EP2318331A2 - Procede de coulee d'un materiau explosif a vulnerabilite reduite et materiau mis en oeuvre dans un tel procede - Google Patents

Procede de coulee d'un materiau explosif a vulnerabilite reduite et materiau mis en oeuvre dans un tel procede

Info

Publication number
EP2318331A2
EP2318331A2 EP09784303A EP09784303A EP2318331A2 EP 2318331 A2 EP2318331 A2 EP 2318331A2 EP 09784303 A EP09784303 A EP 09784303A EP 09784303 A EP09784303 A EP 09784303A EP 2318331 A2 EP2318331 A2 EP 2318331A2
Authority
EP
European Patent Office
Prior art keywords
explosive
explosive material
grains
meltable
fusible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09784303A
Other languages
German (de)
English (en)
Other versions
EP2318331B1 (fr
Inventor
Ana Weckerle
Nicole Forichon-Chaumet
Alain Rodric
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexter Munitions SA
Original Assignee
Nexter Munitions SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexter Munitions SA filed Critical Nexter Munitions SA
Priority to PL09784303T priority Critical patent/PL2318331T3/pl
Publication of EP2318331A2 publication Critical patent/EP2318331A2/fr
Application granted granted Critical
Publication of EP2318331B1 publication Critical patent/EP2318331B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/005By a process involving melting at least part of the ingredients
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0066Shaping the mixture by granulation, e.g. flaking
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/04Compositions containing a nitrated organic compound the nitrated compound being an aromatic
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine

