EP2321524B1 - Device for measuring the ionization current in a radiofrequency ignition system for an internal combustion engine - Google Patents

Device for measuring the ionization current in a radiofrequency ignition system for an internal combustion engine Download PDF

Info

Publication number
EP2321524B1
EP2321524B1 EP09740412.3A EP09740412A EP2321524B1 EP 2321524 B1 EP2321524 B1 EP 2321524B1 EP 09740412 A EP09740412 A EP 09740412A EP 2321524 B1 EP2321524 B1 EP 2321524B1
Authority
EP
European Patent Office
Prior art keywords
current
voltage
resonator
circuit
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09740412.3A
Other languages
German (de)
French (fr)
Other versions
EP2321524A1 (en
Inventor
André AGNERAY
Franck Deloraine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2321524A1 publication Critical patent/EP2321524A1/en
Application granted granted Critical
Publication of EP2321524B1 publication Critical patent/EP2321524B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P2017/006Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines using a capacitive sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Definitions

  • the present invention relates to the field of resonant radiofrequency ignition of an internal combustion engine. It relates more particularly to a device adapted to perform the measurement of the ionization current of the gases in the cylinders of the engine.
  • the measurement of the ionization current of the gases in the cylinders of the engine is typically carried out after the end of the ignition and is then used to perform diagnostics on the course of the combustion, for example for the detection of the corresponding angle. at maximum pressure of the combustion chamber, knocking or for the identification of misfires.
  • the ignition control signal induces large currents that have an amplitude difference of more than 120 dB with the ionization current due to combustion of the fuel mixture. Since the measurement of this current takes place after the end of the ignition, a glare time is then experienced during which the measuring circuit can not acquire a weak current.
  • the measuring circuit fits into the ignition system, it is important not to significantly reduce the efficiency of the ignition system.
  • this type of radiofrequency ignition makes it possible to develop two types of discharges, among a multi-filament spark and a mono-filament arc, which influence the ignition system differently. There is therefore a difficulty in guaranteeing an independence of the measurement of the ionization current with respect to the type of discharge generated.
  • the present invention therefore aims at providing a device for measuring the ionization current in a radiofrequency ignition system, adapted to meet the aforementioned constraints, in particular by making it possible to minimize the masking period of the measurement and guaranteeing independence of the measurement with respect to the type of discharge generated.
  • the measurement capacitor is connected in series between the secondary winding of the transformer and the resonator, at a ground return wire of the transformer and the resonator.
  • the device according to the invention comprises polarization means of the fuel mixture, adapted to apply a bias voltage between an electrode of the resonator and a motor mass.
  • the protection circuit comprises a diode bridge biased by resistances to a supply voltage proportional to the bias voltage.
  • the measurement circuit comprises a current-voltage converter produced using an operational amplifier.
  • the operational amplifier has a non-inverting input connected to the bias voltage and an inverting input connected to a terminal of the measurement capacitor via the protection circuit.
  • the current-voltage converter comprises a feedback resistance and a feedback capacitance connected in parallel with the feedback resistance.
  • the input impedance of the current-voltage converter is at least one hundred times lower than the impedance of the measurement capacitor.
  • a primary winding of the transformer is connected on one side to an intermediate supply voltage and on the other side to the drain of at least one switching transistor controlled by a control signal, the switching transistor applying the supply voltage across the primary winding at a frequency defined by the control signal.
  • the transformer comprises a variable transformation ratio.
  • the coil-spark plug implemented in the context of the controlled radiofrequency ignition is electrically equivalent to a resonator 1 (see FIG. figure 1 ), whose resonant frequency F c is greater than 1 MHz, and typically close to 5 MHz.
  • the resonator comprises in series a resistor Rs, an inductance coil Ls and a capacitance Cs. Ignition electrodes 11 and 12 of the coil-plug are connected across the capacitor Cs of the resonator, making it possible to generate multi-filament discharges to initiate combustion mixing in the combustion chambers of the engine, when the resonator is powered.
  • the amplitude across the capacitance Cs is amplified so that multi-filament discharges develop between the electrodes, over distances of the order of one centimeter, at high pressure and for peak voltages below 20 kV.
  • branched sparks These are referred to as branched sparks, insofar as they involve the simultaneous generation of at least several lines or ionization paths in a given volume, their branches being moreover omnidirectional.
  • This application to radio frequency ignition then requires the use of a power supply circuit, capable of generating voltage pulses, typically of the order of 100 ns, which can reach amplitudes of the order of 1 kV, at a frequency very close to the resonance frequency of the plasma generation resonator of the radiofrequency coil-plug.
  • the figure 2 schematically illustrates such a power supply circuit 2.
  • the supply circuit of the radiofrequency coil-plug conventionally implements a so-called "Class E pseudo power amplifier” assembly. This assembly makes it possible to create the voltage pulses with the aforementioned characteristics.
  • This assembly consists of a Vinter intermediate supply that can vary from 0 to 250V, a MOSFET transistor M power and a parallel resonant circuit 4 comprising a coil Lp in parallel with a capacitor Cp.
  • the transistor M is used as a switch to control the switching at the terminals of the parallel resonant circuit and the plasma generation resonator 1 to be connected to an output interface OUT of the supply circuit.
  • the transistor M is driven on its gate by a logic control signal V1, supplied by a control stage 3, at a frequency which must be substantially set to the resonance frequency of the resonator 1.
  • the intermediate DC supply voltage V inter may advantageously be provided by a high voltage power supply, typically a DC / DC converter.
  • the parallel resonator 4 converts the intermediate DC supply voltage V inter into an amplified periodic voltage, corresponding to the supply voltage multiplied by the overvoltage coefficient of the parallel resonator and applied to a power circuit output interface at the drain of the switch transistor M.
  • the switch transistor M then applies the amplified supply voltage to the output of the power supply, at the frequency defined by the control signal V1, which is sought to make as close as possible to the resonant frequency of the coil -bougie, so as to generate the high-voltage across the electrodes of the coil-candle necessary for the development and maintenance of the multifilament discharge.
  • the transistor thus switches high currents at a frequency of about 5 MHz and with a drain-source voltage of up to 1 kV.
  • the parallel coil Lp is then replaced by a transformer T, having a transformation ratio of between 1 and 5.
  • the primary winding L M of the transformer is connected, on one side to the intermediate supply voltage V inter and the other hand, the drain of the switch transistor M, controlling the application of the intermediate supply voltage V inter across the primary winding at the frequency defined by the control signal V1.
  • the secondary winding L N of the transformer one side of which is connected to ground by a grounding wire 6, is in turn intended to be connected to the spark-plug.
  • the resonator 1 of the coil-plug connected to the terminals of the secondary winding by connecting son 5 and 6, whose ground return wire 6, is thus fed by the secondary of the transformer.
  • the adaptation of the transformation ratio then makes it possible to reduce the drain-source voltage of the transistor.
  • the decrease in the primary voltage induces an increase in the current flowing through the transistor. It is then possible to compensate for this constraint by placing for example two transistors in parallel controlled by the same control stage 3.
  • the ionization signal representative of the evolution of the combustion, has an amplitude of between 0.1 ⁇ A and 1mA depending on the conditions of the combustion chamber (temperature, pressure, composition of the mixture, etc.). It is therefore sought to measure a signal having an amplitude ratio of up to 120 dB with respect to the ignition signal.
  • the ionization signal is a low frequency signal and sampling at 100 kHz extracts all the useful information.
  • the plasma generation resonator R S L S C S is controlled at a frequency greater than 1 MHZ and typically between 4 MHz and 6 MHz. We therefore benefit from a frequency difference of almost two decades, which can then be used to compensate for differences in amplitude levels.
  • the solution adopted for this purpose consists, with reference to the figure 4 , to connect a measurement capacitor C MES in series between the secondary winding of the transformer T and the resonator 1, on the ground return wire 6.
  • the measurement capacitor is thus advantageously placed in the circuit at a location where the Potential differences with respect to mass are as small as possible.
  • a capacity capacitor of about ten nanofarad allows not to disturb the system ignition while having the ability to perform low frequency measurements of the ionization current.
  • the main advantage of the choice of this measurement component compared to other passive components lies in its behavior in radiofrequency. Indeed, at high frequencies, those skilled in the art know that the equivalent high frequency circuit of a capacitor is constituted by a series resonator. Now, a resonator has an impedance that changes according to the frequency of the signal applied to its input, and is minimal at the resonance frequency of the resonator. This characteristic of the evolution of the impedance of a resonator as a function of the frequency then allows the capacitor to have a very low impedance in the vicinity of the resonance frequency of the ignition and a high impedance in the frequency band used. for the ionization signal (F ION ⁇ 15kHz). The measurement capacitor is therefore judiciously chosen so as to have its lowest impedance in the frequency range used for the ignition control signal. This makes it possible to minimize the voltage across the measuring capacitor to protect the measuring circuit, which will now be described with reference to the figure 5 .
  • a DC power supply not shown, providing a voltage V polar , is provided for biasing the high voltage electrode of the spark plug coil connected at the output of the power supply circuit with respect to the motor yoke, so as to make it possible to polarize the combustible mixture after the end of ignition.
  • the ionization current ION is indeed a measured signal after the end of the ignition, that is to say after the formation of the spark. Its amplitude therefore depends, among other things, on the bias voltage applied between the coil-spark electrode and the motor ground.
  • the polarization voltage is unipolar and typically between 1V and 100V. We will speak of positive polarization when the high voltage electrode of the spark plug is polarized at a potential higher than that of the motor mass.
  • the bias voltage is in this case typically between -100V and -1V.
  • a measuring circuit 40 of the ionization current I ION across the capacitor C MES , providing an electrical image of the evolution of the combustion is described in FIG. figure 5 .
  • the measurement circuit 40 is made in the form of a current-voltage converter adapted to provide a voltage V s output proportional to the input current.
  • the converter comprises an operational amplifier MN1 and a feedback resistance R R.
  • the operational amplifier MN1 has a non-inverting input (+) connected to the polarization voltage V polar and an inverting input (-) connected to a terminal of the capacitor C MES via a protection circuit 30, adapted to freeing the acquisition time from the measurement of the effects of spark formation and to which we will return in more detail later.
  • the resistor R R is connected between the inverting input (-) and the output of the operational amplifier MN1.
  • the non-inverting input (+) is connected to the negative bias voltage V polar and the inverting input (-) connected to the measurement capacitor terminal via of the protection circuit 30, while the resistor R R is connected between the inverting input (-) and the output of the operational amplifier MN1.
  • Such a current / voltage arrangement is able to accurately measure very small currents.
  • the input of the operational amplifier is equivalent to an inductance of value L e .
  • Fosc > f 2 ⁇ R R VS R > 100 kHz
  • the feedback capacity is therefore negligible for the useful frequency band of the measured signal representative of the evolution of the combustion (typically less than 100kHz), while optimizing the desaturation time of the measuring circuit.
  • the measuring capacitor C MES is charged during the spark generation phase. It is important that the input impedance Z E of the current-voltage converter is low (at least 100 times smaller) in front of the impedance of the measurement capacitor Z MES . This condition ensures that the current-to-voltage converter, not the measurement capacitor, provides the image current of the development of the combustion. In other words, the impedance of the capacitor C MES must be high compared to the input impedance of the amplifier so that the totality of the ionization current ION is found in the amplifier MN1.
  • G being the gain of the operational amplifier.
  • the protection circuit 30 between the measurement capacitor and the current-voltage converter forming the measurement circuit 40.
  • current-voltage converter must maintain the best possible dynamics and have a desaturation time of preferably less than 300 ⁇ s to allow a reliable measurement of combustion at maximum speed.
  • the protection circuit 30 comprises a diode bridge 31, biased by resistors R H and R B at a supply voltage V ALIM , preferably close to the bias voltage V POLAR .
  • This architecture is stable and does not disturb the measurement if the bias current I D flowing in the diodes of the protection circuit is large compared to the current supplied by the converter.
  • I D V ALIM 2 r dyn + R B + R H and r dyn ⁇ 1 40 ⁇ I D
  • R dyn being the dynamic resistance of a diode. Therefore : I D ⁇ V ALIM - 1 / 20 R B + R H
  • Resistors R B and R H may typically have a value between 100 ⁇ and 50k ⁇ and may be of different values.
  • V POLAR R H R H + R B .
  • V ALIM V ALIM
  • the voltage V POLAR can for example be obtained from the voltage V ALIM via a resistive divider circuit, well known per se.
  • the protection circuit 30 thus has a dual role. It makes it possible to maintain a low desaturation time of the measuring circuit whatever the conditions of spark generation. In addition, it promotes robustness of the measuring circuit to each type of spark that a resonant ignition system can generate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

