EP2305532B1 - Verfahren zur automatischen Synchronisierung von Gleislagemessungen - Google Patents

Verfahren zur automatischen Synchronisierung von Gleislagemessungen Download PDF

Info

Publication number
EP2305532B1
EP2305532B1 EP10011614.4A EP10011614A EP2305532B1 EP 2305532 B1 EP2305532 B1 EP 2305532B1 EP 10011614 A EP10011614 A EP 10011614A EP 2305532 B1 EP2305532 B1 EP 2305532B1
Authority
EP
European Patent Office
Prior art keywords
measurement
synchronized
determined
sections
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10011614.4A
Other languages
English (en)
French (fr)
Other versions
EP2305532A1 (de
Inventor
Rong Le
Klaus-Ulrich Wolter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Bahn AG
Original Assignee
Deutsche Bahn AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Bahn AG filed Critical Deutsche Bahn AG
Publication of EP2305532A1 publication Critical patent/EP2305532A1/de
Application granted granted Critical
Publication of EP2305532B1 publication Critical patent/EP2305532B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/047Track or rail movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/026Relative localisation, e.g. using odometer

Definitions

  • the invention relates to a method for automatically synchronizing track position measurements in railway traffic.
  • the railway infrastructure is the basis for a safe railway operation. To ensure the high degree of safety, extensive maintenance measures are necessary.
  • the inspection of the track geometry is of particular importance here. Often the inspection of the track position is carried out with special measuring vehicles. The results obtained are compared with limit values. From the comparison repair measures are derived and carried out.
  • the measurement results of the track position inspections are stored in databases. With special programs it is possible to display the measurement results of individual inspection trips. In this case, several results of different inspection trips of the same route section can be displayed at different inspection times. From this presentation, a person skilled in the art can follow the development of track deviations and plan and carry out medium and long-term maintenance measures.
  • the local increments are not always constant, so that additionally creates a distortion of the measurement. This local offset and the distortion arise because the distance measurement is usually done by means of wheel pulses. Due to wear-related decrease in the wheel diameter, slip during braking and acceleration as well as due to friction and weather conditions, these deviations can not be avoided.
  • the results of the inspections must be synchronized, so that changes and rates of change can be calculated.
  • the track position measurements are shifted locally to each other.
  • deviations in the sampling steps can not be ruled out, which is why the track position signals are additionally compressed or stretched relative to each other.
  • the measured values are available at different local points. This is particularly problematic since, during longer measuring runs, the offset as well as the distortion or compression / extension are not constant over the entire length of the measuring run. Thus, a manual, subsequent synchronization is not possible.
  • the results of the inspection trips can not be manually synchronized with each other.
  • sections statistical variables For the tracking of changes in the track situation is therefore often resorting to sections statistical variables and these are compared. For example, sections with a length of 250 m are used and the standard deviations are determined for the individual measuring channels - track position parameters. With this approach, the change in the track position quality can be assessed, the temporal change of individual defects - track position deviations - is not possible with this approach.
  • the EP 1 213 202 B2 describes a method for mapping the track condition via signals from various sensors attached to wheels and bogies, which are fed to an evaluation unit and transmitted to a control center, where they are assembled to form an image of the track condition. Again, there is no synchronization of the measured data.
  • the invention has for its object to synchronize the measurement results of inspection trips each other so that as a result synchronized measurement results are available that allow automatic evaluation and evaluation of the results. Furthermore, there is the possibility that medium and long-term maintenance measures can be derived automatically from the track position measurements and the temporal development of track-bearing faults.
