EP2305532B1 - Method for automated synchronisation of rail position measurements - Google Patents
Method for automated synchronisation of rail position measurements Download PDFInfo
- Publication number
- EP2305532B1 EP2305532B1 EP10011614.4A EP10011614A EP2305532B1 EP 2305532 B1 EP2305532 B1 EP 2305532B1 EP 10011614 A EP10011614 A EP 10011614A EP 2305532 B1 EP2305532 B1 EP 2305532B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- measurement
- synchronized
- determined
- sections
- track
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 title claims description 107
- 238000000034 method Methods 0.000 title claims description 33
- 238000007689 inspection Methods 0.000 claims description 34
- 230000001360 synchronised effect Effects 0.000 claims description 34
- 238000005314 correlation function Methods 0.000 claims description 11
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 238000011156 evaluation Methods 0.000 description 10
- 238000006073 displacement reaction Methods 0.000 description 9
- 238000005070 sampling Methods 0.000 description 8
- 238000011161 development Methods 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000011511 automated evaluation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61K—AUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
- B61K9/00—Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
- B61K9/08—Measuring installations for surveying permanent way
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L23/00—Control, warning or like safety means along the route or between vehicles or trains
- B61L23/04—Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
- B61L23/042—Track changes detection
- B61L23/047—Track or rail movements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L25/00—Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
- B61L25/02—Indicating or recording positions or identities of vehicles or trains
- B61L25/026—Relative localisation, e.g. using odometer
Definitions
- the invention relates to a method for automatically synchronizing track position measurements in railway traffic.
- the railway infrastructure is the basis for a safe railway operation. To ensure the high degree of safety, extensive maintenance measures are necessary.
- the inspection of the track geometry is of particular importance here. Often the inspection of the track position is carried out with special measuring vehicles. The results obtained are compared with limit values. From the comparison repair measures are derived and carried out.
- the measurement results of the track position inspections are stored in databases. With special programs it is possible to display the measurement results of individual inspection trips. In this case, several results of different inspection trips of the same route section can be displayed at different inspection times. From this presentation, a person skilled in the art can follow the development of track deviations and plan and carry out medium and long-term maintenance measures.
- the local increments are not always constant, so that additionally creates a distortion of the measurement. This local offset and the distortion arise because the distance measurement is usually done by means of wheel pulses. Due to wear-related decrease in the wheel diameter, slip during braking and acceleration as well as due to friction and weather conditions, these deviations can not be avoided.
- the results of the inspections must be synchronized, so that changes and rates of change can be calculated.
- the track position measurements are shifted locally to each other.
- deviations in the sampling steps can not be ruled out, which is why the track position signals are additionally compressed or stretched relative to each other.
- the measured values are available at different local points. This is particularly problematic since, during longer measuring runs, the offset as well as the distortion or compression / extension are not constant over the entire length of the measuring run. Thus, a manual, subsequent synchronization is not possible.
- the results of the inspection trips can not be manually synchronized with each other.
- sections statistical variables For the tracking of changes in the track situation is therefore often resorting to sections statistical variables and these are compared. For example, sections with a length of 250 m are used and the standard deviations are determined for the individual measuring channels - track position parameters. With this approach, the change in the track position quality can be assessed, the temporal change of individual defects - track position deviations - is not possible with this approach.
- the EP 1 213 202 B2 describes a method for mapping the track condition via signals from various sensors attached to wheels and bogies, which are fed to an evaluation unit and transmitted to a control center, where they are assembled to form an image of the track condition. Again, there is no synchronization of the measured data.
- the invention has for its object to synchronize the measurement results of inspection trips each other so that as a result synchronized measurement results are available that allow automatic evaluation and evaluation of the results. Furthermore, there is the possibility that medium and long-term maintenance measures can be derived automatically from the track position measurements and the temporal development of track-bearing faults.
- the results of an inspection run are selected in the first step, which serve as a reference measurement. Since the location-dependent sampling steps .DELTA.x of an inspection measurement are not constant, the measured values for new locally equidistant x-coordinates are calculated. The new location coordinates (x-coordinates) are determined by recalculating the distance between the beginning and the end of the inspection journey - reference measurement - in such a way that equidistant x-coordinates are created. The associated measured values (y-coordinate) can be determined by means of interpolation calculation. Here, linear as well as non-linear interpolation methods can be used. This step is performed for all measurement channels of a measurement run. The locally processed measurement data of the inspection trip serve as a reference measurement. All further inspection runs are synchronized with this reference measurement.
- the reference measurement and the measurements to be synchronized are subdivided into half-overlapping sections of, for example, 100 m in length. Depending on the application, other section lengths are conceivable.
- the cross-correlation function ⁇ is calculated.
