EP2310546B1 - Acier martensitique durci à teneur faible en cobalt, procédé de fabrication d'une pièce à partir de cet acier, et pièce ainsi obtenue - Google Patents

Acier martensitique durci à teneur faible en cobalt, procédé de fabrication d'une pièce à partir de cet acier, et pièce ainsi obtenue Download PDF

Info

Publication number
EP2310546B1
EP2310546B1 EP09784484.9A EP09784484A EP2310546B1 EP 2310546 B1 EP2310546 B1 EP 2310546B1 EP 09784484 A EP09784484 A EP 09784484A EP 2310546 B1 EP2310546 B1 EP 2310546B1
Authority
EP
European Patent Office
Prior art keywords
traces
steel
ppm
steel according
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09784484.9A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2310546A1 (fr
Inventor
François ROCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Priority to PL09784484T priority Critical patent/PL2310546T3/pl
Publication of EP2310546A1 publication Critical patent/EP2310546A1/fr
Application granted granted Critical
Publication of EP2310546B1 publication Critical patent/EP2310546B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a martensitic steel hardened by a duplex system, that is to say by a precipitation of intermetallic compounds and carbides obtained by means of a suitable steel composition and heat aging treatment.
  • maraging steels contain quite consistently high levels of nickel, cobalt and molybdenum, all of which are expensive and subject to significant changes in their rating in the commodity market. They also contain titanium, used for its strong contribution to secondary hardening, but which is mainly involved in lowering the fatigue strength of maraging steels due to TiN nitride, which it is almost impossible to avoid training during the making of steels even contains only a few tenths of a percent.
  • This steel is said to be "duplex-hardening" because its hardening is achieved by simultaneous hardening precipitation of intermetallic compounds and M 2 C carbides.
  • the object of the invention is to provide a usable steel, in particular, for manufacturing mechanical parts such as transmission shafts, or structural elements, having a higher resilience while having a high mechanical strength.
  • This steel should also have a lower production cost than the best performing steels currently known for these uses, thanks, in particular, to a significantly lower cobalt content.
  • It preferably contains C 0.20 - 0.25%.
  • It preferably contains Cr 2 - 4%.
  • It preferably contains Al 1 - 1.6%, better 1.4 - 1.6%.
  • It preferably contains Mo + W / 2 1 - 2%.
  • It preferably contains V 0.2 - 0.3%.
  • It preferably contains Ni 12-14%, with Ni ⁇ 7 + 3.5 Al.
  • Nb traces - 0.05%
  • It preferably contains Si traces - 0.25%, better traces - 0.10%.
  • It preferably contains O traces - 10 ppm.
  • N traces - 10 ppm.
  • It preferably contains S traces - 10 ppm, better traces - 5 ppm.
  • It preferably contains P traces - 100 ppm.
  • Its measured martensitic transformation temperature Ms is preferably greater than or equal to 100 ° C.
  • Its martensitic transformation temperature Ms measured may be greater than or equal to 140 ° C.
  • It further preferably comprises a cryogenic treatment at -50 ° C or lower, preferably between -80 ° C and 100 ° C or lower but not below -110 ° C, to convert all the austenite to martensite , the temperature being lower than 150 ° C. or more measured Ms, at least one of said treatments lasting between 4h and 50h and preferably between 4h and 10h.
  • It also preferably comprises a softening treatment of the rough quenching martensite carried out at 150-250 ° C for 4-16h, followed by cooling with still air.
  • the part also preferably undergoes carburizing, or nitriding, or carbonitriding.
  • Nitriding, or carburizing, or carbonitriding can be performed during an aging cycle.
  • Nitriding can be carried out between 475 and 600 ° C.
  • Said nitriding or carburising or carbonitriding can be carried out during a thermal cycle prior to or simultaneously with said dissolution.
  • the invention also relates to a mechanical part or component for structural element, characterized in that it is manufactured according to the preceding method.
  • It may be in particular a motor transmission shaft, or a motor suspension device or a landing gear element or a gearbox element or a bearing axis.
  • the invention is based first of all on a steel composition which differs from the prior art represented by WO-2006/114499 in particular by a lower but still significant Co content, between 1.5 and 4%.
  • the contents of the other most commonly present significant alloying elements are only slightly modified, but certain levels of impurities must be carefully controlled.
  • Co is an expensive element whose content has been significantly reduced compared with the prior art, without, however, eliminating it or bringing it to a very low level.
  • the steel according to the invention generally contains relatively few expensive addition elements, apart from nickel, the content of which, however, is not increased with respect to the prior art. But, it is necessary to take special care during development, to limit the nitrogen content to 20 ppm at most to avoid as much as possible the formation of aluminum nitrides. The maximum levels of titanium and zirconium must also be limited accordingly to prevent nitrides from forming with residual nitrogen.
