EP2315932A1 - Monitoring of the excitation frequency of a radiofrequency spark plug - Google Patents

Monitoring of the excitation frequency of a radiofrequency spark plug

Info

Publication number
EP2315932A1
EP2315932A1 EP09784388A EP09784388A EP2315932A1 EP 2315932 A1 EP2315932 A1 EP 2315932A1 EP 09784388 A EP09784388 A EP 09784388A EP 09784388 A EP09784388 A EP 09784388A EP 2315932 A1 EP2315932 A1 EP 2315932A1
Authority
EP
European Patent Office
Prior art keywords
frequency
control
signal
resonator
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09784388A
Other languages
German (de)
French (fr)
Other versions
EP2315932B1 (en
Inventor
André AGNERAY
Frédéric AUZAS
Franck Deloraine
Maxime Makarov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2315932A1 publication Critical patent/EP2315932A1/en
Application granted granted Critical
Publication of EP2315932B1 publication Critical patent/EP2315932B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator

Definitions

  • the present invention relates to the field of radiofrequency supply of resonators, in particular resonators used in plasma generators.
  • resonators For an application to automotive ignition with plasma generation, resonators whose resonant frequency is greater than 1 MHz are arranged at the level of the candle and are typically supplied with high voltage (for example greater than 100 V) and subjected to strong currents (for example, an intensity greater than 10A).
  • high voltage for example greater than 100 V
  • strong currents for example, an intensity greater than 10A
  • the operation of the radiofrequency high-voltage power supply of the spark plug is based on the series resonance phenomenon in the resonator, the resonance frequency of which is determined by the value of the intrinsic parameters of the circuit constituting the resonator.
  • FIG. 1 illustrates a resonant radiofrequency ignition system of the state of the art.
  • the plasma generation resonator 10, modeling the radiofrequency plug comprises in series a resistor R 8 , an inductance L 8 and a capacitor C 8 , the values of which are fixed during production by the geometry and the nature of the materials used. so that the resonator has a resonant frequency greater than 1 MHz.
  • the resonator 10 is connected to an output of a power supply circuit 20, having a MOSFET transistor of power M acting as a switch, for applying an intermediate voltage Vinter to the output of the supply circuit, at a frequency defined by a control signal Vl applied to the gate of the MOSFET via a control module 30.
  • the intermediate voltage Vinter is for example delivered on the output of the supply circuit at the frequency defined by the control signal, by means of a parallel resonant circuit comprising a capacitor Cp in parallel with a coil L M forming the primary winding of a transformer T, the resonator 10 being connected across the secondary winding LP of the transformer.
  • control module 30 supplies the control signal Vl, making it possible to control at a frequency substantially equal to the resonance frequency of the plasma generation resonator, for example around 5 MHz, the switching of the transistor M delivering to the parallel resonator 21 voltage Vinter, typically between 12V and 25Ov, which will then be amplified.
  • Vinter parallel resonator 21 voltage
  • the control module 30 supplies the control signal Vl, making it possible to control at a frequency substantially equal to the resonance frequency of the plasma generation resonator, for example around 5 MHz, the switching of the transistor M delivering to the parallel resonator 21 voltage Vinter, typically between 12V and 25Ov, which will then be amplified.
  • Vinter typically between 12V and 25Ov
  • the control frequency is therefore chosen as being the resonant frequency of the plasma generation resonator 10.
  • the formation of the spark at the output of the resonator disrupts and detunes the system.
  • a spark in a gas like any electrical conductor, is characterized by a capacitance. Therefore, if without spark, it is the only parameters R 8 , L 8 and C 8 , specific to the resonator 10, which determine the resonant frequency of the system, this is no longer the case during the formation of a spark , the characteristics of the latter in fact changing the resonant frequency.
  • the resonator quality factor or overvoltage factor, defining the ratio between the amplitude of its output voltage and its input voltage as a function of the frequency applied to the resonator
  • the present invention aims to meet this objective, without reducing the efficiency of the system.
  • the invention therefore relates to a radiofrequency plasma generation device, comprising:
  • control module generating a control signal at a control frequency
  • a supply circuit comprising a switch controlled by the control signal, the switch applying an excitation signal to an output of the supply circuit at the frequency defined by the control signal,
  • a resonator having a resonance frequency greater than 1 MHz, connected to the output of the supply circuit and adapted to generate a voltage for the manufacture of a spark when it is excited by the excitation signal, said device being characterized in that it comprises control module control means adapted to modify the frequency of the excitation signal of the resonator so as to synchronous with the control signal during the application of said excitation signal.
  • control means are adapted to control at least one frequency jump of the control signal from a first frequency value to a second frequency value, lower than said first value.
  • control means are adapted to control a switching time of the control signal to the second frequency value, between 80% and 120% of the duration of a half-period of said signal at the first frequency value.
  • the first frequency value is substantially equal to the resonance frequency of the sparkless resonator.
  • the second frequency value is in a range between fo - ( ⁇ f / 2) and fo, fo being equal to the resonant frequency of the sparkless resonator and ⁇ f corresponding to the passband of the resonator.
  • the control means are adapted to control a frequency jump of the control signal in a transient phase of the voltage signal generated by the resonator, preceding a stabilization phase of said signal.
  • the control means are adapted to control a frequency jump of the control signal, substantially at the time of the formation of the spark.
  • control means of the control module comprise a voltage-controlled oscillator and means for modulating the control voltage of said oscillator.
  • the invention also relates to an internal combustion engine, characterized in that it comprises at least one plasma generating device according to the invention.
  • the invention also relates to a method for controlling a power supply of a radiofrequency ignition of a combustion engine, in which an excitation signal is applied at the input of a resonator at a first frequency defined by a control signal.
  • said resonator having a resonant frequency greater than 1 MHz and being able to generate a voltage for the manufacture of a spark when it is excited by the excitation signal, said method being characterized in that it consists in modifying the frequency of the excitation signal during the application thereof, synchronously with the control signal.
  • FIG. 2a shows two timing diagrams opposite, respectively, of the voltage control signal of the MOS switch of the radio frequency power supply and the signal of the excitation current at the input of the resonator of the radio frequency candle, in the case of a change. frequency of the control signal not synchronized with the excitation signal, during ignition control of the spark plug;
  • FIG. 2b shows the chronograms of the preceding figure, in the case of a frequency change of the control signal, synchronized with the excitation signal, according to the principle of the invention;
  • FIG. 2a shows two timing diagrams opposite, respectively, of the voltage control signal of the MOS switch of the radio frequency power supply and the signal of the excitation current at the input of the resonator of the radio frequency candle, in the case of a change. frequency of the control signal not synchronized with the excitation signal, during ignition control of the spark plug;
  • FIG. 2b shows the chronograms of the preceding figure, in the case of a frequency change of the control signal, synchronized with the excitation signal,
  • FIG. 3 illustrates the voltage signal U (t) of the resonator as a function of time during a plasma generation command, that is to say the signal that applies across the capacitor c s of the resonator of plasma generation;
  • FIG. 4 illustrates an embodiment of the synchronous frequency control means of the control signal of the radio frequency power supply.
  • Optimizing the development of the spark of the radiofrequency candle requires that it be possible to make up part of the disconnection of the system due to the formation of the spark, in order to get as close as possible to the new resonance conditions of the assembly.