- the location of the maximum of the calculated cross-correlation function ⁇ indicates the local displacement of the two sections y ri and y si to each other. This local displacement is determined for each overlapping section pair. From the local displacements of all sections y si to the respective section y ri of the reference measurement, the km offset is calculated by means of interpolation method. Since the mileage offset is generally not linear, in addition to the local displacement also automatically results in the distortion or strain and compression, which are not linear over the entire measurement. The thus determined km offset is used for all measuring channels of the measurements to be synchronized.
- the measuring points are calculated at the points of the reference measurement by means of interpolation methods.
- interpolation methods linear as well as non-linear interpolation methods can be used.
- the inspection measurement was synchronized with the reference measurement.
- the individual measuring points are in relation to the x-coordinate,conffastyakgenau one above the other. An automatic evaluation and evaluation is now possible.
- a local scan of 0.10 m is selected.
- the used track system is in illustration 1 shown.
- the synchronization takes place in such a way that any number of additional measuring channels can be synchronized. If the reference measurement has been prepared as described below, any number of inspection measurements can be synchronized with the reference measurement. To clarify the procedure, an inspection measurement is synchronized with the reference measurement in the application example.
- the FIG. 2 shows a section with 100m track length.
- the local shift of the measurement 1 with respect to the measurement 2 can be clearly seen. This is about 30 m.
- an inspection measurement is prepared in such a way that the measured values can be assigned to defined distance kilometers and that a constant scanning step of, for example, 0.10 m results, other scanning steps are also possible.
- This processing is done by evenly dividing the section between the first and the last measuring point in equidistant increments. Since the new location coordinates thus determined do not correspond to the original ones, the measured values must be calculated at the new location coordinates. This is done in the exemplary embodiment by means of interpolation with cubic splines. In general, linear interpolation methods can also be used. For all Measuring channels of the reference measurement, the corresponding measured values are recalculated to the method described above.
- the further inspection measurements are synchronized to the reference measurement. This is done in such a way that in each case one measurement channel from the reference measurement and the corresponding channel are selected from the inspection measurement to be synchronized.
- the track width was selected because the track width changes much more slowly than, for example, the longitudinal heights or the deviations in direction compared to the other track position parameters.
- the entire measurement is subdivided into sections of 100 m in length, whereby the individual sections overlap each half, ie 50 m. For each section, with the track of the reference measurement and the corresponding section of the inspection measurement to be synchronized, the cross-correlation function ⁇ is calculated and normalized.
- FIG. 3 shows the cross-correlation function for a section.
- the position of the maximum of the cross-correlation function indicates the displacement of the selected sections relative to each other.
- the displacement is 29.6 m.
- the mutual displacement is calculated in this way. From the shifts of all sections of the entire inspection journey, the offset of the kilometer is determined. Since the shift of the individual sections can be different, the kilometer correction is determined by means of nonlinear interpolation (spline interpolation). Since the displacement of the individual sections is different, the distortion or extension and compression of the signals is automatically determined in this way.
- FIG. 4 shows the calculated kilometer offset
- the kilometer offset thus determined is applied to all measuring channels, the measurement to be synchronized.
- the measurement points of all measurement channels of the measurement to be synchronized are calculated at the mileage points of the reference measurement. This can be done with interpolation methods respectively. In the application example, spline interpolation was used.
- the result is synchronized measurements in which the sampling steps have been corrected and the measurement points of all measurement channels of all measurements are at the same km coordinates.
- FIG. 5 shows the synchronized measurements
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Machines For Laying And Maintaining Railways (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
Die Erfindung betrifft ein Verfahren zur automatischen Synchronisierung von Gleislagemessungen im Eisenbahnverkehr.The invention relates to a method for automatically synchronizing track position measurements in railway traffic.