  • the steel of the invention can be machined in the quenched state, with tools adapted to a hardness of 45HRC. It is intermediate between the maragings (rough machining quench since they have a mild low carbon martensite) and carbon steels that must be machined essentially in the annealed state.
  • a "duplex" curing is carried out, that is to say obtained jointly by intermetallics of ⁇ -NiAl type and carbides of M 2 C type, in the presence of reversion austenite formed / stabilized by diffusion-enriched nickel enrichment during curing aging, which gives ductility to the structure by forming a sandwich structure (a few% of stable and ductile austenite between the slats of hardened martensite).
  • nitrides Ti, Zr and Al in particular, which are weakening: they deteriorate the tenacity and fatigue resistance. Since these nitrides can precipitate from 1 to a few ppm of N in the presence of Ti, Zr and / or Al, and the conventional elaboration means make it difficult to achieve less than 5 ppm of N, the steel of the invention respects the following rules.
  • any addition of Ti (maximum allowed: 100 ppm) is limited, and N is limited as much as possible.
  • the N content should not exceed 20 ppm and more preferably 10 ppm, and the Ti content should not exceed 10 times the N content.
  • Ti and Zr are to be considered as impurities to be avoided, and the sum Ti + Zr / 2 must be ⁇ 150 ppm.
  • rare earths at the end of the elaboration, can also contribute to fix a fraction of N, besides the S and O. In this case, it must be ensured that the residual content of rare earths in free form remains less than or equal to 100 ppm, and preferably less than or equal to 50 ppm, because these elements weaken the steel when they are present beyond these values. It is believed that rare earth (eg La) oxynitrides are less harmful than Ti or Al nitrides because of their globular form which would make them less likely to constitute fatigue fracture primers.
  • Calcium treatment may be practiced to complete the deoxidation / desulfurization of the liquid metal. This treatment is preferably conducted with the possible additions of Ti, Zr or rare earths.
  • the M 2 C carbide of Cr, Mo, W and V containing very little Fe is preferred for its hardening and non-embrittling properties.
  • the carbide M 2 C is metastable with respect to equilibrium carbides M 7 C 3 and / or M 6 C and / or M 23 C 6 . It is stabilized by Mo and W.
  • Mo + W / 2 is between 1 and 2%. It is also to prevent the formation of non-hardening Ti carbides which may weaken the grain boundaries that a 100 ppm imperative limitation of the Ti content of the steels according to the invention is required.
  • Cr and V are elements that activate the formation of "metastable" carbides.
  • V also forms carbides of MC type, stable up to the dissolution temperatures, which "block" the grain boundaries and limit the magnification of grains during heat treatments at high temperatures.
  • V 0.3% must not be exceeded in order not to fix too much C in carbides of V, during the dissolution cycle, to the detriment of the M 2 C carbide of Cr, Mo, W, V which is sought precipitation during the subsequent aging cycle.
  • the V content is between 0.2 and 0.3%.
  • the presence of C favors the appearance of M 2 C with respect to the ⁇ phase. But an excessive content causes segregations, a lowering of Ms and causes difficulties in manufacturing on an industrial scale: sensitivity to the taps (superficial cracking during rapid cooling), difficult machinability of martensite too hard to l quenching state. Its content must be between 0.20 and 0.30%, preferably 0.20-0.25%.
  • the surface layer of the parts may be enriched in C by carburizing or carbonitriding if a very high surface hardness is required in the envisaged applications.
  • Cobalt slightly raises the ductile / brittle transition temperature, which is not favorable, particularly in compositions with low nickel contents, whereas, contrary to what can be observed in other steels, cobalt does not obviously raise the transformation point Ms compositions of the invention and therefore has no obvious interest either in this respect.
  • the invention is based first of all on a steel composition which differs from the prior art represented by WO-2006/114499 in particular by a lower Co content, between 1.5 and 4%, better between 2 and 3%.
  • the contents of the other most commonly present significant alloying elements are only slightly modified, but certain impurity contents must be carefully controlled, especially the contents of Ti, Zr and N which affect the toughness.
  • Co degrades the transition of resilience of pure Fe ( page 52-54 Materials Science and Technology January 1994 Vol. 10 ). Indeed, as has been said the presence of Co increases the ductile / brittle transition temperature. Furthermore, a Co content greater than 1.5% Co is useful for improving the structural hardening by precipitation of M 2 C carbide and thus significantly increasing Rm.
  • a Co content between about 1.5 and 4%, more preferably between 2 and 3%, significantly improves the mechanical strength virtually without degrading the resilience, compared to a very low Co content ( ⁇ 1%) whose composition would, moreover, be identical.