  • the results of an inspection run are selected in the first step, which serve as a reference measurement. Since the location-dependent sampling steps .DELTA.x of an inspection measurement are not constant, the measured values for new locally equidistant x-coordinates are calculated. The new location coordinates (x-coordinates) are determined by recalculating the distance between the beginning and the end of the inspection journey - reference measurement - in such a way that equidistant x-coordinates are created. The associated measured values (y-coordinate) can be determined by means of interpolation calculation. Here, linear as well as non-linear interpolation methods can be used. This step is performed for all measurement channels of a measurement run. The locally processed measurement data of the inspection trip serve as a reference measurement. All further inspection runs are synchronized with this reference measurement.
  • the reference measurement and the measurements to be synchronized are subdivided into half-overlapping sections of, for example, 100 m in length. Depending on the application, other section lengths are conceivable.
  • the cross-correlation function ⁇ is calculated.
  • the location of the maximum of the calculated cross-correlation function ⁇ indicates the local displacement of the two sections y ri and y si to each other. This local displacement is determined for each overlapping section pair. From the local displacements of all sections y si to the respective section y ri of the reference measurement, the km offset is calculated by means of interpolation method. Since the mileage offset is generally not linear, in addition to the local displacement also automatically results in the distortion or strain and compression, which are not linear over the entire measurement. The thus determined km offset is used for all measuring channels of the measurements to be synchronized.
  • the measuring points are calculated at the points of the reference measurement by means of interpolation methods.
  • interpolation methods linear as well as non-linear interpolation methods can be used.
  • the inspection measurement was synchronized with the reference measurement.
  • the individual measuring points are in relation to the x-coordinate,conffastyakgenau one above the other. An automatic evaluation and evaluation is now possible.
  • a local scan of 0.10 m is selected.
  • the used track system is in illustration 1 shown.
  • the synchronization takes place in such a way that any number of additional measuring channels can be synchronized. If the reference measurement has been prepared as described below, any number of inspection measurements can be synchronized with the reference measurement. To clarify the procedure, an inspection measurement is synchronized with the reference measurement in the application example.
  • the FIG. 2 shows a section with 100m track length.
  • the local shift of the measurement 1 with respect to the measurement 2 can be clearly seen. This is about 30 m.
  • an inspection measurement is prepared in such a way that the measured values can be assigned to defined distance kilometers and that a constant scanning step of, for example, 0.10 m results, other scanning steps are also possible.
  • This processing is done by evenly dividing the section between the first and the last measuring point in equidistant increments. Since the new location coordinates thus determined do not correspond to the original ones, the measured values must be calculated at the new location coordinates. This is done in the exemplary embodiment by means of interpolation with cubic splines. In general, linear interpolation methods can also be used. For all Measuring channels of the reference measurement, the corresponding measured values are recalculated to the method described above.
  • the further inspection measurements are synchronized to the reference measurement. This is done in such a way that in each case one measurement channel from the reference measurement and the corresponding channel are selected from the inspection measurement to be synchronized.
  • the track width was selected because the track width changes much more slowly than, for example, the longitudinal heights or the deviations in direction compared to the other track position parameters.