Die Eisenbahninfrastruktur stellt die Grundlage für einen sicheren Eisenbahnbetrieb dar. Damit das hohe Maß an Sicherheit gewährleistet werden kann, sind umfangreiche Instandhaltungsmaßnahmen nötig. Der Inspektion der Gleislagegeometrie kommt hier eine besondere Bedeutung zu. Häufig wird die Inspektion der Gleislage mit speziellen Messfahrzeugen durchgeführt. Die gewonnenen Messergebnisse werden mit Grenzwerten verglichen. Aus dem Vergleich werden Instandsetzungsmaßnahmen abgeleitet und durchgeführt. Die Messergebnisse der Gleislageinspektionen werden in Datenbanken abgespeichert. Mit speziellen Programmen besteht die Möglichkeit, sich die Messergebnisse einzelner Inspektionsfahrten anzeigen zu lassen. Hierbei können auch mehrere Ergebnisse von unterschiedlichen Inspektionsfahrten des gleichen Streckenabschnittes zu unterschiedlichen Inspektionszeiten dargestellt werden. Aus dieser Darstellung kann ein Fachmann die Entwicklung von Gleislageabweichungen verfolgen und hieraus mittel- und langfristige Instandhaltungsmaßnahmen planen und durchführen. Da die Ergebnisse unterschiedlicher Inspektionsfahrten des gleichen Streckenabschnittes zu unterschiedlichen Inspektionszeiten örtlich bis zu 100 m verschoben sind, ist eine automatisierte Aus- und Bewertung der Ergebnisse nicht möglich. Zudem sind die örtlichen Inkremente nicht immer konstant, so dass zusätzlich eine Verzerrung der Messung entsteht. Dieser örtliche Versatz sowie die Verzerrung entstehen, da die Wegmessung üblicherweise mittels Radimpulsen erfolgt. Durch verschleißbedingte Abnahme der Raddurchmesser, Schlupf beim Bremsen und Beschleunigen sowie aufgrund von Reib- und Witterungsverhältnissen sind diese Abweichungen nicht zu vermeiden.The railway infrastructure is the basis for a safe railway operation. To ensure the high degree of safety, extensive maintenance measures are necessary. The inspection of the track geometry is of particular importance here. Often the inspection of the track position is carried out with special measuring vehicles. The results obtained are compared with limit values. From the comparison repair measures are derived and carried out. The measurement results of the track position inspections are stored in databases. With special programs it is possible to display the measurement results of individual inspection trips. In this case, several results of different inspection trips of the same route section can be displayed at different inspection times. From this presentation, a person skilled in the art can follow the development of track deviations and plan and carry out medium and long-term maintenance measures. Since the results of different inspection runs of the same section of the route at different inspection times have been shifted locally up to 100 m, an automated evaluation and evaluation of the results is not possible. In addition, the local increments are not always constant, so that additionally creates a distortion of the measurement. This local offset and the distortion arise because the distance measurement is usually done by means of wheel pulses. Due to wear-related decrease in the wheel diameter, slip during braking and acceleration as well as due to friction and weather conditions, these deviations can not be avoided.
Bei dem derzeitigen Stand der Technik besteht zwar die Möglichkeit, dass die Ergebnisse von unterschiedlichen Inspektionsfahrten manuell miteinander verglichen werden können, eine automatisierte Aus- und Bewertung ist jedoch nicht möglich.Although it is possible in the current state of the art for the results of different inspection journeys to be compared manually, an automated evaluation and evaluation is not possible.
Für eine automatische Aus- und Bewertung müssen die Ergebnisse der Inspektionen synchronisiert vorliegen, damit Veränderungen und Veränderungsgeschwindigkeiten berechnet werden können. Beim Stand der Technik sind die Gleislagemessungen zueinander örtlich verschoben. Zusätzlich sind Abweichungen bei den Abtastschritten nicht auszuschließen, weshalb die Gleislagesignale zueinander zusätzlich gestaucht bzw. gestreckt sind. Des Weiteren liegen die Messwerte an unterschiedlichen örtlichen Punkten vor. Dies ist besonders problematisch, da bei längeren Messfahrten der Versatz sowie die Verzerrung bzw. Stauchung/Streckung nicht konstant über die gesamte Länge der Messfahrt sind. Somit ist auch eine manuelle, nachträgliche Synchronisation nicht möglich. Aus den oben genannten Gründen können die Ergebnisse der Inspektionsfahrten nicht manuell miteinander synchronisiert werden.For an automatic evaluation and evaluation, the results of the inspections must be synchronized, so that changes and rates of change can be calculated. In the prior art, the track position measurements are shifted locally to each other. In addition, deviations in the sampling steps can not be ruled out, which is why the track position signals are additionally compressed or stretched relative to each other. Furthermore, the measured values are available at different local points. This is particularly problematic since, during longer measuring runs, the offset as well as the distortion or compression / extension are not constant over the entire length of the measuring run. Thus, a manual, subsequent synchronization is not possible. For the reasons mentioned above, the results of the inspection trips can not be manually synchronized with each other.
Für die Verfolgung von Veränderungen der Gleislage wird daher häufig auf abschnittsweise statistische Größen zurückgegriffen und diese werden miteinander verglichen. Beispielsweise werden Abschnitte mit 250 m Länge verwendet und für die einzelnen Messkanäle - Gleislageparameter - die Standardabweichungen bestimmt. Mit dieser Vorgehensweise kann die Veränderung der Gleislagequalität bewertet werden, die zeitliche Veränderung von einzelnen Störstellen - Gleislageabweichungen - ist mit dieser Vorgehensweise jedoch nicht möglich.For the tracking of changes in the track situation is therefore often resorting to sections statistical variables and these are compared. For example, sections with a length of 250 m are used and the standard deviations are determined for the individual measuring channels - track position parameters. With this approach, the change in the track position quality can be assessed, the temporal change of individual defects - track position deviations - is not possible with this approach.