  • the invention proposes for this purpose to modify in real time the frequency of the control signal Vl of the switch M, controlling the application of the excitation signal V2 of the resonator 10 of the radiofrequency plug at the output of the supply circuit 20 during the application of this excitation signal.
  • One embodiment is to change the control frequency during an excitation train, according to a sudden offset of the frequency, imposed substantially at the time of the formation of the spark (just before or just after the establishment of the spark ).
  • this frequency offset consists of reducing the frequency of the control signal of the power supply, of a first frequency value, set at the start of the ignition control and corresponding typically to the resonance frequency fo of the empty system. , at a second frequency value, preferably between fo - ( ⁇ f / 2) and fo, with ⁇ f corresponding to the bandwidth of an RLC circuit, in this case the one forming the resonator 10.
  • ⁇ f / 2 may take a value substantially equal to 100 kHz.
  • FIG. 3 illustrates an example of the voltage envelope of the signal U (t) taken across the capacitor C s of the resonator for a control profile as described above, ie with a first frequency value fo preserved until at the maximum of the voltage reached for the moment t max of the command, corresponding to the moment of formation of the spark, and a second frequency value decreased abruptly to fo - 50 kHz with respect to the first frequency value, after the moment t max .
  • the equivalent capacitance that will bring the spark will not generally involve a decrease in the resonance frequency of the resonator / spark assembly of more than 100 kHz with respect to fo.
  • Such a control pattern advantageously allows to keep the maximum amplitude of the voltage applied to the terminals of the capacitance C s at time t of the resonator my ⁇ formation of the spark, and also makes lower and progressive voltage drop after the passage of the point of maximum voltage at t ma ⁇ compared to the conventional case without frequency control of the control during the application of the excitation signal of the resonator.
  • Such a modification of the control frequency during the application of the excitation signal of the resonator of the radiofrequency candle thus provides a real improvement in the characteristics of the spark, allowing to get as close as possible to the new conditions resonance of the assembly and, therefore, makes ignition more efficient.
  • FIG. 2a illustrates a timing diagram of the control signal Vl of the radiofrequency power supply of the spark plug, to which a frequency change is imposed during the application of the excitation signal V2 of the resonator of the radiofrequency candle, whose chronogram is also represented next to the timing diagram of Vl.
  • FIG. 2a shows a case where this frequency change of the signal Vl is not synchronized with the excitation signal V2.
  • the excitation signal V2 of the radio frequency plug resonator is, in a first part of the ignition command, controlled at the system resonance frequency fo, defined by the control signal. Vl.
  • a change in the frequency of the control signal Vl corresponding to a jump of frequency of the initial frequency fo to a frequency fi, -chosen, as explained above, in a frequency range between fo and fo - ( ⁇ f / 2).
  • the new control frequency value fi is for example chosen between fo and fo - 100 kHz.
  • the control signal Vl then goes through a tilt phase of duration t b , in which it is in a low state, preceding the application of the new frequency f ⁇ .
  • the duration t b of tilting of the control signal V1 to the new frequency f1 is not set to the duration of a half-period of the signal V1 before the change of frequency; i.e., corresponding to half a period of the signal at the frequency fo according to the example.
  • the modification of the frequency of the excitation signal V2 which results therefrom is therefore not synchronized with the time t b of switching of the control signal V1 to the new control frequency f i .
  • the control signal V1 is then no longer in phase with the oscillations of the excitation signal V2 at the time of application of the new frequency f 1.
  • the amplitude of the excitation signal V2 decreases at the moment of the frequency change, and only goes up gradually by readjusting with the new control frequency f1, as illustrated by the timing diagram of V2 of FIG. 2a. .
  • the efficiency of the system is decreased.
  • FIG. 2b taking again the same timing diagrams as FIG. 2a, then illustrates the case envisaged by the present invention, where the modification of the frequency of the excitation signal V2 is advantageously carried out synchronously with the time t b of signal switching. control Vl to the new control frequency fi ..
  • Such synchronous frequency control of the resonator makes it possible to maintain the maximum quality factor of the radiofrequency candle, whatever the mode of its operation and thus to preserve the characteristics of the spark.
  • the switching time t b through which the control signal Vl passes before application of the new control frequency, must preferably be controlled to be substantially equal to the duration of one half-period of the control signal. before application of the frequency change. Some tolerance is however possible for controlling the duration t b of switching of the control signal to the new control frequency.
  • the duration t b of switching of the control signal before application of the new frequency must comply with: In other words, the duration t b must be between 80% and 120% of the duration of a half-period of the control signal at the frequency f (that is to say the frequency before application of the new frequency) .
  • phase 1 in FIG. 3 a transient phase of the voltage signal U (t) of the resonator.
  • This transient phase of the signal U (t) precedes a phase of stabilization of this signal (referenced phase 2), knowing that a maximum gain is obtained when the change of frequency occurs substantially at the moment of the formation of the spark, c i.e. at the instant tmax.
  • Frequency hopping with the characteristics of the invention described above require, for embedded applications to use high frequency microprocessors or real-time logic components such as FPGAs (Field Programmable Gate Array). or ASICs (Application Specifies Integrated Circuit).
  • FIG. 4 illustrates an exemplary embodiment of frequency control means according to the invention of the control module supplying the control signal Vl of the radiofrequency power supply.
  • These control means are therefore adapted to shift the frequency of the control signal of the power supply, from an initial control frequency to a new control frequency, so that the frequency change of the excitation signal of the resonator which in turn flows either synchronized with the control signal. In this way, the control signal remains in phase with the oscillations of the excitation signal of the resonator, throughout the application of the excitation signal.
  • FIG. 4 illustrates an exemplary embodiment of frequency control means according to the invention of the control module supplying the control signal Vl of the radiofrequency power supply.
  • control means comprise a voltage controlled oscillator VCO 40, the output of which is connected to the control module 30 to supply the control signal Vl, and whose control input 41 is connected to a control voltage source 50, adapted to drive the VCO by a modulation of the control voltage adapted to control a change in the frequency of the control signal provided on the gate of the transistor M.
  • optimizing the development of the spark of the radiofrequency candle requires that it be possible to make up part of the disagreement of the power supply system by controlling a frequency change in real time within a train of excitement of the candle, respecting the synchronization condition of this change with the control signal.
  • This mode of real-time synchronous frequency control can be extended to any type of application using a LC or RLC-like resonant system, the intrinsic parameters of which change over time, under any physical effect (such as the manufacture of a spark, for example), thus modifying its initial resonance frequency fo (increasing or decreasing it).
  • the modification of the excitation frequency of the resonant system must be synchronized, according to the preceding description in relation with the application of automobile ignition to plasma generation, the time t b of switching of the control signal to a new control frequency value, defining the new excitation frequency.
  • the new excitation frequency must also be between f 0 and f 0 +/- ( ⁇ f / 2) (depending on whether the resonant frequency has increased or decreased), ⁇ f corresponding to the bandwidth of the resonant system.
  • the resonance frequency change of the resonant system can be detected in real time by measuring a characteristic magnitude of the resonant system, such as the quality factor.
  • the modification of the excitation frequency of the system should preferably be made as soon as a variation of the resonance frequency greater than 10% of the bandwidth ⁇ f is detected.