Definitions

  • the technical field of the invention is that of explosive materials with reduced vulnerability as well as processes for casting such explosive materials.
  • Explosive materials with reduced vulnerability become essential for the design of ammunition. In fact, they make it possible to produce ammunition that can withstand attacks such as bullets or fires without detonating.
  • Composite explosives use crosslinkable organic polymers. They are implemented by casting the explosive mixed with the organic binder and the solidification is obtained by the polymerization of the load.
  • Mergeable explosives are constituted by a material combining, on the one hand, a solid phase comprising at least one solid explosive with reduced vulnerability, and on the other hand a merging phase which comprises at least one fusible explosive, at least one phlegmatizer and at least one an emulsifier of the phlegmatizer in the mergeable explosive.
  • the reduced-vulnerability solid explosive is most often constituted by Oxinitrotriazole (or ONTA), but it is also possible to use triaminotrinitrobenzene (TATB) or Nitroguanidine (NGu).
  • the meltable explosive is preferably a nitrated aromatic (such as trinitrotoluene or TNT, or 2,4,6-trinitro-N-methyl aniline or TNMA), and the phlegmatizer is most often constituted by a wax.
  • Patent EP814069 thus describes various types of fusible explosives with reduced vulnerability as well as their methods of preparation.
  • the solid phase is then introduced into the liquid phase, then the casting is carried out in the munition body and finally the cooling leading to the solidification of the explosive.
  • the steps to be carried out involve a meltable phase and a solid phase which must be mixed carefully to ensure a homogeneous composition.
  • This mixture is particularly delicate as mergeable insensitive explosives implement a share phlegmatizer (wax) relatively high (greater than or equal to 3% by weight).
  • the hot mix of the explosive meltable with phlegmatizer which must ensure its coating therefore requires the implementation of an emulsifier and the vigorous mixing of these elements to ensure the creation of a homogeneous emulsion.
  • the temperature must also be controlled.
  • Such a process is far more complex than the conventional melt explosive casting processes in which it is generally sufficient to mix the meltable explosive (TNT) and the solid explosive (hexogen) in a casting tank prior to casting.
  • TNT meltable explosive
  • hexogen solid explosive
  • Patent EP35376 also discloses a process for the preparation of an explosive composition containing aluminum.
  • granules of a composition combining very explosive substances are produced on the one hand.
  • energy HMX, RDX
  • wax and aluminum powder and secondly other granules of a composition combining TNT and an emulsifier.
  • These two types of granules are then mixed in the desired proportions to achieve the final explosive loading.
  • Such a method is complex implementation because it requires the realization of two types of granules that will be mixed later.
  • This process also requires a mixture of the starting compounds in water which requires the use of a particular aluminum powder which is treated to resist water.
  • this method does not describe an explosive composition using an explosive with reduced vulnerability, such as ONTA.
  • the object of the invention is to propose a process for casting an explosive material with reduced vulnerability, a process that makes it possible to simplify the casting operations.
  • This method proposes the implementation of an explosive material prefabricated and ready for use. It can thus be easily implemented by manufacturers equipped with conventional casting equipment.
  • the subject of the invention is a process for casting an explosive material of reduced vulnerability which combines, on the one hand, a solid phase comprising at least one solid explosive with reduced vulnerability, and on the other hand a merging phase which comprises at least one less a meltable explosive, at least one phlegmatizer and at least one emulsifier of the phlegmatizer in the meltable explosive, characterized in that the explosive material is placed in the solid state in a melting tank equipped with heated and equipped with agitation means, the explosive material being placed in the tank in the form of prefabricated grains, grains having been manufactured beforehand during of mixing steps, casting and solidification and shaping, the finished grains of the meltable explosive material having dimensions greater than the largest initial particle size of the solid phase materials they contain.
  • the meltable phase of the meltable explosive material may comprise substantially trinitrotoluene.
  • the solid phase of the meltable explosive material may comprise substantially oxinitrotriazole.
  • the heating vessel containing the grains is brought to a temperature of 10% to 35% higher than the melting temperature of the meltable explosive material and with stirring so as to ensure the emulsification of the various materials constituting the mixture.
  • the explosive material is then cooled to a temperature slightly (2% to 7%) higher than the melting temperature of the meltable explosive material, before casting.
  • the invention also aims to propose a fusible explosive material with reduced vulnerability prefabricated and ready for use and simplified implementation.
  • the fusible explosive material according to the invention is thus characterized in that it is in the form of solid grains of a mixture associating, on the one hand, a solid phase comprising at least one solid explosive with reduced vulnerability, and on the other hand part of a merging phase which comprises at least one meltable explosive, at least one phlegmatizer and at least one emulsifier of the phlegmatizer in the meltable explosive, the grains of the explosive material having been manufactured beforehand during mixing steps, casting then solidification and formatting, the grains of the meltable explosive material also having dimensions greater than the largest grain size of the solid phase materials they contain.
  • the grains may be in the form of flakes or flakes, so will have a substantially planar shape having a thickness less than the dimensions of their planar shape.
  • the grains may have a generally cylindrical or spherical shape.
  • the meltable phase of the explosive material may comprise essentially trinitrotoluene.
  • the solid phase of the explosive material may comprise essentially oxinitrotriazole.
  • the fusible explosive material may thus consist of a mixture of:
  • FIG. 1 shows an equipment allowing the implementation of the method according to the invention
  • FIGS. 2a, 2b, 2c, 2d show different embodiments of the grains of the material according to the invention
  • FIGS. 3a and 3b are diagrams of equipment for producing grains of the material according to the invention
  • Figure 3b is a cross section taken at one of the drums driving the treadmill of the equipment.
  • Figure 1 shows a casting installation 1 which is intended to ensure the explosive loading of several ammunition bodies 2, here artillery shells arranged on a transport pallet 3 movable.
  • Each shell 2 carries a riser 2a which is intended to facilitate the casting and which allows to leave a block of explosive outside the shell body, block on which occur deformations and shrinkage related to cooling. This block is disengaged from the shell after cooling.
  • the installation 1 mainly comprises a pouring vessel 4 which is disposed above one of the munition bodies 2. Concretely the tank 4 will be fixed on a not shown support and the ammunition body 2 will be positioned by moving the pallet 3.
  • the tank 4 is made in a conventional manner in a material resistant to corrosion, for example stainless steel. It comprises a lid 4a which can be tilted to close the tank in a sealed manner. It contains an agitator means 5, which is shown very schematically here.
  • This means is a planetary type mixer and it comprises in a well known manner rotary blades driven by a motor (not shown). The blades will have dimensions allowing them to mix the whole mixture.
  • the tank 4 At its lower part the tank 4 comprises a nozzle 4b closed by a pouring valve 6, the opening and closing are controlled by a control means 7, for example a programmable controller.
  • a control means 7 for example a programmable controller.
  • the tank 4 is connected to a first heating means 8a, such as a boiler.
  • a heat transfer fluid is led from the boiler 8a to the vessel through a pipe 9 on which is placed a thermostatic valve 10.
  • the vessel has a double wall inside which the heat transfer fluid can circulate.
  • the nozzle 4b is connected to a second boiler 8b by a thermostatic valve 11.
  • This ensures a homogeneity of the temperature of the explosive material both inside the tank 4 and at the nozzle 4b.
  • the implementation of two separate boilers ensures independent heating for the tank 4 and the nozzle 4b.
  • the temperature will be chosen according to the melting characteristics of the material to be cast. Generally for fusible explosive materials, the temperature is between 75 ° C and 110 ° C.
  • the thermostatic valves 10 and 11 can advantageously be controlled by the temperature controller 7 (links to the PLC are not shown for the sake of clarity).
  • temperature probes will be arranged at the level of the different pipes as well as the tank and the nozzle.
  • a pouring funnel 18 is fixed at a bottom of the tank, that is to say here to the nozzle 4b. It is intended to ensure a vacuum casting of the explosive in the ammunition body 2. In fact the fusible explosives reduced vulnerability are generally quite viscous. The vacuum casting facilitates (and accelerates) the loading of the ammunition bodies 2.
  • Vacuum means 17 (such as a vacuum pump) are provided. These means make it possible to carry out the vacuum at the level of the tank 4 and also at the level of the casting funnel 18, the nozzle 4b and the ammunition body 2 on which the funnel 18 is positioned.
  • the vacuum pump 17 is thus connected to the tank 4 by a pipe 21 on which is placed a first stop valve 22.
  • the vacuum pump 17 is also connected to the funnel 18 (more precisely to the nozzle 4b situated above the funnel) via a pipe 19 on which is placed a second shut-off valve 20.
  • each valve 20,22 and the control of the pouring valve 6 are provided by the programmable controller 7.
  • this installation 1 is conventional. It can be used to load ammunition with a conventional explosive, for example a composition B (associating hexogen and Trinitrotoluene in the respective proportions by weight of 60% and 40%).