Für die Verfolgung der Veränderung von Einzelstörstellen müssen die Ergebnisse der Inspektionsfahrten genau miteinander synchronisiert werden.In order to track the change in individual incident sites, the results of the inspection trips must be precisely synchronized with each other.
Vielfach wird versucht mittels GPS und DGPS die örtliche Zuordnung der Messwerte zum Streckenkilometer zu verbessern. Für eine automatische Verfolgung der Entwicklung der Gleislage und auch von Einzelstörstellen sind diese Verbesserungen nicht ausreichend, da die Genauigkeit der GPS-Ortung nicht ausreichend ist und die Abweichungen in den Abtastschritten auch mit einer genauen Ortung nicht kompensiert werden können. Eine automatische Verfolgung von Einzelstörstellen ist nach wie vor nicht möglich.It is often attempted to improve the spatial assignment of the measured values to the distance kilometer by means of GPS and DGPS. These improvements are not sufficient for an automatic tracking of the development of the track position and even of individual points of disturbance, since the accuracy of the GPS positioning is not sufficient and the deviations in the scanning steps can not be compensated even with an accurate location. Automatic tracking of individual malfunctions is still not possible.
Aus der
- laufendes sensorisches Erfassen von Ortsdaten der Gleisgeometrie im überwachten Bereich,
- Auswerten der erfassten Ortsdaten hinsichtlich der Befahrbarkeit und/oder der maximal zulässigen Überfahrgeschwindigkeit des Schienenfahrweges im überwachten Bereich und
- Ausgeben der ausgewerteten Daten sowie Ansteuern von optischen und/oder akustischen Anzeigen und/oder von Regelsystemen.
- continuous sensory acquisition of location data of the track geometry in the monitored area,
- Evaluating the recorded location data with regard to the trafficability and / or the maximum permissible speed of the rail travel in the monitored area and
- Outputting the evaluated data and controlling optical and / or acoustic displays and / or control systems.
Es wird ein stationäres System zur Überwachung der Gleislage beschrieben, welches vorrangig bei Baustellen zum Einsatz kommt. Es erfolgt keine Synchronisation der Messdaten.It describes a stationary system for monitoring the track position, which is used primarily at construction sites. There is no synchronization of the measured data.
Die
Des Weiteren sind aus der
In
Aus der
Der Erfindung liegt die Aufgabe zugrunde, die Messergebnisse von Inspektionsfahrten zueinander so zu synchronisieren, sodass als Ergebnis synchronisierte Messergebnisse zur Verfügung stehen, die eine automatische Aus- und Bewertung der Ergebnisse ermöglichen. Des Weiteren besteht die Möglichkeit, dass mittel- und langfristige Instandhaltungsmaßnehmen automatisch aus den Gleislagemessungen und der zeitlichen Entwicklung von Gleislagestörungen abgeleitet werden können.The invention has for its object to synchronize the measurement results of inspection trips each other so that as a result synchronized measurement results are available that allow automatic evaluation and evaluation of the results. Furthermore, there is the possibility that medium and long-term maintenance measures can be derived automatically from the track position measurements and the temporal development of track-bearing faults.
Dies wird erfindungsgemäß durch den Inhalt des Patentanspruches 1 gelöst.This is achieved by the content of
Bei dem erfindungsgemäßen Verfahren werden im ersten Schritt die Ergebnisse einer Inspektionsfahrt ausgewählt, die als Referenzmessung dienen. Da die ortsabhängigen Abtastschritte Δx einer Inspektionsmessung nicht konstant sind, werden die Messwerte für neue ortsäquidistante x-Koordinaten berechnet. Die neuen Ortskoordinaten (x-Koordinaten) werden bestimmt, indem der Streckenabschnitt zwischen Beginn und Ende der Inspektionsfahrt - Referenzmessung - in der Weise neu berechnet werden, so dass ortsäquidistante x-Koordinaten entstehen. Die zugehörigen Messwerte (y-Koordinate) lassen sich mittels Interpolationsrechnung ermitteln. Hier können lineare als auch nichtlineare Interpolationsverfahren verwendet werden. Dieser Schritt wird für alle Messkanäle einer Messfahrt durchgeführt. Die so örtlich bearbeiteten Messdaten der Inspektionsfahrt dienen als Referenzmessung. Alle weiteren Inspektionsfahrten werden mit dieser Referenzmessung synchronisiert.In the method according to the invention, the results of an inspection run are selected in the first step, which serve as a reference measurement. Since the location-dependent sampling steps .DELTA.x of an inspection measurement are not constant, the measured values for new locally equidistant x-coordinates are calculated. The new location coordinates (x-coordinates) are determined by recalculating the distance between the beginning and the end of the inspection journey - reference measurement - in such a way that equidistant x-coordinates are created. The associated measured values (y-coordinate) can be determined by means of interpolation calculation. Here, linear as well as non-linear interpolation methods can be used. This step is performed for all measurement channels of a measurement run. The locally processed measurement data of the inspection trip serve as a reference measurement. All further inspection runs are synchronized with this reference measurement.