  • the entire measurement is subdivided into sections of 100 m in length, whereby the individual sections overlap each half, ie 50 m. For each section, with the track of the reference measurement and the corresponding section of the inspection measurement to be synchronized, the cross-correlation function ⁇ is calculated and normalized.
  • FIG. 3 shows the cross-correlation function for a section.
  • the position of the maximum of the cross-correlation function indicates the displacement of the selected sections relative to each other.
  • the displacement is 29.6 m.
  • the mutual displacement is calculated in this way. From the shifts of all sections of the entire inspection journey, the offset of the kilometer is determined. Since the shift of the individual sections can be different, the kilometer correction is determined by means of nonlinear interpolation (spline interpolation). Since the displacement of the individual sections is different, the distortion or extension and compression of the signals is automatically determined in this way.
  • FIG. 4 shows the calculated kilometer offset
  • the kilometer offset thus determined is applied to all measuring channels, the measurement to be synchronized.
  • the measurement points of all measurement channels of the measurement to be synchronized are calculated at the mileage points of the reference measurement. This can be done with interpolation methods respectively. In the application example, spline interpolation was used.
  • the result is synchronized measurements in which the sampling steps have been corrected and the measurement points of all measurement channels of all measurements are at the same km coordinates.
  • FIG. 5 shows the synchronized measurements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur automatischen Synchronisierung von Gleislagemessungen im Eisenbahnverkehr.
  • Die Eisenbahninfrastruktur stellt die Grundlage für einen sicheren Eisenbahnbetrieb dar. Damit das hohe Maß an Sicherheit gewährleistet werden kann, sind umfangreiche Instandhaltungsmaßnahmen nötig. Der Inspektion der Gleislagegeometrie kommt hier eine besondere Bedeutung zu. Häufig wird die Inspektion der Gleislage mit speziellen Messfahrzeugen durchgeführt. Die gewonnenen Messergebnisse werden mit Grenzwerten verglichen. Aus dem Vergleich werden Instandsetzungsmaßnahmen abgeleitet und durchgeführt. Die Messergebnisse der Gleislageinspektionen werden in Datenbanken abgespeichert. Mit speziellen Programmen besteht die Möglichkeit, sich die Messergebnisse einzelner Inspektionsfahrten anzeigen zu lassen. Hierbei können auch mehrere Ergebnisse von unterschiedlichen Inspektionsfahrten des gleichen Streckenabschnittes zu unterschiedlichen Inspektionszeiten dargestellt werden. Aus dieser Darstellung kann ein Fachmann die Entwicklung von Gleislageabweichungen verfolgen und hieraus mittel- und langfristige Instandhaltungsmaßnahmen planen und durchführen. Da die Ergebnisse unterschiedlicher Inspektionsfahrten des gleichen Streckenabschnittes zu unterschiedlichen Inspektionszeiten örtlich bis zu 100 m verschoben sind, ist eine automatisierte Aus- und Bewertung der Ergebnisse nicht möglich. Zudem sind die örtlichen Inkremente nicht immer konstant, so dass zusätzlich eine Verzerrung der Messung entsteht. Dieser örtliche Versatz sowie die Verzerrung entstehen, da die Wegmessung üblicherweise mittels Radimpulsen erfolgt. Durch verschleißbedingte Abnahme der Raddurchmesser, Schlupf beim Bremsen und Beschleunigen sowie aufgrund von Reib- und Witterungsverhältnissen sind diese Abweichungen nicht zu vermeiden.
  • Nachteile des Standes der Technik:
  • Bei dem derzeitigen Stand der Technik besteht zwar die Möglichkeit, dass die Ergebnisse von unterschiedlichen Inspektionsfahrten manuell miteinander verglichen werden können, eine automatisierte Aus- und Bewertung ist jedoch nicht möglich.
  • Für eine automatische Aus- und Bewertung müssen die Ergebnisse der Inspektionen synchronisiert vorliegen, damit Veränderungen und Veränderungsgeschwindigkeiten berechnet werden können. Beim Stand der Technik sind die Gleislagemessungen zueinander örtlich verschoben. Zusätzlich sind Abweichungen bei den Abtastschritten nicht auszuschließen, weshalb die Gleislagesignale zueinander zusätzlich gestaucht bzw. gestreckt sind. Des Weiteren liegen die Messwerte an unterschiedlichen örtlichen Punkten vor. Dies ist besonders problematisch, da bei längeren Messfahrten der Versatz sowie die Verzerrung bzw. Stauchung/Streckung nicht konstant über die gesamte Länge der Messfahrt sind. Somit ist auch eine manuelle, nachträgliche Synchronisation nicht möglich. Aus den oben genannten Gründen können die Ergebnisse der Inspektionsfahrten nicht manuell miteinander synchronisiert werden.