  • vacuum casting means makes it possible to evacuate the bubbles in the loading carried out. These means also facilitate the loading of a viscous explosive.
  • This installation can also be used without further modifications to load the ammunition bodies 2 with an explosive with reduced vulnerability.
  • the explosive material in the form of solid grains "prefabricated” and “ready for use” of an explosive material with reduced vulnerability.
  • This material will combine, on the one hand, a solid phase comprising at least one reduced-vulnerability solid explosive (for example oxinitrotriazole or ONTA), and on the other hand a meltable phase which comprises at least one meltable explosive (for example trinitrotoluene). or TNT), at least one phlegmatizer (such as a wax) and at least one emulsifier of the phlegmatizer in the meltable explosive.
  • the material will thus for example consist of a mixture of:
  • an additive ensuring the emulsification of the fusible explosive and the phlegmatizer. It is also possible to realize (as described by the patent EP814069) an explosive in which the fusible explosive is a nitrated aromatic such as 2,4,6 Trinitro-N-Methylaniline (TNMA), 2,4,6-Trinitro -3-methylphenol, 3-amino Trinitrotoluene, 2, 4, 6-Trinitro-aniline, 1,3,8 Trinitronaphtalène and its mixture of isomers meltable at 115 0 C.
  • TNMA 2,4,6 Trinitro-N-Methylaniline
  • 2-4,6-Trinitro -3-methylphenol 3-amino Trinitrotoluene
  • 2, 4, 6-Trinitro-aniline 1,3,8 Trinitronaphtalène and its mixture of isomers meltable at 115 0 C.
  • Dinitroanisole which is a fusible explosive with reduced toxicity.
  • This explosive is described in particular by the patent application US2005230019. It is most often associated with processing additives chosen from the group of N-alkylnitroaniline and N-arylnitroaniline.
  • the reduced-vulnerability explosive may be selected from: oxinitrotriazol (ONTA), triaminotrinitrobenzene (TATB), nitroguanidine (NGu).
  • the phlegmatizer will be for example a polyolefin wax and the emulsifier a vinyl pyrrolidone copolymer.
  • the phlegmatizer was in significant proportions.
  • the percentage by weight of the phlegmatizer is in fact greater than or equal to 3%.
  • Such a high proportion complicates the manufacture of this explosive material and requires the use of an emulsifier and the vigorous stirring of the material to ensure its stable emulsification (speed of rotation of the blades of the kneader greater than 70 revolutions per minute).
  • the phlegmatizer will be chosen with a melting temperature substantially equal to that of the fusible explosive
  • the uniformly distributed phlegmatizer has a function contributing to the desensitization of the material by increasing its homogeneity which makes it less sensitive to heating.
  • the emulsifier is chosen to ensure the best interface between the molten explosive and the phlegmatizer.
  • the phlegmatizer allows both to promote the dispersion of the powdery constituents and to stabilize the emulsion obtained.
  • the rate of phlegmatizer is also generally less than 12% because too much wax rate penalizes the detonation characteristics of the material.
  • the explosive material may also include aluminum powder (which increases the resistance of the material to the heating while increasing the blast effect during the detonation).
  • the grains of material according to the invention will have a substantially homogeneous chemical composition, and they will be manufactured beforehand during mixing steps, casting then solidification and shaping.
  • composition B is a simple composition combining TNT (fusible) and hexogen (solid) with sometimes a small portion of wax (of the order of 1% by weight) to improve the mechanical strength of the explosive after cooling. It was however not obvious to be able to obtain a homogeneous and satisfactory loading of a munition from the remelting of fragments of an explosive material as complex as a fusible explosive with reduced vulnerability. Indeed, such an explosive material incorporates a solidified emulsion of a fusible explosive and a phlegmatizer and it also incorporates granular materials having different particle sizes (ONTA and Aluminum in particular).
  • the main steps are as follows: Fusion of TNT in a kneader at a temperature of 90 ° C. Blending in this TNT blender with phlegmatizer and TNT emulsifier in phlegmatizer (EP814069 gives examples of usable wax and phlegmatizer);
  • the casting was carried out in a conventional ammunition case.
  • Chips of the explosive material were then produced by machining the resulting load.
  • Thin platelets of the explosive material have also been produced by roughly fragmenting the solidified bottom of the tank.
  • the chips could not be re-melted.
  • the result obtained after heating is a pasty mixture, dry and impossible to pour.
  • platelets could be successfully re-fused.
  • a simple mixing allowed to reconstitute a stable emulsion, thus allowing a new casting.
  • the resistance in time of the material obtained and its viscosity are of the same order as those of the original material and are sufficient to fill a munition body and then cool to solidify the material while maintaining its homogeneity (no phase separations). It will be noted that a remelting of fine chips resulting from the machining of a composition B is possible while it has been verified that this remelting of chips was not possible for a mergeable explosive with reduced vulnerability.
  • each prefabricated grain is greater than the largest particle size of the materials of the solid phase they contain.
  • the largest particle size is that of the explosive material with reduced vulnerability (such as I 1 ONTA). It is then ensured that each grain of solid explosive (ONTA for example) is coated with a solidified and homogeneous emulsion of the fusible explosive (TNT) with its phlegmatizer.
  • FIGS. 2a to 2d show different forms that can be adopted for the grains 23 of the meltable explosive material: regular thin lamellae (FIG. 2a), spheres or balls (FIG. 2b), cylindrical granules (FIG. 2c), irregular thin scales (FIG. 2d) .
  • the cylindrical granules may or may not have their ends curved.
  • the smallest dimension of the grain 23 (thickness e or diameter d) to be greater than the largest particle size of the materials of the solid phase they contain.
  • the thickness e of the lamellae or scales is of the order of a millimeter.
  • the minimum acceptable thickness for ONTA grains having a particle size of class 2 is not damaged and that they are effectively surrounded by the wax is a thickness of 1 mm.
  • FIGS. 3a and 3b show equipment for producing grains 23 in the form of flakes (FIG.
  • This equipment comprises a tundish 4 equipped with a kneader 5 and a nozzle 6.
  • Other means allow upstream to achieve different mixtures of particle size cuts of solid materials in particular).
  • This tank does not supply munitions bodies here, but it deposits the fusible explosive material 12 on a conveyor belt 13 driven by drums 14a, 14b.
  • the conveyor belt 13 comprises lateral cheeks 15a, 15b which may be made of rubber (thus deformable) or in the form of integral metal tongues. carpet 13 and overlapping two by two to allow the passage of the drums 14a, 14b.
  • the cheeks 15a, 15b delimit the volume on which the explosive 12 is contained and prevent an overflow of this material outside the belt 13.
  • a scraper 16 makes it possible to give the explosive layer 12 a given thickness.
  • the vertical position of the scraper 16 is adjustable (by means not shown).
  • the conveyor belt 13 circulates in part in a thermostatically controlled box 24 which makes it possible to ensure controlled cooling of the material 12.
  • the means 25a, 25b consist of a single blade (of conductive plastic material) which cuts a tongue of explosive material 12 having the width of the conveyor belt 13.
  • the means 25a comprise a plurality of blades 27 (of conductive plastic material) which cut the tongue into strips. or scales 23 which are then recovered in a storage container 26.
  • the advance of the belt 13 is of course cyclic. A quantity of material 12 is firstly deposited from the tank 4, which corresponds substantially to half a length of the belt 13. The belt 13 is then advanced to produce a layer of uniform thickness. This layer is entirely in the thermostatically controlled box 24.
  • the belt 13 is advanced and the cutting means 25a, 25b are periodically actuated to produce the lamellae 23.
  • the longitudinal cut may for example be ensured by a simple mechanical break obtained during the passage of the drum 14a.
  • the material 12 forms a plate which has a moderate rigidity and then detaches from the belt 13. This plate can thus abut against a mechanical deflector such as a sheet which will cause the rupture.
  • Cooling may be provided by means other than the thermostatically controlled box 24. For example, it is possible to have a circulation of fresh air below the carpet 13. It will also be possible to lower the casting temperature of the tank 4 of the order of 5 to 6 ° C.
  • the grains 23 will be produced in large quantities by an industrialist mastering all the steps of supplying the components and then implementing the process for manufacturing a fusible explosive with reduced vulnerability.
  • the grains 23 will then be provided to manufacturers carrying explosive ammunition shipments.
  • the melting was particularly slow.
  • Conventional processes in which a bottom of liquid TNT makes it possible to accelerate the melting of the composition grains can not be applied here because it is necessary to maintain the proportion of the various materials constituting the mixture.
  • the heating vessel will therefore be heated to a temperature 10% to 35% higher than the melting temperature of the meltable explosive material, and the composition will also be agitated so as to allow the emulsification of the different materials constituting the mixture.
  • the stability of the emulsion can then be obtained in the munition with the condition of cooling the mixture before casting to a temperature of the order of 85 ° C.
  • the supercooling will be carried out at a temperature of 90 ° C. to 110 ° C. After emulsification, the explosive material will then be cooled to a slightly (2%) temperature. at 7%) greater than the melting temperature of the meltable explosive material.
  • composition based on Trinitrotoluene the composition will be brought to a temperature of the order of 85 ° C. This cooling stabilizes the emulsion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Crushing And Grinding (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

