EP2126341B1 - Optimised generation of a radio frequency ignition spark - Google Patents

Optimised generation of a radio frequency ignition spark Download PDF

Info

Publication number
EP2126341B1
EP2126341B1 EP08762077A EP08762077A EP2126341B1 EP 2126341 B1 EP2126341 B1 EP 2126341B1 EP 08762077 A EP08762077 A EP 08762077A EP 08762077 A EP08762077 A EP 08762077A EP 2126341 B1 EP2126341 B1 EP 2126341B1
Authority
EP
European Patent Office
Prior art keywords
voltage
resonator
control
supply circuit
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08762077A
Other languages
German (de)
French (fr)
Other versions
EP2126341A2 (en
Inventor
Clément Nouvel
André AGNERAY
Xavier Jaffrezic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2126341A2 publication Critical patent/EP2126341A2/en
Application granted granted Critical
Publication of EP2126341B1 publication Critical patent/EP2126341B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/121Testing characteristics of the spark, ignition voltage or current by measuring spark voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator

Definitions

  • the present invention relates to controlling the power supply of a plasma generation resonator, in particular in a plasma automotive ignition application by radio-frequency biasing of the resonator of a multi-spark plug.
  • the BME multi-spark plug has a significant innovation and a different geometry from conventional spark plugs.
  • Such BME is described in detail in the following publications of patent applications in the name of the Applicant. FR 2,859,830 , FR 2,859,869 , FR 2,859,831 , FR 2,878,086 and FR 2 881 281 .
  • a BME includes a resonator whose resonant frequency F c is located in the high frequencies, typically between 4 and 6 MHz, to supply the candle with a resonance amplified voltage.
  • branched sparks These are referred to as branched sparks, insofar as they involve the simultaneous generation of at least several lines or ionization paths in a given volume, their branches being moreover omnidirectional.
  • the control of the power supply of such a BME requires the use of a high voltage generator whose operating frequency is very close to the resonance frequency of the radio frequency resonator.
  • Such a voltage generator consists mainly in using a resonator control frequency as close as possible to the resonance resonance frequency, in order to benefit from the highest possible overvoltage coefficient.
  • the present invention aims to overcome this disadvantage, by making it possible to maximize in real time the volume of the spark generated while reducing the occurrence of bridging, that is to say the appearance of filament discharges.
  • control signal being generated in the form of a plurality of pulse trains of control
  • the regulation concerns the number of said trains and the inter-train time.
  • the method comprises the memorization of relations between measurement signals and the value of parameters to be regulated, the regulation consisting of determining and applying the value of at least the parameter to be regulated according to the measurement signals received and the memorized relationships. .
  • the first measurement signals are selected from the group consisting of engine oil temperature, engine coolant temperature, engine torque, engine speed, ignition angle, air temperature. intake pressure, manifold pressure, atmospheric pressure, combustion chamber pressure or maximum pressure angle.
  • the second measurement signals comprise at least one measurement of the voltage at the terminals of a storage capacitor supplying the intermediate voltage at the input of the resonator and / or at least one measurement of the current in the resonator.
  • a first measurement of the voltage at the terminals of the storage capacitor before or at the beginning of the control pulse train is carried out and a second measurement of the said voltage after or at the end of the pulse train of ordered.
  • a plurality of measurements are carried out during the duration of the control pulse train.
  • the method comprises regulating the control frequency to a set point substantially equal to the resonance frequency of the resonator.
  • the AC voltage generated by the amplifier 5 is applied to the LC resonator 6.
  • the LC resonator 6 applies the AC voltage between the electrodes 103 and 106 of the candle head.
  • the voltage supplied by the power supply 3 is less than 1000V and the power supply preferably has a limited power. We can thus foresee that the energy applied between the electrodes is limited to 300mJ by ignition, for safety reasons. This also clamps the intensity in the voltage generator 2 and its power consumption.
  • the power supply 3 may include a 12-volt converter to Y Volt, where Y is the voltage supplied by the power supply to the amplifier. It is thus possible to generate the desired DC voltage level from a battery voltage.
  • the stability of the DC voltage generated is not a priori a decisive criterion, it can be expected to use a switching power supply to power the amplifier, for its qualities of robustness and simplicity.
  • the supply circuit 2 makes it possible to concentrate the highest voltages on the resonator 6.
  • the amplifier 5 thus deals with much lower voltages than the voltages applied between the electrodes of the candle.
  • the amplifier 5 accumulates energy in the resonator 6 at each alternation of its voltage.
  • An amplifier 5 is preferably used in class E, as detailed in the patent U.S. 5,187,580 . Such an amplifier makes it possible to maximize the overvoltage factor.
  • Those skilled in the art will of course associate a switching device adapted to the chosen amplifier, to support the requirements of voltage increases and to have an adequate switching speed.
  • the figure 2 illustrates an electrical model of the resonator 6.
  • the inductance series 65 has in series an inductance Ls and a resistor Rs taking into account the skin effect in the radiofrequency domain.
  • the capacitor 119 has in parallel capacitance Cs and resistor Rp. Ignition electrodes 106 and 103 are connected across capacitor Cs.
  • the resistance Rp is added to model the discharge and corresponds where appropriate to the dissipation in the ceramic candle.
  • the resonator is powered by a voltage at its resonance frequency f 0 ( 1 / 2 ⁇ ⁇ ⁇
  • the plasma generating device which has been described may comprise a plasma generation resonator adapted to achieve a combustion engine controlled ignition, an ignition in a particle filter, or a decontamination ignition in an air conditioning system.
  • the figure 3 illustrates a block diagram of the radio frequency ignition according to an embodiment of an amplifier 5, having a power MOSFET transistor as a switch controlling the commutations across the resonator 6.
  • a control signal generator 8 applies a control signal V1 to a control frequency on the gate of a power MOSFET 9, via an amplification device 10 shown schematically.
  • the latter is not permanent but is present in the form of control pulse trains at the control frequency.
  • a parallel resonant circuit 62 is connected between an intermediate voltage source Vinter and the drain of the transistor 9.
  • This circuit 62 comprises an inductance Lp in parallel with a capacitance Cp.
  • the parallel resonator transforms the intermediate voltage Vinter into an amplified voltage Va, which is supplied on the drain of the transistor 9 connected to the input of the resonator 6.
  • the transistor 9 therefore acts as a switch and transmits (respectively blocks) the voltage Va at the input of the resonator 6 when the control signal V1 is at the logic high (respectively low).
  • the intermediate voltage Vinter supplied at the input of the parallel resonant circuit 62, is typically generated by means of a voltage booster, shown schematically in FIG. figure 4 .
  • the voltage booster circuit is for example supplied from a battery voltage Vbat and is composed of a Lboost inductor, a MOSFET K, which serves as a switch controlled by a control module 20, a diode Dboost, and a Cboost capacitor.
  • the control module delivers a control signal V2 in the form of high frequency pulse train, so that switch K is periodically made conductive.
  • K When K is closed, the Lboost inductor loads with the voltage Vbat at its terminals.
  • the Dboost diode drives and the energy stored in the inductor causes a current to flow to the output and the capacitor Cboost to charge it.
  • the Cboost storage capacity is loaded in this way until the desired value of Vinter is reached.
  • a regulation loop measures the value of the voltage across the capacitor Cboost at any time and controls the control module to stop the output voltage rise when the desired value is reached.
  • the voltage rise process is inhibited in all cases at the beginning and during the ignition control train.
  • the invention provides for acting on a certain number of operating parameters of the system, or on at least one of them, in order to limit as much as possible the bridging phenomenon during the discharge of the spark plug, in particular: the supply voltage of the resonator provided for applying the high voltage across the electrodes, the excitation frequency of the resonator, the duration of the control train, the possibility of achieving several trains and their number, as well as the time between the trains.
  • These parameters can be advantageously adjustable during the operating time of the system and their adjustment in real time, as will be explained in more detail later, must make it possible to obtain an optimal branching of the discharge by limiting the occurrence of the bypasses.
  • the applied voltage setpoint must be such that it allows the system to be placed under optimal conditions from the point of view of combustion, namely a branching of the maximum volume spark for a voltage amplitude applied across the electrodes just below the high voltage limit from which bridging occurs.
  • the real-time regulation of the intermediate voltage value to be carried out at the terminals of Cboost takes into account measurement signals of operating parameters of the combustion engine.
  • the real-time regulation of the optimum intermediate voltage value to be achieved at the terminals of the Cboost capacitor can be refined by also taking into account electrical measurement signals of the resonator 6 power supply, representative of the type of spark. realized.
  • the regulation process determines the value of the setpoint of the voltage to be achieved before lighting at the terminals of Cboost, as a function of the relationships stored between these measurement signals and the voltage value to be applied across Cboost.
  • Such a real-time control of the intermediate voltage across Cboost before ignition is achieved via the control module 20.
  • the latter thus comprises an interface 21 for receiving signals for measuring operating parameters of the combustion engine.
  • Engine operating parameters measured include engine oil temperature, engine coolant temperature, engine torque, engine speed, ignition angle, intake air temperature. pressure at the manifold, atmospheric pressure, pressure in the combustion chamber, maximum pressure angle or any characteristic quantity of engine operation. These types of measurement can be carried out in a manner known per se by those skilled in the art.
  • control module 20 also comprises an interface 22 for receiving electrical measurement signals, representative of the type of spark generated.
  • the control module 20 comprises a memory module 26 in which are stored the relationships between the measurement signals and the voltage value to be achieved across the Cboost capacity before ignition. These relationships can be established based on tests prerequisites.
  • the memory module 26 can memorize the relations in the form of a function associating predetermined measurement signals with a single voltage setpoint to be achieved. For example, a linear function or a polynomial function can be extrapolated according to the results of prior tests on a resonator by varying the different parameters taken into account.
  • the memory module can also store the relationships as a multidimensional array having as input measurement signals.
  • the control module 20 comprises a module 25 determining the voltage setpoint to be made as a function of the measurement signals received and the relationships stored in the memory 26.
  • the setpoint is supplied by the module 25 to a module 27, applying a control signal V2 on an output interface 24 adapted to control the process of voltage rise as explained above until the voltage value across the capacitance Cboost reaches the setpoint.
  • the module 27 is for example a clock generator suitably chosen by those skilled in the art.
  • a programming interface 23 can be provided for receiving and executing commands for modifying the relationships or parameters stored in the memory module 26.
  • the programming interface 23 can in particular be a wireless communication interface. Thus, one can consider updating the relationships stored in the module 26 to optimize the operation of the ignition system after delivery.
  • the reception interface 22 preferably receives one or more measurements of the value of the intermediate voltage across the storage capacitor Cboost and / or one or more measurements of the current entering the resonator 6 and this, for the duration of (or) the train (s) of control pulses V1 controlling the generation of 'spark.
  • the current entering the resonator As for the current entering the resonator, it is an image of the high voltage across the electrodes of the resonator.
  • This modulated signal at the resonant frequency (typically 5MHz) has a characteristic envelope of the branched discharge and bridging phenomena.
  • the analysis of the envelope of the current signal during the duration of an ignition control requires the use of a device of the type of peak detector, known per se, which only outputs the peak values of the modulated sinusoid of the current signal.
  • a first mode it is possible to consider the taking into account of a single measurement characteristic of the type generated spark, performed at the most representative instant of the development of the spark, either after or at the end of the spark generation control train.
  • the measurement of the evolution of the voltage at the terminals of Cboost during and / or before and / or after the duration of the control train is a carrier of numerous information about the branching of the spark.
  • the energy consumption of the resonator results in a voltage drop across the Cboost capacity, which can be followed. It is noted that an optimal branching of the generated spark is very energy consuming while the bridging phase greatly limits the consumption.
  • the analysis of the voltage drop slopes at the terminals of Cboost thus makes it possible to detect the bridging and its instant of appearance.
  • the analysis of the occurrence of the bridging may be based on the analysis of the input current envelope of the resonator.
  • the regulation evoked so far to promote an optimal branching of the spark while avoiding the bridging phenomenon as much as possible acts preferably on the value of the intermediate voltage to be produced at the terminals of the Cboost storage capacitor for each ignition.
  • the regulation process thus makes it possible to define a voltage setpoint to be reached at the beginning of each ignition, depending on the one hand, measuring signals representative of the operation of the engine and, on the other hand, electrical measurement signals representative of the type of spark generated.
  • control parameters of the system can also be taken into account in the real-time control process and thus be adjusted during the operating time of the system, in the same manner as explained above with reference to the control of the system. value of the intermediate voltage across Cboost for each ignition.
  • the other operating parameters of the system involved in the development of the spark and likely to be modified during operation to adjust the system in real time are the resonator control frequency, the duration of the control pulse train. spark generation, or alternatively consisting of making multi-ignitions, the number of such control trains and the spacing between each train.
  • the regulation according to the invention relates jointly to the value of the intermediate voltage across Cboost for each ignition and the duration of the control pulse train V1, controlling the generation of the spark.
  • control module 20 is also used to generate the ignition control pulse train V1, the duration of which is then adjusted according to the measurement signals received and the memorized relationships. .
  • the bridging phenomenon occurring during the train command and, generally, starting occur at the end of the control train it can be avoided by shortening the duration of the control pulse train so as to stop it just before the bypass (or just after the desired effect on the control train). combustion).
  • this technique of limiting the bridging probabilities by reducing the duration of the ignition control train can be considered in conjunction with the technique of regulating the supply voltage of the resonator.
  • regulating the supply voltage of the resonator consisting in defining a reduced level of intermediate voltage across the Cboost capacitor before ignition, advantageously makes it possible to push the bridging phenomenon as far as possible from the start of the control train. .
  • control the resonator during ignition by means of a control signal in the form of a plurality of control pulse trains, each train having a very short duration, for example of order of 5 to 10 ⁇ s, so that no bridging has time to occur.
  • a control signal in the form of a plurality of control pulse trains, each train having a very short duration, for example of order of 5 to 10 ⁇ s, so that no bridging has time to occur.
  • the spacing between the different pulse trains of the control signal can be regulated in the direction of an increase. The ignition time is however increased, which may be unfavorable to the conditions of initiation of the mixture.
  • the frequency of the resonator control signal is preferably chosen from the order of magnitude of the resonance frequency of the resonator 6. Indeed, the match between the resonance frequency of the resonator and the resonator frequency at which this is controlled (ie the frequency of the control signal), determines the ratio between the voltage amplitude at the input and the output of the resonator.
  • the resonator efficiency is favored, insofar as its overvoltage coefficient Q is then the highest possible.
  • the value of the control frequency can also be subject to the anti-bridging regulation as explained above, by determining an optimum value of control frequency shifted with respect to the resonant frequency, as a function of the received measurements. (motor and electric operation).
  • This parameter can be regulated alone, or together with the value of the intermediate voltage, the duration of the control train, or even together with the latter two parameters.