  • Für die Verfolgung von Veränderungen der Gleislage wird daher häufig auf abschnittsweise statistische Größen zurückgegriffen und diese werden miteinander verglichen. Beispielsweise werden Abschnitte mit 250 m Länge verwendet und für die einzelnen Messkanäle - Gleislageparameter - die Standardabweichungen bestimmt. Mit dieser Vorgehensweise kann die Veränderung der Gleislagequalität bewertet werden, die zeitliche Veränderung von einzelnen Störstellen - Gleislageabweichungen - ist mit dieser Vorgehensweise jedoch nicht möglich.
  • Für die Verfolgung der Veränderung von Einzelstörstellen müssen die Ergebnisse der Inspektionsfahrten genau miteinander synchronisiert werden.
  • Vielfach wird versucht mittels GPS und DGPS die örtliche Zuordnung der Messwerte zum Streckenkilometer zu verbessern. Für eine automatische Verfolgung der Entwicklung der Gleislage und auch von Einzelstörstellen sind diese Verbesserungen nicht ausreichend, da die Genauigkeit der GPS-Ortung nicht ausreichend ist und die Abweichungen in den Abtastschritten auch mit einer genauen Ortung nicht kompensiert werden können. Eine automatische Verfolgung von Einzelstörstellen ist nach wie vor nicht möglich.
  • Aus der DE 10 2006 043 043 A1 ist ein Verfahren zum Überwachen von Schienen-Fahrwegen, insbesondere im Bereich von temporären Tragsystemen für den Gleiskörper mit den Verfahrensschritten:
    • laufendes sensorisches Erfassen von Ortsdaten der Gleisgeometrie im überwachten Bereich,
    • Auswerten der erfassten Ortsdaten hinsichtlich der Befahrbarkeit und/oder der maximal zulässigen Überfahrgeschwindigkeit des Schienenfahrweges im überwachten Bereich und
    • Ausgeben der ausgewerteten Daten sowie Ansteuern von optischen und/oder akustischen Anzeigen und/oder von Regelsystemen.
  • Es wird ein stationäres System zur Überwachung der Gleislage beschrieben, welches vorrangig bei Baustellen zum Einsatz kommt. Es erfolgt keine Synchronisation der Messdaten.
  • Die EP 1 213 202 B2 beschreibt ein Verfahren zur Abbildung des Gleiszustandes über Signale aus verschiedenen, an Rädern und Drehgestellen befestigten Sensoren, die einer Auswerteeinheit zugeführt und an eine Leitstelle übertragen werden, wo sie zu einem Abbild des Gleiszustandes zusammengefügt werden. Auch hier erfolgt keine Synchronisation der Messdaten.
  • Des Weiteren sind aus der US 5.579.013 A1 und der US 6.044.698 A1 weitere Verfahren zur Ermittlung von Gleislagefehlern ohne Synchronisation der Messdaten bekannt.
  • In US 2009/0070064 A1 ist ein Verfahren beschrieben, welches aus mehreren Messungen der vertikalen Gleislageabweichungen einen Trend ermitteln kann. Für kurze Abschnitte, kleiner 100 m, werden die vertikalen Gleislageabweichungen mittels Korrelationsverfahren übereinander gelegt. Hierbei wird vorausgesetzt, dass sich die vertikalen Gleislageabweichungen, Einzelfehler, in vertikaler Richtung nur geringfügig ändern und somit eine Korrelationsfunktion bestimmt werden kann. Des Weiteren muss vorausgesetzt werden, dass die örtliche Abtastrate für jede Messung konstant und gleich ist. Werden Gleislageabweichungen im Zuge von Instandsetzungsmaßnahme beseitigt, kann dieses Verfahren nicht eingesetzt werden und eine Trendentwicklung ist nicht möglich. Zudem ist eine automatische Trendberechnung nicht möglich, da trotz konstanter örtlicher Abtastraten die Messwerte unterschiedlicher Messungen an unterschiedlichen Orten befinden.
  • Aus der US 2004/0204882 A1 ist eine Methode bekannt, welche gemessene Gleislagedaten ('measured track data'- MTD) einer bekannten Trassierung zuordnet (,track geographic data' - TGD). Ziel ist, dass jede Gleislageabweichung ihrem geografischen Ort ('geographic location') zugeordnet wird. Es werden im Wesentlichen die Krümmungsinformationen sowie das Messsignal der gegenseitigen Höhenlage ermittelt. Eine abtastpunktgenaue Synchronisation von einzelnen Gleislagemessungen erfolgt nicht. Eine automatische Bewertung der Entwicklung von Gleislageabweichungen ist mit diesem Verfahren nicht möglich. Des Weiteren wird angenommen, dass der Wegversatz für die gesamte Messung einer Strecke konstant ist bzw. dass das Ortsinkrement einen konstanten Offset aufweist. Dies ist jedoch in der Praxis nicht der Fall, weswegen dieses Verfahren nicht eingesetzt werden kann. Eine automatische Trendentwicklung kann nicht erstellt werden, da trotz konstanter örtlicher Abtastraten, die Messwerte unterschiedlicher Messungen sich an unterschiedlichen Orten befinden.