La présente invention concerne le domaine de l'allumage radiofréquence résonant d'un moteur à combustion interne. Elle concerne plus particulièrement un dispositif adapté à réaliser la mesure du courant d'ionisation des gaz dans les cylindres du moteur.The present invention relates to the field of resonant radiofrequency ignition of an internal combustion engine. It relates more particularly to a device adapted to perform the measurement of the ionization current of the gases in the cylinders of the engine.

La mesure du courant d'ionisation des gaz dans les cylindres du moteur s'effectue typiquement après la fin de l'allumage et est ensuite utilisée pour effectuer des diagnostics sur le déroulement de la combustion, par exemple pour la détection de l'angle correspondant au maximum de pression de la chambre de combustion, du cliquetis ou encore pour l'identification des ratés de combustion.The measurement of the ionization current of the gases in the cylinders of the engine is typically carried out after the end of the ignition and is then used to perform diagnostics on the course of the combustion, for example for the detection of the corresponding angle. at maximum pressure of the combustion chamber, knocking or for the identification of misfires.

Il est connu des circuits de mesure du courant d'ionisation pour un système d'allumage classique, dont le fonctionnement consiste à polariser le mélange air/carburant présent dans la chambre à combustion après la génération de l'étincelle entre les électrodes de la bougie d'allumage, afin de mesurer le courant résultant de la propagation de la flamme.It is known ionization current measuring circuits for a conventional ignition system, the operation of which consists in polarizing the air / fuel mixture present in the combustion chamber after the generation of the spark between the electrodes of the candle. in order to measure the current resulting from the propagation of the flame.

Ces circuits nécessitent cependant d'être dédiés aux caractéristiques de l'allumage classique et ne sont pas adaptables en tant que tels aux systèmes d'allumage à génération de plasma, mettant en oeuvre des bougies d'allumage de type bobines-bougies radiofréquence (BME), comme décrits en détail dans les demandes de brevet suivantes déposées au nom de la demanderesse FR 03-10766 , FR 03-10767 et FR 03-10768 Un autre exemple est décrit dans la demande publiée sous le numéro FR 2 899 394 .These circuits, however, need to be dedicated to the characteristics of conventional ignition and are not adaptable as such to plasma-generated ignition systems using radiofrequency coil-type spark plugs (BME ), as described in detail in the following patent applications filed in the name of the Applicant FR 03-10766 , FR 03-10767 and FR 03-10768 Another example is described in the application published under the number FR 2 899 394 .

En effet, les spécificités de l'allumage radiofréquence engendrent plusieurs contraintes pour mesurer le courant issu de la combustion.Indeed, the specificities of the radiofrequency ignition generate several constraints to measure the current resulting from the combustion.

