting Ltd | Luminaire |
WO2020057956A1 (en) * | 2018-09-17 | 2020-03-26 | Signify Holding B.V. | Adjustable recessed lighting apparatus |
CN109882775A (zh) * | 2019-03-20 | 2019-06-14 | 谢进华 | 一种弹簧夹间距可调的天花灯 |
Also Published As
Publication number | Publication date |
---|---|
DE102010013690A1 (de) | 2011-05-19 |
EP2322847A3 (de) | 2012-08-01 |
EP2322847B1 (de) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2322847B1 (de) | Variables LED-downlight | |
DE60223050T2 (de) | Fahrzeuglampenanordnung mit kühlkörper | |
EP1721102B1 (de) | Lampe | |
DE102004062989A1 (de) | Beleuchtungseinrichtung mit mindestens einer Leuchtdiode und Fahrzeugscheinwerfer | |
EP3534066B1 (de) | Leuchte, gehäusekomponente für eine leuchte, sowie verfahren zur herstellung einer leuchte | |
DE102018117378A1 (de) | Leistungsversorgung, Lampe, bewegliche Vorrichtung und Verfahren zur Herstellung einer Leistungsversorgung | |
DE202006017924U1 (de) | Beleuchtungseinheit mit einer LED-Lichtquelle | |
WO2012037588A1 (de) | Vorrichtung zum befestigen und kontaktieren eines leuchtmittels und/oder eines leuchtmoduls, sowie leuchte | |
CH709009B1 (de) | Befestigung einer Leiterplatte und einer Optik einer Leuchte. | |
DE102009023268A1 (de) | LED-Beleuchtungseinheit mit Reflektor | |
DE202011052125U1 (de) | Leuchte mit einem Reflektor und Reflektoranordnung | |
WO2012032191A1 (de) | Led-beleuchtungsvorrichtung | |
DE102021201873A1 (de) | Reflektor, leuchte, werkzeug, fahrzeug und verfahren zur herstellung einer leuchte | |
EP1247690A2 (de) | Fahrzeugleuchte | |
DE102012013332A1 (de) | LED-Leuchtenreflektor und Leuchte | |
DE102014110010A1 (de) | Lichtmodul | |
EP2871403B2 (de) | Anordnung zur Lichtabgabe für unterschiedliche Montageformen sowie Leuchte mit einer solchen Anordnung | |
DE202012103474U1 (de) | LED-Leuchte | |
EP3446031B1 (de) | Schaltschrankleuchte mit verstellbarer leuchtmittelplatine | |
DE102008006576A1 (de) | Leuchte mit selbsttragender Reflektoreinheit | |
EP3627045B1 (de) | Leuchtmitteleinsatzmodul | |
EP3969807B1 (de) | Leuchte mit kühlluftkanälen | |
EP2071231B1 (de) | Leuchte, insbesondere Raumleuchte | |
EP4113000A1 (de) | Beleuchtungsvorrichtung für einen scheinwerfer | |
EP2194314B1 (de) | Leuchte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SITECO BELEUCHTUNGSTECHNIK GMBH |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F21S 8/02 20060101AFI20120627BHEP Ipc: F21Y 101/02 20060101ALN20120627BHEP Ipc: F21V 14/02 20060101ALI20120627BHEP Ipc: F21V 29/00 20060101ALI20120627BHEP |
|
17P | Request for examination filed |
Effective date: 20120917 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: ISLER AND PEDRAZZINI AG, CH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 603636 Country of ref document: AT Kind code of ref document: T Effective date: 20130415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010002703 Country of ref document: DE Effective date: 20130516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130627 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130627 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130628 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130729 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130727 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130708 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140103 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010002703 Country of ref document: DE Effective date: 20140103 |
|
BERE | Be: lapsed |
Owner name: SITECO BELEUCHTUNGSTECHNIK G.M.B.H. Effective date: 20131130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130627 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101116 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171123 Year of fee payment: 8 Ref country code: CH Payment date: 20171120 Year of fee payment: 8 Ref country code: IT Payment date: 20171124 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: BERICHTIGUNGEN |
|
RIC2 | Information provided on ipc code assigned after grant |
Ipc: F21Y 101/02 20000101ALN20120627BHEP Ipc: F21V 29/00 20150101ALI20120627BHEP Ipc: F21S 8/02 20060101AFI20120627BHEP Ipc: F21V 14/02 20060101ALI20120627BHEP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181116 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010002703 Country of ref document: DE Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502010002703 Country of ref document: DE Owner name: SITECO GMBH, DE Free format text: FORMER OWNER: SITECO BELEUCHTUNGSTECHNIK GMBH, 83301 TRAUNREUT, DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 603636 Country of ref document: AT Kind code of ref document: T Owner name: SITECO GMBH, DE Effective date: 20201028 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231120 Year of fee payment: 14 Ref country code: AT Payment date: 20231117 Year of fee payment: 14 |