Um die örtliche Verschiebung und Verzerrung der Messdaten aus der Inspektionsfahrt zu bestimmen werden folgende Schritte bearbeitet. Die Referenzmessung sowie die zu synchronisierenden Messungen werden in, sich zur Hälfte überlappende, Abschnitte von beispielsweise 100 m Länge unterteilt. Je nach Anwendung sind auch andere Abschnittslängen denkbar. Für jeden dieser, sich überlappenden, Abschnitte wird die Kreuzkorrelationsfunktion Φ berechnet.
Der Ort des Maximums der berechneten Kreuzkorrelationsfunktion Φ gibt die örtliche Verschiebung der beiden Abschnitte yri und ysi zueinander an. Diese örtliche Verschiebung wird für jedes, sich überlappendes Abschnittspaar ermittelt. Aus den örtlichen Verschiebungen aller Abschnitte ysi zum jeweiligen Abschnitt yri der Referenzmessung wird mittels Interpolationsverfahren der km-Offset berechnet. Da der Kilometeroffset im Allgemeinen nicht linear ist, ergibt sich neben der örtlichen Verschiebung auch automatisch die Verzerrung bzw. Streckung und Stauchung, welche über die gesamte Messung nicht linear sind. Der so ermittelte km-Offset wird für alle Messkanäle der zu synchronisierenden Messungen verwendet.The location of the maximum of the calculated cross-correlation function Φ indicates the local displacement of the two sections y ri and y si to each other. This local displacement is determined for each overlapping section pair. From the local displacements of all sections y si to the respective section y ri of the reference measurement, the km offset is calculated by means of interpolation method. Since the mileage offset is generally not linear, in addition to the local displacement also automatically results in the distortion or strain and compression, which are not linear over the entire measurement. The thus determined km offset is used for all measuring channels of the measurements to be synchronized.
Zuletzt werden für jeden Messkanal die Messpunkte an den Stellen der Referenzmessung mittels Interpolationsverfahren berechnet. Hier können lineare als auch nichtlineare Interpolationsverfahren verwendet werden.Finally, for each measuring channel, the measuring points are calculated at the points of the reference measurement by means of interpolation methods. Here, linear as well as non-linear interpolation methods can be used.
Die Inspektionsmessung wurde mit der Referenzmessung synchronisiert. Die einzelnen Messpunkte liegen im Bezug auf die x-Koordinate, abtastpunktgenau übereinander. Eine automatisch Aus- und Bewertung ist nun möglich.The inspection measurement was synchronized with the reference measurement. The individual measuring points are in relation to the x-coordinate, abzufastpunktgenau one above the other. An automatic evaluation and evaluation is now possible.
Für die Referenzmessung und die zu synchronisierenden Messungen wird eine örtliche Abtastung von 0,10 m gewählt.For the reference measurement and the measurements to be synchronized, a local scan of 0.10 m is selected.
Die Erfindung soll nachstehend anhand eines Ausführungsbeispieles näher erläutert werden.The invention will be explained below with reference to an exemplary embodiment.
Als Ausführungsbeispiel dienen zwei Messungen aus Inspektionsfahrten zur Gleislageinspektion bei der Deutschen Bahn AG. Bei diesen Inspektionsfahrten werden folgende Gleislageparameter gemessen:
- die Längshöhen der linken und rechten Schiene - zlinks und zrechts,
- die Richtungsabweichungen der linken und rechten Schiene - ylinks und yrechts,
- die Spurweite - sp,
- die Krümmung - kr,
- die gegenseitige Höhenlage - gh.
- the longitudinal heights of the left and right rails - z left and z right ,
- the directional deviations of the left and right rails - y left and y right ,
- the gauge - sp,
- the curvature - kr,
- the mutual altitude - gh.
Das verwendete Gleiskoordinatensystem ist in
Die Synchronisation erfolgt in der Weise, dass auch beliebig viele weitere Messkanäle synchronisiert werden können. Wurde die Referenzmessung, wie im Folgenden beschrieben, aufbereitet, lassen sich beliebig viele Inspektionsmessungen mit der Referenzmessung synchronisieren. Zur Verdeutlichung der Vorgehensweise wird im Anwendungsbeispiel eine Inspektionsmessung mit der Referenzmessung synchronisiert.The synchronization takes place in such a way that any number of additional measuring channels can be synchronized. If the reference measurement has been prepared as described below, any number of inspection measurements can be synchronized with the reference measurement. To clarify the procedure, an inspection measurement is synchronized with the reference measurement in the application example.