Abstract

The method involves receiving measuring signals representing a function of a combustion engine, and receiving electric measuring signal representing a generated spark. A parameter is regulated based on the received signals in a real time to promoting the ramification of the generated spark, where the parameters are selected from the intermediate voltage level, order of frequency and duration of control pulse train. An independent claim is also included for a plasma generating device.

Description

La présente invention concerne le pilotage de l'alimentation d'un résonateur de génération de plasma, en particulier dans une application d'allumage automobile à plasma par sollicitation radio-fréquence du résonateur d'une bougie multi étincelle.The present invention relates to controlling the power supply of a plasma generation resonator, in particular in a plasma automotive ignition application by radio-frequency biasing of the resonator of a multi-spark plug.

Dans le domaine des allumages automobiles modernes, la bougie multi étincelles BME présente une innovation appréciable et une géométrie différente des bougies d'allumage conventionnelles. Une telle BME est décrite en détail dans les publications suivantes des demandes de brevet au nom de la demanderesse. FR 2 859 830 , FR 2 859 869 , FR 2 859 831 , FR 2 878 086 et FR 2 881 281 .In the field of modern automotive ignitions, the BME multi-spark plug has a significant innovation and a different geometry from conventional spark plugs. Such BME is described in detail in the following publications of patent applications in the name of the Applicant. FR 2,859,830 , FR 2,859,869 , FR 2,859,831 , FR 2,878,086 and FR 2 881 281 .

Une BME comporte un résonateur dont la fréquence de résonance Fc est située dans les hautes fréquences, typiquement entre 4 et 6 MHz, pour assurer l'alimentation de la bougie avec une tension amplifiée par résonance. L'application par le résonateur aux électrodes de la bougie d'une tension alternative dans la gamme des radiofréquences, permet de développer des décharges multi-filamentaires entre les électrodes de la bougie, sur des distances de l'ordre du centimètre, à forte pression et pour des tensions de crête inférieures à 20 kV.A BME includes a resonator whose resonant frequency F c is located in the high frequencies, typically between 4 and 6 MHz, to supply the candle with a resonance amplified voltage. The application by the resonator to the electrodes of the candle of an AC voltage in the range of radio frequencies, allows to develop multi-filament discharges between the electrodes of the candle, over distances of the order of a centimeter, at high pressure and for peak voltages below 20 kV.

On parle alors d'étincelles ramifiées, dans la mesure où elles impliquent la génération simultanée d'au moins plusieurs lignes ou chemin d'ionisation dans un volume donné, leurs ramifications étant en outre omnidirectionnelles.These are referred to as branched sparks, insofar as they involve the simultaneous generation of at least several lines or ionization paths in a given volume, their branches being moreover omnidirectional.

Le pilotage de l'alimentation d'une telle BME nécessite l'utilisation d'un générateur haute tension dont la fréquence de fonctionnement est très proche de la fréquence de résonance du résonateur radio-fréquence. Plus la différence entre la fréquence de résonance du résonateur et la fréquence de fonctionnement du générateur est réduite, plus le coefficient de surtension du résonateur (rapport entre l'amplitude de sa tension de sortie et sa tension d'entrée) est élevé.The control of the power supply of such a BME requires the use of a high voltage generator whose operating frequency is very close to the resonance frequency of the radio frequency resonator. The greater the difference between the resonance frequency of the resonator and the operating frequency of the generator, the higher the resonator overvoltage coefficient (ratio between the amplitude of its output voltage and its input voltage) is high.

Un tel générateur de tension, détaillé dans la demande de brevet FR 03-10767 , consiste principalement à utiliser une fréquence de commande du résonateur la plus proche possible de la fréquence de résonance du résonateur, afin de bénéficier d'un coefficient de surtension le plus élevé possible.Such a voltage generator, detailed in the patent application FR 03-10767 , consists mainly in using a resonator control frequency as close as possible to the resonance resonance frequency, in order to benefit from the highest possible overvoltage coefficient.

On constate cependant que si l'amplitude totale de tension appliquée en sortie du résonateur aux électrodes de la bougie est trop élevée, il existe un risque de voir l'étincelle se concentrer en un unique filament. Ce phénomène, que nous décrirons sous le terme de « pontage » dans la suite de la description, localise l'énergie dans une petite zone filamenteuse, rendant alors la décharge beaucoup moins efficace pour initier l'allumage du mélange air-carburant entre les électrodes, par rapport à une étincelle ramifiée.However, it is found that if the total amplitude of voltage applied at the output of the resonator to the electrodes of the candle is too high, there is a risk of seeing the spark concentrate in a single filament. This phenomenon, which we will describe under the term "bridging" in the following description, locates the energy in a small filamentous zone, thus making the discharge much less effective to initiate the ignition of the air-fuel mixture between the electrodes. , compared to a branched spark.

La présente invention vise à remédier à cet inconvénient, en permettant de maximiser en temps réel le volume de l'étincelle générée tout en réduisant l'occurrence des pontages, c'est-à-dire l'apparition de décharges filamentaires.The present invention aims to overcome this disadvantage, by making it possible to maximize in real time the volume of the spark generated while reducing the occurrence of bridging, that is to say the appearance of filament discharges.

Avec cet objectif en vue, l'invention a pour objet un procédé de commande d'un générateur de plasma radiofréquence, comprenant :

  • un circuit d'alimentation, présentant un interrupteur commandé par un signal de commande sous la forme d'au moins un train d'impulsions de commande, appliquant une tension intermédiaire sur une sortie du circuit d'alimentation à la fréquence définie par le signal de commande,
  • un résonateur, connecté à la sortie du circuit d'alimentation et apte à générer une étincelle entre deux électrodes lorsqu'un niveau haute tension est appliqué sur la sortie du circuit d'alimentation, ledit procédé étant caractérisé en ce qu'il comprend :
  • la réception de premiers signaux de mesure représentatifs du fonctionnement d'un moteur à combustion,
  • la réception de seconds signaux de mesure électrique représentatifs du type d'étincelle générée, et
  • la régulation en temps réel, en fonction des premier et second signaux de mesure reçus, d'au moins un paramètre pris parmi au moins le niveau de la tension intermédiaire, la fréquence de commande, la durée du train d'impulsions de commande, de sorte à favoriser une ramification de l'étincelle générée, et
  • la régulation conjointe du niveau de la tension intermédiaire et de la durée du train d'impulsions de commande.
With this object in view, the subject of the invention is a method for controlling a radiofrequency plasma generator, comprising:
  • a supply circuit, having a switch controlled by a control signal in the form of at least one control pulse train, applying an intermediate voltage to an output of the supply circuit at the frequency defined by the control signal; ordered,
  • a resonator, connected to the output of the supply circuit and able to generate a spark between two electrodes when a high voltage level is applied to the output of the supply circuit, said method being characterized in that it comprises:
  • receiving first measurement signals representative of the operation of a combustion engine,
  • receiving second electrical measurement signals representative of the type of spark generated, and
  • the real-time regulation, as a function of the first and second measurement signals received, of at least one parameter taken from at least the intermediate voltage level, the control frequency, the duration of the control pulse train, to promote branching of the generated spark, and
  • the joint regulation of the intermediate voltage level and the duration of the control pulse train.