Tout d'abord, le signal de commande d'allumage induit des courants importants qui ont un écart d'amplitude de plus de 120 dB avec le courant d'ionisation dû à la combustion du mélange combustible. La mesure de ce courant s'effectuant après la fin de l'allumage, on subit donc un temps d'éblouissement, pendant lequel le circuit de mesure ne peut effectuer l'acquisition d'un faible courant.First, the ignition control signal induces large currents that have an amplitude difference of more than 120 dB with the ionization current due to combustion of the fuel mixture. Since the measurement of this current takes place after the end of the ignition, a glare time is then experienced during which the measuring circuit can not acquire a weak current.

En outre, le circuit de mesure s'insérant dans le système d'allumage, il est important de ne pas réduire significativement le rendement du système d'allumage.In addition, since the measuring circuit fits into the ignition system, it is important not to significantly reduce the efficiency of the ignition system.

Enfin, ce type d'allumage radiofréquence permet de développer deux types de décharges, parmi une étincelle multi-filamentaires et un arc mono-filamentaire, qui influencent différemment le système d'allumage. Il existe donc une difficulté à garantir une indépendance de la mesure du courant d'ionisation par rapport au type de décharge généré.Finally, this type of radiofrequency ignition makes it possible to develop two types of discharges, among a multi-filament spark and a mono-filament arc, which influence the ignition system differently. There is therefore a difficulty in guaranteeing an independence of the measurement of the ionization current with respect to the type of discharge generated.

La présente invention vise donc à proposer un dispositif de mesure du courant d'ionisation dans un système d'allumage radiofréquence, adapté à répondre aux contraintes précitées, notamment en permettant de réduire au maximum la période de masquage de la mesure et garantissant une indépendance de la mesure par rapport au type de décharge généré.The present invention therefore aims at providing a device for measuring the ionization current in a radiofrequency ignition system, adapted to meet the aforementioned constraints, in particular by making it possible to minimize the masking period of the measurement and guaranteeing independence of the measurement with respect to the type of discharge generated.

Avec cet objectif en vue l'invention concerne donc un dispositif d'allumage radiofréquence d'un moteur à combustion interne composé d'un circuit d'alimentation comprenant un transformateur dont un enroulement secondaire est connecté à au moins un résonateur présentant une fréquence de résonance supérieure à 1 MHz et comprenant deux électrodes aptes à générer une étincelle pour initier la combustion d'un mélange combustible dans un cylindre du moteur en réponse à une commande d'allumage, caractérisé en ce qu'il comprend :

  • un condensateur de mesure connecté en série entre l'enroulement secondaire du transformateur et le résonateur,
  • un circuit de mesure d'un courant aux bornes dudit condensateur de mesure, ledit courant fournissant une image électrique de l'évolution de la combustion,
  • un circuit de protection, connecté entre le condensateur de mesure et le circuit de mesure, adapté à affranchir le temps d'acquisition de la mesure dudit courant des effets électriques induits par la commande d'allumage.
With this object in mind, the invention thus relates to a radiofrequency ignition device of an internal combustion engine composed of a power supply circuit comprising a transformer including a winding secondary is connected to at least one resonator having a resonance frequency greater than 1 MHz and comprising two electrodes capable of generating a spark to initiate the combustion of a fuel mixture in a cylinder of the engine in response to an ignition control, characterized in that it comprises:
  • a measuring capacitor connected in series between the secondary winding of the transformer and the resonator,
  • a circuit for measuring a current at the terminals of said measuring capacitor, said current providing an electrical image of the evolution of the combustion,
  • a protection circuit, connected between the measurement capacitor and the measurement circuit, adapted to free the acquisition time from the measurement of said current of electrical effects induced by the ignition control.

Selon un mode de réalisation, le condensateur de mesure est connecté en série entre l'enroulement secondaire du transformateur et le résonateur, au niveau d'un fil de retour à la masse du transformateur et du résonateur.According to one embodiment, the measurement capacitor is connected in series between the secondary winding of the transformer and the resonator, at a ground return wire of the transformer and the resonator.

Le dispositif selon l'invention comprend des moyens de polarisation du mélange combustible, adaptés à appliquer une tension de polarisation entre une électrode du résonateur et une masse moteur.The device according to the invention comprises polarization means of the fuel mixture, adapted to apply a bias voltage between an electrode of the resonator and a motor mass.

En outre, le circuit de protection comprend un pont de diodes polarisé par des résistances à une tension d'alimentation proportionnelle à la tension de polarisation.In addition, the protection circuit comprises a diode bridge biased by resistances to a supply voltage proportional to the bias voltage.

De préférence, le circuit de mesure comprend un convertisseur courant-tension réalisé à l'aide d'un amplificateur opérationnel.Preferably, the measurement circuit comprises a current-voltage converter produced using an operational amplifier.

Selon un mode de réalisation, l'amplificateur opérationnel possède une entrée non inverseuse reliée à la tension de polarisation et une entrée inverseuse reliée à une borne du condensateur de mesure par l'intermédiaire du circuit de protection.According to one embodiment, the operational amplifier has a non-inverting input connected to the bias voltage and an inverting input connected to a terminal of the measurement capacitor via the protection circuit.

Avantageusement, le convertisseur courant-tension comprend une résistance de contre-réaction et une capacité de contre-réaction connectée en parallèle de la résistance de contre-réaction.Advantageously, the current-voltage converter comprises a feedback resistance and a feedback capacitance connected in parallel with the feedback resistance.

De préférence, l'impédance d'entrée du convertisseur courant-tension est au moins cent fois plus faible que l'impédance du condensateur de mesure.Preferably, the input impedance of the current-voltage converter is at least one hundred times lower than the impedance of the measurement capacitor.

Selon un mode de réalisation, un enroulement primaire du transformateur est connecté d'un côté à une tension d'alimentation intermédiaire et de l'autre côté au drain d'au moins un transistor interrupteur commandé par un signal de commande, le transistor interrupteur appliquant la tension d'alimentation aux bornes de l'enroulement primaire à une fréquence définie par le signal de commande.According to one embodiment, a primary winding of the transformer is connected on one side to an intermediate supply voltage and on the other side to the drain of at least one switching transistor controlled by a control signal, the switching transistor applying the supply voltage across the primary winding at a frequency defined by the control signal.

De préférence, le transformateur comprend un rapport de transformation variable.Preferably, the transformer comprises a variable transformation ratio.

D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif et faite en référence aux figures annexées dans lesquelles :

  • la figure 1 est un schéma d'un résonateur modélisant une bobine-bougie radiofréquence de génération de plasma;
  • la figure 2 est un schéma illustrant un circuit d'alimentation selon l'état de la technique, permettant d'appliquer une tension alternative dans la gamme des radiofréquences aux bornes de la bobine bougie modélisée à la figure 1,
  • la figure 3 est un schéma illustrant une variante du circuit de la figure 2,
  • la figure 4 est un schéma illustrant un circuit d'alimentation adapté selon l'invention à la mesure du courant d'ionisation et de la tension aux bornes des électrodes de la bougie lors d'une commande d'allumage, et
  • la figure 5 illustre un mode de réalisation du circuit de mesure du courant d'ionisation.
  • la figure 5bis illustre une première variante du mode de réalisation de la figure 5, et
  • la figure 5ter illustre une seconde variante du mode de réalisation de la figure 5.
Other characteristics and advantages of the present invention will emerge more clearly on reading the following description given by way of illustrative and nonlimiting example and with reference to the appended figures in which:
  • the figure 1 is a diagram of a resonator modeling a plasma generating radiofrequency coil-plug;
  • the figure 2 is a diagram illustrating a power supply circuit according to the state of the art, making it possible to apply an alternating voltage in the range of radio frequencies at the terminals of the candle coil modeled at the figure 1 ,
  • the figure 3 is a diagram illustrating a variant of the circuit of the figure 2 ,
  • the figure 4 is a diagram illustrating a power supply circuit adapted according to the invention for measuring the ionization current and the voltage across the spark plug electrodes during ignition control, and
  • the figure 5 illustrates an embodiment of the ionization current measurement circuit.
  • the figure 5bis illustrates a first variant of the embodiment of the figure 5 , and
  • the figure 5ter illustrates a second variant of the embodiment of the figure 5 .