  • Der Erfindung liegt die Aufgabe zugrunde, die Messergebnisse von Inspektionsfahrten zueinander so zu synchronisieren, sodass als Ergebnis synchronisierte Messergebnisse zur Verfügung stehen, die eine automatische Aus- und Bewertung der Ergebnisse ermöglichen. Des Weiteren besteht die Möglichkeit, dass mittel- und langfristige Instandhaltungsmaßnehmen automatisch aus den Gleislagemessungen und der zeitlichen Entwicklung von Gleislagestörungen abgeleitet werden können.
  • Dies wird erfindungsgemäß durch den Inhalt des Patentanspruches 1 gelöst.
  • Bei dem erfindungsgemäßen Verfahren werden im ersten Schritt die Ergebnisse einer Inspektionsfahrt ausgewählt, die als Referenzmessung dienen. Da die ortsabhängigen Abtastschritte Δx einer Inspektionsmessung nicht konstant sind, werden die Messwerte für neue ortsäquidistante x-Koordinaten berechnet. Die neuen Ortskoordinaten (x-Koordinaten) werden bestimmt, indem der Streckenabschnitt zwischen Beginn und Ende der Inspektionsfahrt - Referenzmessung - in der Weise neu berechnet werden, so dass ortsäquidistante x-Koordinaten entstehen. Die zugehörigen Messwerte (y-Koordinate) lassen sich mittels Interpolationsrechnung ermitteln. Hier können lineare als auch nichtlineare Interpolationsverfahren verwendet werden. Dieser Schritt wird für alle Messkanäle einer Messfahrt durchgeführt. Die so örtlich bearbeiteten Messdaten der Inspektionsfahrt dienen als Referenzmessung. Alle weiteren Inspektionsfahrten werden mit dieser Referenzmessung synchronisiert.
  • Um die örtliche Verschiebung und Verzerrung der Messdaten aus der Inspektionsfahrt zu bestimmen werden folgende Schritte bearbeitet. Die Referenzmessung sowie die zu synchronisierenden Messungen werden in, sich zur Hälfte überlappende, Abschnitte von beispielsweise 100 m Länge unterteilt. Je nach Anwendung sind auch andere Abschnittslängen denkbar. Für jeden dieser, sich überlappenden, Abschnitte wird die Kreuzkorrelationsfunktion Φ berechnet. Φ y ri y si k Δ x = 1 N n = 1 N y ri n Δ x y ri y si n k Δ x y si
    Figure imgb0001
    y ri = 1 N n = 1 N y ri n Δ x
    Figure imgb0002
    y si = 1 N n = 1 N y si n Δ x
    Figure imgb0003
  • Der Ort des Maximums der berechneten Kreuzkorrelationsfunktion Φ gibt die örtliche Verschiebung der beiden Abschnitte yri und ysi zueinander an. Diese örtliche Verschiebung wird für jedes, sich überlappendes Abschnittspaar ermittelt. Aus den örtlichen Verschiebungen aller Abschnitte ysi zum jeweiligen Abschnitt yri der Referenzmessung wird mittels Interpolationsverfahren der km-Offset berechnet. Da der Kilometeroffset im Allgemeinen nicht linear ist, ergibt sich neben der örtlichen Verschiebung auch automatisch die Verzerrung bzw. Streckung und Stauchung, welche über die gesamte Messung nicht linear sind. Der so ermittelte km-Offset wird für alle Messkanäle der zu synchronisierenden Messungen verwendet.
  • Zuletzt werden für jeden Messkanal die Messpunkte an den Stellen der Referenzmessung mittels Interpolationsverfahren berechnet. Hier können lineare als auch nichtlineare Interpolationsverfahren verwendet werden.
  • Die Inspektionsmessung wurde mit der Referenzmessung synchronisiert. Die einzelnen Messpunkte liegen im Bezug auf die x-Koordinate, abtastpunktgenau übereinander. Eine automatisch Aus- und Bewertung ist nun möglich.
  • Für die Referenzmessung und die zu synchronisierenden Messungen wird eine örtliche Abtastung von 0,10 m gewählt.
  • Ausführungsbeispiel:
  • Die Erfindung soll nachstehend anhand eines Ausführungsbeispieles näher erläutert werden.
  • Als Ausführungsbeispiel dienen zwei Messungen aus Inspektionsfahrten zur Gleislageinspektion bei der Deutschen Bahn AG. Bei diesen Inspektionsfahrten werden folgende Gleislageparameter gemessen:
    • die Längshöhen der linken und rechten Schiene - zlinks und zrechts,
    • die Richtungsabweichungen der linken und rechten Schiene - ylinks und yrechts,
    • die Spurweite - sp,
    • die Krümmung - kr,
    • die gegenseitige Höhenlage - gh.
  • Das verwendete Gleiskoordinatensystem ist in Abbildung 1 dargestellt.
  • Die Synchronisation erfolgt in der Weise, dass auch beliebig viele weitere Messkanäle synchronisiert werden können. Wurde die Referenzmessung, wie im Folgenden beschrieben, aufbereitet, lassen sich beliebig viele Inspektionsmessungen mit der Referenzmessung synchronisieren. Zur Verdeutlichung der Vorgehensweise wird im Anwendungsbeispiel eine Inspektionsmessung mit der Referenzmessung synchronisiert.