Avantageusement, le signal de commande étant généré sous la forme d'une pluralité de trains d'impulsions de commande, la régulation concerne le nombre desdits trains et le temps inter-trains.Advantageously, the control signal being generated in the form of a plurality of pulse trains of control, the regulation concerns the number of said trains and the inter-train time.

Avantageusement, le procédé comprend la mémorisation de relations entre des signaux de mesure et la valeur de paramètres à réguler, la régulation consistant à déterminer et appliquer la valeur d'au moins le paramètre à réguler en fonction des signaux de mesure reçus et des relations mémorisées.Advantageously, the method comprises the memorization of relations between measurement signals and the value of parameters to be regulated, the regulation consisting of determining and applying the value of at least the parameter to be regulated according to the measurement signals received and the memorized relationships. .

De préférence, les premiers signaux de mesure sont choisis dans le groupe comprenant la température d'huile moteur, la température du liquide de refroidissement moteur, le couple moteur, le régime moteur, l'angle d'allumage, la température de l'air d'admission, la pression au niveau du collecteur, la pression atmosphérique, la pression dans la chambre de combustion ou l'angle de pression maximal.Preferably, the first measurement signals are selected from the group consisting of engine oil temperature, engine coolant temperature, engine torque, engine speed, ignition angle, air temperature. intake pressure, manifold pressure, atmospheric pressure, combustion chamber pressure or maximum pressure angle.

De préférence, les seconds signaux de mesure comprennent au moins une mesure de la tension aux bornes d'une capacité de stockage fournissant la tension intermédiaire en entrée du résonateur et/ou au moins une mesure du courant dans le résonateur.Preferably, the second measurement signals comprise at least one measurement of the voltage at the terminals of a storage capacitor supplying the intermediate voltage at the input of the resonator and / or at least one measurement of the current in the resonator.

Selon un mode de réalisation, on réalise une première mesure de la tension aux bornes de la capacité de stockage avant ou au début du train d'impulsions de commande et une deuxième mesure de ladite tension après ou à la fin du train d'impulsions de commande.According to one embodiment, a first measurement of the voltage at the terminals of the storage capacitor before or at the beginning of the control pulse train is carried out and a second measurement of the said voltage after or at the end of the pulse train of ordered.

Selon une variante, on réalise une pluralité de mesures pendant la durée du train d'impulsions de commande.According to one variant, a plurality of measurements are carried out during the duration of the control pulse train.

De préférence, le procédé comprend la régulation de la fréquence de commande à une valeur de consigne sensiblement égale à la fréquence de résonance du résonateur.Preferably, the method comprises regulating the control frequency to a set point substantially equal to the resonance frequency of the resonator.

L'invention concerne également un dispositif de génération de plasma radiofréquence comprenant :

  • un circuit d'alimentation présentant un interrupteur commandé par un signal de commande sous la forme d'au moins un train d'impulsions de commande, l'interrupteur appliquant une tension intermédiaire sur une sortie du circuit d'alimentation à la fréquence définie par le signal de commande,
  • un résonateur, connecté à la sortie du circuit d'alimentation et apte à générer une étincelle entre deux électrodes lorsqu'un niveau haute tension est appliqué sur la sortie du circuit d'alimentation,
ledit dispositif étant caractérisé en ce qu'il comprend un module de contrôle adapté à mettre en oeuvre le procédé selon l'une quelconque des revendications précédentes.The invention also relates to a radiofrequency plasma generation device comprising:
  • a supply circuit having a switch controlled by a control signal in the form of at least one control pulse train, the switch applying an intermediate voltage to an output of the supply circuit at the frequency defined by the control signal,
  • a resonator, connected to the output of the supply circuit and able to generate a spark between two electrodes when a high voltage level is applied to the output of the supply circuit,
said device being characterized in that it comprises a control module adapted to implement the method according to any one of the preceding claims.

D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif et faite en référence aux figures annexées dans lesquelles :

  • la figure 1 illustre un mode de réalisation d'un dispositif de génération de plasma ;
  • la figure 2 illustre un modèle électrique utilisé pour le résonateur ;
  • la figure 3 illustre un schéma de principe de l'allumage radiofréquence ;
  • la figure 4 illustre un dispositif de génération de la tension intermédiaire intervenant dans l'allumage radiofréquence intégrant un module de contrôle selon l'invention.
Other characteristics and advantages of the present invention will emerge more clearly on reading the following description given by way of illustrative and nonlimiting example and with reference to the appended figures in which:
  • the figure 1 illustrates an embodiment of a plasma generating device;
  • the figure 2 illustrates an electric model used for the resonator;
  • the figure 3 illustrates a schematic diagram of radio frequency ignition;
  • the figure 4 illustrates a device for generating the intermediate voltage involved in the ignition radio frequency integrating a control module according to the invention.

En référence à la figure 1, un dispositif de génération de plasma comprend principalement trois sous-ensembles fonctionnels:

  • une alimentation 2, prévue pour faire résonner une structure L-C à une fréquence supérieure à 1MHz avec une tension aux bornes du condensateur supérieure à 5kV, de préférence supérieure à 6kV ;
  • un résonateur 6, connecté en sortie du circuit d'alimentation, présentant un facteur de surtension supérieur à 40 et une fréquence de résonance supérieure à 1 MHz ;
  • une tête de bougie 110, comprenant deux électrodes 103 et 106 séparées par un isolant 100, permettant de générer un plasma ramifié lors de l'application de l'excitation radiofréquence aux bornes de ses électrodes.
With reference to the figure 1 , a plasma generating device mainly comprises three functional subassemblies:
  • a power supply 2, designed to resonate an LC structure at a frequency greater than 1 MHz with a voltage across the capacitor greater than 5 kV, preferably greater than 6 kV;
  • a resonator 6, connected at the output of the supply circuit, having an overvoltage factor greater than 40 and a resonance frequency greater than 1 MHz;
  • a candle head 110, comprising two electrodes 103 and 106 separated by an insulator 100, for generating a branched plasma when radiofrequency excitation is applied across its electrodes.

Le circuit d'alimentation 2 comprend avantageusement:

  • une alimentation basse tension 3 (générant une tension continue inférieure à 1000 V);
  • un amplificateur radiofréquence 5, amplifiant la tension continue et générant une tension alternative à la fréquence commandée par la commande de commutation 4.
The supply circuit 2 advantageously comprises:
  • a low voltage supply 3 (generating a DC voltage of less than 1000 V);
  • a radio frequency amplifier 5, amplifying the DC voltage and generating an AC voltage at the frequency controlled by the switching control 4.

La tension alternative générée par l'amplificateur 5 est appliquée sur le résonateur LC 6. Le résonateur LC 6 applique la tension alternative entre les électrodes 103 et 106 de la tête de bougie.The AC voltage generated by the amplifier 5 is applied to the LC resonator 6. The LC resonator 6 applies the AC voltage between the electrodes 103 and 106 of the candle head.

La tension fournie par l'alimentation 3 est inférieure à 1000V et l'alimentation présente de préférence une puissance limitée. On peut ainsi prévoir que l'énergie appliquée entre les électrodes soit limitée à 300mJ par allumage, pour des raisons de sécurité. On bride ainsi également l'intensité dans le générateur de tension 2 et sa consommation électrique. Pour générer des tensions continues supérieures à 12 V dans une application automobile, l'alimentation 3 peut comprendre un convertisseur 12 Volts vers Y Volt, Y étant la tension fournie par l'alimentation à l'amplificateur. On peut ainsi générer le niveau de tension continue souhaitée à partir d'une tension de batterie. La stabilité de la tension continue générée n'étant a priori pas un critère déterminant, on peut prévoir d'utiliser une alimentation à découpage pour alimenter l'amplificateur, pour ses qualités de robustesse et de simplicité.The voltage supplied by the power supply 3 is less than 1000V and the power supply preferably has a limited power. We can thus foresee that the energy applied between the electrodes is limited to 300mJ by ignition, for safety reasons. This also clamps the intensity in the voltage generator 2 and its power consumption. To generate DC voltages greater than 12 V in an automotive application, the power supply 3 may include a 12-volt converter to Y Volt, where Y is the voltage supplied by the power supply to the amplifier. It is thus possible to generate the desired DC voltage level from a battery voltage. The stability of the DC voltage generated is not a priori a decisive criterion, it can be expected to use a switching power supply to power the amplifier, for its qualities of robustness and simplicity.

Le circuit d'alimentation 2 permet de concentrer les tensions les plus élevées sur le résonateur 6. L'amplificateur 5 traite ainsi des tensions beaucoup plus réduites que les tensions appliquées entre les électrodes de la bougie.The supply circuit 2 makes it possible to concentrate the highest voltages on the resonator 6. The amplifier 5 thus deals with much lower voltages than the voltages applied between the electrodes of the candle.

L'amplificateur 5 permet d'accumuler de l'énergie dans le résonateur 6 à chaque alternance de sa tension. On utilisera de préférence un amplificateur 5 en classe E, tel que détaillé dans le brevet US-5 187 580 . Un tel amplificateur permet de maximiser le facteur de surtension. L'homme de métier associera bien entendu un dispositif de commutation adapté à l'amplificateur choisi, pour supporter les exigences de montées en tension et présenter une vitesse de commutation adéquate.The amplifier 5 accumulates energy in the resonator 6 at each alternation of its voltage. An amplifier 5 is preferably used in class E, as detailed in the patent U.S. 5,187,580 . Such an amplifier makes it possible to maximize the overvoltage factor. Those skilled in the art will of course associate a switching device adapted to the chosen amplifier, to support the requirements of voltage increases and to have an adequate switching speed.

La figure 2 illustre un modèle électrique du résonateur 6. Ainsi, l'inductance série 65 présente en série une inductance Ls et une résistance Rs prenant en compte l'effet de peau dans le domaine radiofréquence. Le condensateur 119 présente en parallèle une capacité Cs et une résistance Rp. Les électrodes d'allumage 106 et 103 sont connectées aux bornes de la capacité Cs.The figure 2 illustrates an electrical model of the resonator 6. Thus, the inductance series 65 has in series an inductance Ls and a resistor Rs taking into account the skin effect in the radiofrequency domain. The capacitor 119 has in parallel capacitance Cs and resistor Rp. Ignition electrodes 106 and 103 are connected across capacitor Cs.