Abstract

The invention relates to a radiofrequency plasma generating device, comprising: - a control module (30) generating a control signal (V1) at a control frequency, a power supply circuit (20) comprising a breaker switch (M) controlled by the control signal, the breaker switch applying an excitation signal (V2) to an output of the power supply circuit at the frequency defined by the control signal, a resonator (10) exhibiting a resonant frequency of greater than 1 MHz, connected to the output of the power supply circuit and adapted for generating a voltage (U(t)) for making a spark when it is excited by the excitation signal, said device being characterized in that it comprises means (40, 50) for monitoring the control module (30), which means are suitable for modifying the frequency of the resonator excitation signal in a manner synchronous with the control signal, during the application of said excitation signal.

Description

CONTROLE DE LA FREQUENCE D'EXCITATION D'UNE BOUGIE CONTROL OF FREQUENCY OF EXCITATION OF A CANDLE
RADIOFREQUENCERADIO FREQUENCY
La présente invention concerne le domaine de l'alimentation radiofréquence de résonateurs, en particulier de résonateurs utilisés dans des générateurs de plasma.The present invention relates to the field of radiofrequency supply of resonators, in particular resonators used in plasma generators.
Pour une application à l'allumage automobile à génération de plasma, des résonateurs dont la fréquence de résonance est supérieure à 1 MHz sont disposés au niveau de la bougie et sont typiquement alimentés à haute tension (par exemple supérieures à 100 V) et soumis à de forts courants (par exemple une intensité supérieure à 10A) .For an application to automotive ignition with plasma generation, resonators whose resonant frequency is greater than 1 MHz are arranged at the level of the candle and are typically supplied with high voltage (for example greater than 100 V) and subjected to strong currents (for example, an intensity greater than 10A).
Le fonctionnement de l'alimentation haute tension radiofréquence de la bougie est basé sur le phénomène de résonance série dans le résonateur, dont la fréquence de résonance est déterminée par la valeur des paramètres intrinsèques du circuit constituant le résonateur.The operation of the radiofrequency high-voltage power supply of the spark plug is based on the series resonance phenomenon in the resonator, the resonance frequency of which is determined by the value of the intrinsic parameters of the circuit constituting the resonator.
La figure 1 illustre un système d'allumage radiofréquence résonant de l'état de la technique. Le résonateur 10 de génération de plasma, modélisant la bougie radiofréquence, comprend en série une résistance R8, une inductance L8 et une capacité C8, dont les valeurs sont figées lors de la réalisation par la géométrie et la nature des matériaux utilisés, de manière à ce que le résonateur présente une fréquence de résonance supérieure à 1 MHz.FIG. 1 illustrates a resonant radiofrequency ignition system of the state of the art. The plasma generation resonator 10, modeling the radiofrequency plug, comprises in series a resistor R 8 , an inductance L 8 and a capacitor C 8 , the values of which are fixed during production by the geometry and the nature of the materials used. so that the resonator has a resonant frequency greater than 1 MHz.
Le résonateur 10 est connecté à une sortie d'un circuit d'alimentation 20, présentant un transistor MOSFET de puissance M faisant office d' interrupteur, pour appliquer une tension intermédiaire Vinter sur la sortie du circuit d'alimentation, à une fréquence définie par un signal de commande Vl appliqué sur la grille du MOSFET par l'intermédiaire d'un module de commande 30. La tension intermédiaire Vinter est par exemple délivrée sur la sortie du circuit d'alimentation à la fréquence définie par le signal de commande, par l'intermédiaire d'un circuit résonant parallèle comprenant une capacité Cp en parallèle avec une bobine LM formant l'enroulement primaire d'un transformateur T, le résonateur 10 étant connecté aux bornes de l'enroulement secondaire LP du transformateur.The resonator 10 is connected to an output of a power supply circuit 20, having a MOSFET transistor of power M acting as a switch, for applying an intermediate voltage Vinter to the output of the supply circuit, at a frequency defined by a control signal Vl applied to the gate of the MOSFET via a control module 30. The intermediate voltage Vinter is for example delivered on the output of the supply circuit at the frequency defined by the control signal, by means of a parallel resonant circuit comprising a capacitor Cp in parallel with a coil L M forming the primary winding of a transformer T, the resonator 10 being connected across the secondary winding LP of the transformer.
Ainsi, le module de commande 30 fournit le signal de commande Vl, permettant de contrôler à une fréquence sensiblement égale à la fréquence de résonance du résonateur de génération de plasma, par exemple autour de 5 MHz, les commutations du transistor M délivrant au résonateur parallèle 21 la tension Vinter, typiquement comprise entre 12V et 25Ov, qui va alors être amplifiée. A la fréquence de commande appliquée, il se crée un échange d'énergie entre le résonateur parallèle et le résonateur 10 de la bougie radiofréquence, permettant d'atteindre en sortie du résonateur 10 la tension de seuil de claquage à la température et la pression du milieu dans lequel on souhaite produire l'étincelle.Thus, the control module 30 supplies the control signal Vl, making it possible to control at a frequency substantially equal to the resonance frequency of the plasma generation resonator, for example around 5 MHz, the switching of the transistor M delivering to the parallel resonator 21 voltage Vinter, typically between 12V and 25Ov, which will then be amplified. At the applied control frequency, an energy exchange is created between the parallel resonator and the resonator 10 of the radio frequency plug, making it possible to reach at the output of the resonator 10 the breakdown threshold voltage at the temperature and the pressure of the medium in which it is desired to produce the spark.
La fréquence de commande est donc choisie comme étant la fréquence de résonance du résonateur de génération de plasma 10. Or, la formation de l'étincelle à la sortie du résonateur, vient perturber et désaccorder le système. En effet, une étincelle dans un gaz, comme tout conducteur électrique, est caractérisée par une capacité. Dès lors, si sans étincelle, ce sont les seuls paramètres R8, L8 et C8, propres au résonateur 10, qui déterminent la fréquence de résonance du système, ce n'est plus le cas lors de la formation d'une étincelle, les caractéristiques propres à cette dernière venant en effet modifier la fréquence de résonance .The control frequency is therefore chosen as being the resonant frequency of the plasma generation resonator 10. However, the formation of the spark at the output of the resonator disrupts and detunes the system. Indeed, a spark in a gas, like any electrical conductor, is characterized by a capacitance. Therefore, if without spark, it is the only parameters R 8 , L 8 and C 8 , specific to the resonator 10, which determine the resonant frequency of the system, this is no longer the case during the formation of a spark , the characteristics of the latter in fact changing the resonant frequency.
La différence entre la fréquence de résonance effective du résonateur avec une étincelle formée et la fréquence de commande de l'alimentation radiofréquence de la bougie, choisie comme étant la fréquence de résonance à vide de la bougie (fo) , c'est-à-dire réglée pour un système sans étincelle, entraîne alors une dégradation du facteur de qualité du résonateur (ou facteur de surtension, définissant le rapport entre l'amplitude de sa tension de sortie et sa tension d'entrée en fonction de la fréquence appliquée au résonateur) .The difference between the effective resonant frequency of the resonator with a spark formed and the control frequency of the radiofrequency power supply of the candle, chosen as the vacuum resonance frequency of the candle (fo), that is, say set for a sparkless system, then causes a deterioration of the resonator quality factor (or overvoltage factor, defining the ratio between the amplitude of its output voltage and its input voltage as a function of the frequency applied to the resonator ).
Aussi, il apparaît utile de pouvoir réajuster la fréquence de commande de l'alimentation radiofréquence en temps réel à l'intérieur d'un train d'excitation du résonateur, afin de maintenir l'amplitude de la tension à la pointe de la bougie et donc, les propriétés de l'étincelle telles que sa taille et le degré de sa ramification.Also, it appears useful to be able to readjust the control frequency of the radio frequency power supply in real time inside a resonator excitation train, in order to maintain the amplitude of the voltage at the tip of the candle and therefore, the properties of the spark such as its size and the degree of its branching.
La présente invention vise à répondre à cet objectif, sans diminution de l'efficacité du système.The present invention aims to meet this objective, without reducing the efficiency of the system.
Avec cet objectif en vue, l'invention concerne donc un dispositif de génération de plasma radiofréquence, comprenant :With this objective in view, the invention therefore relates to a radiofrequency plasma generation device, comprising:
- un module de commande générant un signal de commande à une fréquence de commande,a control module generating a control signal at a control frequency,
- un circuit d'alimentation comprenant un interrupteur commandé par le signal de commande, l'interrupteur appliquant un signal d'excitation sur une sortie du circuit d'alimentation à la fréquence définie par le signal de commande,a supply circuit comprising a switch controlled by the control signal, the switch applying an excitation signal to an output of the supply circuit at the frequency defined by the control signal,
- un résonateur présentant une fréquence de résonance supérieure à 1 MHz, connecté à la sortie du circuit d'alimentation et adapté à générer une tension pour la fabrication d'une étincelle lorsqu'il est excité par le signal d'excitation, ledit dispositif étant caractérisé en ce qu' il comprend des moyens de contrôle du module de commande, adaptés à modifier la fréquence du signal d'excitation du résonateur de manière synchrone avec le signal de commande, pendant l'application dudit signal d'excitation.a resonator having a resonance frequency greater than 1 MHz, connected to the output of the supply circuit and adapted to generate a voltage for the manufacture of a spark when it is excited by the excitation signal, said device being characterized in that it comprises control module control means adapted to modify the frequency of the excitation signal of the resonator so as to synchronous with the control signal during the application of said excitation signal.