L'invention a pour objet un procédé de coulée d'un matériau explosif à vulnérabilité réduite qui associe, d'une part une phase solide comprenant au moins un explosif solide à vulnérabilité réduite, et d'autre part une phase fusionnable qui comprend au moins un explosif fusionnable, au moins un flegmatisant et au moins un émulsifiant. Ce procédé est caractérisé en ce que l'on met en place le matériau explosif à l'état solide dans une cuve (4) équipée de moyens de chauffe (8a, 8b) et dotée de moyens d'agitation (5), le matériau explosif étant mis en place dans la cuve sous la forme de grains préfabriqués ayant des dimensions supérieures à la plus grosse granulométrie initiale des matériaux de la phase solide qu'ils renferment. L'invention a également pour objet un tel matériau sous forme de grains.

Description

PROCEDE DE COULEE D'UN MATERIAU EXPLOSIF A VULNERABILITE REDUITE ET MATERIAU MIS EN OEUVRE DANS UN TEL PROCEDE
Le domaine technique de l'invention est celui des matériaux explosifs à vulnérabilité réduite ainsi que des procédés de coulée de tels matériaux explosifs.
Les matériaux explosifs à vulnérabilité réduite deviennent essentiels pour la conception des munitions. En effet ils permettent de réaliser des munitions qui résistent sans détoner à des agressions telles que les impacts de balles ou les incendies.
Il existe aujourd'hui deux familles principales de matériaux explosifs à vulnérabilité réduite: celle des explosifs composites et celle des explosifs fusionnables . Les explosifs composites mettent en œuvre des polymères organiques réticulables . Ils sont mis en œuvre par coulée de l'explosif mélangé au liant organique et la solidification est obtenue par la polymérisation du chargement.
Les procédés de fabrication des explosifs composites sont longs, complexes et coûteux. Par ailleurs la démilitarisation des munitions ainsi réalisées est difficile. Il est en effet nécessaire d'usiner la munition pour évacuer l'explosif. Ce dernier peut ensuite difficilement être recyclé, la réaction de polymérisation étant irréversible. Les explosifs fusionnables sont constitués par un matériau associant, d'une part une phase solide comprenant au moins un explosif solide à vulnérabilité réduite, et d'autre part une phase fusionnable qui comprend au moins un explosif fusionnable, au moins un flegmatisant et au moins un émulsifiant du flegmatisant dans l'explosif fusionnable.
L'explosif solide à vulnérabilité réduite est le plus souvent constitué par 1 'Oxinitrotriazole (ou ONTA), mais on peut aussi mettre en œuvre le triaminotrinitrobenzène (TATB) ou la Nitroguanidine (NGu) . L'explosif fusionnable est de préférence un aromatique nitré (tel que le trinitrotoluène ou TNT, ou la 2,4,6- Trinitro-N-Méthyl Aniline ou TNMA) , et le flegmatisant est le plus souvent constitué par une cire. Le brevet EP814069 décrit ainsi différents types d'explosifs fusionnables à vulnérabilité réduite ainsi que leurs procédés de préparation.
Ces procédés sont relativement complexes et mettent en œuvre d'une part des étapes de réalisation d'une phase liquide associant l'explosif fusionnable, son flegmatisant et un émulsifiant de l'explosif fusionnable dans le flegmatisant .
La phase solide est ensuite introduite dans la phase liquide, puis on réalise la coulée dans le corps de munition et enfin le refroidissement conduisant à la solidification de 1 ' explosif .
Un tel procédé nécessite de maîtriser les approvisionnements de différents matériaux qui doivent être associés entre eux d'une façon rigoureuse et en suivant des dosages et des paramètres de coulée précis.
Par ailleurs les étapes à conduire mettent en oeuvre une phase fusionnable et une phase solide qui doivent être mélangées avec soin de façon à assurer une composition homogène. Ce mélange est d'autant plus délicat que les explosifs insensibles fusionnables mettent en œuvre une part de flegmatisant (cire) relativement forte (supérieure ou' égale à 3% en masse) . Le mélange à chaud de l'explosif fusionnable avec le flegmatisant qui doit assurer son enrobage impose donc la mise en œuvre d'un émulsifiant ainsi que le brassage vigoureux de ces éléments pour assurer la création d'une émulsion homogène. La température doit par ailleurs être maîtrisée.
Un tel procédé est bien plus complexe que les procédés de coulée des explosifs fusionnables classiques dans lesquels il suffit généralement de mélanger dans une cuve de coulée l'explosif fusionnable (TNT) et l'explosif solide (hexogène) avant de procéder à la coulée.
On connaît également par le brevet EP35376 un procédé de préparation d'une composition explosive contenant de 1 ' aluminium.
Conformément à ce procédé on réalise d'une part des granulés d'une composition associant les explosifs très énergétiques (HMX, RDX) avec de la cire et de la poudre d'aluminium et d'autre part d'autres granulés d'une composition associant du TNT et un émulsifiant. Ces deux types de granulés sont ensuite mélangés dans les proportions souhaitées pour réaliser le chargement explosif final. Un tel procédé est de mise en œuvre complexe car il impose la réalisation de deux types de granulés qui seront à mélanger par la suite. Ce procédé impose également un mélange des composés de départ dans de l'eau ce qui nécessite l'emploi d'une poudre d'aluminium particulière qui est traitée pour résister à l'eau. Par ailleurs ce procédé ne décrit pas de composition explosive mettant en œuvre un explosif à vulnérabilité réduite, tel que l'ONTA.
Il n'est enfin nullement question dans ce brevet de réaliser une composition explosive comprenant un explosif solide à vulnérabilité réduite. En effet les explosifs HMX
(Octogène) et RDX (Hexogène) ne sont pas des explosifs à vulnérabilité réduite mais au contraire des explosifs très énergétiques et relativement sensibles. L'invention a pour but de proposer un procédé de coulée d'un matériau explosif à vulnérabilité réduite, procédé qui permet de simplifier les opérations de coulée. Ce procédé propose la mise en œuvre d'un matériau explosif préfabriqué et prêt à l'emploi. Il peut ainsi être facilement mis en œuvre par des industriels dotés d'équipements de coulée conventionnels .
Ainsi l'invention a pour objet un procédé de coulée d'un matériau explosif à vulnérabilité réduite qui associe, d'une part une phase solide comprenant au moins un explosif solide à vulnérabilité réduite, et d'autre part une phase fusionnable qui comprend au moins un explosif fusionnable, au moins un flegmatisant et au moins un émulsifiant du flegmatisant dans l'explosif fusionnable, procédé caractérisé en ce que l'on met en place le matériau explosif à l'état solide dans une cuve de fusion équipée de moyens de chauffe et dotée de moyens d'agitation, le matériau explosif étant mis en place dans la cuve sous la forme de grains préfabriqués, grains ayant été fabriqués au préalable lors d'étapes de mélange, coulée puis solidification et mise en forme, les grains finis du matériau explosif fusionnable ayant des dimensions supérieures à la plus grosse granulométrie initiale des matériaux de la phase solide qu'ils renferment.
La phase fusionnable du matériau explosif fusionnable pourra comprendre essentiellement du trinitrotoluène .
La phase solide du matériau explosif fusionnable pourra comprendre essentiellement de l ' oxinitrotriazole . Suivant une autre caractéristique de l'invention, la cuve de chauffe renfermant les grains est portée à une température de 10% à 35% supérieure à la température de fusion du matériau explosif fusionnable et sous agitation de façon à assurer la mise en émulsion des différents matériaux constituant le mélange.
Après cette mise en émulsion, le matériau explosif est ensuite refroidi à une température légèrement (de 2% à 7%) supérieure à la température de fusion du matériau explosif fusionnable, avant de procéder à la coulée. L'invention a également pour but de proposer un matériau explosif fusionnable à vulnérabilité réduite préfabriqué et prêt à l'emploi donc à mise en œuvre simplifiée.
Le matériau explosif fusionnable selon l'invention est ainsi caractérisé en ce qu'il est sous la forme de grains solides d'un mélange associant, d'une part une phase solide comprenant au moins un explosif solide à vulnérabilité réduite, et d'autre part une phase fusionnable qui comprend au moins un explosif fusionnable, au moins un flegmatisant et au moins un émulsifiant du flegmatisant dans l'explosif fusionnable, les grains du matériau explosif ayant été fabriqués au préalable lors d'étapes de mélange, coulée puis solidification et mise en forme, les grains du matériau explosif fusionnable ayant par ailleurs des dimensions supérieures à la plus grosse granulométrie des matériaux de la phase solide qu'ils renferment.
Selon un mode particulier de réalisation, les grains pourront avoir la forme de paillettes ou d'écaillés, donc présenteront une forme sensiblement plane ayant une épaisseur inférieure aux dimensions de leur forme plane.
Selon un autre mode de réalisation, les grains pourront avoir une forme globalement cylindrique ou sphérique. La phase fusionnable du matériau explosif pourra comprendre essentiellement du trinitrotoluène .
La phase solide du matériau explosif pourra comprendre essentiellement de 1 Oxinitrotriazole .
Le matériau explosif fusionnable pourra ainsi être constitué par un mélange de :
- 20% à 40% en masse de trinitrotoluène,
- 25% à 60% en masse d ' oxinitrotriazole,
- 0% à 25% en masse de poudre d'aluminium,
- 3% à 12% en masse d'un flegmatisant , - 0,1% à 1% en masse d'un additif assurant- l'émulsi- fication de l'explosif fusible et du flegmatisant .
L'invention sera mieux comprise à la lecture de la description qui va suivre d'exemples de réalisation, description faite en référence aux dessins annexés et dans lesquels :
- la figure 1 montre un équipement permettant la mise en œuvre du procédé selon l'invention,
- la figure 2a, 2b, 2c, 2d montrent différentes formes de réalisation des grains du matériau selon l'invention, - les figures 3a et 3b sont des schémas d'un équipement permettant de réaliser des grains du matériau selon l'invention, la figure 3b étant une coupe transversale réalisée au niveau d'un des tambours entraînant le tapis roulant de l'équipement. La figure 1 montre une installation 1 de coulée qui est destinée à assurer le chargement en explosif de plusieurs corps de munitions 2, ici des obus d'artillerie disposés sur une palette de transport 3 déplaçable. Chaque obus 2 porte une rehausse 2a qui a pour but de faciliter la coulée et qui permet de laisser un bloc d'explosif en dehors du corps d'obus, bloc sur lequel se produisent les déformations et retassures liées au refroidissement. Ce bloc est désolidarisé de l'obus après refroidissement. L'installation 1 comprend principalement une cuve de coulée 4 qui est disposée au-dessus d'un des corps 2 de munition. Concrètement la cuve 4 sera fixée sur un support non représenté et on positionnera le corps de munition 2 en déplaçant la palette 3.