La résistance Rp vient s'ajouter pour modéliser la décharge et correspond le cas échéant à la dissipation dans la céramique de la bougie. Lorsque le résonateur est alimenté par une tension à sa fréquence de résonance f0 ( 1 / 2 π L * C ,

Figure imgb0001
l'amplitude aux bornes de la capacité Cs est amplifiée du coefficient de surtension Q défini par la formule suivante: Q = 1 Ls Cs Rp + Rs Ls Cs .
Figure imgb0002
The resistance Rp is added to model the discharge and corresponds where appropriate to the dissipation in the ceramic candle. When the resonator is powered by a voltage at its resonance frequency f 0 ( 1 / 2 π The * VS ,
Figure imgb0001
the amplitude across the capacitance Cs is amplified by the overvoltage coefficient Q defined by the following formula: Q = 1 ls cs rp + Rs ls cs .
Figure imgb0002

Le dispositif de génération de plasma qui a été décrit peut comprendre un résonateur de génération de plasma adapté pour réaliser un allumage commandé de moteur à combustion, un allumage dans un filtre à particule, ou un allumage de décontamination dans un système de climatisation.The plasma generating device which has been described may comprise a plasma generation resonator adapted to achieve a combustion engine controlled ignition, an ignition in a particle filter, or a decontamination ignition in an air conditioning system.

La figure 3 illustre un schéma de principe de l'allumage radiofréquence selon un mode de réalisation d'un amplificateur 5, présentant un transistor MOSFET de puissance comme interrupteur commandant les commutations aux bornes du résonateur 6.The figure 3 illustrates a block diagram of the radio frequency ignition according to an embodiment of an amplifier 5, having a power MOSFET transistor as a switch controlling the commutations across the resonator 6.

Ainsi, un générateur de signal de commande 8 applique un signal de commande V1 à une fréquence de commande sur la grille d'un MOSFET de puissance 9, par l'intermédiaire d'un dispositif d'amplification 10 représenté schématiquement. Afin de contrôler la production d'étincelles entre les électrodes de la bougie lorsque son résonateur est excité par l'intermédiaire du signal de commande V1, ce dernier n'est pas permanent mais est présent sous forme de trains d'impulsions de commande à la fréquence de commande.Thus, a control signal generator 8 applies a control signal V1 to a control frequency on the gate of a power MOSFET 9, via an amplification device 10 shown schematically. In order to control the production of sparks between the electrodes of the candle when its resonator is excited via the control signal V1, the latter is not permanent but is present in the form of control pulse trains at the control frequency.

Comme décrit dans la demande de brevet EP-A-1 515 594 , un circuit résonant parallèle 62 est connecté entre une source de tension intermédiaire Vinter et le drain du transistor 9. Ce circuit 62 comprend une inductance Lp en parallèle avec une capacité Cp.As described in the patent application EP-A-1,515,594 a parallel resonant circuit 62 is connected between an intermediate voltage source Vinter and the drain of the transistor 9. This circuit 62 comprises an inductance Lp in parallel with a capacitance Cp.

Le résonateur parallèle transforme la tension intermédiaire Vinter en une tension amplifiée Va, qui est fournie sur le drain du transistor 9 relié à l'entrée du résonateur 6.The parallel resonator transforms the intermediate voltage Vinter into an amplified voltage Va, which is supplied on the drain of the transistor 9 connected to the input of the resonator 6.

Le transistor 9 agit donc comme un interrupteur et transmet (respectivement bloque) la tension Va à l'entrée du résonateur 6 lorsque le signal de commande V1 est à l'état logique haut (respectivement bas).The transistor 9 therefore acts as a switch and transmits (respectively blocks) the voltage Va at the input of the resonator 6 when the control signal V1 is at the logic high (respectively low).

La tension intermédiaire Vinter, fournie en entrée du circuit résonant parallèle 62, est générée typiquement par l'intermédiaire d'un élévateur de tension, représenté schématiquement à la figure 4.The intermediate voltage Vinter, supplied at the input of the parallel resonant circuit 62, is typically generated by means of a voltage booster, shown schematically in FIG. figure 4 .

Le circuit élévateur de tension est par exemple alimenté à partir d'une tension de batterie Vbat et est composé d'une inductance Lboost, d'un MOSFET K, qui sert d'interrupteur piloté par un module de contrôle 20, d'une diode Dboost, et d'un condensateur Cboost. Le module de contrôle délivre un signal de commande V2 sous la forme train d'impulsions haute fréquence, de sorte que interrupteur K est rendu périodiquement conducteur. Lorsque K est fermé, l'inductance Lboost se charge avec la tension Vbat à ses bornes. Quand K est ouvert, la diode Dboost conduit et l'énergie emmagasinée dans l'inductance fait naître un courant qui va se diriger vers la sortie et le condensateur Cboost pour le charger.The voltage booster circuit is for example supplied from a battery voltage Vbat and is composed of a Lboost inductor, a MOSFET K, which serves as a switch controlled by a control module 20, a diode Dboost, and a Cboost capacitor. The control module delivers a control signal V2 in the form of high frequency pulse train, so that switch K is periodically made conductive. When K is closed, the Lboost inductor loads with the voltage Vbat at its terminals. When K is open, the Dboost diode drives and the energy stored in the inductor causes a current to flow to the output and the capacitor Cboost to charge it.

La capacité de stockage Cboost est chargée de cette manière jusqu'à ce que la valeur désirée de Vinter soit atteinte. Une boucle de régulation, non représentée, mesure pour ce faire à tout instant la valeur de la tension aux bornes de la capacité Cboost et commande au module de contrôle l'arrêt de l'élévation de tension en sortie lorsque la valeur désirée est atteinte.The Cboost storage capacity is loaded in this way until the desired value of Vinter is reached. A regulation loop, not shown, measures the value of the voltage across the capacitor Cboost at any time and controls the control module to stop the output voltage rise when the desired value is reached.

Le processus d'élévation de tension est inhibé dans tous les cas en début et pendant la train de commande d'allumage.The voltage rise process is inhibited in all cases at the beginning and during the ignition control train.

Pour générer la décharge de la bougie, une certaine quantité d'énergie est prélevée dans la capacité Cboost pour être fournie, après amplification par le circuit résonant 62, en entrée du résonateur 6, de manière à permettre l'application d'un haut niveau de tension entre les bornes des électrodes à une fréquence définie par le signal de commande appliqué à l'interrupteur 9. Lors de l'allumage, la tension Vinter aux bornes de la capacité Cboost chute. Il est donc nécessaire de la recharger en vue de la prochaine décharge. Ainsi, entre deux décharges, le processus d'élévation de tension comme expliqué précédemment est répété.To generate the discharge of the candle, a certain amount of energy is taken from the Cboost capacity to be supplied, after amplification by the resonant circuit 62, at the input of the resonator 6, so as to allow the application of a high level voltage between the terminals of the electrodes at a frequency defined by the control signal applied to the switch 9. Upon ignition, the voltage Vinter across the capacitor Cboost drops. It is therefore necessary to recharge it for the next discharge. Thus, between two discharges, the voltage rise process as explained above is repeated.

L'invention prévoit d'agir sur un certain nombre de paramètres de fonctionnement du système, ou sur au moins l'un d'entre eux, afin de limiter au maximum le phénomène de pontage lors de la décharge de la bougie, en particulier : la tension d'alimentation du résonateur prévu pour appliquer la haute tension aux bornes des électrodes, la fréquence d'excitation du résonateur, la durée du train de commande, l'éventualité de réaliser plusieurs trains et leur nombre, ainsi que le temps entre les trains. Ces paramètres peuvent être avantageusement réglables durant le temps de fonctionnement du système et leur ajustement en temps réel, comme il sera expliqué plus en détail par la suite, doit permettre d'obtenir une ramification optimale de la décharge en limitant l'occurrence des pontages.The invention provides for acting on a certain number of operating parameters of the system, or on at least one of them, in order to limit as much as possible the bridging phenomenon during the discharge of the spark plug, in particular: the supply voltage of the resonator provided for applying the high voltage across the electrodes, the excitation frequency of the resonator, the duration of the control train, the possibility of achieving several trains and their number, as well as the time between the trains. These parameters can be advantageously adjustable during the operating time of the system and their adjustment in real time, as will be explained in more detail later, must make it possible to obtain an optimal branching of the discharge by limiting the occurrence of the bypasses.

Dans la mesure où le niveau de tension appliqué entre les bornes des électrodes intervient en premier lieu dans le développement de la décharge (et donc dans l'éventualité de l'apparition du pontage), on peut donc dans un premier temps envisager de limiter celui-ci pendant la décharge afin d'éviter le phénomène de pontage.Since the level of voltage applied between the terminals of the electrodes intervenes first of all in the development of the discharge (and therefore in the event of the appearance of the bridging), it is possible at first to envisage limiting during the discharge to avoid the bridging phenomenon.

Pour ce faire, on peut envisager d'utiliser un niveau de tension intermédiaire aux bornes de la capacité Cboost avant allumage réduit, par rapport au niveau de tension Vinter utilisé lors de la génération de plasma avec pontage, en définissant une consigne de tension à réaliser aux bornes de la capacité de stockage Cboost ajustable en temps réel. On entend par temps réel, la mise à jour de cette consigne entre un allumage et le suivant sur le même cylindre. En effet la tension aux bornes de Cboost avant allumage détermine au final l'amplitude de la tension aux bornes des électrodes du résonateur lors de la décharge.To do this, it is possible to envisage using an intermediate voltage level at the terminals of the Cboost capacitance before the reduced ignition, with respect to the Vinter voltage level used during the bridged plasma generation, by defining a voltage setpoint to be achieved. at the terminals of the Cboost storage capacity adjustable in real time. In real time is meant the updating of this instruction between one ignition and the next on the same cylinder. Indeed the voltage across Cboost before ignition finally determines the amplitude of the voltage across the electrodes of the resonator during discharge.

La consigne de tension appliquée doit être telle qu'elle permet de placer le système dans des conditions optimales du point de vue de la combustion, à savoir une ramification de l'étincelle de volume maximal pour une amplitude de tension appliquée aux bornes des électrodes juste en dessous de la limite de haute tension à partir de laquelle se produit le pontage.The applied voltage setpoint must be such that it allows the system to be placed under optimal conditions from the point of view of combustion, namely a branching of the maximum volume spark for a voltage amplitude applied across the electrodes just below the high voltage limit from which bridging occurs.