De préférence, les moyens de contrôle sont adaptés à commander au moins un saut de fréquence du signal de commande d'une première valeur de fréquence à une deuxième valeur de fréquence, inférieure à ladite première valeur.Preferably, the control means are adapted to control at least one frequency jump of the control signal from a first frequency value to a second frequency value, lower than said first value.
Avantageusement, les moyens de contrôle sont adaptés à commander une durée de basculement du signal de commande vers la deuxième valeur de fréquence, comprise entre 80% et 120% de la durée d'une demi-période dudit signal à la première valeur de fréquence.Advantageously, the control means are adapted to control a switching time of the control signal to the second frequency value, between 80% and 120% of the duration of a half-period of said signal at the first frequency value.
De préférence, la première valeur de fréquence est sensiblement égale à la fréquence de résonance du résonateur sans étincelle. Avantageusement, la deuxième valeur de fréquence est comprise dans une plage comprise entre fo - (Δf/2) et fo, fo étant égale à la fréquence de résonance du résonateur sans étincelle et Δf correspondant à la bande passante du résonateur . Selon un mode de réalisation, les moyens de contrôle sont adaptés à commander un saut de fréquence du signal de commande dans une phase transitoire du signal de tension généré par le résonateur, précédent une phase de stabilisation dudit signal. De préférence, les moyens de contrôle sont adaptés à commander un saut de fréquence du signal de commande, sensiblement au moment de la formation de l'étincelle. Selon un mode de réalisation de l'invention, les moyens de contrôle du module de commande comprennent un oscillateur commandé en tension et des moyens de modulation de la tension de contrôle dudit oscillateur. L' invention concerne également un moteur à combustion interne, caractérisé en ce qu'il comprend au moins un dispositif de génération de plasma selon l'invention.Preferably, the first frequency value is substantially equal to the resonance frequency of the sparkless resonator. Advantageously, the second frequency value is in a range between fo - (Δf / 2) and fo, fo being equal to the resonant frequency of the sparkless resonator and Δf corresponding to the passband of the resonator. According to one embodiment, the control means are adapted to control a frequency jump of the control signal in a transient phase of the voltage signal generated by the resonator, preceding a stabilization phase of said signal. Preferably, the control means are adapted to control a frequency jump of the control signal, substantially at the time of the formation of the spark. According to one embodiment of the invention, the control means of the control module comprise a voltage-controlled oscillator and means for modulating the control voltage of said oscillator. The invention also relates to an internal combustion engine, characterized in that it comprises at least one plasma generating device according to the invention.
L' invention concerne encore un procédé de commande d'une alimentation d'un allumage radiofréquence d'un moteur à combustion, dans lequel on applique un signal d'excitation en entrée d'un résonateur à une première fréquence définie par un signal de commande, ledit résonateur présentant une fréquence de résonance supérieure à 1 MHz et étant apte à générer une tension pour la fabrication d'une étincelle lorsqu'il est excité par le signal d'excitation, ledit procédé étant caractérisé en ce qu' il consiste à modifier la fréquence du signal d'excitation pendant l'application de celui-ci, de manière synchrone avec le signal de commande.The invention also relates to a method for controlling a power supply of a radiofrequency ignition of a combustion engine, in which an excitation signal is applied at the input of a resonator at a first frequency defined by a control signal. , said resonator having a resonant frequency greater than 1 MHz and being able to generate a voltage for the manufacture of a spark when it is excited by the excitation signal, said method being characterized in that it consists in modifying the frequency of the excitation signal during the application thereof, synchronously with the control signal.
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :Other characteristics and advantages of the invention will emerge clearly from the description which is given hereinafter, by way of indication and in no way limitative, with reference to the appended drawings, in which:
- la figure 1 illustre schématiquement un dispositif de génération de plasma radiofréquence de l'état de la technique ; la figure 2a représente deux chronogrammes en regard, respectivement du signal de commande en tension de l'interrupteur MOS de l'alimentation radiofréquence et du signal du courant d'excitation en entrée du résonateur de la bougie radiofréquence, dans le cas d'un changement de fréquence du signal de commande non synchronisé avec le signal d'excitation, au cours d'une commande d'allumage de la bougie ; - la figure 2b reprend les chronogrammes de la figure précédente, dans le cas d'un changement de fréquence du signal de commande, synchronisé avec le signal d'excitation, selon le principe de l'invention ; - la figure 3 illustre le signal de tension U(t) du résonateur en fonction du temps pendant une commande de génération de plasma, c'est-à-dire le signal qui s'applique aux bornes de la capacité cs du résonateur de génération de plasma ; - la figure 4 illustre un mode de réalisation des moyens de contrôle fréquentiel synchrone du signal de commande de l'alimentation radiofréquence .- Figure 1 schematically illustrates a radiofrequency plasma generation device of the state of the art; FIG. 2a shows two timing diagrams opposite, respectively, of the voltage control signal of the MOS switch of the radio frequency power supply and the signal of the excitation current at the input of the resonator of the radio frequency candle, in the case of a change. frequency of the control signal not synchronized with the excitation signal, during ignition control of the spark plug; FIG. 2b shows the chronograms of the preceding figure, in the case of a frequency change of the control signal, synchronized with the excitation signal, according to the principle of the invention; FIG. 3 illustrates the voltage signal U (t) of the resonator as a function of time during a plasma generation command, that is to say the signal that applies across the capacitor c s of the resonator of plasma generation; FIG. 4 illustrates an embodiment of the synchronous frequency control means of the control signal of the radio frequency power supply.
L'optimisation du développement de l'étincelle de la bougie radiofréquence nécessite de parvenir à rattraper une partie du désaccord du système dû à la formation de l'étincelle, pour s'approcher au mieux des nouvelles conditions de résonance de l'ensemble.Optimizing the development of the spark of the radiofrequency candle requires that it be possible to make up part of the disconnection of the system due to the formation of the spark, in order to get as close as possible to the new resonance conditions of the assembly.
L' invention propose pour ce faire de modifier en temps réel la fréquence du signal de commande Vl de l'interrupteur M, commandant l'application du signal d'excitation V2 du résonateur 10 de la bougie radiofréquence en sortie du circuit d'alimentation 20, pendant l'application de ce signal d' excitation .The invention proposes for this purpose to modify in real time the frequency of the control signal Vl of the switch M, controlling the application of the excitation signal V2 of the resonator 10 of the radiofrequency plug at the output of the supply circuit 20 during the application of this excitation signal.
Un mode de réalisation consiste à modifier la fréquence de commande durant un train d'excitation, selon un décalage brutal de la fréquence, imposé sensiblement au moment de la formation de l'étincelle (juste avant ou juste après l'établissement de l'étincelle) .One embodiment is to change the control frequency during an excitation train, according to a sudden offset of the frequency, imposed substantially at the time of the formation of the spark (just before or just after the establishment of the spark ).
De préférence, ce décalage fréquentiel consiste à diminuer la fréquence du signal de commande de l'alimentation, d'une première valeur de fréquence, fixée au démarrage de la commande d'allumage et correspondant typiquement à la fréquence fo de résonance à vide du système, à une deuxième valeur de fréquence, comprise de préférence entre fo - (Δf/2) et fo, avec Δf correspondant à la bande passante d'un circuit RLC, en l'occurrence celui formant le résonateur 10. A titre d'exemple, dans la présente application, Δf/2 peut prendre une valeur sensiblement égale à 100 kHz.Preferably, this frequency offset consists of reducing the frequency of the control signal of the power supply, of a first frequency value, set at the start of the ignition control and corresponding typically to the resonance frequency fo of the empty system. , at a second frequency value, preferably between fo - (Δf / 2) and fo, with Δf corresponding to the bandwidth of an RLC circuit, in this case the one forming the resonator 10. For example, in the present application, Δf / 2 may take a value substantially equal to 100 kHz.
La figure 3 illustre un exemple de l'enveloppe de tension du signal U(t) pris aux bornes de la capacité Cs du résonateur pour un profil de commande tel que décrit ci- dessus, i.e. avec une première valeur de fréquence fo conservée jusqu'au maximum de la tension atteint pour l'instant tmax de la commande, correspondant au moment de formation de l'étincelle, et une deuxième valeur de fréquence diminuée brutalement à fo - 50 kHz par rapport à la première valeur de fréquence, après l'instant tmax .FIG. 3 illustrates an example of the voltage envelope of the signal U (t) taken across the capacitor C s of the resonator for a control profile as described above, ie with a first frequency value fo preserved until at the maximum of the voltage reached for the moment t max of the command, corresponding to the moment of formation of the spark, and a second frequency value decreased abruptly to fo - 50 kHz with respect to the first frequency value, after the moment t max .