La cuve 4 est réalisée d'une façon classique en un matériau résistant à la corrosion par exemple en acier inoxydable. Elle comporte un couvercle 4a qui peut être basculé pour refermer la cuve d'une façon étanche. Elle renferme un moyen agitateur 5, qui est représenté très schématiquement ici. Ce moyen est un malaxeur de type planétaire et il comporte d'une façon bien connue des pales rotatives entraînées par un moteur (non représenté) . Les pales auront des dimensions leur permettant de brasser l'ensemble du mélange.
A sa partie inférieure la cuve 4 comporte une buse 4b obturée par une vanne de coulée 6 dont l'ouverture et la fermeture sont pilotées par un moyen de commande 7, par exemple un automate programmable. D'une façon encore très classique et bien connue de l'Homme du Métier, la cuve 4 est reliée à un premier moyen de chauffage 8a, tel une chaudière. Un fluide caloporteur est conduit de la chaudière 8a à la cuve par une conduite 9 sur laquelle est placée une vanne thermostatique 10. La cuve comporte une double paroi à 1 ' intérieur de laquelle peut circuler le fluide caloporteur.
On voit sur la figure 1 que la buse 4b est reliée à une deuxième chaudière 8b par une vanne thermostatique 11. On assure ainsi une homogénéité de la température du matériau explosif tant à l'intérieur de la cuve 4 qu'au niveau de la buse 4b. La mise en œuvre de deux chaudières distinctes permet d'assurer une chauffe indépendante pour la cuve 4 et la buse 4b. La température sera choisie en fonction des caractéristiques de fusion du matériau à couler. Généralement pour les matériaux explosifs fusibles, la température est comprise entre 75°C et HO0C.
Les vannes thermostatiques 10 et 11 pourront avantageusement être pilotées en températures par l'automate 7 (les liaisons avec l'automate ne sont pas représentées pour la clarté de la figure) . Pour cela des sondes de températures seront disposées au niveau des différentes canalisations ainsi que de la cuve et de la buse. Un entonnoir de coulée 18 est fixé au niveau d'un fond de la cuve, c'est à dire ici à la buse 4b. Il est destiné à permettre d'assurer une coulée sous vide de l'explosif dans le corps de munition 2. En effet les explosifs fusionnables à vulnérabilité réduite sont généralement assez visqueux. La coulée sous vide permet de faciliter (et accélérer) le chargement des corps de munitions 2.
Cet entonnoir 18 fait l'objet de la demande de brevet FR2923005 déposée le 29 octobre 2007 à laquelle on pourra se reporter pour obtenir plus de détails. Des moyens de mise sous vide 17 (tels une pompe à vide) sont prévus. Ces moyens permettent de réaliser le vide au niveau de la cuve 4 et également au niveau de l'entonnoir de coulée 18, de la buse 4b et du corps de munition 2 sur lequel est positionné l'entonnoir 18. La pompe à vide 17 est ainsi raccordée à la cuve 4 par une conduite 21 sur laquelle est placé un premier robinet d'arrêt 22.
La pompe à vide 17 est par ailleurs reliée à l'entonnoir 18 (plus précisément à la buse 4b située au-dessus de l'entonnoir) par une conduite 19 sur laquelle est placé un deuxième robinet d'arrêt 20.
L'ouverture et/ou la fermeture de chaque robinet 20,22 ainsi que la commande de la vanne de coulée 6 sont assurées par l'automate programmable 7. A l'exception des moyens de coulée sous vide (et notamment de l'entonnoir 18) cette installation 1 est classique. Elle peut être utilisée pour charger des munitions avec un explosif classique, par exemple une composition B (associant hexogène et Trinitrotoluène dans les proportions massiques respectives de 60% et 40%) .
La mise en œuvre de moyens de coulée sous vide permet d'évacuer les bulles dans le chargement réalisé. Ces moyens permettent aussi de faciliter le chargement d'un explosif visqueux .
Cette installation peut aussi être utilisée sans autres modifications pour charger les corps de munitions 2 avec un explosif à vulnérabilité réduite.
Il suffit conformément au procédé selon l'invention de mettre dans la cuve 4 le matériau explosif sous la forme de grains solides "préfabriqués" et "prêts à l'emploi" d'un matériau explosif à vulnérabilité réduite. Ce matériau associera, d'une part une phase solide comprenant au moins un explosif solide à vulnérabilité réduite (par exemple 1 ' oxinitrotriazole ou ONTA), et d'autre part une phase fusionnable qui comprend au moins un explosif fusionnable (par exemple le trinitrotoluène ou TNT) , au moins un flegmatisant (tel qu'une cire) et au moins un émulsifiant du flegmatisant dans l'explosif fusionnable.
Le matériau sera ainsi par exemple constitué par un mélange de :
- 20% à 40% en masse de trinitrotoluène, - 25% à 60% en masse d' oxinitrotriazole,
- 0% à 25% en masse de poudre d'aluminium,
- 3% à 12% en masse d'un flegmatisant,
- 0,1% à 1% en masse d'un additif assurant l'émulsi- fication de l'explosif fusible et du flegmatisant. On pourra également réaliser (comme décrit par le brevet EP814069) un explosif dans lequel l'explosif fusionnable est un aromatique nitré tel que la 2,4,6 Trinitro-N-Méthyl aniline (TNMA), le 2, 4 , 6-Trinitro-3-méthylphénol, le 3-amino- Trinitrotoluène, le 2, 4 , 6-Trinitro-aniline, le 1,3,8- Trinitronaphtalène et son mélange d'isomères fusible à 1150C.
On pourra également mettre avantageusement en œuvre le
Dinitroanisole (DNAN) qui est un explosif fusionnable à toxicité réduite. Cet explosif est décrit notamment par la demande de brevet US2005230019. Il est le plus souvent associé à des additifs de mise en œuvre choisis dans le groupe des N-alkylnitroaniline et des N-arylnitroaniline . L'explosif à vulnérabilité réduite pourra être choisi parmi : 1 ' oxinitrotriazol (ONTA), le triaminotrinitrobenzène (TATB) , la nitroguanidine (NGu) .
Le flegmatisant sera par exemple une cire de polyoléfine et 1 ' émulsifiant un copolymère de vinyle pyrrolidone.
On a déjà noté que pour les explosifs fusionnables à vulnérabilité réduite le flegmatisant était dans des proportions non négligeables. Le pourcentage en masse du flegmatisant est en effet supérieur ou égal à 3%. Une telle proportion forte complique la fabrication de ce matériau explosif et impose le recours à un émulsifiant ainsi que le brassage vigoureux du matériau pour assurer sa mise en émulsion stable (vitesse de rotation des pales du malaxeur supérieure à 70 tours par minute) . Le flegmatisant sera choisi avec une température de fusion sensiblement égale à celle de l'explosif fusionnable
(à plus ou moins 2°C près) . Le flegmatisant uniformément réparti a une fonction concourant à la désensibilisation du matériau en augmentant son homogénéité ce qui le rend moins sensible à 1 ' échauffement .
L'émulsifiant est choisi de façon à assurer le meilleur interface entre l'explosif fondu et le flegmatisant. Le flegmatisant permet à la fois de favoriser la dispersion des constituants pulvérulents et de stabiliser l' émulsion obtenue .
Le taux de flegmatisant est par ailleurs généralement inférieur à 12% car un taux de cire trop important pénalise les caractéristiques détoniques du matériau.
Le matériau explosif pourra aussi comprendre de la poudre d'aluminium (qui permet d'accroître la résistance du matériau à 1 ' échauffement tout en accroissant l'effet de souffle lors de la détonation) .
Les grains de matériau selon l'invention auront une composition chimique sensiblement homogène, et ils seront fabriqués au préalable lors d'étapes de mélange, coulée puis solidification et mise en forme.
Ces étapes préalables de préparation des grains de matériau explosif "prêt à l'emploi" sont mises en œuvre chez un industriel spécialisé qui sera doté des équipements lui permettant de réaliser d'une façon fiable et reproductible le mélange des différents constituants du matériau explosif à vulnérabilité réduite. On entend par composition chimique homogène le fait que cette composition est sensiblement identique d'un grain à 1 ' autre .
On retrouve donc dans chaque grain les différents constituants du matériau explosif fusionnable et à vulnérabilité réduite (ONTA, TNT, cire, émulsifiant et éventuellement aluminium) , et la structure physique du grain est telle que les constituants restent organisés dans le grain de la même façon qu'ils le sont dans un chargement de munition et ne présentent pas de modifications physico chimiques (pas de cassure des grains, pas de changement de la géométrie du grain ou de la granulométrie moyenne) .
Il y a ainsi, au niveau de chaque grain, un enrobage des granulés solides (oxinitrotriazole et aluminium) par l'explosif fusionnable (TNT), et par ailleurs l'explosif fusionnable est lui-même enrobé par le flegmatisant . Il n'y a donc pas eu de décantation des différents constituants du mélange avant sa solidification.
On notera qu'il était déjà connu de réaliser des grains ou paillettes d'explosifs fusionnables (par exemple de composition B) pour faciliter ultérieurement un chargement de munitions par coulée.
Il suffit en effet de mettre ces grains de composition B dans une cuve portée à la température appropriée pour obtenir une nouvelle fusion permettant le chargement des munitions. Cependant la composition B est une composition simple associant TNT (fusionnable) et hexogène (solide) avec parfois une petite partie de cire (de l'ordre de 1% en masse) pour améliorer la tenue mécanique de l'explosif après refroidissement . II n'était cependant pas évident de pouvoir obtenir un chargement homogène et satisfaisant d'une munition à partir de la refusion de fragments d'un matériau explosif aussi complexe qu'un explosif fusionnable à vulnérabilité réduite. En effet un tel matériau explosif incorpore une émulsion solidifiée d'un explosif fusionnable et d'un flegmatisant et il incorpore par ailleurs des matériaux granulaires ayant des granulométries différentes (ONTA et Aluminium notamment) . II n'était en particulier pas évident de pouvoir assurer lors d'un nouvel échauffement du matériau ainsi divisé une nouvelle émulsion de l'explosif fusible (TNT) dans son flegmatisant ainsi que l'enrobage correct des granulés des composants solides (ONTA et aluminium) . On a procédé à différents essais à partir d'échantillons solidifiés d'explosif fusionnable à vulnérabilité réduite.
Les échantillons ont été préparés en mettant en œuvre le procédé qui est décrit par le brevet EP814069. On a cependant utilisé dans ce procédé le trinitrotoluène comme explosif fusionnable.
Les principales étapes sont les suivantes : Fusion du TNT dans un malaxeur à une température de 900C; Mélange dans ce malaxeur du TNT avec le flegmatisant et 1 'émulsifiant du TNT dans le flegmatisant (le brevet EP814069 donne des exemples de cire et de flegmatisant utilisables);
Incorporation de 1 'ONTA avec une granulométrie de classe 2 (granulométrie de 200 à 800 micromètres), 1 ' ONTA étant prémélangé à de la poudre d'aluminium;
Coulée et refroidissement progressif. La coulée a été opérée dans un étui de munition classique .