Die
Im ersten Schritt wird eine Inspektionsmessung so aufbereitet, so dass die Messwerte fest definierten Streckenkilometern zugeordnet werden können und dass sich ein konstanter Abtastschritt von beispielsweise 0,10 m ergibt, andere Abtastschritte sind ebenfalls möglich. Diese Aufbereitung geschieht, indem man den Streckenabschnitt zwischen dem ersten und dem letzten Messpunkt in ortsäquidistante Inkremente gleichmäßig aufteilt. Da die so bestimmten neuen Ortskoordinaten nicht den ursprünglichen entsprechen, müssen die Messwerte an den neuen Ortskoordinaten berechnet werden. Dies erfolgt im Ausführungsbeispiel mittels Interpolation mit kubischen Splines. Im Allgemeinen können auch lineare Interpolationsverfahren verwendet werden. Für alle Messkanäle der Referenzmessung werden die entsprechenden Messwerte auf die oben beschriebene Methode neu berechnet.In the first step, an inspection measurement is prepared in such a way that the measured values can be assigned to defined distance kilometers and that a constant scanning step of, for example, 0.10 m results, other scanning steps are also possible. This processing is done by evenly dividing the section between the first and the last measuring point in equidistant increments. Since the new location coordinates thus determined do not correspond to the original ones, the measured values must be calculated at the new location coordinates. This is done in the exemplary embodiment by means of interpolation with cubic splines. In general, linear interpolation methods can also be used. For all Measuring channels of the reference measurement, the corresponding measured values are recalculated to the method described above.
Als Ergebnis des ersten Schrittes liegen alle Messpunkte aller Kanäle der Referenzmessung auf fest definierten Streckenkilometern (x-Koordinaten) vor. Abweichungen der Abtastschritte wurden im ersten Schritt ebenfalls korrigiert.As a result of the first step all measuring points of all channels of the reference measurement are available on fixed defined route kilometers (x-coordinates). Deviations of the scanning steps were also corrected in the first step.
Im zweiten Schritt werden die weiteren Inspektionsmessungen auf die Referenzmessung synchronisiert. Dies geschieht in der Weise, dass jeweils ein Messkanal aus der Referenzmessung und der entsprechende Kanal aus der zu synchronisierenden Inspektionsmessung ausgewählt werden. Im Anwendungsbeispiel wurde die Spurweite ausgewählt, da sich die Spurweite im Vergleich zu den anderen Gleislageparametern weitaus langsamer verändert als beispielsweise die Längshöhen oder die Richtungsabweichungen. Die gesamte Messung wird in Abschnitte von 100 m Länge unterteilt, hierbei überlappen sich die einzelnen Abschnitte je zur Hälfte, also 50 m. Für jeden Abschnitt, mit der Spurweite der Referenzmessung und dem entsprechenden Abschnitt der zu synchronisierenden Inspektionsmessung, wird die Kreuzkorrelationsfunktion Φ berechnet und normiert.In the second step, the further inspection measurements are synchronized to the reference measurement. This is done in such a way that in each case one measurement channel from the reference measurement and the corresponding channel are selected from the inspection measurement to be synchronized. In the application example, the track width was selected because the track width changes much more slowly than, for example, the longitudinal heights or the deviations in direction compared to the other track position parameters. The entire measurement is subdivided into sections of 100 m in length, whereby the individual sections overlap each half, ie 50 m. For each section, with the track of the reference measurement and the corresponding section of the inspection measurement to be synchronized, the cross-correlation function Φ is calculated and normalized.
Die Position des Maximums der Kreuzkorrelationsfunktion gibt die Verschiebung der ausgewählten Abschnitte zueinander an. Im Ausführungsbeispiel beträgt die Verschiebung 29,6 m. Für jedes Abschnittspaar wird auf diese Weise die gegenseitige Verschiebung berechnet. Aus den Verschiebungen aller Abschnitte der gesamten Inspektionsfahrt wird der Offset der Kilometrierung bestimmt. Da die Verschiebung der einzelnen Abschnitte unterschiedlich sein kann, wird die Kilometerkorrektur mittels nichtlinearer Interpolation (Spline-Interpolation) bestimmt. Da die Verschiebung der einzelnen Abschnitte unterschiedlich ist, wird auf diese Weise automatisch die Verzerrung bzw. die Streckung und Stauchung der Signale bestimmt.The position of the maximum of the cross-correlation function indicates the displacement of the selected sections relative to each other. In the exemplary embodiment, the displacement is 29.6 m. For each section pair, the mutual displacement is calculated in this way. From the shifts of all sections of the entire inspection journey, the offset of the kilometer is determined. Since the shift of the individual sections can be different, the kilometer correction is determined by means of nonlinear interpolation (spline interpolation). Since the displacement of the individual sections is different, the distortion or extension and compression of the signals is automatically determined in this way.