  • Ni and Al are bonded in the invention, where Ni must be ⁇ 7 + 3.5 Al. These are the two essential elements which participate in a good part of aging hardening, thanks to the precipitation of the nanometric intermetallic phase of type B2 (NiAl for example). It is this phase which gives a large part of the mechanical strength when hot, up to about 400 ° C. Nickel is also the element that reduces brittleness by cleavage because it lowers the ductile / brittle transition temperature of martensites. If Al is too high relative to Ni, the martensitic matrix is too strongly depleted of nickel as a result of the precipitation of the NiAl curing precipitate during aging.
  • martensitic transformation start temperature Ms which, according to the invention, should preferably remain equal to or greater than 140 ° C. if no cryogenic cycle is used, and should preferably be between 100 and 140 ° C. if we practice a cryogenic cycle.
  • this formula is only very approximate, in particular because the effects of Co and Al are highly variable from one type of steel to another. To know whether a steel is or not according to the invention, it is therefore necessary to rely on measurements of the actual temperature Ms, made for example by dilatometry as is conventional. Ni content is one of Ms.'s possible adjustment variables
  • the end-of-cooling temperature after quenching must be less than the actual Ms -150 ° C., preferably lower than the actual Ms -200 ° C., in order to ensure a full martensitic transformation of the steel.
  • the end-of-cooling temperature must therefore be lower than the measured temperature Mf of martensitic transformation end of the steel.
  • a cryogenic treatment may be applied immediately following cooling to room temperature from the solution temperature.
  • the overall rate of cooling should be as high as possible to avoid the mechanisms of stabilization of the carbon-rich residual austenite. However, it is not useful to look for cryogenic temperatures below -110 ° C because the thermal agitation of the structure becomes insufficient to produce the martensitic transformation.
  • the Ms value of the steel is between 100 and 140 ° C if a cryogenic cycle is applied, and greater than or equal to 140 ° C in the absence of this cryogenic cycle.
  • the duration of the cryogenic cycle is between 4 and 50 hours, preferably 4 to 16 hours, and more preferably 4 to 10 hours. It is possible to practice several cryogenic cycles, the essential being that at least one of them has the aforementioned characteristics.
  • steels of the class of the invention prefer the presence of B2 hardening phases, especially NiAl, to obtain a high mechanical strength when hot. Compliance with the conditions on Ni and Al that have been given ensures a sufficient potential content of reversion austenite to maintain ductility and toughness suitable for the intended applications.
  • Nb to control grain size during forging or other hot processing at a content not exceeding 0.1%.
  • the steel according to the invention therefore accepts raw materials that can contain significant residual contents in Nb.
  • a characteristic of the steels of the class of the invention is also the possibility of replacing at least a portion of Mo by W.
  • W segregates less at solidification than Mo and provides an increase in mechanical strength when hot. It has the disadvantage of being expensive and we can optimize this cost by associating it with Mo.
  • Mo + W / 2 must be between 1 and 4%, preferably between 1 and 2% . It is preferred to maintain a minimum content of 1% Mo to limit the cost of steel, especially as the high temperature withstand is not a priority objective of the steel of the invention.
  • Cu can be up to 1%. It is likely to participate in the hardening with the help of its epsilon phase, and the presence of Ni makes it possible to limit its harmful effects, in particular the appearance of superficial cracks during the forging of the pieces, which one observes during additions of copper in steels not containing nickel. But its presence is not essential and it may be present only in the state of residual traces, resulting from the pollution of raw materials.
  • Manganese is not a priori useful for obtaining the properties of steel, but it has no recognized adverse effect.
  • its low vapor pressure at the temperatures of the liquid steel makes its concentration difficult to control in vacuum production and vacuum remelting: its content may vary depending on the radial and axial location in a remelted ingot. As it is often present in the raw materials, and for the reasons above, its content will preferably be at most 0.25%, and in any case limited to 2% at most, because of too great variations in its concentration in the same product will interfere with the repeatability of the properties.
  • Silicon is known to have a solid solution hardening effect of ferrite and, like cobalt, to decrease the solubility of certain elements or phases in ferrite.
  • the steel of the invention comprises only relatively little cobalt, and it can do without silicon, especially since, in addition, silicon generally promotes the precipitation of intermetallic phases harmful in complex steels (Laves phase, silicides ). Its content will be limited to 1%, preferably less than 0.25% and still more preferably less than 0.1%.
  • S traces - 20ppm, preferably traces - 10ppm, better traces - 5ppm
  • P traces - 200ppm, preferably traces - 100ppm, better traces - 50ppm.