En effet, selon l'exemple donné ci-dessus, la capacité équivalente que va apporter l'étincelle ne va généralement pas impliquer une diminution de la fréquence de résonance de l'ensemble résonateur/étincelle de plus de 100 kHz par rapport à fo.Indeed, according to the example given above, the equivalent capacitance that will bring the spark will not generally involve a decrease in the resonance frequency of the resonator / spark assembly of more than 100 kHz with respect to fo.
Un tel profil de commande permet avantageusement de conserver l'amplitude maximale de la tension appliquée aux bornes de la capacité Cs du résonateur au moment tmaχ de formation de l'étincelle, et rend en outre plus faible et progressif la chute de tension après le passage du point de maximum de tension à tmaχ par rapport au cas classique sans contrôle fréquentiel de la commande durant l'application du signal d'excitation du résonateur.Such a control pattern advantageously allows to keep the maximum amplitude of the voltage applied to the terminals of the capacitance C s at time t of the resonator my χ formation of the spark, and also makes lower and progressive voltage drop after the passage of the point of maximum voltage at t ma χ compared to the conventional case without frequency control of the control during the application of the excitation signal of the resonator.
Une telle modification de la fréquence de commande durant l'application du signal d'excitation du résonateur de la bougie radiofréquence, procure donc une réelle amélioration des caractéristiques de l'étincelle, en permettant de s'approcher au mieux des nouvelles conditions de résonance de l'ensemble et, par conséquent, rend l'allumage plus efficace.Such a modification of the control frequency during the application of the excitation signal of the resonator of the radiofrequency candle, thus provides a real improvement in the characteristics of the spark, allowing to get as close as possible to the new conditions resonance of the assembly and, therefore, makes ignition more efficient.
Ainsi, lorsque la fréquence du signal de commande de l'alimentation est brutalement décalée selon les principes évoqués ci-dessus, on passe avantageusement d'un système parfaitement accordé, au moment du déclenchement de la commande de génération de plasma, à un système "pas tout à fait" désaccordé, au moment de la formation de l'étincelle, dans la mesure où on provoque une diminution de la fréquence d'excitation permettant de tenir compte de la formation de l'étincelle pour adapter la commande du résonateur de la bougie aux nouvelles conditions de résonance.Thus, when the frequency of the control signal of the power supply is abruptly shifted according to the principles mentioned above, it is advantageous to switch from a perfectly tuned system, at the moment of triggering the plasma generation control, to a system " not quite detuned, at the moment of spark formation, insofar as it causes a decrease in the excitation frequency to take into account the formation of the spark to adapt the control of the resonator of the candle with new resonance conditions.
Toutefois, un paramètre essentiel à respecter pour un contrôle fréquentiel optimal selon l'invention de l'alimentation radiofréquence de la bougie, est la synchronisation du changement de fréquence du signal de commande de l'alimentation avec le signal d'excitation du résonateur de la bougie appliqué en sortie du circuit d' alimentation . La figure 2a illustre un chronogramme du signal de commande Vl de l'alimentation radiofréquence de la bougie, auquel est imposé un changement de fréquence pendant l'application du signal d'excitation V2 du résonateur de la bougie radiofréquence, dont le chronogramme est également représenté en regard du chronogramme de Vl. La figure 2a présente un cas où ce changement de fréquence du signal Vl n'est pas synchronisé avec le signal d'excitation V2.However, an essential parameter to respect for an optimal frequency control according to the invention of the radiofrequency power supply of the spark plug is the synchronization of the frequency change of the control signal of the power supply with the excitation signal of the resonator of the candle applied at the outlet of the supply circuit. FIG. 2a illustrates a timing diagram of the control signal Vl of the radiofrequency power supply of the spark plug, to which a frequency change is imposed during the application of the excitation signal V2 of the resonator of the radiofrequency candle, whose chronogram is also represented next to the timing diagram of Vl. FIG. 2a shows a case where this frequency change of the signal Vl is not synchronized with the excitation signal V2.
Comme illustré à la figure 2a, le signal d'excitation V2 du résonateur de la bougie radiofréquence est, dans une première partie de la commande d'allumage, commandé à la fréquence fo de résonance à vide du système, définie par le signal de commande Vl . A un moment donné de la commande d'allumage, correspondant de préférence au moment de la formation de l'étincelle, ou juste avant ou juste après, on commande donc un changement de la fréquence du signal de commande Vl, correspondant à un saut de fréquence de la fréquence initiale fo vers une fréquence fi, -choisie, comme expliqué plus haut, dans une plage de fréquence comprise entre fo et fo - (Δf/2) . La nouvelle valeur de fréquence de commande fi est par exemple choisie entre fo et fo - 100 kHz. Le signal de commande Vl passe alors par une phase de basculement de durée tb, dans laquelle il est dans un état bas, précédent l'application de la nouvelle fréquence f±.As illustrated in FIG. 2a, the excitation signal V2 of the radio frequency plug resonator is, in a first part of the ignition command, controlled at the system resonance frequency fo, defined by the control signal. Vl. At a given moment of the ignition control, preferably corresponding to the moment of formation of the spark, or just before or just after, a change in the frequency of the control signal Vl, corresponding to a jump of frequency of the initial frequency fo to a frequency fi, -chosen, as explained above, in a frequency range between fo and fo - (Δf / 2). The new control frequency value fi is for example chosen between fo and fo - 100 kHz. The control signal Vl then goes through a tilt phase of duration t b , in which it is in a low state, preceding the application of the new frequency f ± .
Comme illustré sur la figure 2a, la durée tb de basculement du signal de commande Vl vers la nouvelle fréquence fi , n'est pas calée sur la durée d'une demi- période du signal Vl avant le changement de fréquence, c'est- à-dire correspondant à une demi-période du signal à la fréquence fo selon l'exemple. La modification de la fréquence du signal d'excitation V2 qui en découle n'est donc pas synchronisée sur la durée tb de basculement du signal de commande Vl vers la nouvelle fréquence de commande f±.As illustrated in FIG. 2a, the duration t b of tilting of the control signal V1 to the new frequency f1 is not set to the duration of a half-period of the signal V1 before the change of frequency; i.e., corresponding to half a period of the signal at the frequency fo according to the example. The modification of the frequency of the excitation signal V2 which results therefrom is therefore not synchronized with the time t b of switching of the control signal V1 to the new control frequency f i .
Le signal de commande Vl n'est alors plus en phase avec les oscillations du signal d'excitation V2 au moment de l'application de la nouvelle fréquence fi. II résulte de cette situation que l'amplitude du signal d'excitation V2 décroît au moment du changement de fréquence, et ne remonte que progressivement en se réajustant avec la nouvelle fréquence de commande fi , comme illustrée par le chronogramme de V2 de la figure 2a. Ainsi, suite aux pertes pendant la transition, l'efficacité du système est diminuée. De plus, il y a des risques pour l'électronique de puissance de commande et, en particulier, pour l'interrupteur MOS forcé au changement d'état au moment du passage d'un courant important. En effet, la commutation non synchronisée du transistor de puissance va induire des commutations qui ne seront plus à zéro tension ou zéro courant, ce qui conduit à des risques pour le transistor.The control signal V1 is then no longer in phase with the oscillations of the excitation signal V2 at the time of application of the new frequency f 1. As a result of this situation, the amplitude of the excitation signal V2 decreases at the moment of the frequency change, and only goes up gradually by readjusting with the new control frequency f1, as illustrated by the timing diagram of V2 of FIG. 2a. . Thus, following the losses during the transition, the efficiency of the system is decreased. In addition, there are risks for control power electronics and, in particular, for the MOS switch forced to change state when a major current passes. Indeed, the unsynchronized switching of the power transistor will induce switching which will no longer be zero voltage or zero current, which leads to risks for the transistor.
La figure 2b, reprenant les mêmes chronogrammes que la figure 2a, illustre alors le cas prévu par la présente invention, où la modification de la fréquence du signal d'excitation V2 est avantageusement réalisée de manière synchrone avec la durée tb de basculement du signal de commande Vl vers la nouvelle fréquence de commande fi..FIG. 2b, taking again the same timing diagrams as FIG. 2a, then illustrates the case envisaged by the present invention, where the modification of the frequency of the excitation signal V2 is advantageously carried out synchronously with the time t b of signal switching. control Vl to the new control frequency fi ..
Dans ce cas où l'on synchronise le changement de fréquence du signal d'excitation avec le signal de commande, on créé une situation où le signal de commande est continuellement en phase avec les oscillations du signal d'excitation, y compris au moment du changement de fréquence. Il n'y a donc plus de perte de résonance et il est alors possible de garder le maximum de tension, tout en ralentissant la chute de tension après le passage du point de maximum de tension, correspondant à la formation de l'étincelle à l'instant tmaχ de la commande d'allumage (cf. figure 3) .In this case where the frequency change of the excitation signal is synchronized with the control signal, a situation is created in which the control signal is continuously in phase with the oscillations of the excitation signal, including at the moment of the frequency change. There is no longer a loss of resonance and it is then possible to keep the maximum voltage, while slowing down the voltage drop after the passage of the point of maximum voltage, corresponding to the formation of the spark to the time t my χ of the ignition control (see Figure 3).