La régulation en temps réel de la valeur de tension intermédiaire à réaliser aux bornes de Cboost prend en compte des signaux de mesure de paramètres de fonctionnement du moteur à combustion.The real-time regulation of the intermediate voltage value to be carried out at the terminals of Cboost takes into account measurement signals of operating parameters of the combustion engine.

Avantageusement, la régulation en temps réel de la valeur de tension intermédiaire optimale à réaliser aux bornes de la capacité Cboost, peut être affinée en prenant également en compte des signaux de mesure électrique de l'alimentation du résonateur 6, représentatifs du type d'étincelle réalisé.Advantageously, the real-time regulation of the optimum intermediate voltage value to be achieved at the terminals of the Cboost capacitor can be refined by also taking into account electrical measurement signals of the resonator 6 power supply, representative of the type of spark. realized.

En effet, l'analyse de certains signaux permet de connaître avec plus ou moins de précision le type d'étincelle réalisé et le type de combustion qui en a résulté. Le traitement de ces signaux permet alors de réaliser un asservissement sur la valeur de la tension à réaliser aux bornes de la capacité Cboost avant allumage, de façon à optimiser le type d'étincelles développées dans la chambre de combustion, en particulier leur volume.Indeed, the analysis of certain signals makes it possible to know more or less accurately the type of spark produced and the type of combustion that resulted. The processing of these signals then makes it possible to control the value of the voltage to be produced at the terminals of the Cboost capacitor before ignition, so as to optimize the type of spark developed in the combustion chamber, in particular their volume.

Le processus de régulation détermine alors la valeur de la consigne de la tension à réaliser avant allumage aux bornes de Cboost, en fonction de relations mémorisées entre ces signaux de mesure et la valeur de tension à appliquer aux bornes de Cboost.The regulation process then determines the value of the setpoint of the voltage to be achieved before lighting at the terminals of Cboost, as a function of the relationships stored between these measurement signals and the voltage value to be applied across Cboost.

En adaptant ainsi en temps réel la valeur de la tension à appliquer aux bornes de la capacité Cboost avant allumage, en fonction de paramètres de fonctionnement du moteur, d'une part et de mesures électriques de l'alimentation du résonateur représentatives du type d'étincelle généré, d'autre part, il sera possible de maintenir cette tension très précisément à une valeur à la fois suffisante pour générer une étincelle entre les électrodes et ainsi initier l'allumage, lorsqu'elle est appliquée via le résonateur aux bornes des électrodes, tout en étant inférieure à la limite de haute tension à partir de laquelle se produit le pontage.By thus adapting in real time the value of the voltage to be applied across the capacitor Cboost before ignition, according to engine operating parameters, on the one hand and electrical measurements of the resonator power representative of the type of spark generated, on the other hand, it will be possible to maintain this voltage very precisely at a value both sufficient to generate a spark between the electrodes and thus initiate ignition, when it is applied via the resonator across the electrodes, while being below the limit high voltage from which bridging occurs.

Un tel asservissement en temps réel de la tension intermédiaire aux bornes de Cboost avant allumage est réalisé via le module de contrôle 20.Such a real-time control of the intermediate voltage across Cboost before ignition is achieved via the control module 20.

Ce dernier comprend ainsi une interface 21 de réception de signaux de mesure de paramètres de fonctionnement du moteur à combustion. Parmi les paramètres de fonctionnement moteur mesurés, on peut envisager la température d'huile moteur, la température du liquide de refroidissement moteur, le couple moteur, le régime moteur, l'angle d'allumage, la température de l'air d'admission, la pression au niveau du collecteur, la pression atmosphérique, la pression dans la chambre de combustion, l'angle de pression maximal ou toute grandeur caractéristique du fonctionnement du moteu. Ces types de mesure peuvent être effectués de façon connue en soi par l'homme du métier.The latter thus comprises an interface 21 for receiving signals for measuring operating parameters of the combustion engine. Engine operating parameters measured include engine oil temperature, engine coolant temperature, engine torque, engine speed, ignition angle, intake air temperature. pressure at the manifold, atmospheric pressure, pressure in the combustion chamber, maximum pressure angle or any characteristic quantity of engine operation. These types of measurement can be carried out in a manner known per se by those skilled in the art.

Avantageusement, le module de contrôle 20 comprend également une interface 22 de réception de signaux de mesure électrique, représentatifs du type d'étincelle générée.Advantageously, the control module 20 also comprises an interface 22 for receiving electrical measurement signals, representative of the type of spark generated.

Le module de contrôle 20 comprend un module mémoire 26 dans lequel sont stockées des relations entre les signaux de mesure et la valeur de tension à réaliser aux bornes de la capacité Cboost avant allumage. Ces relations peuvent être établies en fonction de tests préalables. Le module mémoire 26 peut mémoriser les relations sous la forme d'une fonction associant des signaux de mesure prédéterminés à une unique consigne de tension à réaliser. On peut par exemple extrapoler une fonction linéaire ou une fonction polynomiale en fonction de résultats de tests préalables sur un résonateur en faisant varier les différents paramètres pris en compte. Le module mémoire peut également mémoriser les relations sous forme de tableau multidimensionnel ayant pour entrée des signaux de mesure.The control module 20 comprises a memory module 26 in which are stored the relationships between the measurement signals and the voltage value to be achieved across the Cboost capacity before ignition. These relationships can be established based on tests prerequisites. The memory module 26 can memorize the relations in the form of a function associating predetermined measurement signals with a single voltage setpoint to be achieved. For example, a linear function or a polynomial function can be extrapolated according to the results of prior tests on a resonator by varying the different parameters taken into account. The memory module can also store the relationships as a multidimensional array having as input measurement signals.

Le module de contrôle 20 comprend un module 25 déterminant la consigne de tension à réaliser en fonction des signaux de mesure reçus et des relations mémorisées dans la mémoire 26. La consigne est fournie par le module 25 à un module 27, appliquant un signal de commande V2 sur une interface de sortie 24 adapté à commander le processus d'élévation de tension comme expliqué plus haut jusqu'à ce que la valeur de tension aux bornes de la capacité Cboost atteigne la valeur de consigne. Le module 27 est par exemple un générateur d'horloge choisi de façon adéquate par l'homme de métier.The control module 20 comprises a module 25 determining the voltage setpoint to be made as a function of the measurement signals received and the relationships stored in the memory 26. The setpoint is supplied by the module 25 to a module 27, applying a control signal V2 on an output interface 24 adapted to control the process of voltage rise as explained above until the voltage value across the capacitance Cboost reaches the setpoint. The module 27 is for example a clock generator suitably chosen by those skilled in the art.

On peut prévoir une interface de programmation 23 permettant de recevoir et d'exécuter des commandes de modifications des relations ou des paramètres mémorisés dans le module mémoire 26. L'interface de programmation 23 peut notamment être une interface de communication sans fil. Ainsi, on peut envisager de mettre à jour les relations mémorisées dans le module 26 afin d'optimiser le fonctionnement du système d'allumage après sa livraison.A programming interface 23 can be provided for receiving and executing commands for modifying the relationships or parameters stored in the memory module 26. The programming interface 23 can in particular be a wireless communication interface. Thus, one can consider updating the relationships stored in the module 26 to optimize the operation of the ignition system after delivery.

L'interface de réception 22 réceptionne de préférence, une ou plusieurs mesures de la valeur de la tension intermédiaire aux bornes de la capacité de stockage Cboost et/ou une ou plusieurs mesures du courant entrant dans le résonateur 6 et ce, pendant la durée du (ou des) train(s) d'impulsions de commande V1 commandant la génération de l'étincelle.The reception interface 22 preferably receives one or more measurements of the value of the intermediate voltage across the storage capacitor Cboost and / or one or more measurements of the current entering the resonator 6 and this, for the duration of (or) the train (s) of control pulses V1 controlling the generation of 'spark.

En effet, comme on le verra plus précisément par la suite, la mesure de l'évolution de la tension aux bornes de Cboost pendant une commande d'allumage est porteuse de nombreuses informations au sujet de la ramification de l'étincelle.Indeed, as will be seen more precisely later, the measurement of the evolution of the voltage across Cboost during an ignition control carries a lot of information about the branching of the spark.

Quant au courant entrant dans le résonateur, il s'agit d'une image de la haute tension aux bornes des électrodes du résonateur. Ce signal modulé à la fréquence de résonance (typiquement 5MHz), présente une enveloppe caractéristique des phénomènes de décharge ramifiée et de pontage. L'analyse de l'enveloppe du signal de courant pendant la durée d'une commande d'allumage, nécessite l'utilisation d'un dispositif de type détecteur de crête, connu en soi, qui ne fournit en sortie que les valeurs crêtes de la sinusoïde modulée du signal de courant.As for the current entering the resonator, it is an image of the high voltage across the electrodes of the resonator. This modulated signal at the resonant frequency (typically 5MHz) has a characteristic envelope of the branched discharge and bridging phenomena. The analysis of the envelope of the current signal during the duration of an ignition control, requires the use of a device of the type of peak detector, known per se, which only outputs the peak values of the modulated sinusoid of the current signal.

L'étude de ces signaux de mesure permet de diagnostiquer le type de décharge ou d'étincelle réalisé et de modifier en conséquence, selon des lois prédéterminées mémorisées dans le module de contrôle, le ou les paramètres choisis, en l'occurrence la valeur de la tension intermédiaire à réaliser aux bornes de Cboost avant allumage, selon l'exemple de réalisation ci-dessus.The study of these measurement signals makes it possible to diagnose the type of discharge or spark produced and to modify accordingly, according to predetermined laws stored in the control module, the parameter or parameters chosen, in this case the value of the intermediate voltage to be made at the terminals of Cboost before ignition, according to the embodiment example above.

La réalisation de la régulation basée sur les mesures électriques décrites ci-dessus peut être mise en oeuvre de plusieurs façons.The realization of the regulation based on the electrical measurements described above can be implemented in several ways.

Selon un premier mode, on peut envisager la prise en compte d'une mesure unique caractéristique du type d'étincelle générée, réalisée à l'instant le plus représentatif du développement de l'étincelle, soit après ou à la fin du train de commande de génération d'étincelle.According to a first mode, it is possible to consider the taking into account of a single measurement characteristic of the type generated spark, performed at the most representative instant of the development of the spark, either after or at the end of the spark generation control train.