On a ensuite réalisé des copeaux du matériau explosif par usinage du chargement obtenu.
On a par ailleurs réalisé des plaquettes minces du matériau explosif en fragmentant grossièrement le fond de cuve solidifié.
Les essais de refusion de ces deux échantillons ont donné des résultats très différents :
Les copeaux n'ont pas pu être refusionnés. Le résultat obtenu après chauffage est un mélange pâteux, sec et impossible à couler. Par contre les plaquettes ont pu être refusionnées avec succès. Un simple malaxage a permis de reconstituer une émulsion stable, permettant ainsi une nouvelle coulée.
La tenue dans le temps du matériau obtenu ainsi que sa viscosité sont du même ordre que ceux du matériau d'origine et sont suffisants pour permettre de remplir un corps de munition puis de le refroidir pour solidifier le matériau tout en gardant son homogénéité (pas de séparations de phases) . On notera qu'une refusion de copeaux fins issus de l'usinage d'une composition B est possible alors que l'on a vérifié que cette refusion de copeaux n'était pas possible pour un explosif fusionnable à vulnérabilité réduite.
Une comparaison des matériaux de départ (copeaux et plaquettes) a permis de constater que les copeaux présentaient une granulométrie trop fine. L'usinage a ainsi conduit à une désorganisation du matériau à vulnérabilité réduite. Les grains d'explosifs solides (ONTA) ont été brisés et l'enrobage par le flegmatisant a été perdu. Une condition nécessaire pour qu'il soit possible de réutiliser un tel matériau explosif déjà fusionné est donc que la structure complète du matériau se retrouve non modifiée à l'intérieur de chaque grain préfabriqué.
Il est donc nécessaire que la plus petite dimension de chaque grain préfabriqué soit supérieure à la plus grosse granulométrie des matériaux de la phase solide qu'ils renferment. Concrètement la granulométrie la plus grosse est celle du matériau explosif à vulnérabilité réduite (tel que I1ONTA) . On est alors assuré que chaque grain d'explosif solide (ONTA par exemple) est enrobé par une émulsion solidifiée et homogène de l'explosif fusionnable (TNT) avec son flegmatisant .
Les figures 2a à 2d montrent différentes formes pouvant être adoptées pour les grains 23 du matériau explosif fusionnable : fines lamelles régulières (figure 2a), sphères ou billes (figure 2b), granulés cylindriques (figure 2c), écailles minces irrégulières (figure 2d) . Les granulés cylindriques pourront avoir ou non leurs extrémités bombées .
Dans tous les cas, il est nécessaire que la plus petite dimension du grain 23 (épaisseur e ou diamètre d) soit supérieure à la plus grosse granulométrie des matériaux de la phase solide qu'ils renferment. L'épaisseur e des lamelles ou écailles est de l'ordre du millimètre.
Concrètement on a pu réaliser différents échantillons de grains 23 sous la forme de lamelles fines ayant une épaisseur qui varie suivant les échantillons de 1 mm à 4 mm. Les lamelles les plus fines sont les plus intéressantes car elles fusionnent plus rapidement.
L'épaisseur minimale acceptable pour que les grains d ' ONTA ayant une granulométrie de classe 2 (granulométrie de 200 à 800 micromètres) ne soient pas abîmés et qu'ils soient effectivement entourés par la cire est une épaisseur de 1 mm.
Différents moyens industriels pourront être mis en œuvre pour réaliser les grains 23. Ces moyens différeront en fonction de la forme qui est souhaitée pour les grains 23. II existe notamment dans l'industrie des machines qui permettent de fabriquer des granulés sphériques ou cylindriques (machines utilisées aujourd'hui par exemple dans le domaine de la pharmacie) .
A titre d'exemple on a représenté aux figures 3a et 3b un équipement permettant de réaliser des grains 23 sous la forme d'écaillés (fig. 2a) ou de lamelles (fig. 2d) .
Cet équipement comprend une cuve de coulée 4 équipée d'un malaxeur 5 et d'une buse 6. D'autres moyens (non représentés) permettent en amont de réaliser les différents mélanges de coupes granulométriques des matériaux solides notamment) .
Cette cuve n'alimente pas ici des corps de munition mais elle dépose le matériau explosif fusionnable 12 sur un tapis roulant 13 entraîné par des tambours 14a, 14b.
Comme cela est plus particulièrement visible sur la figure 3b (coupe au niveau du tambour avant 14a), le tapis roulant 13 comporte des joues latérales 15a, 15b qui pourront être réalisées en caoutchouc (donc déformables) ou bien sous la forme de languettes métalliques solidaires du tapis 13 et se recouvrant deux à deux afin de permettre le passage des tambours 14a, 14b.
Les joues 15a, 15b délimitent le volume sur lequel l'explosif 12 est contenu et empêchent un débordement de ce matériau en dehors du tapis 13.
Un racleur 16 permet de donner à la couche d'explosif 12 une épaisseur donnée. La position verticale du racleur 16 est réglable (par des moyens non représentés) .
Le tapis roulant 13 circule en partie dans un caisson thermostaté 24 qui permet d'assurer un refroidissement contrôlé du matériau 12. Au niveau d'une extrémité avant du tapis 13 on dispose des moyens de découpe 25a, 25b. Les moyens 25b sont constitués par une lame unique (en matière plastique conductrice) qui découpe une languette de matériau explosif 12 ayant la largeur du tapis roulant 13. Les moyens 25a comprennent plusieurs lames 27 (en matière plastique conductrice) qui découpent la languette en lamelles ou écailles 23 qui sont ensuite récupérées dans un conteneur de stockage 26. L'avance du tapis 13 est bien entendue cyclique. On dépose tout d'abord à partir de la cuve 4 une quantité de matériau 12 qui correspond sensiblement à une demi-longueur du tapis 13. On fait avancer ensuite le tapis 13 pour réaliser une couche d'épaisseur homogène. Cette couche se situe entièrement dans le caisson thermostaté 24.
Lorsque le refroidissement du matériau est suffisant on fait avancer le tapis 13 et on actionne périodiquement les moyens de découpe 25a, 25b pour réaliser les lamelles 23.
On pourrait bien entendu définir d'autres moyens pour réaliser les découpes. Par exemple remplacer les lames 27 par des molettes circulaires (en matière plastique conductrice) .
La découpe longitudinale pourra par exemple être assurée par ailleurs par une simple rupture mécanique obtenue lors du passage du tambour 14a. Le matériau 12 forme en effet une plaque qui a une rigidité modérée et se détache alors du tapis 13. Cette plaque pourra ainsi buter contre un déflecteur mécanique tel qu'une tôle qui provoquera la rupture. On pourra assurer le refroidissement par un autre moyen que le caisson thermostaté 24. On pourra par exemple disposer une circulation d'air frais en dessous du tapis 13. On pourra par ailleurs abaisser la température de coulée de la cuve 4 de l'ordre de 5 à 6°C.
D'autres moyens pourraient bien entendu être définis pour réaliser la fragmentation du matériau explosif sous forme de grains 23.
Les grains 23 seront produits en grande quantité par un industriel maîtrisant toutes les étapes d'approvisionnement des composants puis de mise en œuvre du procédé de fabrication d'un explosif fusionnable à vulnérabilité réduite
(tel que décrit par EP814069) .
Les grains 23 seront fournis ensuite aux industriels réalisant les chargements de munitions en explosifs.
Ces grains constituent une matière première unique à approvisionnement simplifié et dont la mise en œuvre est pratiquement aussi simple que celle d'un matériau explosif fusionnable classique. Cependant ce matériau permet après refusion de réaliser des chargements à vulnérabilité réduite. On notera qu'il sera également possible de réutiliser lors des coulées ultérieures les fonds de cuve solidifiés ainsi que les réhausses des munitions. Il suffira de briser grossièrement ces blocs explosifs pour les incorporer dans une nouvelle coulée avec les grains préfabriqués.
Même si la fusion simple à une température de l'ordre de 85°C reste possible, il est cependant avantageux de réaliser, lors de la mise en œuvre finale des grains 23, une surfusion du matériau.
En effet on a pu observer qu'à une température de l'ordre de 850C (pour une composition explosive telle que décrite précédemment dans laquelle l'explosif fusionnable est le trinitrotoluène) la fusion était particulièrement lente. Les procédés classiques dans lesquels un fond de TNT liquide permet d'accélérer la fusion des grains de composition ne peuvent s'appliquer ici car il est nécessaire de maintenir la proportion des différents matériaux constituants le mélange. Selon l'invention, on portera donc la cuve de chauffe à une température de 10% à 35% supérieure à la température de fusion du matériau explosif fusionnable et on assurera par ailleurs une agitation de la composition de façon à permettre la mise en émulsion des différents matériaux constituant le mélange .
On notera que cette surfusion n'est pas classique pour les compositions coulées fondues à base de trinitrotoluène, d'ONTA de cire et d ' émulsifiant . En effet il était jusqu'à présent requis pour ces compositions de ne pas dépasser une température de coulée de 870C, car au-delà de cette température, il y a en effet une séparation des phases et une perte d'homogénéité du mélange dans la munition.
La déposante a pu vérifier que, malgré ce comportement connu, une surfusion était néanmoins possible à la condition de reprendre alors l'agitation du mélange pour éviter la décantation. Les phases se séparent effectivement mais l' émulsion peut être reformée et de façon homogène.
La stabilité de l' émulsion peut ensuite être obtenue dans la munition à la condition de refroidir le mélange avant la coulée à une température de l'ordre de 85°C.
Pour une composition à base de Trinitrotoluène (température de fusion 82°C) on réalisera la surfusion à une température de 900C à 1100C. Après sa mise en émulsion le matériau explosif sera ensuite refroidi à une température légèrement (de 2% à 7%) supérieure à la température de fusion du matériau explosif fusionnable.
Concrètement pour une composition à base de Trinitrotoluène on ramènera la composition à une température de l'ordre de 85°C. Ce refroidissement stabilise l'émulsion.
L'agitation est maintenue jusqu'à la coulée du mélange. Cette température de coulée assure le maintien d'une composition stabilisée et homogène, et cela même après l'arrêt de l'agitation lors de la coulée dans le corps de munition (qui est portée à une température du même niveau) . A cette température, les phases restent stables dans le corps de munition et ne se séparent pas. A titre de variante il sera bien entendu possible de prévoir un fondoir spécifique en amont de la cuve de coulée.
L'exemple précédent met en œuvre le trinitrotoluène comme explosif fusible. Il est possible aussi, avec un choix approprié des températures de surfusion et de coulée, de réaliser des matériaux explosifs sous forme de grains préfabriqués d'une composition mettant en oeuvre un autre des aromatiques nitrés décrits par le brevet EP814069 ou mettant en œuvre le Dinitroanisole (DNAN).