La bobine-bougie mise en oeuvre dans le cadre de l'allumage radiofréquence commandé est équivalente électriquement à un résonateur 1 (voir figure 1), dont la fréquence de résonance Fc est supérieure à 1 MHz, et typiquement voisine de 5 MHz. Le résonateur comprend en série une résistance Rs, une bobine d'inductance Ls et une capacité notée Cs. Des électrodes d'allumage 11 et 12 de la bobine-bougie sont connectées aux bornes de la capacité Cs du résonateur, permettant de générer des décharges multi-filamentaires pour initier la combustion du mélange dans les chambres de combustion du moteur, lorsque le résonateur est alimenté.The coil-spark plug implemented in the context of the controlled radiofrequency ignition is electrically equivalent to a resonator 1 (see FIG. figure 1 ), whose resonant frequency F c is greater than 1 MHz, and typically close to 5 MHz. The resonator comprises in series a resistor Rs, an inductance coil Ls and a capacitance Cs. Ignition electrodes 11 and 12 of the coil-plug are connected across the capacitor Cs of the resonator, making it possible to generate multi-filament discharges to initiate combustion mixing in the combustion chambers of the engine, when the resonator is powered.

En effet, lorsque le résonateur est alimenté par une haute tension à sa fréquence de résonance Fc 1 / 2 π Ls * Cs ,

Figure imgb0001
l'amplitude aux bornes de la capacité Cs est amplifiée de telle sorte que des décharges multi-filamentaires se développent entre les électrodes, sur des distances de l'ordre du centimètre, à forte pression et pour des tensions crêtes inférieures à 20 kV.Indeed, when the resonator is powered by a high voltage at its resonant frequency F c 1 / 2 π ls * cs ,
Figure imgb0001
the amplitude across the capacitance Cs is amplified so that multi-filament discharges develop between the electrodes, over distances of the order of one centimeter, at high pressure and for peak voltages below 20 kV.

On parle alors d'étincelles ramifiées, dans la mesure où elles impliquent la génération simultanée d'au moins plusieurs lignes ou chemin d'ionisation dans un volume donné, leurs ramifications étant en outre omnidirectionnelles.These are referred to as branched sparks, insofar as they involve the simultaneous generation of at least several lines or ionization paths in a given volume, their branches being moreover omnidirectional.

Cette application à l'allumage radiofréquence nécessite alors l'utilisation d'un circuit d'alimentation, capable de générer des impulsions de tension, typiquement de l'ordre de 100 ns, pouvant atteindre des amplitudes de l'ordre de 1 kV, à une fréquence très proche de la fréquence de résonance du résonateur de génération de plasma de la bobine-bougie radiofréquence.This application to radio frequency ignition then requires the use of a power supply circuit, capable of generating voltage pulses, typically of the order of 100 ns, which can reach amplitudes of the order of 1 kV, at a frequency very close to the resonance frequency of the plasma generation resonator of the radiofrequency coil-plug.

La figure 2 illustre schématiquement un tel circuit d'alimentation 2. Le circuit d'alimentation de la bobine-bougie radiofréquence met classiquement en oeuvre un montage dit « amplificateur de puissance pseudo Classe E ». Ce montage permet de créer les impulsions de tension avec les caractéristiques précitées.The figure 2 schematically illustrates such a power supply circuit 2. The supply circuit of the radiofrequency coil-plug conventionally implements a so-called "Class E pseudo power amplifier" assembly. This assembly makes it possible to create the voltage pulses with the aforementioned characteristics.

Ce montage se compose d'une alimentation continue intermédiaire Vinter pouvant varier de 0 à 250V, d'un transistor MOSFET de puissance M et d'un circuit résonant parallèle 4 comprenant une bobine Lp en parallèle avec un condensateur Cp. Le transistor M est utilisé comme interrupteur pour commander les commutations aux bornes du circuit résonant parallèle et du résonateur 1 de génération de plasma destiné à être connecté sur une interface de sortie OUT du circuit d'alimentation.This assembly consists of a Vinter intermediate supply that can vary from 0 to 250V, a MOSFET transistor M power and a parallel resonant circuit 4 comprising a coil Lp in parallel with a capacitor Cp. The transistor M is used as a switch to control the switching at the terminals of the parallel resonant circuit and the plasma generation resonator 1 to be connected to an output interface OUT of the supply circuit.

Le transistor M est piloté sur sa grille par un signal logique de commande V1, fourni par un étage de commande 3, à une fréquence qui doit être sensiblement calée sur la fréquence de résonance du résonateur 1.The transistor M is driven on its gate by a logic control signal V1, supplied by a control stage 3, at a frequency which must be substantially set to the resonance frequency of the resonator 1.

La tension d'alimentation continue intermédiaire Vinter peut avantageusement être fournie par une alimentation haute tension, typiquement un convertisseur DC/DC.The intermediate DC supply voltage V inter may advantageously be provided by a high voltage power supply, typically a DC / DC converter.

Ainsi, à proximité de sa fréquence de résonance, le résonateur parallèle 4 transforme la tension d'alimentation continue intermédiaire Vinter en une tension périodique amplifiée, correspondant à la tension d'alimentation multipliée par le coefficient de surtension du résonateur parallèle et appliquée sur une interface de sortie du circuit d'alimentation au niveau du drain du transistor interrupteur M.Thus, near its resonant frequency, the parallel resonator 4 converts the intermediate DC supply voltage V inter into an amplified periodic voltage, corresponding to the supply voltage multiplied by the overvoltage coefficient of the parallel resonator and applied to a power circuit output interface at the drain of the switch transistor M.

Le transistor interrupteur M applique alors la tension d'alimentation amplifiée sur la sortie de l'alimentation, à la fréquence définie par le signal de commande V1, que l'on cherche à rendre la plus proche possible de la fréquence de résonance de la bobine-bougie, de manière à générer la haute-tension aux bornes des électrodes de la bobine-bougie nécessaire au développement et à l'entretien de la décharge multifilamentaire.The switch transistor M then applies the amplified supply voltage to the output of the power supply, at the frequency defined by the control signal V1, which is sought to make as close as possible to the resonant frequency of the coil -bougie, so as to generate the high-voltage across the electrodes of the coil-candle necessary for the development and maintenance of the multifilament discharge.

Le transistor commute ainsi de forts courants à une fréquence de 5 MHZ environ et avec une tension drain-source pouvant atteindre 1kV.The transistor thus switches high currents at a frequency of about 5 MHz and with a drain-source voltage of up to 1 kV.

Selon une variante illustrée à la figure 3, la bobine parallèle Lp est alors remplacée par un transformateur T, présentant un rapport de transformation compris entre 1 et 5. L'enroulement primaire LM du transformateur est relié, d'un côté à la tension d'alimentation intermédiaire Vinter et de l'autre côté, au drain du transistor interrupteur M, commandant l'application de la tension d'alimentation intermédiaire Vinter aux bornes de l'enroulement primaire à la fréquence définie par le signal de commande V1.According to a variant illustrated in figure 3 , the parallel coil Lp is then replaced by a transformer T, having a transformation ratio of between 1 and 5. The primary winding L M of the transformer is connected, on one side to the intermediate supply voltage V inter and the other hand, the drain of the switch transistor M, controlling the application of the intermediate supply voltage V inter across the primary winding at the frequency defined by the control signal V1.