Un tel contrôle fréquentiel synchrone du résonateur, permet de maintenir le facteur de qualité maximal de la bougie radiofréquence, quel que soit le régime de son fonctionnement et donc de préserver les caractéristiques de 1' étincelle .Such synchronous frequency control of the resonator makes it possible to maintain the maximum quality factor of the radiofrequency candle, whatever the mode of its operation and thus to preserve the characteristics of the spark.
Il est possible en outre d'opérer plusieurs changements brusque de fréquence du signal de commande durant l'application d'un même signal d'excitation du résonateur de la bougie radiofréquence . Comme on l'a vu, tout changement de fréquence du signal d'excitation du résonateur de la bougie radiofréquence doit se faire en synchronisme avec le signal de commande.It is also possible to make several abrupt changes in the frequency of the control signal during the application of the same excitation signal of the resonator of the radiofrequency candle. As we have seen, any frequency change of the excitation signal of the resonator of the RF candle must be synchronous with the control signal.
Pour ce faire, la durée de basculement tb, par laquelle passe le signal de commande Vl avant application de la nouvelle fréquence de commande, doit de préférence être commandée pour être sensiblement égale à la durée d'une demi- période du signal de commande avant application du changement de fréquence . Une certaine tolérance est cependant possible pour la commande de la durée tb de basculement du signal de commande vers la nouvelle fréquence de commande. Ainsi, il a été validé que, de manière générale, pour tout changement de fréquence impliquant un saut de fréquence d'une première fréquence f, pouvant être f0, à une seconde fréquence fl, typiquement comprise entre f0 - (Δf/2) et f0, la durée tb de basculement du signal de commande avant application de la nouvelle fréquence doit respecter : Autrement dit, la durée tb doit être comprise entre 80% et 120% de la durée d'une demi-période du signal de commande à la fréquence f (c'est-à-dire la fréquence avant application de la nouvelle fréquence) .To do this, the switching time t b , through which the control signal Vl passes before application of the new control frequency, must preferably be controlled to be substantially equal to the duration of one half-period of the control signal. before application of the frequency change. Some tolerance is however possible for controlling the duration t b of switching of the control signal to the new control frequency. Thus, it has been validated that, in general, for any change of frequency involving a frequency jump of a first frequency f, which may be f 0 , to a second frequency f1, typically between f 0 - (Δf / 2 ) and f 0 , the duration t b of switching of the control signal before application of the new frequency must comply with: In other words, the duration t b must be between 80% and 120% of the duration of a half-period of the control signal at the frequency f (that is to say the frequency before application of the new frequency) .
En outre, pour un gain optimum sur l'amplitude de la tension U(t) générée par le résonateur de la bougie radiofréquence, un changement de fréquence du signal de commande Vl doit être réalisé dans une phase transitoire (référencée phase 1 à la figure 3) du signal de tension U(t) du résonateur. Cette phase transitoire du signal U(t) précède une phase de stabilisation de ce signal (référencée phase 2), sachant qu'un gain maximum est obtenu lorsque le changement de fréquence se produit sensiblement au moment de la formation de l'étincelle, c'est-à-dire à l'instant tmax . La réalisation de sauts de fréquence avec les caractéristiques propres à l'invention décrites ci-dessus nécessitent, pour les applications embarquées d'utiliser pour ce faire des microprocesseurs hautes fréquences ou des composants logiques temps réels tels que les FPGA (Field Programmable Gâte Array) ou encore des ASIC (Application Spécifie Integrated Circuit) .In addition, for an optimum gain on the amplitude of the voltage U (t) generated by the resonator of the radiofrequency candle, a frequency change of the control signal Vl must be realized in a transient phase (referred to as phase 1 in FIG. 3) of the voltage signal U (t) of the resonator. This transient phase of the signal U (t) precedes a phase of stabilization of this signal (referenced phase 2), knowing that a maximum gain is obtained when the change of frequency occurs substantially at the moment of the formation of the spark, c i.e. at the instant tmax. Frequency hopping with the characteristics of the invention described above require, for embedded applications to use high frequency microprocessors or real-time logic components such as FPGAs (Field Programmable Gate Array). or ASICs (Application Specifies Integrated Circuit).
La figure 4 illustre un exemple de réalisation de moyens de contrôle fréquentiels selon l'invention du module de commande fournissant le signal de commande Vl de l'alimentation radiofréquence . Ces moyens de contrôle sont donc adaptés à décaler la fréquence du signal de commande de l'alimentation, d'une fréquence initiale de commande vers une nouvelle fréquence de commande, de sorte que le changement de fréquence du signal d'excitation du résonateur qui en découle soit synchronisé avec le signal de commande. De cette manière, le signal de commande reste en phase avec les oscillations du signal d'excitation du résonateur, pendant toute l'application du signal d'excitation. Selon l'exemple de la figure 4, les moyens de contrôle comprennent un oscillateur commandé en tension VCO 40, dont la sortie est connectée au module de commande 30 pour fournir le signal de commande Vl, et dont une entrée de contrôle 41 est connectée à une source de tension de contrôle 50, adaptée à piloter le VCO par une modulation de la tension de contrôle propre à commander un changement de la fréquence du signal de commande fourni sur la grille du transistor M.FIG. 4 illustrates an exemplary embodiment of frequency control means according to the invention of the control module supplying the control signal Vl of the radiofrequency power supply. These control means are therefore adapted to shift the frequency of the control signal of the power supply, from an initial control frequency to a new control frequency, so that the frequency change of the excitation signal of the resonator which in turn flows either synchronized with the control signal. In this way, the control signal remains in phase with the oscillations of the excitation signal of the resonator, throughout the application of the excitation signal. According to the example of FIG. 4, the control means comprise a voltage controlled oscillator VCO 40, the output of which is connected to the control module 30 to supply the control signal Vl, and whose control input 41 is connected to a control voltage source 50, adapted to drive the VCO by a modulation of the control voltage adapted to control a change in the frequency of the control signal provided on the gate of the transistor M.
Ainsi, l'optimisation du développement de l'étincelle de la bougie radiofréquence selon l'invention nécessite de parvenir à rattraper une partie du désaccord du système d'alimentation, en commandant un changement de fréquence en temps réel à l'intérieur d'un train d'excitation de la bougie, en respectant la condition de synchronisation de ce changement avec le signal de commande.Thus, optimizing the development of the spark of the radiofrequency candle according to the invention requires that it be possible to make up part of the disagreement of the power supply system by controlling a frequency change in real time within a train of excitement of the candle, respecting the synchronization condition of this change with the control signal.
Ce mode de contrôle fréquentiel synchrone en temps réel peut être étendu à tout type d'application utilisant un système résonant à première approximation de type LC ou RLC, dont les paramètres intrinsèques évoluent au cours du temps, sous un quelconque effet physique (telle que la fabrication d'une étincelle par exemple), modifiant ainsi sa fréquence de résonance initiale fo (l'augmentant ou la diminuant) . Dans ces conditions, la modification de la fréquence d'excitation du système résonant doit être synchronisée, selon la description précédente en relation avec l'application d'allumage automobile à génération de plasma, sur le temps tb de basculement du signal de commande vers une nouvelle valeur de fréquence de commande, définissant la nouvelle fréquence d'excitation.This mode of real-time synchronous frequency control can be extended to any type of application using a LC or RLC-like resonant system, the intrinsic parameters of which change over time, under any physical effect (such as the manufacture of a spark, for example), thus modifying its initial resonance frequency fo (increasing or decreasing it). Under these conditions, the modification of the excitation frequency of the resonant system must be synchronized, according to the preceding description in relation with the application of automobile ignition to plasma generation, the time t b of switching of the control signal to a new control frequency value, defining the new excitation frequency.
La nouvelle fréquence d'excitation doit en outre se situer entre f0 et f0 +/- (Δf/2) (selon que la fréquence de résonance a augmenté ou diminué) , Δf correspondant à la bande passante du système résonant.The new excitation frequency must also be between f 0 and f 0 +/- (Δf / 2) (depending on whether the resonant frequency has increased or decreased), Δf corresponding to the bandwidth of the resonant system.
Le changement de fréquence de résonance du système résonant peut être détecté en temps réel en mesurant une grandeur caractéristique du système résonant, comme par exemple le facteur de qualité. La modification de la fréquence d'excitation du système doit de préférence être opérée dès que l'on détecte une variation de la fréquence de résonance supérieure à 10% de la bande passante Δf. The resonance frequency change of the resonant system can be detected in real time by measuring a characteristic magnitude of the resonant system, such as the quality factor. The modification of the excitation frequency of the system should preferably be made as soon as a variation of the resonance frequency greater than 10% of the bandwidth Δf is detected.