Si la mesure choisie est la mesure du courant dans le résonateur, on peut alors déterminer une valeur seuil M1, telle que :

  • si la mesure réalisée à la fin du train de commande est inférieure à cette valeur seuil, on en déduit qu'il s'est produit un pontage ;
  • si la mesure réalisée est supérieure à cette valeur seuil, on en déduit qu'il ne s'est pas produit de pontage.
If the measurement chosen is the measurement of the current in the resonator, we can then determine a threshold value M1, such that:
  • if the measurement made at the end of the control train is below this threshold value, it is deduced that a bypass has occurred;
  • if the measurement made is greater than this threshold value, it can be deduced that no bridging has occurred.

Dans le cas où l'on utilise la mesure de la tension aux bornes de la capacité de stockage Cboost, il faut alors considérer la différence entre la tension aux bornes de cette capacité avant (ou au début) et après (ou à la fin) du train de commande de génération de l'étincelle. En effet, l'observation en particulier de la tension aux bornes de la capacité de stockage Cboost avant allumage (il s'agit alors de la consigne en tension régulée aux bornes de cette capacité) et après allumage (mesure réalisée en fin de train de commande), permet de déduire l'énergie consommée par le résonateur pendant l'allumage. On peut ainsi en déduire le type de décharge réalisée, entre pas d'étincelle du tout, ramification et pontage, selon la quantité d'énergie qui aura été consommée par le résonateur pendant la décharge.In the case where the measurement of the voltage at the terminals of the Cboost storage capacity is used, it is then necessary to consider the difference between the voltage at the terminals of this capacitor before (or at the beginning) and after (or at the end) of the spark generation control train. Indeed, the observation in particular of the voltage at the terminals of the Cboost storage capacity before ignition (it is then the regulated voltage setpoint at the terminals of this capacitor) and after ignition (measurement performed at the end of the train. command), allows to deduce the energy consumed by the resonator during the ignition. We can thus deduce the type of discharge performed, between no spark at all, branching and bridging, depending on the amount of energy that has been consumed by the resonator during the discharge.

En effet, on peut montrer que lorsqu'un pontage a eu lieu, la quantité d'énergie absorbée est minimisée. On peut alors déterminer de la même façon que précédemment, une valeur seuil M2 pour laquelle :

  • si la mesure réalisée à la fin du train de commande implique une énergie consommée inférieure à cette valeur seuil, on en déduit qu'il s'est produit un pontage (lequel diminue en effet la valeur d'énergie transmise au résonareur) ;
  • si la mesure réalisée implique une énergie consommée supérieure à cette valeur seuil, on en déduit qu'il ne s'est pas produit de pontage.
Indeed, it can be shown that when bridging has occurred, the amount of energy absorbed is minimized. We can then determine in the same way as above, a threshold value M2 for which:
  • if the measurement carried out at the end of the control train implies a consumed energy lower than this threshold value, it is deduced that a bridging has occurred (which in fact decreases the value of energy transmitted to the resonator);
  • if the measurement carried out implies a consumed energy higher than this threshold value, it is deduced that no bridging has occurred.

On s'aperçoit cependant qu'une régulation basée, comme il vient d'être expliqué, sur une seule mesure (du courant dans le résonateur ou de la tension sur la capacité de stockage) par train de commande, réalisée de préférence à la fin du train de commande, n'est pas suffisamment robuste. En effet, la mesure réalisée n'est pas uniquement représentative du type d'étincelle réalisée, mais aussi de l'accord fréquentiel entre le circuit d'alimentation et le résonateur, de l'encrassement de la bougie et d'autres phénomènes indépendants du développement de l'étincelle.However, it can be seen that a regulation based, as has just been explained, on a single measurement (of the current in the resonator or of the voltage on the storage capacity) per control train, preferably carried out at the end of the control train, is not robust enough. In fact, the measurement made is not only representative of the type of spark produced, but also of the frequency agreement between the supply circuit and the resonator, the fouling of the spark plug and other phenomena independent of the spark development.

Aussi, selon un autre mode, pour réaliser une régulation robuste, on réalise de préférence des mesures électriques multiples pendant et/ou avant et/ou après le train de commande. L'analyse de l'évolution de ces mesures multiples permet d'extraire plus facilement des paramètres pertinents pour la qualification du développement de l'étincelle et ainsi réaliser une régulation, en particulier de la valeur de la tension intermédiaire à réaliser aux bornes de Cboost avant allumage, plus efficace.Also, according to another mode, to achieve robust control, it is preferably carried out multiple electrical measurements during and / or before and / or after the control train. The analysis of the evolution of these multiple measurements makes it possible to extract more easily relevant parameters for the qualification of the development of the spark and thus to realize a regulation, in particular of the value of the intermediate voltage to be realized at the terminals of Cboost before ignition, more efficient.

Notamment, la mesure de l'évolution de la tension aux bornes de Cboost pendant et/ou avant et/ou après la durée du train de commande est porteuse de nombreuses informations au sujet de la ramification de l'étincelle. Durant le développement de la décharge, la consommation énergétique du résonateur se traduit en effet par une chute de tension aux bornes de la capacité Cboost, que l'on peut suivre. On constate qu'une ramification optimale de l'étincelle générée est très consommatrice d'énergie tandis que la phase de pontage limite fortement la consommation. L'analyse des pentes de chute de tension aux bornes de Cboost permet ainsi de détecter le pontage et son instant d'apparition.In particular, the measurement of the evolution of the voltage at the terminals of Cboost during and / or before and / or after the duration of the control train is a carrier of numerous information about the branching of the spark. During the development of the discharge, the energy consumption of the resonator results in a voltage drop across the Cboost capacity, which can be followed. It is noted that an optimal branching of the generated spark is very energy consuming while the bridging phase greatly limits the consumption. The analysis of the voltage drop slopes at the terminals of Cboost thus makes it possible to detect the bridging and its instant of appearance.

On a vu également que l'analyse de l'occurrence des pontages peut être basée sur l'analyse de l'enveloppe de courant en entrée du résonateur. En réalisant des mesures électriques multiples pendant et/ou avant et/ou après la durée du train de commande, on peut alors suivre l'évolution de cette enveloppe de courant. Un pontage se traduit systématiquement par une chute brutale sur l'enveloppe de courant, tandis que dans le cas d'une décharge ramifiée, l'enveloppe de courant montre une légère décroissance ou une évolution de l'enveloppe moins rapide. Il est ainsi possible de détecter les phénomènes de pontage en utilisant des outils mathématiques de type « dérivée » appliqués sur les mesures multiples de courant en entrée du résonateur pendant et/ou avant et/ou après la durée du train de commande.It has also been seen that the analysis of the occurrence of the bridging may be based on the analysis of the input current envelope of the resonator. By performing multiple electrical measurements during and / or before and / or after the duration of the control train, we can then follow the evolution of this current envelope. Bridging systematically results in a sudden drop on the current envelope, while in the case of a branched discharge, the current envelope shows a slight decrease or a change in the envelope slower. It is thus possible to detect bridging phenomena by using "derivative" type mathematical tools applied to the multiple input current measurements of the resonator during and / or before and / or after the duration of the control train.

La régulation évoquée jusqu'alors en vue de favoriser une ramification optimale de l'étincelle en évitant au maximum le phénomène de pontage, agit de préférence sur la valeur de la tension intermédiaire à réaliser aux bornes de la capacité de stockage Cboost pour chaque allumage. Le processus de régulation permet ainsi de définir une consigne de tension à atteindre au début de chaque allumage, en fonction d'une part, des signaux de mesure représentatifs du fonctionnement du moteur et, d'autre part, des signaux de mesure électrique représentatifs du type d'étincelle générée.The regulation evoked so far to promote an optimal branching of the spark while avoiding the bridging phenomenon as much as possible acts preferably on the value of the intermediate voltage to be produced at the terminals of the Cboost storage capacitor for each ignition. The regulation process thus makes it possible to define a voltage setpoint to be reached at the beginning of each ignition, depending on the one hand, measuring signals representative of the operation of the engine and, on the other hand, electrical measurement signals representative of the type of spark generated.

Toutefois, d'autres paramètres de commande du système peuvent également être pris en compte dans le processus de régulation temps réel et ainsi être ajustés durant le temps de fonctionnement du système, de la même manière qu'expliqué précédemment en référence à la régulation de la valeur de la tension intermédiaire aux bornes de Cboost pour chaque allumage.However, other control parameters of the system can also be taken into account in the real-time control process and thus be adjusted during the operating time of the system, in the same manner as explained above with reference to the control of the system. value of the intermediate voltage across Cboost for each ignition.

Les autres paramètres de fonctionnement du système intervenant dans le développement de l'étincelle et susceptibles d'être modifiés au cours du fonctionnement pour régler en temps réel le système sont la fréquence de commande du résonateur, la durée du train d'impulsion de commande de la génération d'étincelle, ou encore selon une variante consistant à réaliser des multi-allumages, le nombre de tels trains de commande et l'espacement entre chaque train.The other operating parameters of the system involved in the development of the spark and likely to be modified during operation to adjust the system in real time are the resonator control frequency, the duration of the control pulse train. spark generation, or alternatively consisting of making multi-ignitions, the number of such control trains and the spacing between each train.

Selon un mode de réalisation préféré, la régulation selon l'invention concerne conjointement la valeur de la tension intermédiaire aux bornes de Cboost pour chaque allumage et la durée du train d'impulsions de commande V1, commandant la génération de l'étincelle.According to a preferred embodiment, the regulation according to the invention relates jointly to the value of the intermediate voltage across Cboost for each ignition and the duration of the control pulse train V1, controlling the generation of the spark.

Pour ce faire, le module de contrôle 20, ou un module similaire, est également utilisé pour générer le train V1 d'impulsion de commande de l'allumage, dont la durée est alors ajustée en fonction des signaux de mesure reçus et des relations mémorisées.To do this, the control module 20, or a similar module, is also used to generate the ignition control pulse train V1, the duration of which is then adjusted according to the measurement signals received and the memorized relationships. .

En effet, le phénomène de pontage se produisant en cours de train de commande et, généralement, commençant par se produire à la fin du train de commande, on peut l'éviter en raccourcissant la durée du train d'impulsions de commande de telle manière à arrêter celui-ci juste avant le pontage (ou juste après selon l'effet souhaité sur la combustion).Indeed, the bridging phenomenon occurring during the train command and, generally, starting occur at the end of the control train, it can be avoided by shortening the duration of the control pulse train so as to stop it just before the bypass (or just after the desired effect on the control train). combustion).

Cependant, il faut pour cela que le pontage ne se produise pas en tout début de train de commande et, par ailleurs, il faut savoir prévoir l'instant d'apparition du pontage afin d'ajuster en conséquence la durée optimale du train de commande.However, this requires that the bridging does not occur at the very beginning of the control train and, moreover, it is necessary to know how to predict the time of appearance of the bridging so as to adjust the optimal duration of the control train accordingly. .