L'enroulement secondaire LN du transformateur, dont un côté est relié à la masse par un fil de retour à la masse 6, est quant à lui prévu pour être connecté à la bobine-bougie. De cette manière, le résonateur 1 de la bobine-bougie, connectée aux bornes de l'enroulement secondaire par des fils de liaison 5 et 6, dont le fil de retour à la masse 6, est donc alimenté par le secondaire du transformateur.The secondary winding L N of the transformer, one side of which is connected to ground by a grounding wire 6, is in turn intended to be connected to the spark-plug. In this way, the resonator 1 of the coil-plug, connected to the terminals of the secondary winding by connecting son 5 and 6, whose ground return wire 6, is thus fed by the secondary of the transformer.

L'adaptation du rapport de transformation permet alors de réduire la tension drain-source du transistor. La diminution de la tension au primaire induit cependant une augmentation du courant traversant le transistor. Il est alors possible de compenser cette contrainte en plaçant par exemple deux transistors en parallèle commandés par le même étage de commande 3.The adaptation of the transformation ratio then makes it possible to reduce the drain-source voltage of the transistor. The decrease in the primary voltage, however, induces an increase in the current flowing through the transistor. It is then possible to compensate for this constraint by placing for example two transistors in parallel controlled by the same control stage 3.

Lors de l'allumage, il est indispensable que l'étincelle ramifiée se développe en volume afin de garantir une combustion et un fonctionnement du moteur optimal. Pour la présente application, la présence de la combustion est symbolisée par une résistance variable RION entre les bornes du condensateur CS.When lighting, it is essential that the branched spark develops in volume to ensure optimal combustion and engine operation. For this application, the presence of the The combustion is symbolized by a variable resistance R ION between the terminals of the capacitor CS.

Le signal d'ionisation, représentatif de l'évolution de la combustion, a une amplitude comprise entre 0.1µA et 1mA selon les conditions de la chambre de combustion (température, pression, composition du mélange, etc.). On cherche donc à mesurer un signal ayant un rapport d'amplitude pouvant atteindre 120 dB par rapport au signal d'allumage.The ionization signal, representative of the evolution of the combustion, has an amplitude of between 0.1μA and 1mA depending on the conditions of the combustion chamber (temperature, pressure, composition of the mixture, etc.). It is therefore sought to measure a signal having an amplitude ratio of up to 120 dB with respect to the ignition signal.

Le signal d'ionisation est un signal basse fréquence et un échantillonnage à 100kHz permet d'extraire la totalité de l'information utile. Dans le cas de l'allumage radiofréquence, le résonateur de génération de plasma RSLSCS est piloté à une fréquence supérieure à 1 MHZ et typiquement comprise entre 4MHz et 6MHz. On bénéficie donc d'un écart de fréquence de près de deux décades, qui peut alors être utilisé pour compenser les différences de niveaux d'amplitude.The ionization signal is a low frequency signal and sampling at 100 kHz extracts all the useful information. In the case of radiofrequency ignition, the plasma generation resonator R S L S C S is controlled at a frequency greater than 1 MHZ and typically between 4 MHz and 6 MHz. We therefore benefit from a frequency difference of almost two decades, which can then be used to compensate for differences in amplitude levels.

La réalisation de la mesure du courant d'ionisation nécessite d'utiliser un composant qui ne dégrade pas le rendement énergétique de l'allumage.The realization of the measurement of the ionization current requires the use of a component that does not degrade the energy efficiency of the ignition.

La solution retenue à cet effet consiste, en référence à la figure 4, à connecter un condensateur de mesure CMES en série entre l'enroulement secondaire du transformateur T et le résonateur 1, sur le fil de retour à la masse 6. Le condensateur de mesure est ainsi avantageusement placé dans le circuit à un endroit où les différences de potentiel par rapport à la masse sont le plus faibles possibles.The solution adopted for this purpose consists, with reference to the figure 4 , to connect a measurement capacitor C MES in series between the secondary winding of the transformer T and the resonator 1, on the ground return wire 6. The measurement capacitor is thus advantageously placed in the circuit at a location where the Potential differences with respect to mass are as small as possible.

Un condensateur de capacité d'une dizaine de nanofarad, permet de ne pas perturber le système d'allumage tout en ayant la possibilité d'effectuer des mesures basse fréquence du courant d'ionisation.A capacity capacitor of about ten nanofarad, allows not to disturb the system ignition while having the ability to perform low frequency measurements of the ionization current.

Ainsi, l'intérêt principal du choix de ce composant de mesure par rapport à d'autres composants passifs réside dans son comportement en radiofréquence. En effet, en hautes fréquences, l'homme de l'art sait que le circuit équivalent haute fréquence d'un condensateur est constitué par un résonateur série. Or, un résonateur a une impédance qui évolue selon la fréquence du signal appliqué à son entrée, et est minimale à la fréquence de résonance du résonateur. Cette caractéristique de l'évolution de l'impédance d'un résonateur en fonction de la fréquence permet alors au condensateur de présenter une très faible impédance au voisinage de la fréquence de résonance de l'allumage et une impédance élevée dans la bande de fréquences utilisée pour le signal d'ionisation (FION<15kHz). Le condensateur de mesure est donc judicieusement choisi de manière à présenter sa plus faible impédance dans la plage de fréquences utilisées pour le signal de commande d'allumage. Cela permet de minimiser la tension aux bornes du condensateur de mesure pour protéger le circuit de mesure, qui va maintenant être décrit en référence à la figure 5.Thus, the main advantage of the choice of this measurement component compared to other passive components lies in its behavior in radiofrequency. Indeed, at high frequencies, those skilled in the art know that the equivalent high frequency circuit of a capacitor is constituted by a series resonator. Now, a resonator has an impedance that changes according to the frequency of the signal applied to its input, and is minimal at the resonance frequency of the resonator. This characteristic of the evolution of the impedance of a resonator as a function of the frequency then allows the capacitor to have a very low impedance in the vicinity of the resonance frequency of the ignition and a high impedance in the frequency band used. for the ionization signal (F ION <15kHz). The measurement capacitor is therefore judiciously chosen so as to have its lowest impedance in the frequency range used for the ignition control signal. This makes it possible to minimize the voltage across the measuring capacitor to protect the measuring circuit, which will now be described with reference to the figure 5 .

Une alimentation continue, non représentée, fournissant une tension Vpolar, est prévue pour polariser l'électrode haute tension de la bobine-bougie connectée en sortie du circuit d'alimentation par rapport à la culasse du moteur, de manière à permettre de polariser le mélange combustible après la fin de l'allumage.A DC power supply, not shown, providing a voltage V polar , is provided for biasing the high voltage electrode of the spark plug coil connected at the output of the power supply circuit with respect to the motor yoke, so as to make it possible to polarize the combustible mixture after the end of ignition.

Le courant d'ionisation IION, représentatif de la combustion, est en effet un signal mesuré après la fin de l'allumage, c'est-à-dire après la formation de l'étincelle. Son amplitude dépend donc, entre autres, de la tension de polarisation appliquée entre l'électrode de la bobine-bougie et la masse moteur.The ionization current ION , representative of the combustion, is indeed a measured signal after the end of the ignition, that is to say after the formation of the spark. Its amplitude therefore depends, among other things, on the bias voltage applied between the coil-spark electrode and the motor ground.

La tension de polarisation est unipolaire et typiquement comprise entre 1V et 100V. On parlera de polarisation positive lorsque l'électrode haute tension de la bougie est polarisée à un potentiel supérieur à celui de la masse moteur.The polarization voltage is unipolar and typically between 1V and 100V. We will speak of positive polarization when the high voltage electrode of the spark plug is polarized at a potential higher than that of the motor mass.