  • Ca can be used as a deoxidizer and as a sulfur sensor, finding it in the end ( ⁇ 20ppm).
  • rare earth residues may ultimately remain ( ⁇ 100ppm) following a refining treatment of the liquid metal where they would have been used to capture O, S and / or N.
  • the use of Ca and rare earths for these effects not being mandatory, these elements may be present only in the form of traces in the steels of the invention.
  • the acceptable oxygen content is 50 ppm maximum, preferably 10 ppm maximum.
  • Table 1 Composition of the tested samples
  • S ppm 1 4 7 4 6 7 3 8 10 5 4 P ppm 54 30 29 31 30 25 15 28 80 45 29 Or% 13,43 12.67 13,31 12.42 12,30 14,11 12.99 12.70 15,10 11.25 12.91 Cr% 2.76 3.38 2.99 3.05 3.21 3.19 2.95 3.25 3.17 3.17 2.89 Mo% 1.44 1.52 1.61 1.52
  • Reference steel A corresponds to a steel according to US-A-5,393,488 , thus having a high Co content.
  • the reference steel B corresponds to a steel according to WO-A-2006/114 499, it is distinguished from A by a lower Co content and a higher Al content.
  • Steels C to J are in accordance with the invention in all respects, in particular by their Co content, which is significantly lower than that of steel. B, but which nevertheless remains substantially higher than a simple residual content and is obtained by a deliberate addition during the preparation.
  • Steel D differs from C by a slightly lower Co content for a lower Ni content, and by the absence of V, which is present only in trace amounts.
  • Steel E is distinguished from D by a Co content even lower than that of D and by a V content at a level comparable to steel C.
  • Steel F is distinguished from C, D, E mainly by a slightly higher Ni content, its Co content being comparable to that of E steel.
  • Steel G differs from steels C to F by an even lower Co content and has no V.
  • Steel H is distinguished from Steel G by a further steepening of the Co content and a significantly higher boron content.
  • Steel I is distinguished from Steel H by further lowering of Co content, and lower C content with higher Ni content.
  • Steel J is the one whose composition has the lowest Co content, while corresponding to a voluntary addition and which remains in accordance with the invention. It also has the lowest Ni content and contains V.
  • the reference steel K has a low Co content and below the minimum required by the invention. It is comparable on the other points to steels according to the invention without V and B and very low N.
  • the samples were softened at a temperature of at least 600 ° C.
  • this softening income was carried out at 650 ° C. for 8 hours and followed by cooling in air. Thanks to this, the raw products of thermomechanical transformations can undergo without particular problems the finishing operations (straightening, peeling, machining ...) giving the piece its final form. It will be noted that the softening income does not contribute to obtaining the final mechanical characteristics.
  • the desired resilience / resilience tradeoff could be further refined through a modification of the aging conditions, but the adjustment of the Co content remains the key parameter that must be used to achieve this compromise.
  • the hardening provided by the increase of Al, with the high Ni, to form the hardening phase NiAl, is not proportional to the concentration of Al, and exceed a value of 2% in Al does not bring gain significant on the tensile strength.
  • Nb and B of the samples D and H respectively are not necessary to obtain the high mechanical strengths targeted primarily in the steels of the class of the invention.
  • the addition of Nb makes it possible to refine the grain size, described by the conventional ASTM index (the highest ASTM values corresponding to the finest grains).
  • thermomechanical treatments for hot and / or cold forming can be carried out in addition to or in place of this forging, depending on the type of end product that is desired (stamped parts, bars). , semi-finished products ).
  • the preferred applications of the steel according to the invention are the endurance parts for mechanics and structural elements, for which a tensile strength greater than 2150 MPa must be cold, combined with higher values of resilience than better high-strength steels, and hot (400 ° C) a tensile strength of the order of 1800 MPa, as well as optimal fatigue properties.
  • the steel according to the invention also has the advantage of being cementable, nitrurable and carbonitrurable.
  • the parts that use it can therefore be given high abrasion resistance without affecting its core properties. This is particularly advantageous in the intended applications that have been cited.
  • the carburizing, or the nitriding, or the carbonitriding can, possibly, be carried out during the heat treatments of aging or dissolution in solution, instead of being carried out during a separate step.
  • nitriding can be carried out between 475 and 500 ° C during an aging cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
EP09784484.9A 2008-07-15 2009-07-08 Acier martensitique durci à teneur faible en cobalt, procédé de fabrication d'une pièce à partir de cet acier, et pièce ainsi obtenue Active EP2310546B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09784484T PL2310546T3 (pl) 2008-07-15 2009-07-08 Utwardzona stal martenzytyczna o małej zawartości kobaltu, sposób wytwarzania części z tej stali oraz część tak otrzymana