  • Die Figur 2 zeigt einen Abschnitt mit 100m Länge der Spurweite. Die örtliche Verschiebung der Messung 1 gegenüber der Messung 2 ist deutliche zu erkennen. Diese beträgt ca. 30 m.
  • Im ersten Schritt wird eine Inspektionsmessung so aufbereitet, so dass die Messwerte fest definierten Streckenkilometern zugeordnet werden können und dass sich ein konstanter Abtastschritt von beispielsweise 0,10 m ergibt, andere Abtastschritte sind ebenfalls möglich. Diese Aufbereitung geschieht, indem man den Streckenabschnitt zwischen dem ersten und dem letzten Messpunkt in ortsäquidistante Inkremente gleichmäßig aufteilt. Da die so bestimmten neuen Ortskoordinaten nicht den ursprünglichen entsprechen, müssen die Messwerte an den neuen Ortskoordinaten berechnet werden. Dies erfolgt im Ausführungsbeispiel mittels Interpolation mit kubischen Splines. Im Allgemeinen können auch lineare Interpolationsverfahren verwendet werden. Für alle Messkanäle der Referenzmessung werden die entsprechenden Messwerte auf die oben beschriebene Methode neu berechnet.
  • Als Ergebnis des ersten Schrittes liegen alle Messpunkte aller Kanäle der Referenzmessung auf fest definierten Streckenkilometern (x-Koordinaten) vor. Abweichungen der Abtastschritte wurden im ersten Schritt ebenfalls korrigiert.
  • Im zweiten Schritt werden die weiteren Inspektionsmessungen auf die Referenzmessung synchronisiert. Dies geschieht in der Weise, dass jeweils ein Messkanal aus der Referenzmessung und der entsprechende Kanal aus der zu synchronisierenden Inspektionsmessung ausgewählt werden. Im Anwendungsbeispiel wurde die Spurweite ausgewählt, da sich die Spurweite im Vergleich zu den anderen Gleislageparametern weitaus langsamer verändert als beispielsweise die Längshöhen oder die Richtungsabweichungen. Die gesamte Messung wird in Abschnitte von 100 m Länge unterteilt, hierbei überlappen sich die einzelnen Abschnitte je zur Hälfte, also 50 m. Für jeden Abschnitt, mit der Spurweite der Referenzmessung und dem entsprechenden Abschnitt der zu synchronisierenden Inspektionsmessung, wird die Kreuzkorrelationsfunktion Φ berechnet und normiert.
  • Figur 3 zeigt die Kreuzkorrelationsfunktion für einen Abschnitt.
  • Die Position des Maximums der Kreuzkorrelationsfunktion gibt die Verschiebung der ausgewählten Abschnitte zueinander an. Im Ausführungsbeispiel beträgt die Verschiebung 29,6 m. Für jedes Abschnittspaar wird auf diese Weise die gegenseitige Verschiebung berechnet. Aus den Verschiebungen aller Abschnitte der gesamten Inspektionsfahrt wird der Offset der Kilometrierung bestimmt. Da die Verschiebung der einzelnen Abschnitte unterschiedlich sein kann, wird die Kilometerkorrektur mittels nichtlinearer Interpolation (Spline-Interpolation) bestimmt. Da die Verschiebung der einzelnen Abschnitte unterschiedlich ist, wird auf diese Weise automatisch die Verzerrung bzw. die Streckung und Stauchung der Signale bestimmt.
  • Figur 4 zeigt den berechneten Kilometeroffset.
  • Der so bestimmte Kilometeroffset wird auf alle Messkanäle, der zu synchronisierenden Messung angewendet.
  • Im letzten Schritt werden die Messpunkte aller Messkanäle der zu synchronisierenden Messung an den Kilometerstellen der Referenzmessung berechnet. Dies kann mit Interpolationsverfahren erfolgen. Im Anwendungsbeispiel wurde die Spline-Interpolation verwendet.
  • Als Ergebnis erhält man synchronisierte Messungen, bei denen die Abtastschritte korrigiert wurden und die Messpunkte aller Messkanäle aller Messungen an denselben km-Koordinaten liegen.
  • Eine automatisierte Weiterverarbeitung ist nun möglich.
  • Figur 5 zeigt die synchronisierten Messungen.
  • Zeichenerklärung / Formelzeichen:
  • Δx
    Ortsinkrement; ortsäquidistante Abtastintervall
    Φyriysi
    Kreuzkorrelationsfunktion eines Abschnittes yri der Referenzmessung und dem entsprechenden Abschnitt ysi der zu synchronisierenden Messung
    yri
    Messwerte des Abschnittes i der Referenzmessung y r
    ysi
    Messwerte des Abschnittes i der zu synchronisierenden Messung ys
    k
    Index der Kreuzkorrelationsfunktion; Verschiebung der Abschnitte yri und ysi zueinander
    n
    Index der Messwerte
    yri
    arithmetischer Mittelwert der Messwerte des Abschnittes i der Referenzmessung yr
    ysi
    arithmetischer Mittelwert der Messwerte des Abschnittes i der zu synchronisierenden Messung ys
    i
    Abschnittsnummer
    N
    Anzahl der Messpunkte - Abtastwerte - in einem Abschnitt i
    zlinks, zrechts
    Längshöhe der linken und rechten Schiene
    ylinks, yrechts
    Richtungsabweichung der linken und rechten Schiene
    sp
    Spurweite
    kr
    Krümmung
    gh
    Gegenseitige Höhenlage