Cependant, il est possible de polariser le mélange combustible négativement. Le potentiel de l'électrode centrale de la bougie est alors inférieur à celui de la masse moteur. La tension de polarisation est dans ce cas typiquement comprise entre -100V et -1V.However, it is possible to polarize the fuel mixture negatively. The potential of the central electrode of the candle is then lower than that of the motor mass. The bias voltage is in this case typically between -100V and -1V.

Un circuit de mesure 40 du courant d'ionisation IION aux bornes du condensateur CMES, fournissant une image électrique de l'évolution de la combustion est décrit à la figure 5. En référence à cette figure, le circuit de mesure 40 est réalisé sous la forme d'un convertisseur courant-tension, adapté à fournir une tension Vs en sortie proportionnelle au courant en entrée.A measuring circuit 40 of the ionization current I ION across the capacitor C MES , providing an electrical image of the evolution of the combustion is described in FIG. figure 5 . With reference to this figure, the measurement circuit 40 is made in the form of a current-voltage converter adapted to provide a voltage V s output proportional to the input current.

Le convertisseur comprend un amplificateur opérationnel MN1 et une résistance de contre réaction RR.The converter comprises an operational amplifier MN1 and a feedback resistance R R.

L'amplificateur opérationnel MN1 possède une entrée non inverseuse (+) reliée à la tension de polarisation Vpolar et une entrée inverseuse (-) reliée à une borne du condensateur CMES par l'intermédiaire d'un circuit de protection 30, adapté à affranchir le temps d'acquisition de la mesure des effets de la formation de l'étincelle et sur lequel nous reviendrons plus en détail par la suite.The operational amplifier MN1 has a non-inverting input (+) connected to the polarization voltage V polar and an inverting input (-) connected to a terminal of the capacitor C MES via a protection circuit 30, adapted to freeing the acquisition time from the measurement of the effects of spark formation and to which we will return in more detail later.

La résistance RR est montée entre l'entrée inverseuse (-) et la sortie de l'amplificateur opérationnel MN1.The resistor R R is connected between the inverting input (-) and the output of the operational amplifier MN1.

En variante, comme illustré à la figure 5bis, dans le cas où le mélange combustible est polarisé négativement, l'entrée non inverseuse (+) est reliée à la tension de polarisation négative Vpolar et l'entrée inverseuse (-) reliée à la borne du condensateur de mesure par l'intermédiaire du circuit de protection 30, tandis que la résistance RR est connectée entre l'entrée inverseuse (-) et la sortie de l'amplificateur opérationnel MN1.Alternatively, as illustrated in figure 5bis in the case where the fuel mixture is negatively polarized, the non-inverting input (+) is connected to the negative bias voltage V polar and the inverting input (-) connected to the measurement capacitor terminal via of the protection circuit 30, while the resistor R R is connected between the inverting input (-) and the output of the operational amplifier MN1.

Selon une autre variante illustrée à la figure 5ter, il est également possible de choisir une polarisation quelconque du mélange combustible avec une tension de polarisation Vpolar respectant : V EE < V polar < V CC avec V EE < 0 et V CC > 0

Figure imgb0002
According to another variant illustrated in figure 5ter it is also possible to choose any polarization of the fuel mixture with a polarization voltage V polar respecting: V EE < V thriller < V CC with V EE < 0 and V CC > 0
Figure imgb0002

Un tel montage courant/tension est apte à mesurer avec précision de très faibles courants.Such a current / voltage arrangement is able to accurately measure very small currents.

L'entrée de l'amplificateur opérationnel est équivalente à une inductance de valeur Le. Ceci entraîne l'apparition d'oscillations pseudopériodiques de fréquence Fosc supérieure à 100kHz après la fin de l'allumage, dues au circuit formé par l'impédance d'entrée |ZE | du convertisseur courant-tension et le condensateur de mesure CMES, qui réduisent le temps de désaturation du circuit de mesure. Il est donc nécessaire d'ajouter une capacité de contre-réaction CR en parallèle de la résistance de contre-réaction RR afin d'amortir ces oscillations. On choisit donc une capacité vérifiant : Fosc > f = 2 π R R C R > 100 kHz

Figure imgb0003
The input of the operational amplifier is equivalent to an inductance of value L e . This leads to the appearance of pseudoperiodic oscillations of frequency F osc greater than 100 kHz after the end of ignition, due to the circuit formed by the input impedance | Z E | the current-voltage converter and the measuring capacitor C MES , which reduce the desaturation time of the measuring circuit. It is therefore necessary to add a feedback capacitance C R in parallel with the feedback resistor R R in order to damp these oscillations. We therefore choose a capacity that checks: Fosc > f = 2 π R R VS R > 100 kHz
Figure imgb0003

La capacité de contre-réaction est donc négligeable pour la bande de fréquence utile du signal mesuré représentatif de l'évolution de la combustion (typiquement inférieure à 100kHz), tout en optimisant le temps de désaturation du circuit de mesure.The feedback capacity is therefore negligible for the useful frequency band of the measured signal representative of the evolution of the combustion (typically less than 100kHz), while optimizing the desaturation time of the measuring circuit.

En outre, il est important que l'impédance de contre-réaction soit judicieusement choisie pour assurer que la tension VS en sortie du circuit de mesure soit bien proportionnelle au courant IION issu de la combustion.In addition, it is important that the feedback impedance be carefully chosen to ensure that the voltage V S at the output of the measuring circuit is well proportional to the current ION resulting from the combustion.

Typiquement, le condensateur de mesure CMES se charge pendant la phase de génération de l'étincelle. Il est important que l'impédance d'entrée ZE du convertisseur courant-tension soit faible (au minimum 100 fois plus faible) devant l'impédance du condensateur de mesure ZMES. Cette condition garantit que le convertisseur courant-tension, et non le condensateur de mesure, fournit le courant image du développement de la combustion. Autrement dit, il faut que l'impédance du condensateur CMES soit forte devant l'impédance d'entrée de l'amplificateur pour que la totalité du courant d'ionisation IION se retrouve dans l'amplificateur MN1.Typically, the measuring capacitor C MES is charged during the spark generation phase. It is important that the input impedance Z E of the current-voltage converter is low (at least 100 times smaller) in front of the impedance of the measurement capacitor Z MES . This condition ensures that the current-to-voltage converter, not the measurement capacitor, provides the image current of the development of the combustion. In other words, the impedance of the capacitor C MES must be high compared to the input impedance of the amplifier so that the totality of the ionization current ION is found in the amplifier MN1.

Il est connu que ce convertisseur présente une impédance d'entrée qui suit la relation suivante : Z E = Z R G

Figure imgb0004
It is known that this converter has an input impedance which follows the following relation: Z E = Z R BOY WUT
Figure imgb0004

G étant le gain propre de l'amplificateur opérationnel.G being the gain of the operational amplifier.

Avec : Z R = R R 1 + jωR R C R R R

Figure imgb0005
With: Z R = R R 1 + jωR R VS R R R
Figure imgb0005

La relation suivante doit donc être vérifiée pour toutes les fréquences inférieures à 100MHz : Z MES Z R . G > α , α 100

Figure imgb0006
The following relation must therefore be verified for all frequencies below 100MHz: Z MY Z R . BOY WUT > α , or α 100
Figure imgb0006

Ainsi, si les conditions précédentes sont vérifiées, on a : V S = R R . I ION + V POLAR

Figure imgb0007
So, if the previous conditions are true, we have: V S = R R . I ION + V POLAR
Figure imgb0007

Nous allons maintenant revenir plus en détail sur le circuit de protection 30, permettant donc de s'affranchir des effets de l'allumage en remplissant une fonction anti-éblouissement du circuit de mesure 40 précédemment décrit. De cette manière, l'acquisition de la mesure du courant IION représentatif de l'évolution de la combustion pourra être avantageusement réalisée indépendamment des effets de la formation de l'étincelle.We will now return in more detail on the protection circuit 30, thus eliminating the effects of ignition by filling an anti-glare function of the measuring circuit 40 described above. In this way, the acquisition of the measurement of the current I ION representative of the evolution of the combustion can be advantageously carried out independently of the effects of the formation of the spark.