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0854810A FR2933990B1 (fr) 2008-07-15 2008-07-15 Acier martensitique durci a teneur faible en cobalt, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
PCT/FR2009/051351 WO2010007297A1 (fr) 2008-07-15 2009-07-08 Acier martensitique durci à teneur faible en cobalt, procédé de fabrication d'une pièce à partir de cet acier, et pièce ainsi obtenue

Publications (2)

Publication Number Publication Date
EP2310546A1 EP2310546A1 (fr) 2011-04-20
EP2310546B1 true EP2310546B1 (fr) 2017-03-22

Family

ID=40122328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09784484.9A Active EP2310546B1 (fr) 2008-07-15 2009-07-08 Acier martensitique durci à teneur faible en cobalt, procédé de fabrication d'une pièce à partir de cet acier, et pièce ainsi obtenue

Country Status (10)

Country Link
US (1) US9175370B2 (es)
EP (1) EP2310546B1 (es)
JP (1) JP5710478B2 (es)
CN (1) CN102131947B (es)
CA (1) CA2730520C (es)
ES (1) ES2624912T3 (es)
FR (1) FR2933990B1 (es)
PL (1) PL2310546T3 (es)
RU (1) RU2497974C2 (es)
WO (1) WO2010007297A1 (es)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031576A1 (de) * 2008-07-23 2010-03-25 V&M Deutschland Gmbh Stahllegierung für einen ferritischen Stahl mit ausgezeichneter Zeitstandfestigkeit und Oxidationsbeständigkeit bei erhöhten Einsatztemperaturen
FR2947565B1 (fr) * 2009-07-03 2011-12-23 Snecma Traitement cryogenique d'un acier martensitique a durcissement mixte
FR2947566B1 (fr) * 2009-07-03 2011-12-16 Snecma Procede d'elaboration d'un acier martensitique a durcissement mixte
CN102337494B (zh) * 2011-09-26 2013-08-28 台州学院 Fe-Mn系不锈钢表面耐磨耐腐蚀渗氮层的加工方法
US9821298B2 (en) 2011-10-24 2017-11-21 Total Raffinage France Process for preparing a hydroconversion catalyst, catalyst thus obtained and use thereof in a hydroconversion process
FR2987372B1 (fr) * 2012-02-24 2014-11-14 Messier Bugatti Dowty Procede de fabrication d'une piece en acier inoxydable.
US9410222B2 (en) 2012-06-19 2016-08-09 Buffalo Armory Llc Method and apparatus for treating a steel article
US9410220B2 (en) 2012-06-19 2016-08-09 Buffalo Armory Llc Method and apparatus for treating a steel article
FR2994195A1 (fr) * 2012-07-31 2014-02-07 Peugeot Citroen Automobiles Sa Procede d'enrichissement thermochimique comprenant un affinage structural de l'acier
FR2999607B1 (fr) * 2012-12-13 2015-04-17 Peugeot Citroen Automobiles Sa Procede de traitement d'acier comprenant un pretraitement d'affinage du grain
CN103981455B (zh) * 2014-05-09 2016-04-06 南安市国高建材科技有限公司 一种具有良好耐蚀性和韧性的超高强度模具钢
RU2600467C1 (ru) * 2015-06-25 2016-10-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Высокопрочная бериллийсодержащая сталь
CN105420611A (zh) * 2015-12-07 2016-03-23 苏州市神龙门窗有限公司 一种门窗用耐腐蚀钢及其热处理方法
CN106216969A (zh) * 2016-07-26 2016-12-14 路望培 一种机械传动轴及其制备方法
JP2019532816A (ja) * 2016-08-03 2019-11-14 アペラム 支持部品上への溶融金属を追加することを含む鋼製部品の製造方法、及び、これにより得られた部品
RU2627529C1 (ru) * 2016-12-06 2017-08-08 Юлия Алексеевна Щепочкина Сталь