Claims (11)

  1. Verfahren zur automatischen Synchronisierung von Gleisgeometrie-Messdaten,
    • wobei bei unterschiedlichen Inspektionsfahrten entlang einer Gleisstrecke jeweils eine Messung mit mehreren Messkanälen durchgeführt wird,
    • wobei die Messdaten unterschiedlicher Messungen zueinander örtlich verschoben und/oder verzerrt sind und die örtliche Verschiebung und/oder Verzerrung nicht konstant über die gesamte Messung auftritt,
    • wobei die Messung bei einer ersten Inspektionsfahrt als Referenz ausgewählt wird,
    • wobei mit konstanten Abtastschritten voneinander beabstandete Streckenpunkte bestimmt werden,
    • wobei aus den Messdaten der Referenzmessung die Messwerte an den neu berechneten konstanten Streckenpunkten mittels Interpolationsverfahren ermittelt werden und dies für alle Messkanäle der Referenzmessung durchgeführt wird,
    • wobei diese Messwerte als Referenzmesswerte verwendet werden und die Referenzmesswerte jeweils in Abschnitte unterteilt werden,
    • wobei sich die Abschnitte überlappen,
    • wobei die zu synchronisierenden Messdaten einer zweiten Messung bei einer zweiten Inspektionsfahrt ebenfalls in sich überlappende Abschnitte unterteilt werden
    • und für jedes Abschnittspaar eines Messkanals, bestehend aus einem Abschnitt der Referenzmessung und dem entsprechenden Abschnitt der zu synchronisierenden zweiten Messung, die örtliche Verschiebung zueinander mittels eines Maximums der Kreuzkorrelationsfunktion der beiden Messungen ermittelt wird
    • und aus den örtlichen Verschiebungen aller Abschnittspaare ein Offset, welcher im Allgemeinen nicht linear ist, bestimmt und für alle Messdaten aller Messkanäle der zu synchronisierenden zweiten Messung verwendet wird und somit die Verschiebung und/oder Verzerrung kompensiert werden,
    • und die Messwerte der zu synchronisierenden zweiten Messung an den festgelegten Streckenpunkten berechnet werden
    • und somit die ermittelten Messwerte der ersten Messung und die berechneten Messwerte der synchronisierten zweiten Messung die gleichen Ortskoordinaten besitzen.
  2. Verfahren nach Anspruch 1, gekennzeichnet dadurch, dass für die Referenzmessung und die zu synchronisierenden Messungen eine örtliche Abtastung von 0,10 m gewählt wird.
  3. Verfahren nach Anspruch 1, gekennzeichnet dadurch, dass die Referenzmessung sowie die zu synchronisierende Messung in Abschnitte von 100 m Länge unterteilt werden.
  4. Verfahren nach Anspruch 1, gekennzeichnet dadurch, dass sich die Abschnitte für die Bestimmung der Kreuzkorrelationsfunktion jeweils zur Hälfte überlappen.
  5. Verfahren nach Anspruch 1 bis 4, gekennzeichnet dadurch, dass die Messungen der Gleislagegeometrie von Eisenbahn-Gleisen miteinander synchronisiert werden.
  6. Verfahren nach Anspruch 1 bis 5, gekennzeichnet dadurch, dass die Kreuzkorrelationsfunktionen der einzelnen Abschnitte für die Spurweiten bestimmt werden.
  7. Verfahren nach Anspruch 1 bis 6, gekennzeichnet dadurch, dass als Offset eine, durch das Verfahren berechnete, relative örtliche Verschiebung, Stauchung und/oder Streckung von der zu synchronisierenden Messung zur Referenzmessung ermittelt wird.
  8. Verfahren nach Anspruch 1 bis 7, gekennzeichnet dadurch, dass die Abschnittslängen so gewählt werden, dass sich eine möglichst gute Korrelation zwischen der Referenzmessung und der zu synchronisierenden Messung ergibt und dass die Abschnittslängen länger sind als der Versatz der Referenzmessung zu der zu synchronisierenden Messung.
  9. Verfahren nach Anspruch 1 bis 8, gekennzeichnet dadurch, dass die Referenzmessung so ausgewählt wird, dass die Kreuzkorrelation mit einer zu synchronisierenden Messung einen möglichst großen Kreuzkorrelationskoeffizient ergibt oder dass die älteste oder jüngste Messung als Referenzmessung dient.
  10. Verfahren nach Anspruch 1 bis 9, gekennzeichnet dadurch, dass die konstante Abtastung derart berechnet wird, so dass ein ortsäquidistantes Inkrement für die gesamte Inspektionsmessung entsteht.
  11. Verfahren nach Anspruch 1 bis 10, gekennzeichnet dadurch, dass der ermittelte Offset ein Maßstab für den örtlichen Versatz der Abschnitte zueinander ist.
EP10011614.4A 2009-10-01 2010-09-29 Verfahren zur automatischen Synchronisierung von Gleislagemessungen Active EP2305532B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910043701 DE102009043701A1 (de) 2009-10-01 2009-10-01 Verfahren zur automatischen Synchronisierung von Gleislagemessungen