Der so bestimmte Kilometeroffset wird auf alle Messkanäle, der zu synchronisierenden Messung angewendet.The kilometer offset thus determined is applied to all measuring channels, the measurement to be synchronized.
Im letzten Schritt werden die Messpunkte aller Messkanäle der zu synchronisierenden Messung an den Kilometerstellen der Referenzmessung berechnet. Dies kann mit Interpolationsverfahren erfolgen. Im Anwendungsbeispiel wurde die Spline-Interpolation verwendet.In the last step, the measurement points of all measurement channels of the measurement to be synchronized are calculated at the mileage points of the reference measurement. This can be done with interpolation methods respectively. In the application example, spline interpolation was used.
Als Ergebnis erhält man synchronisierte Messungen, bei denen die Abtastschritte korrigiert wurden und die Messpunkte aller Messkanäle aller Messungen an denselben km-Koordinaten liegen.The result is synchronized measurements in which the sampling steps have been corrected and the measurement points of all measurement channels of all measurements are at the same km coordinates.
Eine automatisierte Weiterverarbeitung ist nun möglich.Automated further processing is now possible.
- Δx Δ x
- Ortsinkrement; ortsäquidistante AbtastintervallOrtsinkrement; locally equidistant sampling interval
-
Φy
ri ysi Φ yri ysi - Kreuzkorrelationsfunktion eines Abschnittes yri der Referenzmessung und dem entsprechenden Abschnitt ysi der zu synchronisierenden MessungCross-correlation function of a section y ri of the reference measurement and the corresponding section y si of the measurement to be synchronized
- yri y ri
- Messwerte des Abschnittes i der Referenzmessung y r Measured values of section i of the reference measurement y r
- ysi y si
- Messwerte des Abschnittes i der zu synchronisierenden Messung ys Measured values of section i of the measurement to be synchronized y s
- kk
- Index der Kreuzkorrelationsfunktion; Verschiebung der Abschnitte yri und ysi zueinanderIndex of cross-correlation function; Shifting the sections y ri and y si to each other
- nn
- Index der MesswerteIndex of the measured values
-
yri y ri - arithmetischer Mittelwert der Messwerte des Abschnittes i der Referenzmessung yr arithmetic mean of the measured values of the section i of the reference measurement y r
-
ysi y si - arithmetischer Mittelwert der Messwerte des Abschnittes i der zu synchronisierenden Messung ys Arithmetic mean of the measured values of the section i of the measurement to be synchronized y s
- ii
- Abschnittsnummersection number
- NN
- Anzahl der Messpunkte - Abtastwerte - in einem Abschnitt iNumber of measuring points - samples - in a section i
- zlinks, zrechts z on the left , z on the right
- Längshöhe der linken und rechten SchieneLongitudinal height of the left and right rail
- ylinks, yrechts y left , y right
- Richtungsabweichung der linken und rechten SchieneDirectional deviation of the left and right rail
- spsp
- Spurweitegauge
- krkr
- Krümmungcurvature
- ghgh
- Gegenseitige HöhenlageMutual altitude
Claims (11)
- A method for automatically synchronizing track geometry measurement data,• wherein a measurement is in each case carried out by means of a plurality of measuring channels in response to different inspection runs along a railway track,• wherein the measurement data of different measurements are locally shifted and/or distorted relative to one another and the local shift and/or distortion does not appear constantly across the entire measurement,• wherein the measurement is selected as reference in response to a first inspection run,• wherein route points located at a distance from one another are determined by means of constant scanning steps,• wherein the measured values at the newly calculated constant route points are determined by means of interpolation methods from the measurement data of the reference measurement and this is carried out for all measuring channels of the reference measurement,• wherein these measured values are used as reference values and the reference values are in each case divided into sections,• wherein the sections overlap,• wherein the measurement data to be synchronized of a second measurement are also divided into overlapping sections in response to a second inspection run,• and the local shift relative to one another is determined by means of a maximum of the cross-correlation function of the two measurements for each section pair of a measuring channel consisting of a section of the reference measurement and the corresponding section of the second measurement to be synchronized,• and an offset, which is generally not linear, is determined from the local shifts of all section pairs, and is used for all measurement data of all measuring channels of the second measurement to be synchronized, and the shift and/or distortion are thus compensated,• and the measured values of the second measurement to be synchronized are calculated at the determined route points,• and the determined measured values of the first measurement and the calculated measured values of the synchronized second measurement thus have the same location coordinates.
- The method according to claim 1, characterized in that a local scanning of 0.10m is selected for the reference measurement and the measurements to be synchronized.
- The method according to claim 1, characterized in that the reference measurement as well as the measurement to be synchronized are divided into sections of a length of 100m.
- The method according to claim 1, characterized in that the sections for determining the cross-correlation function in each case overlap halfway.