CN107177798A (zh) * 2017-07-15 2017-09-19 滁州凯旋模具制造有限公司 一种汽车零部件自动焊接模具
RU2696302C1 (ru) * 2018-07-31 2019-08-01 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ обработки жаропрочной мартенситной стали
FR3095659B1 (fr) * 2019-05-02 2022-04-15 Safran Helicopter Engines Piece en acier cementee pour l’aeronautique
RU2748448C1 (ru) * 2020-06-03 2021-05-25 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Цементуемая теплостойкая сталь
CN111593260B (zh) * 2020-06-17 2021-09-24 大连理工大学 一种b2纳米粒子共格析出强化的超高强度马氏体时效不锈钢及制备方法
CN116479327A (zh) * 2023-03-30 2023-07-25 江阴兴澄特种钢铁有限公司 一种利于变速轻量化的齿轮用棒钢及其制造方法
CN116926442B (zh) * 2023-07-24 2024-02-23 北京理工大学 纳米相协同析出强化低屈强比超高强度钢及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB371334A (en) * 1929-10-11 1932-04-13 Commentry Fourchambault Et Dec Process for improving the mechanical properties of ferro-nickelchromium alloys
GB1089934A (en) * 1964-10-28 1967-11-08 Republic Steel Corp High strength steel alloy composition
GB1089935A (en) * 1964-10-28 1967-11-08 Republic Steel Corp Method of strengthening alloy steel
JPS5423328B2 (es) * 1973-11-27 1979-08-13
JPS5635750A (en) * 1979-08-29 1981-04-08 Kobe Steel Ltd Alloy steel with superior strength and toughness and its manufacture
US4605321A (en) * 1983-03-23 1986-08-12 Skf Kugellagerfbriken Gmbh Roller bearing for seating a pedal bearing shaft
US4832525A (en) * 1988-03-25 1989-05-23 Morrison Donald R Double-bearing shaft for a vibrating screed
FR2706489B1 (fr) * 1993-06-14 1995-09-01 Ugine Savoie Sa Acier inoxydable martensitique à usinabilité améliorée.
US5393488A (en) * 1993-08-06 1995-02-28 General Electric Company High strength, high fatigue structural steel
US5447800A (en) * 1993-09-27 1995-09-05 Crucible Materials Corporation Martensitic hot work tool steel die block article and method of manufacture
JP3580891B2 (ja) * 1995-03-28 2004-10-27 Ntn株式会社 車軸用軸受外輪の加工方法
JP2002285290A (ja) * 2001-03-27 2002-10-03 Daido Steel Co Ltd 高強度・高耐疲労構造用鋼及びその製造方法
US6715921B2 (en) * 2001-10-24 2004-04-06 Victor Company Of Japan, Ltd. Shaft bearing structure of spindle motor
US6890393B2 (en) * 2003-02-07 2005-05-10 Advanced Steel Technology, Llc Fine-grained martensitic stainless steel and method thereof
CN100526493C (zh) * 2004-07-27 2009-08-12 新日本制铁株式会社 高杨氏模量钢板、使用了它的热浸镀锌钢板、合金化热浸镀锌钢板、和高杨氏模量钢管以及它们的制造方法
FR2885141A1 (fr) * 2005-04-27 2006-11-03 Aubert & Duval Soc Par Actions Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
FR2885142B1 (fr) * 2005-04-27 2007-07-27 Aubert & Duval Soc Par Actions Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2933990B1 (fr) 2010-08-13
RU2011105417A (ru) 2012-08-20
ES2624912T3 (es) 2017-07-18
JP5710478B2 (ja) 2015-04-30
WO2010007297A1 (fr) 2010-01-21
CA2730520C (fr) 2016-11-22
CN102131947B (zh) 2013-03-27
US9175370B2 (en) 2015-11-03
CN102131947A (zh) 2011-07-20
PL2310546T3 (pl) 2017-08-31
CA2730520A1 (fr) 2010-01-21
US20110226386A1 (en) 2011-09-22
RU2497974C2 (ru) 2013-11-10
EP2310546A1 (fr) 2011-04-20
FR2933990A1 (fr) 2010-01-22
JP2011528068A (ja) 2011-11-10