En effet, des informations utiles sur la combustion sont extractibles du signal ionique tôt après la fin de l'allumage.Indeed, useful information on the combustion is extractable from the ionic signal soon after the end of the ignition.

Or, on a vu que les forts courants induits par le signal de commande d'allumage, qui ont un écart d'amplitude de près de 120dB avec le courant représentatif de la combustion, provoquent un temps d'éblouissement, ou période de masquage, pendant lequel l'acquisition d'un faible courant ne peut pas être effectué.However, it has been seen that the strong currents induced by the ignition control signal, which have an amplitude difference of nearly 120 dB with the current representative of the combustion, cause a glare time, or masking period, during which the acquisition of a weak current can not be carried out.

Aussi, afin de s'affranchir au maximum des effets liés à la commande d'allumage, on prévoit de connecter le circuit de protection 30 entre le condensateur de mesure et le convertisseur courant-tension formant le circuit de mesure 40. En effet, le convertisseur courant-tension doit conserver la meilleure dynamique possible et présenter un temps de désaturation de préférence inférieur à 300 µs pour permettre une mesure fiable de la combustion au régime maximum.Also, in order to overcome the effects of the ignition control, it is planned to connect the protection circuit 30 between the measurement capacitor and the current-voltage converter forming the measurement circuit 40. current-voltage converter must maintain the best possible dynamics and have a desaturation time of preferably less than 300 μs to allow a reliable measurement of combustion at maximum speed.

Le circuit de protection 30 comprend un pont de diodes 31, polarisé par des résistances RH et RB à une tension d'alimentation VALIM, de préférence proche de la tension de polarisation VPOLAR.The protection circuit 30 comprises a diode bridge 31, biased by resistors R H and R B at a supply voltage V ALIM , preferably close to the bias voltage V POLAR .

Cette architecture est stable et ne perturbe pas la mesure si le courant de polarisation ID circulant dans les diodes du circuit de protection est important devant le courant fourni par le convertisseur.This architecture is stable and does not disturb the measurement if the bias current I D flowing in the diodes of the protection circuit is large compared to the current supplied by the converter.

On peut vérifier que : I D = V ALIM 2 r dyn + R B + R H et r dyn 1 40 × I D

Figure imgb0008
We can check that: I D = V ALIM 2 r dyn + R B + R H and r dyn 1 40 × I D
Figure imgb0008

Rdyn étant la résistance dynamique d'une diode. Donc : I D V ALIM 1 / 20 R B + R H

Figure imgb0009
R dyn being the dynamic resistance of a diode. Therefore : I D V ALIM - 1 / 20 R B + R H
Figure imgb0009

Soit pour VALIM=12V et RB=RH=1kΩ, on obtient : ID = 3 mA > I IONmax = 500 μA .

Figure imgb0010
Let V ALIM = 12V and R B = R H = 1kΩ, we obtain: ID = 3 my > I IONmax = 500 uA .
Figure imgb0010

Cette équation permet de trouver le bon compromis entre la stabilité du montage et la consommation moyenne du circuit de protection. Les résistances RB et RH peuvent typiquement avoir une valeur comprise entre 100Ω et 50kΩ et peuvent être de valeurs différentes.This equation makes it possible to find the right compromise between the stability of the assembly and the average consumption of the protection circuit. Resistors R B and R H may typically have a value between 100Ω and 50kΩ and may be of different values.

La tension de polarisation VPOLAR optimale est ainsi définie par : V POLAR = R H R H + R B . V ALIM

Figure imgb0011
The optimal polarization voltage V POLAR is thus defined by: V POLAR = R H R H + R B . V ALIM
Figure imgb0011

La tension VPOLAR peut par exemple être obtenue à partir de la tension VALIM par l'intermédiaire d'un circuit diviseur résistif, bien connu en soi.The voltage V POLAR can for example be obtained from the voltage V ALIM via a resistive divider circuit, well known per se.

Le circuit de protection 30 a ainsi un double rôle. Il permet de maintenir un temps de désaturation faible du circuit de mesure quel que soit les conditions de génération d'étincelle. En outre, il favorise la robustesse du circuit de mesure à chaque type d'étincelle qu'un système d'allumage résonant peut générer.The protection circuit 30 thus has a dual role. It makes it possible to maintain a low desaturation time of the measuring circuit whatever the conditions of spark generation. In addition, it promotes robustness of the measuring circuit to each type of spark that a resonant ignition system can generate.

Claims (8)

  1. Device for the radiofrequency ignition of an internal combustion engine consisting of a power supply circuit (2) comprising a transformer (T), a secondary winding (LN) of which is connected to at least one resonator (1) that has a resonant frequency in excess of 1 MHz and comprising two electrodes (11, 12) that are able to generate a spark to initiate the combustion of a combustible mixture in a cylinder of the engine in response to an ignition command, characterized in that it comprises:
    - a measuring capacitor (CMES) connected in series between the secondary winding of the transformer and the resonator,
    - a circuit (40) for measuring a current (IION) at the terminals of said measuring capacitor, said current providing an electrical image of the trend of the combustion,
    - means of polarizing the combustible mixture, designed to apply a polarization voltage (Vpolar) between an electrode of the resonator and an engine ground,
    - a protection circuit (30), connected between the measuring capacitor and the measurement circuit, designed to free the acquisition time for the measurement of said current (IION) from the electrical effects induced by the ignition command, comprising a diode bridge polarized by resistances (RH, RB) at a power supply voltage (VALIM) that is proportional to the polarization voltage (Vpolar).
  2. Device according to Claim 1, characterized in that the measuring capacitor (CMES) is connected in series between the secondary winding of the transformer and the resonator, at the level of a ground return wire (6) of the transformer and of the resonator.
  3. Device according to either one of the preceding claims, characterized in that the measurement circuit (40) comprises a current-voltage converter produced using an operational amplifier (MN1).
  4. Device according to Claim 3, characterized in that the operational amplifier has a non-inverting input linked to the polarization voltage and an inverting input linked to a terminal of the measuring capacitor via the protection circuit.
  5. Device according to either one of Claims 3 and 4, characterized in that the current-voltage converter comprises a feedback resistor and a feedback capacitor connected in parallel to the feedback resistor.
  6. Device according to any one of Claims 3 to 5, characterized in that the input impedance of the current-voltage converter is at least a hundred times lower than the impedance of the measuring capacitor.
  7. Device according to any one of the preceding claims, characterized in that a primary winding of the transformer is connected on one side to an intermediate power supply voltage (Vinter) and on the other side to the drain of at least one switch transistor (M) controlled by a control signal (V1), the switch transistor applying the power supply voltage to the terminals of the primary winding at a frequency defined by the control signal.
  8. Device according to any one of the preceding claims, characterized in that the transformer has a variable turns ratio.
EP09740412.3A 2008-09-09 2009-07-30 Device for measuring the ionization current in a radiofrequency ignition system for an internal combustion engine Not-in-force EP2321524B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856056A FR2935759B1 (en) 2008-09-09 2008-09-09 DEVICE FOR MEASURING THE IONIZATION CURRENT IN A RADIOFREQUENCY IGNITION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
PCT/FR2009/051529 WO2010029238A1 (en) 2008-09-09 2009-07-30 Device for measuring the ionization current in a radiofrequency ignition system for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2321524A1 EP2321524A1 (en) 2011-05-18
EP2321524B1 true EP2321524B1 (en) 2017-01-25