Claims

REVENDICATIONS
1. Dispositif de génération de plasma radiofréquence, comprenant : -un module de commande (30) générant un signal de commande (Vl) à une fréquence de commande,A radiofrequency plasma generating device, comprising: a control module (30) generating a control signal (Vl) at a control frequency,
-un circuit d'alimentation (20) comprenant un interrupteur (M) commandé par le signal de commande, l'interrupteur appliquant un signal d'excitation (V2) sur une sortie du circuit d'alimentation à la fréquence définie par le signal de commande,a power supply circuit (20) comprising a switch (M) controlled by the control signal, the switch applying an excitation signal (V2) to an output of the power supply circuit at the frequency defined by the signal of ordered,
-un résonateur (10) présentant une fréquence de résonance supérieure à 1 MHz, connecté à la sortie du circuit d'alimentation et adapté à générer une tension (U (t) ) pour la fabrication d'une étincelle lorsqu'il est excité par le signal d'excitation, ledit dispositif étant caractérisé en ce qu' il comprend des moyens (40, 50) de contrôle du module de commande (30), adaptés à modifier la fréquence du signal d'excitation du résonateur de manière synchrone avec le signal de commande, pendant l'application du dit signal d' excitation, lesdits moyens de contrôle étant adaptés à commander au moins un saut de fréquence du signal de commande d'une première valeur de fréquence (fo) à une deuxième valeur de fréquence (fi) , inférieure à ladite première valeur.a resonator (10) having a resonance frequency greater than 1 MHz, connected to the output of the supply circuit and adapted to generate a voltage (U (t)) for the manufacture of a spark when it is excited by the excitation signal, said device being characterized in that it comprises means (40, 50) for controlling the control module (30), adapted to modify the frequency of the excitation signal of the resonator synchronously with the control signal, during the application of said excitation signal, said control means being adapted to control at least one frequency jump of the control signal from a first frequency value (fo) to a second frequency value ( fi), lower than said first value.
2. Dispositif selon la revendication 1, caractérisé en ce que les moyens de contrôle sont adaptés à commander une durée de basculement (tb) du signal de commande vers la deuxième valeur de fréquence, comprise entre 80% et 120% de la durée d'une demi-période du dit signal à la première valeur de fréquence. 2. Device according to claim 1, characterized in that the control means are adapted to control a switching time (t b ) of the control signal to the second frequency value, between 80% and 120% of the duration of half a period of said signal at the first frequency value.
3. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la première valeur de fréquence est sensiblement égale à la fréquence de résonance du résonateur sans étincelle.3. Device according to any one of the preceding claims, characterized in that the first frequency value is substantially equal to the resonance frequency of the resonator without spark.
4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la deuxième valeur de fréquence est comprise dans une plage comprise entre fo - (Δf/2) et fo, fo étant égale à la fréquence de résonance du résonateur sans étincelle et Δf correspondant à la bande passante du résonateur.4. Device according to any one of the preceding claims, characterized in that the second frequency value is in a range between fo - (Δf / 2) and fo, fo being equal to the resonance frequency of the resonator without spark and Δf corresponding to the bandwidth of the resonator.
5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de contrôle sont adaptés à commander un saut de fréquence du signal de commande dans une phase transitoire du signal de tension (U (t) ) généré par le résonateur, précédent une phase de stabilisation du dit signal.5. Device according to any one of the preceding claims, characterized in that the control means are adapted to control a frequency jump of the control signal in a transient phase of the voltage signal (U (t)) generated by the resonator , preceding a phase of stabilization of said signal.
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de contrôle sont adaptés à commander un saut de fréquence du signal de commande, sensiblement au moment de la formation de l'étincelle.6. Device according to any one of the preceding claims, characterized in that the control means are adapted to control a frequency jump of the control signal, substantially at the time of the formation of the spark.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de contrôle du module de commande comprennent un oscillateur commandé en tension (40) et des moyens (50) de modulation de la tension de contrôle du dit oscillateur. 7. Device according to any one of the preceding claims, characterized in that the control means of the control module comprises a voltage controlled oscillator (40) and means (50) for modulating the control voltage of said oscillator.
8. Moteur à combustion interne, caractérisé en ce qu' il comprend au moins un dispositif de génération de plasma selon l'une quelconque des revendications 1 à 7.8. Internal combustion engine, characterized in that it comprises at least one plasma generating device according to any one of claims 1 to 7.
9. Procédé de commande d'une alimentation d'un allumage radiofréquence d'un moteur à combustion, dans lequel on applique un signal d'excitation (V2) en entrée d'un résonateur (10) à une première fréquence définie par un signal de commande (Vl), ledit résonateur présentant une fréquence de résonance supérieure à 1 MHz et étant apte à générer une tension (U (t) ) pour la fabrication d'une étincelle lorsqu'il est excité par le signal d'excitation, ledit procédé étant caractérisé en ce qu' il consiste à modifier la fréquence du signal d'excitation pendant l'application de celui-ci, de manière synchrone avec le signal de commande, et à commander au moins un saut de fréquence du signal de commande d'une première valeur de fréquence (f0) à une deuxième valeur de fréquence (fi) , inférieure à ladite première valeur. 9. A method of controlling a power supply of a radiofrequency ignition of a combustion engine, in which an excitation signal (V2) is applied to the input of a resonator (10) at a first frequency defined by a signal. control device (VI), said resonator having a resonant frequency greater than 1 MHz and being adapted to generate a voltage (U (t)) for the manufacture of a spark when it is excited by the excitation signal, said characterized in that it consists in modifying the frequency of the excitation signal during the application thereof, synchronously with the control signal, and in controlling at least one frequency jump of the control signal of a first frequency value (f 0 ) at a second frequency value (fi), less than said first value.
EP09784388A 2008-08-05 2009-05-15 Monitoring of the excitation frequency of a radiofrequency spark plug Not-in-force EP2315932B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0855409A FR2934942B1 (en) 2008-08-05 2008-08-05 CONTROL OF THE FREQUENCY OF EXCITATION OF A RADIOFREQUENCY CANDLE.
PCT/FR2009/050912 WO2010015757A1 (en) 2008-08-05 2009-05-15 Monitoring of the excitation frequency of a radiofrequency spark plug

Publications (2)

Publication Number Publication Date
EP2315932A1 true EP2315932A1 (en) 2011-05-04
EP2315932B1 EP2315932B1 (en) 2012-07-11

Family

ID=39930658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09784388A Not-in-force EP2315932B1 (en) 2008-08-05 2009-05-15 Monitoring of the excitation frequency of a radiofrequency spark plug

Country Status (8)