Publications (2)

Publication Number Publication Date
EP2305532A1 EP2305532A1 (de) 2011-04-06
EP2305532B1 true EP2305532B1 (de) 2017-08-30

Family

ID=43264728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10011614.4A Active EP2305532B1 (de) 2009-10-01 2010-09-29 Verfahren zur automatischen Synchronisierung von Gleislagemessungen

Country Status (2)

Country Link
EP (1) EP2305532B1 (de)
DE (1) DE102009043701A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3126683A1 (fr) 2021-09-07 2023-03-10 Eramet Dispositif d’analyse ferroviaire

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579013A (en) 1994-05-05 1996-11-26 General Electric Company Mobile tracking unit capable of detecting defective conditions in railway vehicle wheels and railtracks
US6044698A (en) 1996-04-01 2000-04-04 Cairo Systems, Inc. Method and apparatus including accelerometer and tilt sensor for detecting railway anomalies
DE50012534D1 (de) 2000-12-07 2006-05-18 Siemens Schweiz Ag Zuerich Verfahren zur Abbildung des Geleisezustandes und/oder des mechanischen Betriebsverhaltens von Schienenfahrzeugen
US6804621B1 (en) * 2003-04-10 2004-10-12 Tata Consultancy Services (Division Of Tata Sons, Ltd) Methods for aligning measured data taken from specific rail track sections of a railroad with the correct geographic location of the sections
DE102006043043A1 (de) 2006-03-14 2007-09-20 Baldur Rögener Verfahren und Überwachungssystem zum Überwachen von Schienen-Fahrwegen
US7937246B2 (en) * 2007-09-07 2011-05-03 Board Of Regents Of The University Of Nebraska Vertical track modulus trending

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102009043701A1 (de) 2011-04-07
EP2305532A1 (de) 2011-04-06

Similar Documents

Publication Publication Date Title
EP3358079B1 (de) Verfahren und vorrichtung zum messen und berechnen einer gleislage
EP3746346B1 (de) Schienenfahrzeug und verfahren zum vermessen einer gleisstrecke
EP0919977B1 (de) Wartezeitvorhersagesystem
EP1466803A1 (de) Verfahren zur Vorgabe einer Geschwindigkeit für ein Schienenfahzeug
EP3206933B1 (de) Zustandsdiagnose von schienenfahrzeugrädern
DE102007016395B3 (de) Verfahren zur Bestimmung fahrzeugspezifischer Bewertungsfunktionen zur wirkungsbezogenen Beurteilung der Lagequalität eines Gleises
DE102021101958B3 (de) Verfahren und System zum Bestimmen des Abstands oder der momentanen Relativgeschwindigkeit mindestens zweier streckengebundener, insbesondere schienengebundener, mobiler Objekte
DE102008062143B3 (de) Verfahren zur Bestimmung der vertikalen Gleislage des schienengebundenen Eisenbahnverkehrs
EP0568167B1 (de) Verfahren zum Bestimmen des Rollwiderstandes von Eisenbahnfahrzeugen
AT524435B1 (de) Verfahren und System zur Ermittlung von Korrekturwerten für eine Lagekorrektur eines Gleises
AT519824B1 (de) Anlage zur überwachung der integrität eines zuges
EP2305532B1 (de) Verfahren zur automatischen Synchronisierung von Gleislagemessungen
EP3458331B1 (de) Verfahren und vorrichtung zur überwachung zumindest einer im bahnbau verlegten fahrwegkomponente
DE3738696A1 (de) Verfahren und einrichtung zur ortung eines schienenbruches
EP2718163B1 (de) Verfahren sowie steuereinrichtung zum bestimmen der länge zumindest eines gleisabschnitts
EP2718167B1 (de) Verfahren sowie steuereinrichtung zum bestimmen der länge zumindest eines gleisabschnitts
DE2347951C3 (de) Fahrbares Gleismelifahrzeug zum fortlaufenden Messen und Aufzeichnen der Spurweite von Eisenbahngleisen
EP3789264A1 (de) Verfahren und vorrichtung zur schlupferkennung sowie schienenfahrzeug
DE2943183A1 (de) Verfahren und fahrzeug zur korrektur von gleislagefehlern
EP4337514A1 (de) Computerimplementiertes verfahren zur erstellung von messdaten beschreibend ein eisenbahnnetz oder ein auf einem gleis fahrendes fahrzeug
EP4342765A1 (de) Zugvollständigkeitskontrolle
EP3782868A2 (de) Verfahren zur kalibrierung eines geschwindigkeitssensors eines schienenfahrzeugs
EP4230501A1 (de) Verfahren zur erfassung einer bewegung eines schienenfahrzeugs entlang eines schienenwegs
EP4098991A1 (de) Vorrichtung und verfahren zur ermittlung von unrundheiten eines rades eines schienengebundenen fahrzeuges
WO2024110425A1 (de) Verfahren zum erkennen einer beschädigung an einem transportsystem in abhängigkeit einer position und steuereinrichtung dafür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010014069

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B61K0009080000

Ipc: B61L0023040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B61K 9/08 20060101ALI20170213BHEP

Ipc: B61L 23/04 20060101AFI20170213BHEP

Ipc: B61L 25/02 20060101ALI20170213BHEP

INTG Intention to grant announced

Effective date: 20170322

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 923221

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010014069

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170830

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171230

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

REG Reference to a national code

Ref country code: CH

Ref legal event code: AECN

Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 18. MAI 2018 REAKTIVIERT WORDEN.

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010014069

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170929

26N No opposition filed

Effective date: 20180531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171030

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 923221

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231002

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240325

Year of fee payment: 14