Family

ID=40599621

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09740412.3A Not-in-force EP2321524B1 (en) 2008-09-09 2009-07-30 Device for measuring the ionization current in a radiofrequency ignition system for an internal combustion engine

Country Status (10)

Country Link
US (1) US9010179B2 (en)
EP (1) EP2321524B1 (en)
JP (1) JP5393792B2 (en)
KR (1) KR101588015B1 (en)
CN (1) CN102177334B (en)
BR (1) BRPI0918792A2 (en)
FR (1) FR2935759B1 (en)
MX (1) MX2011002524A (en)
RU (1) RU2500915C2 (en)
WO (1) WO2010029238A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011052096B4 (en) * 2010-09-04 2019-11-28 Borgwarner Ludwigsburg Gmbh A method of exciting an RF resonant circuit having as component an igniter for igniting a fuel-air mixture in a combustion chamber
FR2969717A1 (en) * 2010-12-23 2012-06-29 Renault Sa CHECKING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE BY IONIZATION SIGNAL
FR2975863B1 (en) * 2011-05-25 2013-05-17 Renault Sa POWER SUPPLY FOR RADIOFREQUENCY IGNITION WITH DOUBLE-STAGE AMPLIFIER
FR3000324B1 (en) * 2012-12-24 2016-07-01 Renault Sa RADIO FREQUENCY IGNITION SYSTEM FOR MOTOR VEHICLE ENGINE
DE102013108705B4 (en) * 2013-08-12 2017-04-27 Borgwarner Ludwigsburg Gmbh Corona ignition system and method for controlling a corona ignition device
JP5983637B2 (en) * 2014-01-10 2016-09-06 株式会社デンソー Transformer equipment
CN110285003B (en) * 2019-07-08 2022-03-18 上海戴世智能科技有限公司 Engine ionic current detection module, detection method, engine assembly and vehicle

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104978A (en) * 1988-10-13 1990-04-17 Mitsubishi Electric Corp Misfire detector for internal combustion engine
JP3350063B2 (en) * 1991-04-01 2002-11-25 株式会社日立製作所 Misfire detection device for internal combustion engine and control device for internal combustion engine using this misfire detection device
CN2125726U (en) * 1992-06-13 1992-12-23 天津中德现代工业技术培训中心 Probe polar for ignition character dynamic testing current
FR2752598B1 (en) * 1996-08-21 1998-10-09 Renault METHOD AND DEVICE FOR DIAGNOSING THE IGNITION OF A HEAT ENGINE BY MEASURING THE IONIZATION IMPEDANCE
JP3761654B2 (en) * 1996-12-10 2006-03-29 株式会社日本自動車部品総合研究所 Combustion state detection device
DE19840765C2 (en) * 1998-09-07 2003-03-06 Daimler Chrysler Ag Method and integrated ignition unit for the ignition of an internal combustion engine
JP2002180949A (en) * 2000-12-11 2002-06-26 Diamond Electric Mfg Co Ltd Ignition device of internal combustion engine having ion current detecting device
US6920783B2 (en) * 2001-04-09 2005-07-26 Delphi Technologies, Inc. Automotive ignition monitoring system with misfire and fouled plug detection
FR2859831B1 (en) 2003-09-12 2009-01-16 Renault Sa GENERATION CANDLE OF PLASMA.
FR2859830B1 (en) 2003-09-12 2014-02-21 Renault Sas PLASMA GENERATION CANDLE WITH INTEGRATED INDUCTANCE.
FR2894034B1 (en) 2005-11-28 2008-01-18 Renault Sas MEASUREMENT DEPORTEE CURRENT CROSSING A LOAD
FR2895170B1 (en) * 2005-12-15 2008-03-07 Renault Sas OPTIMIZING THE EXCITATION FREQUENCY OF A RESONATOR
FR2895169B1 (en) * 2005-12-15 2008-08-01 Renault Sas OPTIMIZING THE EXCITATION FREQUENCY OF A RESONATOR
FR2899394B1 (en) 2006-04-03 2008-05-16 Renault Sas METHOD FOR MEASURING AN IONIZATION CURRENT OF A RESONANT STRUCTURE TYPE CANDLE, AND CORRESPONDING DEVICE
FR2913297B1 (en) * 2007-03-01 2014-06-20 Renault Sas OPTIMIZING THE GENERATION OF A RADIO FREQUENCY IGNITION SPARK
FR2917565B1 (en) 2007-06-12 2014-05-16 Renault Sas MEASURING DEVICE IN A RADIOFREQUENCY IGNITION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
FR2917505B1 (en) * 2007-06-12 2009-08-28 Renault Sas DIAGNOSIS OF THE STATE OF ENCRASION OF CANDLES OF A RADIOFREQUENCY IGNITION SYSTEM
FR2923272B1 (en) 2007-11-05 2009-11-13 Renault Sas DEVICE FOR MEASURING THE IONIZATION CURRENT IN A RADIOFREQUENCY IGNITION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE.
FR2934942B1 (en) * 2008-08-05 2010-09-10 Renault Sas CONTROL OF THE FREQUENCY OF EXCITATION OF A RADIOFREQUENCY CANDLE.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2010029238A1 (en) 2010-03-18
KR101588015B1 (en) 2016-01-25
JP2012502225A (en) 2012-01-26
BRPI0918792A2 (en) 2016-10-25
KR20110071083A (en) 2011-06-28
FR2935759A1 (en) 2010-03-12
US20110247599A1 (en) 2011-10-13
CN102177334B (en) 2013-10-16
CN102177334A (en) 2011-09-07
EP2321524A1 (en) 2011-05-18
RU2011113829A (en) 2012-10-20
MX2011002524A (en) 2011-04-04
FR2935759B1 (en) 2010-09-10
JP5393792B2 (en) 2014-01-22
US9010179B2 (en) 2015-04-21
RU2500915C2 (en) 2013-12-10

Similar Documents

Publication Publication Date Title
EP2205858B1 (en) Device for measuring the ionization current in a radiofrequency ignition system for an internal combustion engine
EP2321524B1 (en) Device for measuring the ionization current in a radiofrequency ignition system for an internal combustion engine
EP2153056B1 (en) Measuring device in a radiofrequency ignition system for internal combustion engine
EP2115296B1 (en) Control of a plurality of plug coils via a single power stage
EP2134959A2 (en) Optimum control of the resonant frequency of a resonator in a radio frequency ignition system
EP2002117B1 (en) Method for measuring an ionization current of a spark plug of the type with resonant structure, and corresponding device
FR2787834A1 (en) COMBUSTION STATE DETECTION DEVICE FOR COMBUSTION ENGINE
EP2156160A1 (en) Diagnosis of the fouling condition of sparkplugs in a radiofrequency ignition system
FR2864172A1 (en) DOUBLE-STAGE IONIZATION DETECTION CIRCUIT
FR2777607A1 (en) CONTROLLED ENERGY IGNITION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
EP0825343B1 (en) Method and device for ignition diagnostics of a thermic engine by means of measuring the ionisation impedance
WO2009101352A1 (en) High-voltage generator device
EP1955081B1 (en) Out-of-line measurement of a current flowing through a load
WO2010136727A1 (en) Method for detecting the type of spark generated by a radiofrequency spark plug coil, and corresponding device
FR2742486A1 (en) DEVICE FOR MONITORING THE IGNITION SYSTEM OF AN INTERNAL COMBUSTION ENGINE
WO2010146279A1 (en) Measurement of the ionisation current of an ignition system of an internal combustion engine
WO2020007517A1 (en) Method for analysing a fluid of a motor vehicle using an optical sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160808

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 864310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009043946

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 864310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170425

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170425

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170525

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009043946

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170730

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170730

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090730

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210728

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210721

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009043946

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201