Pour ces raisons, cette technique de limitation des probabilités de pontage par réduction de la durée du train de commande de l'allumage peut être envisagée conjointement avec la technique de régulation de la tension d'alimentation du résonateur. En effet, la régulation de la tension d'alimentation du résonateur, consistant à définir un niveau réduit de tension intermédiaire aux bornes de la capacité Cboost avant allumage, permet avantageusement de repousser le phénomène de pontage le plus loin possible du début du train de commande.For these reasons, this technique of limiting the bridging probabilities by reducing the duration of the ignition control train can be considered in conjunction with the technique of regulating the supply voltage of the resonator. Indeed, regulating the supply voltage of the resonator, consisting in defining a reduced level of intermediate voltage across the Cboost capacitor before ignition, advantageously makes it possible to push the bridging phenomenon as far as possible from the start of the control train. .

Selon une variante, on propose de commander le résonateur pendant l'allumage par l'intermédiaire d'un signal de commande sous forme d'une pluralité de trains d'impulsions de commande, chaque train ayant une durée très faible, par exemple de l'ordre de 5 à 10 µs, de sorte à ce qu'aucun pontage n'ait le temps de se produire. Dans cette variante consistant à réaliser des multi-allumages, il est nécessaire de reproduire les trains de commande un certain nombre de fois, de l'ordre de 2 à 50 fois par exemple, pour garantir un transfert d'énergie suffisant au mélange dont on cherche à initier la combustion. En outre, pour permettre une bonne dissociation entre les trains et éviter ainsi le pontage, l'espacement entre les différents trains d'impulsions du signal de commande pourra être régulé dans le sens d'une augmentation. La durée d'allumage s'en trouve toutefois augmentée, ce qui peut être défavorable aux conditions d'initiation du mélange.According to one variant, it is proposed to control the resonator during ignition by means of a control signal in the form of a plurality of control pulse trains, each train having a very short duration, for example of order of 5 to 10 μs, so that no bridging has time to occur. In this variant of making multi-ignitions, it is necessary to reproduce the control trains a number of times, of the order of 2 to 50 times, for example, to ensure sufficient energy transfer to the mixture of which one seeks to initiate combustion. In addition, to allow good dissociation between the trains and thus avoid bridging, the spacing between the different pulse trains of the control signal can be regulated in the direction of an increase. The ignition time is however increased, which may be unfavorable to the conditions of initiation of the mixture.

Egalement, lors de l'allumage, la fréquence du signal de commande du résonateur est de préférence choisie de l'ordre de grandeur de la fréquence de résonance du résonateur 6. En effet, l'adéquation entre la fréquence de résonance du résonateur et la fréquence à laquelle celui-ci est commandé (i.e. la fréquence du signal de commande), détermine le rapport entre l'amplitude de tension en entrée et en sortie du résonateur. Ainsi, en utilisant de préférence une fréquence de commande sensiblement égale à la fréquence de résonance du résonateur, on favorise le rendement du résonateur, dans la mesure où son coefficient de surtension Q est alors le plus élevé possible.Also, during ignition, the frequency of the resonator control signal is preferably chosen from the order of magnitude of the resonance frequency of the resonator 6. Indeed, the match between the resonance frequency of the resonator and the resonator frequency at which this is controlled (ie the frequency of the control signal), determines the ratio between the voltage amplitude at the input and the output of the resonator. Thus, by preferably using a control frequency substantially equal to the resonance frequency of the resonator, the resonator efficiency is favored, insofar as its overvoltage coefficient Q is then the highest possible.

Toutefois, en vue de limiter la tension appliquée entre les électrodes du résonateur et ainsi limiter les probabilités d'apparition des phénomènes de pontage, on peut envisager de dégrader le coefficient de surtension en décalant, pour ce faire, la fréquence de commande autour de la fréquence de résonance du résonateur. Ainsi, la valeur de la fréquence de commande peut également faire l'objet de la régulation anti-pontage telle qu'expliquée précédemment, en déterminant une valeur optimale de fréquence de commande décalée par rapport à la fréquence de résonance, en fonction des mesures reçues (fonctionnement moteur et électriques). Ce paramètre peut être régulé seul, ou bien conjointement avec la valeur de la tension intermédiaire, la durée du train de commande, ou bien encore conjointement avec ces deux derniers paramètres.However, in order to limit the voltage applied between the electrodes of the resonator and thus to limit the probabilities of appearance of the bridging phenomena, it is possible to consider degrading the overvoltage coefficient by shifting, for this purpose, the control frequency around the resonance frequency of the resonator. Thus, the value of the control frequency can also be subject to the anti-bridging regulation as explained above, by determining an optimum value of control frequency shifted with respect to the resonant frequency, as a function of the received measurements. (motor and electric operation). This parameter can be regulated alone, or together with the value of the intermediate voltage, the duration of the control train, or even together with the latter two parameters.

Claims (9)

  1. Method of controlling a radiofrequency plasma generator, comprising:
    - a supply circuit (2) with a switch (9) controlled by a control signal (V1) in the form of at least one control pulse train, applying an intermediate voltage (Vinter) to an output of the supply circuit at the frequency defined by the control signal,
    - a resonator (6), connected to the output of the supply circuit and able to generate a spark between two electrodes (103, 106) when a high voltage level is applied to the output of the supply circuit, said method being characterized in that it comprises:
    - the reception of first measurement signals representative of the operation of a combustion engine,
    - the reception of second electrical measurement signals representative of the type of spark generated, and
    - the combined and real time regulation, according to the first and second measurement signals received, of the level of the intermediate voltage and of the duration of the control pulse train.
  2. Method according to Claim 1, characterized in that, the control signal being generated in the form of a plurality of control pulse trains, the regulation relates to the number of said trains and the inter-train time.
  3. Method according to Claim 1 or 2, characterized in that it comprises the storage of relationships between measurement signals and the value of the parameters to be regulated, the regulation consisting in determining and applying the value of the parameters to be regulated according to the measurement signals received and the stored relationships.
  4. Method according to any one of the preceding claims, characterized in that the first measurement signals are chosen from the group comprising the engine oil temperature, the engine coolant temperature, the engine torque, the engine speed, the ignition angle, the intake air temperature, the manifold pressure, atmospheric pressure, pressure in the combustion chamber or the maximum pressure angle.
  5. Method according to any one of the preceding claims, characterized in that the second measurement signals comprise at least one measurement of the voltage at the terminals of a storage capacitor (Cboost) supplying the intermediate voltage at the input of the resonator and/or at least one measurement of the current in the resonator (6).
  6. Method according to Claim 5, characterized in that a first measurement of the voltage at the terminals of the storage capacitor (Cboost) is made before, or at the start of, the control pulse train, and a second measurement of said voltage is made after, or at the end of, the control pulse train.
  7. Method according to Claim 5 or 6, characterized in that a plurality of measurements are performed during the control pulse train.
  8. Method according to any one of the preceding claims, characterized in that it comprises the regulation of the control frequency to a setpoint value that is roughly equal to the resonance frequency of the resonator.
  9. Device for generating radiofrequency plasma comprising:
    - a supply circuit (2) with a switch (9) controlled by a control signal (V1) in the form of at least one control pulse train, the switch applying an intermediate voltage (Vinter) to an output of the supply circuit at the frequency defined by the control signal,
    - a resonator (6), connected to the output of the supply circuit and able to generate a spark between two electrodes (103, 106) when a high voltage level is applied to the output of the supply circuit,
    said device being characterized in that it comprises a control module (20) suitable for implementing the method according to any one of the preceding claims.
EP08762077A 2007-03-01 2008-02-13 Optimised generation of a radio frequency ignition spark Active EP2126341B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0701498A FR2913297B1 (en) 2007-03-01 2007-03-01 OPTIMIZING THE GENERATION OF A RADIO FREQUENCY IGNITION SPARK
PCT/FR2008/050227 WO2008110726A2 (en) 2007-03-01 2008-02-13 Optimised generation of a radio frequency ignition spark

Publications (2)

Publication Number Publication Date
EP2126341A2 EP2126341A2 (en) 2009-12-02
EP2126341B1 true EP2126341B1 (en) 2010-08-25

Family

ID=38561582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08762077A Active EP2126341B1 (en) 2007-03-01 2008-02-13 Optimised generation of a radio frequency ignition spark

Country Status (12)

Country Link
US (1) US8342147B2 (en)
EP (1) EP2126341B1 (en)
JP (1) JP5159798B2 (en)
KR (1) KR101518725B1 (en)
CN (1) CN101622441B (en)
AT (1) ATE479020T1 (en)
BR (1) BRPI0808178B1 (en)
DE (1) DE602008002326D1 (en)
ES (1) ES2350812T3 (en)
FR (1) FR2913297B1 (en)
RU (1) RU2456472C2 (en)
WO (1) WO2008110726A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045173A1 (en) * 2010-09-04 2012-03-08 Borgwarner Beru Systems Gmbh Method for monitoring state of igniter assembled in combustion chamber of combustion engine, involves igniting ignitable fuel-air mixture provided in combustion chamber through igniter by generating corona discharge