Claims

REVENDICATIONS
1. Procédé de coulée d'un matériau explosif à vulnérabilité réduite qui associe, d'une part une phase solide comprenant au moins un explosif solide à vulnérabilité réduite, et d'autre part une phase fusionnable qui comprend au moins un explosif fusionnable, au moins un flegmatisant et au moins un émulsifiant du flegmatisant dans l'explosif fusionnable, procédé caractérisé en ce que l'on met en place le matériau explosif à l'état solide dans une cuve (4) de fusion équipée de moyens de chauffe (8a, 8b) et dotée de moyens d'agitation (5), le matériau explosif étant mis en place dans la cuve sous la forme de grains (23) préfabriqués, grains ayant été fabriqués au préalable lors d'étapes de mélange, coulée puis solidification et mise en forme, les grains (23) finis du matériau explosif fusionnable ayant des dimensions supérieures à la plus grosse granulométrie initiale des matériaux de la phase solide qu'ils renferment.
2. Procédé de coulée selon la revendication 1, caractérisé en ce que la phase fusionnable du matériau explosif fusionnable comprend essentiellement du trinitrotoluène .
3. Procédé de coulée selon la revendication 2, caractérisé en ce que la phase solide du matériau explosif fusionnable comprend essentiellement de 1 'oxinitrotriazole .
4. Procédé de coulée selon une des revendications 1 à 3, caractérisé en ce que la cuve de chauffe renfermant les grains est portée à une température de 10% à 35% supérieure à la température de fusion du matériau explosif fusionnable et sous agitation de façon à assurer la mise en émulsion des différents matériaux constituant le mélange.
5. Procédé de coulée selon la revendication 4, caractérisé en ce que le matériau explosif est refroidi à une température légèrement (de 2% à 7%) supérieure à la température de fusion du matériau explosif fusionnable, avant de procéder à la coulée.
6. Matériau explosif fusionnable caractérisé en ce qu'il est sous la forme de grains solides (23) d'un mélange associant, d'une part une phase solide comprenant au moins un explosif solide à vulnérabilité réduite, et d'autre part une phase fusionnable qui comprend au moins un explosif fusionnable, au moins un flegmatisant et au moins un émulsifiant du flegmatisant dans l'explosif fusionnable, les grains du matériau explosif ayant été fabriqués au préalable lors d'étapes de mélange, coulée puis solidification et mise en forme, les grains du matériau explosif fusionnable ayant par ailleurs des dimensions supérieures à la plus grosse granulométrie des matériaux de la phase solide qu'ils renferment.
7. Matériau explosif fusionnable selon la revendication 6, caractérisé en ce que les grains (23) ont la forme de paillettes ou écailles, donc présentent une forme sensiblement plane ayant une épaisseur inférieure aux dimensions de leur forme plane.
8. Matériau explosif fusionnable selon la revendication 6, caractérisé en ce que les grains (23) ont une forme globalement cylindrique ou sphérique.
9. Matériau explosif fusionnable selon une des revendications 6 à 8, caractérisé en ce que la phase fusionnable du matériau explosif comprend essentiellement du trinitrotoluène .
10. Matériau explosif fusionnable selon la revendication
9, caractérisé en ce que la phase solide du matériau explosif comprend essentiellement de 1 ' oxinitrotriazole .
11- Matériau explosif fusionnable selon la revendication
10, caractérisé en ce qu'il est constitué par un mélange de :
- 20% à 40% en masse de trinitrotoluène,
- 25% à 60% en masse d' oxinitrotriazole, - 0% à 25% en masse de poudre d'aluminium,
- 3% à 12% en masse d'un flegmatisant,
- 0,1% à 1% en masse d'un additif assurant l'émulsi- fication de l'explosif fusible et du flegmatisant.
EP09784303.1A 2008-07-28 2009-07-27 Procede de coulee d'un materiau explosif a vulnerabilite reduite et materiau mis en oeuvre dans un tel procede Active EP2318331B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09784303T PL2318331T3 (pl) 2008-07-28 2009-07-27 Proces odlewania materiału wybuchowego o niskiej wrażliwości i materiał wykorzystywany w takim procesie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0804329A FR2934260B1 (fr) 2008-07-28 2008-07-28 Procede de coulee d'un materiau explosif a vulnerabilite reduite et materiau mis en oeuvre dans un tel procede
PCT/FR2009/000927 WO2010012893A2 (fr) 2008-07-28 2009-07-27 Procede de coulee d'un materiau explosif a vulnerabilite reduite et materiau mis en oeuvre dans un tel procede