Country Link
US (1) US20110203543A1 (en)
EP (1) EP2315932B1 (en)
JP (1) JP5460711B2 (en)
KR (1) KR20110055595A (en)
CN (1) CN102171442B (en)
ES (1) ES2389591T3 (en)
FR (1) FR2934942B1 (en)
WO (1) WO2010015757A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928240B1 (en) 2008-02-28 2016-10-28 Renault Sas OPTIMIZATION OF THE FREQUENCY OF EXCITATION OF A RADIOFREQUENCY CANDLE.
FR2935759B1 (en) * 2008-09-09 2010-09-10 Renault Sas DEVICE FOR MEASURING THE IONIZATION CURRENT IN A RADIOFREQUENCY IGNITION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE102011052096B4 (en) * 2010-09-04 2019-11-28 Borgwarner Ludwigsburg Gmbh A method of exciting an RF resonant circuit having as component an igniter for igniting a fuel-air mixture in a combustion chamber
JP5351874B2 (en) * 2010-11-25 2013-11-27 日本特殊陶業株式会社 Plasma ignition device and plasma ignition method
US8760067B2 (en) 2011-04-04 2014-06-24 Federal-Mogul Ignition Company System and method for controlling arc formation in a corona discharge ignition system
JP5873709B2 (en) * 2011-08-22 2016-03-01 株式会社日本自動車部品総合研究所 High-frequency plasma generation system and high-frequency plasma ignition device using the same.
DE102012100841B3 (en) * 2012-02-01 2013-05-29 Borgwarner Beru Systems Gmbh Method for controlling ignition of fuel-air mixture in cyclically operating combustion engine, involves providing output power of two maxima, preferably three maxima by one or more corona discharges in operating cycle of engine
DE102012104641B4 (en) 2012-05-30 2014-04-30 Borgwarner Beru Systems Gmbh A method for determining the start of combustion in a cyclically operating internal combustion engine, in which a fuel is ignited by a corona discharge
JP5811119B2 (en) * 2013-03-12 2015-11-11 三菱電機株式会社 Ignition device for spark ignition internal combustion engine
KR20170101902A (en) * 2014-10-30 2017-09-06 노스-웨스트 유니버시티 Ignition system for an internal combustion engine and a control method thereof
CN105003376B (en) * 2015-07-20 2017-04-26 英国Sunimex有限公司 Engine radio frequency ignition control method and device
JP6688140B2 (en) * 2016-04-11 2020-04-28 株式会社Soken Control device for internal combustion engine
US10145352B2 (en) * 2016-09-02 2018-12-04 Fairchild Semiconductor Corporation Resonant ignition circuit
CA3191050A1 (en) * 2020-08-28 2022-03-03 Nikolay Suslov Systems, methods, and devices for generating predominantly radially expanded plasma flow

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1452122A (en) * 1973-10-10 1976-10-13 British Gas Corp Electrical circuit arrangements for igniting gaseous fuels
FR2649759B1 (en) * 1989-07-13 1994-06-10 Siemens Bendix Automotive Elec IGNITION DEVICE FOR INTERNAL COMBUSTION ENGINE
US5361737A (en) * 1992-09-30 1994-11-08 West Virginia University Radio frequency coaxial cavity resonator as an ignition source and associated method
US5548471A (en) * 1994-07-25 1996-08-20 Webster Heating And Specialty Products, Inc. Circuit and method for spark-igniting fuel
JP3669600B2 (en) * 1994-12-29 2005-07-06 本田技研工業株式会社 Ignition device for internal combustion engine
JP3119822B2 (en) * 1995-09-14 2000-12-25 住友電気工業株式会社 Discharge current supply method and discharge current supply device
DE10037536C2 (en) * 2000-08-01 2002-11-21 Daimler Chrysler Ag Method and device for plasma ignition in internal combustion engines
DE10157029A1 (en) * 2001-11-21 2003-06-05 Bosch Gmbh Robert High frequency ignition for an internal combustion engine
DE102005036968A1 (en) * 2005-08-05 2007-02-15 Siemens Ag Plasma ignition system and method of operation
FR2895170B1 (en) * 2005-12-15 2008-03-07 Renault Sas OPTIMIZING THE EXCITATION FREQUENCY OF A RESONATOR
FR2895169B1 (en) * 2005-12-15 2008-08-01 Renault Sas OPTIMIZING THE EXCITATION FREQUENCY OF A RESONATOR
FR2913299B1 (en) * 2007-03-01 2009-04-17 Renault Sas PILOTAGE OF A PLURALITY OF CANDLE COILS VIA A SINGLE POWER STAGE.
FR2913298B1 (en) * 2007-03-01 2009-04-17 Renault Sas CONTROL OF A PLURALITY OF CANDLE COILS VIA A SINGLE POWER FLOOR
FR2914530B1 (en) * 2007-03-28 2014-06-20 Renault Sas OPTIMAL DRIVING AT THE RESONANCE FREQUENCY OF A RESONATOR OF A RADIOFREQUENCY IGNITION.
FR2928240B1 (en) * 2008-02-28 2016-10-28 Renault Sas OPTIMIZATION OF THE FREQUENCY OF EXCITATION OF A RADIOFREQUENCY CANDLE.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010015757A1 *

Also Published As

Publication number Publication date
FR2934942B1 (en) 2010-09-10
US20110203543A1 (en) 2011-08-25
JP2011530039A (en) 2011-12-15
KR20110055595A (en) 2011-05-25
ES2389591T3 (en) 2012-10-29
WO2010015757A1 (en) 2010-02-11
CN102171442A (en) 2011-08-31
CN102171442B (en) 2013-03-06
EP2315932B1 (en) 2012-07-11
JP5460711B2 (en) 2014-04-02
FR2934942A1 (en) 2010-02-12

Similar Documents

Publication Publication Date Title
EP2315932B1 (en) Monitoring of the excitation frequency of a radiofrequency spark plug
EP2250366B1 (en) Optimisation of the excitation frequency of a radiofrequency plug
EP2080254B1 (en) Radiofrequency plasma generation device
EP1961279B1 (en) Optimization of the excitation frequency of a resonator
EP2126341B1 (en) Optimised generation of a radio frequency ignition spark
EP2002117B1 (en) Method for measuring an ionization current of a spark plug of the type with resonant structure, and corresponding device
EP2153056B1 (en) Measuring device in a radiofrequency ignition system for internal combustion engine
EP2134959A2 (en) Optimum control of the resonant frequency of a resonator in a radio frequency ignition system
FR2913298A1 (en) Radio frequency plasma generating device for controlled radio frequency ignition of gaseous mixture in automobile internal combustion engine, has control device determining frequency of signal to control generating circuit
FR2913299A1 (en) Plasma generating device for internal combustion engine of vehicle, has power supply circuit with control device for determining frequency of control signal among resonance frequencies to selectively control coils-sparkplugs
FR2893812A1 (en) DISCHARGE LAMP LIGHTING CIRCUIT
EP2321524B1 (en) Device for measuring the ionization current in a radiofrequency ignition system for an internal combustion engine
FR2943739A1 (en) METHOD FOR IGNITING A FUEL MIXTURE FOR A HEAT ENGINE
WO2009016310A2 (en) Combustion engine and method of controlling a combustion engine
FR2858908A1 (en) DISCHARGE LAMP IGNITION SYSTEM AND DISCHARGE LAMP IGNITION METHOD
EP2526595B1 (en) Spark plug, ignition system, engine and ignition method for the engine
WO2000063554A1 (en) Ignition device for an internal combustion engine and spark plug for the implementation of said device
FR2975863A1 (en) POWER SUPPLY FOR RADIOFREQUENCY IGNITION WITH DOUBLE-STAGE AMPLIFIER
FR2982647A1 (en) Continuous ignition system for positive ignition internal combustion engine of car, has control stage injecting undulated current in winding to maintain continuous ignition, and resonance created by capacitor and leak inductance
WO2014118451A1 (en) Plasma-generating device with reduction of the overvoltage at the terminals of the communication transistor, and corresponding control method
FR3000142A1 (en) Internal combustion engine management method for motor vehicle, involves determining operational voltage of radio frequency spark plug of cylinder of engine from measurement representative of value of angle of maximum pressure of cylinder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DELORAINE, FRANCK

Inventor name: AGNERAY, ANDRE

Inventor name: MAKAROV, MAXIME

Inventor name: AUZAS, FREDERIC

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 566280

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009008284

Country of ref document: DE

Effective date: 20120906

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2389591

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121029

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120711

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 566280

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120711

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121011

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121111

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121112

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

26N No opposition filed

Effective date: 20130412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009008284

Country of ref document: DE

Effective date: 20130412

BERE Be: lapsed

Owner name: RENAULT S.A.S.

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140528

Year of fee payment: 6

Ref country code: IT

Payment date: 20140523

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130515

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090515

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20150429

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150516

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210520

Year of fee payment: 13

Ref country code: FR

Payment date: 20210525

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210525

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009008284

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220515

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201