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913298B1 (en) * 2007-03-01 2009-04-17 Renault Sas CONTROL OF A PLURALITY OF CANDLE COILS VIA A SINGLE POWER FLOOR
FR2928240B1 (en) * 2008-02-28 2016-10-28 Renault Sas OPTIMIZATION OF THE FREQUENCY OF EXCITATION OF A RADIOFREQUENCY CANDLE.
FR2935759B1 (en) 2008-09-09 2010-09-10 Renault Sas DEVICE FOR MEASURING THE IONIZATION CURRENT IN A RADIOFREQUENCY IGNITION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
DE102009013877A1 (en) 2009-03-16 2010-09-23 Beru Ag Method and system for igniting a fuel-air mixture of a combustion chamber, in particular in an internal combustion engine by generating a corona discharge
FR2943739B1 (en) * 2009-03-24 2015-09-04 Renault Sas METHOD FOR IGNITING A FUEL MIXTURE FOR A HEAT ENGINE
FR2944389B1 (en) * 2009-04-14 2011-04-01 Renault Sas HIGH VOLTAGE RESONATOR-AMPLIFIER OF OPTIMIZED STRUCTURE FOR RADIOFREQUENCY IGNITION SYSTEM
FR2946190B1 (en) * 2009-05-28 2011-05-13 Renault Sas METHOD FOR DETECTING THE TYPE OF SPARK GENERATED BY A RADIOFREQUENCY IGNITION CANDLE COIL AND CORRESPONDING DEVICE
CN102762846B (en) * 2010-01-08 2016-05-11 丰田自动车株式会社 Internal-combustion engine ignition control system
JP5351874B2 (en) * 2010-11-25 2013-11-27 日本特殊陶業株式会社 Plasma ignition device and plasma ignition method
CN103261675B (en) * 2010-12-14 2016-02-03 费德罗-莫格尔点火公司 The corona ignition assembly of many triggerings and control thereof and operating method
DE102010055570B3 (en) * 2010-12-21 2012-03-15 Borgwarner Beru Systems Gmbh Fuel ignition device for internal combustion engine, has coil tapered to insulator body and wrapped on coil body, where coil body comprises tapered portion, which is wrapped to insulator body by turning coil
FR2969717A1 (en) * 2010-12-23 2012-06-29 Renault Sa CHECKING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE BY IONIZATION SIGNAL
US8726871B2 (en) * 2011-01-13 2014-05-20 Federal-Mogul Ignition Company Corona ignition system having selective enhanced arc formation
WO2012103112A2 (en) * 2011-01-24 2012-08-02 Goji Ltd. Em energy application for combustion engines
US8760067B2 (en) 2011-04-04 2014-06-24 Federal-Mogul Ignition Company System and method for controlling arc formation in a corona discharge ignition system
FR2975863B1 (en) * 2011-05-25 2013-05-17 Renault Sa POWER SUPPLY FOR RADIOFREQUENCY IGNITION WITH DOUBLE-STAGE AMPLIFIER
DE102012104654B3 (en) * 2012-05-30 2013-11-14 Borgwarner Beru Systems Gmbh Method for knock detection
CN102705108B (en) * 2012-06-20 2014-08-20 北京大学 Periodic alternating current drive low-temperature plasma ignition method and system
JP6388874B2 (en) 2012-12-21 2018-09-12 フェデラル−モーグル・イグニション・カンパニーFederal−Mogul Ignition Company Intra-event control method for colonization system
FR3000142B1 (en) * 2012-12-26 2018-01-26 Renault S.A.S METHOD FOR MANAGING AN ENGINE ADJUSTING THE OPERATING VOLTAGE OF A RADIOFREQUENCY IGNITION CANDLE
FR3000141A1 (en) * 2012-12-26 2014-06-27 Renault Sa Method for controlling internal combustion engine of motor vehicle, involves determining operating frequency of radiofrequency spark plug of cylinder of engine from measurement of value representative of maximum pressure angle of cylinder
WO2014115707A1 (en) * 2013-01-22 2014-07-31 イマジニアリング株式会社 Plasma generating device, and internal combustion engine
FR3001601B1 (en) * 2013-01-29 2015-02-13 Renault Sa PLASMA GENERATING DEVICE WITH OVERVOLTAGE REDUCTION TO THE TERMINALS OF THE SWITCHING TRANSISTOR, AND CORRESPONDING CONTROL METHOD
JP6078419B2 (en) * 2013-02-12 2017-02-08 株式会社日立ハイテクノロジーズ Control method of plasma processing apparatus, plasma processing method and plasma processing apparatus
US9991681B2 (en) 2013-12-12 2018-06-05 Federal-Mogul Ignition Company Relay-mod method to drive corona ignition system
US9484719B2 (en) 2014-07-11 2016-11-01 Ming Zheng Active-control resonant ignition system
US9828967B2 (en) * 2015-06-05 2017-11-28 Ming Zheng System and method for elastic breakdown ignition via multipole high frequency discharge
CN105003376B (en) * 2015-07-20 2017-04-26 英国Sunimex有限公司 Engine radio frequency ignition control method and device
EP3662854A1 (en) 2018-12-05 2020-06-10 Erbe Elektromedizin GmbH Plasma treatment device
CN110500222A (en) * 2019-09-20 2019-11-26 韦伟平 A kind of high-frequency resonant firing circuit of lean combustion engine and its work, control method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732069A (en) * 1980-07-31 1982-02-20 Nissan Motor Co Ltd Igniter for internal combustion engine
GB9124824D0 (en) * 1991-11-22 1992-01-15 Ortech Corp Plasma-arc ignition system
RU2067688C1 (en) * 1992-12-21 1996-10-10 Валентин Петрович Сергеев Method of determining and setting optimum ignition timing in internal combustion engines
JPH08200190A (en) * 1995-01-18 1996-08-06 Technova:Kk Internal combustion engine ignition device
RU2110137C1 (en) * 1996-07-15 1998-04-27 Александр Александрович Титов Ionized-turbulent plasma accumulator
DE19700179C2 (en) * 1997-01-04 1999-12-30 Bosch Gmbh Robert Ignition system for an internal combustion engine
DE19953710B4 (en) * 1999-11-08 2010-06-17 Robert Bosch Gmbh Method and device for measurement window positioning for ion current measurement
FR2827916B1 (en) 2001-07-25 2003-10-31 Inst Francais Du Petrole METHOD FOR CONTROLLING THE IGNITION PARAMETERS OF A SPARK PLUG FOR AN INTERNAL COMBUSTION ENGINE AND IGNITION DEVICE USING SUCH A METHOD
US6786200B2 (en) * 2002-11-15 2004-09-07 Woodware Governor Company Method and apparatus for controlling combustion quality in lean burn reciprocating engines
US6883507B2 (en) * 2003-01-06 2005-04-26 Etatech, Inc. System and method for generating and sustaining a corona electric discharge for igniting a combustible gaseous mixture
FR2859869B1 (en) * 2003-09-12 2006-01-20 Renault Sa PLASMA GENERATION SYSTEM.
FR2859830B1 (en) * 2003-09-12 2014-02-21 Renault Sas PLASMA GENERATION CANDLE WITH INTEGRATED INDUCTANCE.
EP1878098B1 (en) * 2005-04-19 2011-11-30 Knite, Inc. Method and apparatus for operating traveling spark igniter at high pressure
DE102005036968A1 (en) * 2005-08-05 2007-02-15 Siemens Ag Plasma ignition system and method of operation
FR2895170B1 (en) * 2005-12-15 2008-03-07 Renault Sas OPTIMIZING THE EXCITATION FREQUENCY OF A RESONATOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045173A1 (en) * 2010-09-04 2012-03-08 Borgwarner Beru Systems Gmbh Method for monitoring state of igniter assembled in combustion chamber of combustion engine, involves igniting ignitable fuel-air mixture provided in combustion chamber through igniter by generating corona discharge
DE102010045173B4 (en) * 2010-09-04 2013-09-26 Borgwarner Beru Systems Gmbh Method for checking the condition of a detonator installed in a combustion chamber of an internal combustion engine

Also Published As

Publication number Publication date
ES2350812T3 (en) 2011-01-27
US8342147B2 (en) 2013-01-01
CN101622441A (en) 2010-01-06
KR20090115945A (en) 2009-11-10
RU2456472C2 (en) 2012-07-20
US20100251995A1 (en) 2010-10-07
DE602008002326D1 (en) 2010-10-07
BRPI0808178A2 (en) 2014-09-23
KR101518725B1 (en) 2015-05-08
CN101622441B (en) 2011-06-15
FR2913297B1 (en) 2014-06-20
WO2008110726A3 (en) 2008-11-06
RU2009136347A (en) 2011-04-10
WO2008110726A2 (en) 2008-09-18
JP5159798B2 (en) 2013-03-13
FR2913297A1 (en) 2008-09-05
EP2126341A2 (en) 2009-12-02
ATE479020T1 (en) 2010-09-15
JP2010520398A (en) 2010-06-10
BRPI0808178B1 (en) 2018-09-11

Similar Documents

Publication Publication Date Title
EP2126341B1 (en) Optimised generation of a radio frequency ignition spark
EP2115296B1 (en) Control of a plurality of plug coils via a single power stage
EP2250366B1 (en) Optimisation of the excitation frequency of a radiofrequency plug
EP2205858B1 (en) Device for measuring the ionization current in a radiofrequency ignition system for an internal combustion engine
EP2156160B1 (en) Diagnosis of the fouling condition of sparkplugs in a radiofrequency ignition system
EP2153056B1 (en) Measuring device in a radiofrequency ignition system for internal combustion engine
FR2914530A1 (en) OPTIMAL DRIVING AT THE RESONANCE FREQUENCY OF A RESONATOR OF A RADIOFREQUENCY IGNITION.
EP2002117B1 (en) Method for measuring an ionization current of a spark plug of the type with resonant structure, and corresponding device
EP2315932A1 (en) Monitoring of the excitation frequency of a radiofrequency spark plug
EP2411659B1 (en) Method for igniting a combustible mixture for a combustion engine
EP1415085B1 (en) Method for controlling ignition parameters of a spark plug for internal combustion engine
FR2980651A1 (en) METHOD FOR MANAGING A NETWORK ON TWO ACCUMULATORS
FR2937196A1 (en) DEVICE AND METHOD FOR CONTROLLING A RESONANT ULTRASONIC PIEZOELECTRIC INJECTOR.
WO2009024713A9 (en) Device for generating radiofrequency plasma
FR3090044A1 (en) Bioethanol conversion device arranged to produce a modified injection signal
EP2794375B1 (en) Method for managing electricity in a motor vehicle, and motor vehicle implementing such a method
WO2012160317A1 (en) Power supply for radiofrequency ignition with dual-stage amplifier
FR3001601A1 (en) PLASMA GENERATING DEVICE WITH OVERVOLTAGE REDUCTION TO THE TERMINALS OF THE SWITCHING TRANSISTOR, AND CORRESPONDING CONTROL METHOD
WO2020083879A1 (en) Method for controlling a dc/dc voltage converter for controlling a fuel injector
FR2982647A1 (en) Continuous ignition system for positive ignition internal combustion engine of car, has control stage injecting undulated current in winding to maintain continuous ignition, and resonance created by capacitor and leak inductance
FR2748784A1 (en) Control of capacitor discharge ignition system for spark ignition engines
FR2746451A1 (en) Engine ignition control method for two wheeled vehicles
FR2635991A1 (en) Method for intermittently controlling an electric-control apparatus, means for implementing this method and apparatuses equipped with these means

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090730

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REF Corresponds to:

Ref document number: 602008002326

Country of ref document: DE

Date of ref document: 20101007

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100825

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101125

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101126

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008002326

Country of ref document: DE

Effective date: 20110526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220223

Year of fee payment: 15

Ref country code: DE

Payment date: 20220217

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220211

Year of fee payment: 15

Ref country code: RO

Payment date: 20220208

Year of fee payment: 15

Ref country code: NL

Payment date: 20220216

Year of fee payment: 15

Ref country code: IT

Payment date: 20220218

Year of fee payment: 15

Ref country code: FR

Payment date: 20220217

Year of fee payment: 15

Ref country code: BE

Payment date: 20220216

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220426

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008002326

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230301

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230214