Similar Documents

Publication Publication Date Title
EP2310546B1 (fr) Acier martensitique durci à teneur faible en cobalt, procédé de fabrication d'une pièce à partir de cet acier, et pièce ainsi obtenue
EP2164998B1 (fr) Acier martensitique durci à teneur faible ou nulle en cobalt, procédé de fabrication d'une pièce à partir de cet acier, et pièce ainsi obtenue
CA2607446C (fr) Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
EP1896624B1 (fr) Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue
JP5530763B2 (ja) 低サイクル曲げ疲労強度に優れた浸炭鋼部品
EP1426453B1 (fr) Procédé de fabrication d'une pièce forgée en acier
CA2335911C (fr) Acier de cementation a temperature de revenu elevee, procede pour son obtention et pieces formees avec cet acier
CA2984131C (fr) Acier, produit realise en cet acier, et son procede de fabrication
EP1979583B1 (fr) Procédé de fabrication d'une soupape de moteur à explosion, et soupape ainsi obtenue
CA3001158C (fr) Acier, produit realise en cet acier, et son procede de fabrication
FR2885141A1 (fr) Acier martensitique durci, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
JP4688691B2 (ja) 低サイクル疲労強度に優れた肌焼鋼
CA2559562C (fr) Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l'utilisant et pieces mecaniques ainsi realisees
EP3378957B1 (fr) Acier, procédé pour la fabrication de pièces mécaniques en cet acier, et pièces ainsi fabriquées
CA2312034C (fr) Acier de nitruration, procede pour son obtention et pieces formees avec cet acier
JP2011179048A (ja) 冷間加工性に優れた浸炭用鋼
WO2022253912A1 (fr) Pièce en acier mise en forme à chaud et procédé de fabrication
JP2008223064A (ja) 高耐力浸炭鋼及びこれを用いた機械構造用部品

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROCH, FRANCOIS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009044964

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038520000

Ipc: C21D0001320000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/02 20060101ALI20160923BHEP

Ipc: C22C 38/52 20060101ALI20160923BHEP

Ipc: C22C 38/54 20060101ALI20160923BHEP

Ipc: C21D 9/00 20060101ALI20160923BHEP

Ipc: C21D 9/28 20060101ALI20160923BHEP

Ipc: C22C 38/06 20060101ALI20160923BHEP

Ipc: C22C 38/00 20060101ALI20160923BHEP

Ipc: C22C 38/42 20060101ALI20160923BHEP

Ipc: C22C 38/48 20060101ALI20160923BHEP

Ipc: C21D 6/00 20060101ALI20160923BHEP

Ipc: C22C 38/44 20060101ALI20160923BHEP

Ipc: C21D 1/32 20060101AFI20160923BHEP

Ipc: C22C 38/46 20060101ALI20160923BHEP

Ipc: C21D 6/04 20060101ALI20160923BHEP

Ipc: C22C 38/04 20060101ALI20160923BHEP

INTG Intention to grant announced

Effective date: 20161020

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 877837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009044964

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2624912

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170718

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009044964

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

26N No opposition filed

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170708

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 877837

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 15

Ref country code: ES

Payment date: 20230926

Year of fee payment: 15

Ref country code: CZ

Payment date: 20230703

Year of fee payment: 15

Ref country code: AT

Payment date: 20230720

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230719

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240628

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240719

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240729

Year of fee payment: 16