Publications (2)

Publication Number Publication Date
EP2318331A2 true EP2318331A2 (fr) 2011-05-11
EP2318331B1 EP2318331B1 (fr) 2020-04-08

Family

ID=40584767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09784303.1A Active EP2318331B1 (fr) 2008-07-28 2009-07-27 Procede de coulee d'un materiau explosif a vulnerabilite reduite et materiau mis en oeuvre dans un tel procede

Country Status (5)

Country Link
EP (1) EP2318331B1 (fr)
ES (1) ES2798762T3 (fr)
FR (1) FR2934260B1 (fr)
PL (1) PL2318331T3 (fr)
WO (1) WO2010012893A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2984885B1 (fr) * 2011-12-21 2014-07-04 Nexter Munitions Procede de fabrication de granules d'une composition explosive comprimable et materiau esplosif obtenu avec un tel procede
FR3141172A1 (fr) * 2022-10-20 2024-04-26 Thales Procédé de fabrication d'une composition explosive fusible/coulable.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB537579A (en) * 1938-10-10 1941-06-27 Ici Ltd Improvements in or relating to high explosives
NO144666C (no) * 1980-02-29 1981-10-14 Dyno Industrier As Fremgangsmaate for fremstilling av aluminiumholdige hoeyenergisprengstoffblandinger
US4545829A (en) * 1984-07-13 1985-10-08 The United States Of America As Represented By The Secretary Of The Army Emulsion synthesized composite high explosives
US4747892A (en) * 1987-05-22 1988-05-31 The United States Of America As Represented By The Secretary Of The Air Force Melt-castable explosive composition
US5431756A (en) * 1993-02-25 1995-07-11 Mach I, Inc. Method and composition for melt cast explosives, propellants and pyrotechnics
SE504994C2 (sv) * 1995-06-08 1997-06-09 Bofors Liab Ab Sätt och anordning för framställning av explosivämnesladdningar
FR2750131B1 (fr) * 1996-06-19 1998-07-17 Giat Ind Sa Composition explosive fusionnable/coulable et a vulnerabilite reduite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010012893A2 *

Also Published As

Publication number Publication date
FR2934260A1 (fr) 2010-01-29
PL2318331T3 (pl) 2020-09-07
EP2318331B1 (fr) 2020-04-08
WO2010012893A2 (fr) 2010-02-04
WO2010012893A3 (fr) 2010-03-25
FR2934260B1 (fr) 2010-08-27
ES2798762T3 (es) 2020-12-14

Similar Documents

Publication Publication Date Title
JP7089476B2 (ja) ミキサ、建築材料を適用するためのシステム、及び建築材料から構造物を製造するための方法
EP2801560B1 (fr) Procédé de malaxage de matière première pour métallurgie des poudres
EP0605781B1 (fr) Procédé et appareil de melangeage en continu de caoutchouc
JP5692637B2 (ja) ペレットおよびマイクロペレットの押出成形制御、ペレット化制御および溶融レオロジー制御を利用して最小せん断成形を向上させるための方法および装置、ならびにペレットおよびマイクロペレットから作られた成形体
ES2904920T3 (es) Proceso mejorado para preparar y llenar una composición de PBX
FR2535328A1 (fr) Procede d'appretage de granules de matiere thermoplastique
US20120280419A1 (en) Method and apparatus for fluidic pelletization, transport, and processing of materials
EP2318331B1 (fr) Procede de coulee d'un materiau explosif a vulnerabilite reduite et materiau mis en oeuvre dans un tel procede
JPH07509B2 (ja) ガス発生材料の製造方法
EP2765123B1 (fr) Malaxeur Malaxage de matière première pour métallurgie des poudres
CA2575665C (fr) Appareil d'enduction a action rapide
EP3818019B1 (fr) Preparation de matieres premieres pour four verrier
FR2629079A1 (fr) Procede de production d'un propergol en bloc et produit obtenu
EP0052552B1 (fr) Procédé de fabrication de poudres propulsives fines par granulation et poudres ainsi obtenues
NO172639B (no) Fremgangsmaate for fremstilling av eksplosivmateriale
JPH03505199A (ja) トリベース推進装薬粉末を製造する方法及びその装置
JP2002516250A (ja) 爆発性点火混合物の製造方法
RU2215724C2 (ru) Способ получения сферических частиц энергетических соединений
WO2010031962A1 (fr) Procede d'obtention de cristaux d'adn par cristallisation en milieu visqueux
CA2204840C (fr) Procede continu de fabrication sans solvant de produits pyrotechniques composites thermodurcissables
EP1333016A2 (fr) Procédé semi-continu de coulée de pâte de propergol solide, ledit procédé mettant en oeuvre deux composants
EP0084766B1 (fr) Procédé continu de production de compositions explosives sirupeuses encartouchables sur machine à découpe et produits obtenus
EP3476821B1 (fr) Procédé de fabrication d'un produit pyrotechnique composite
JPH11123502A (ja) 金属射出成形用ペレットの製造方法
EP4087831B1 (fr) Installation pour la preparation d'une composition explosive et procede de preparation d'une composition explosive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110228

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1254176

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009061678

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200408

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200408

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20200401874

Country of ref document: GR

Effective date: 20200916

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200808

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2798762

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009061678

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20210624

Year of fee payment: 13

Ref country code: FI

Payment date: 20210622

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210622

Year of fee payment: 13

Ref country code: BE

Payment date: 20210622

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1254176

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220727

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230209

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230622

Year of fee payment: 15

Ref country code: IT

Payment date: 20230620

Year of fee payment: 15

Ref country code: FR

Payment date: 20230621

Year of fee payment: 15

Ref country code: CZ

Payment date: 20230623

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230626

Year of fee payment: 15

Ref country code: SE

Payment date: 20230622

Year of fee payment: 15

Ref country code: PL

Payment date: 20230623

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 15

Ref country code: ES

Payment date: 20230801

Year of fee payment: 15

Ref country code: BG

Payment date: 20230703

Year of fee payment: 15

Ref country code: AT

Payment date: 20230622

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231212