- The method according to claim 1, characterized in that the measurements of the track geometry of railway tracks are synchronized with one another.
- The method according to claim 1 to 5, characterized in that the cross-correlation functions of the individual sections are determined for the track widths.
- The method according to claim 1 to 6, characterized in that a relative local shift, compression and/or extension is determined as offset by the measurement to be synchronized for the reference measurement.
- The method according to claim 1 to 7, characterized in that the section lengths are chosen such that the best possible correlation between the reference measurement and the measurement to be synchronized results and that the section lengths are longer than the offset of the reference measurement of the measurement to be synchronized.
- The method according to claim 1 to 8, characterized in that the reference measurement is chosen such that the cross-correlation with a measurement to be synchronized results in the largest possible cross-correlation coefficient or that the oldest or most recent measurement serves as reference measurement.
- The method according to claim 1 to 9, characterized in that the constant scanning is calculated such that a location-equidistant increment is created for the entire inspection measurement.
- The method according to claim 1 to 10, characterized in that the determined offset is a standard for the local offset of the sections relative to one another.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200910043701 DE102009043701A1 (en) | 2009-10-01 | 2009-10-01 | Method for the automatic synchronization of track position measurements |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2305532A1 EP2305532A1 (en) | 2011-04-06 |
EP2305532B1 true EP2305532B1 (en) | 2017-08-30 |
Family
ID=43264728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10011614.4A Active EP2305532B1 (en) | 2009-10-01 | 2010-09-29 | Method for automated synchronisation of rail position measurements |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2305532B1 (en) |
DE (1) | DE102009043701A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3126683A1 (en) | 2021-09-07 | 2023-03-10 | Eramet | Railway analysis device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5579013A (en) | 1994-05-05 | 1996-11-26 | General Electric Company | Mobile tracking unit capable of detecting defective conditions in railway vehicle wheels and railtracks |
US6044698A (en) | 1996-04-01 | 2000-04-04 | Cairo Systems, Inc. | Method and apparatus including accelerometer and tilt sensor for detecting railway anomalies |
EP1213202B2 (en) | 2000-12-07 | 2009-02-18 | Siemens Schweiz AG | Method for representing the state of the track and /or of the mechanical operating characteristics of rail vehicles |
US6804621B1 (en) * | 2003-04-10 | 2004-10-12 | Tata Consultancy Services (Division Of Tata Sons, Ltd) | Methods for aligning measured data taken from specific rail track sections of a railroad with the correct geographic location of the sections |
DE102006043043A1 (en) | 2006-03-14 | 2007-09-20 | Baldur Rögener | Rail track system monitoring method for use in railway system, involves evaluating detected position data with respect to trafficability and/or maximum permissible run-over speed of rail track system in monitoring region |
US7937246B2 (en) * | 2007-09-07 | 2011-05-03 | Board Of Regents Of The University Of Nebraska | Vertical track modulus trending |
-
2009
- 2009-10-01 DE DE200910043701 patent/DE102009043701A1/en not_active Ceased
-
2010
- 2010-09-29 EP EP10011614.4A patent/EP2305532B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2305532A1 (en) | 2011-04-06 |
DE102009043701A1 (en) | 2011-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3358079B1 (en) | Method and device for measuring and computing a track bed | |
EP3746346B1 (en) | Rail vehicle and method for surveying a track section | |
EP1466803A1 (en) | Method for speed recommendations of a rail vehicle | |
EP3206933B1 (en) | State diagnosis of rail vehicle wheels | |
EP3665036B1 (en) | Method for determining condition of at least one railway line along a travel route | |
DE102007016395B3 (en) | Vehicle-specific quantification function determining method for track, involves determining regression coefficients for vehicle reaction by satisfying preset vehicle-specific quantification equation | |
EP4251491B1 (en) | Method and system for ascertaining correction values for correcting the position of a track | |
EP0123774B1 (en) | Method of identification of waggons in a fast running train and device for carrying out the method | |
DE102021101958B3 (en) | Method and system for determining the distance or the current relative speed of at least two route-bound, in particular rail-bound, mobile objects | |
DE102008062143B3 (en) | Method for determining vertical track bed of rail-road traffic, involves interlinking vertical axle bearing path vectors, three-point longitudinal height vectors, and equally spaced stretching vectors, respectively | |
EP0568167B1 (en) | Method for determining the rolling resistance of railway vehicles | |
AT519824B1 (en) | APPENDIX FOR MONITORING THE INTEGRITY OF A TRAIN | |
EP2305532B1 (en) | Method for automated synchronisation of rail position measurements | |
EP3458331B1 (en) | Method and device for monitoring at least one travel path component laid in rail construction | |
DE3738696A1 (en) | Method and device for locating a break in a rail | |
EP2718163B1 (en) | Method and controlling device for determining the length of at least one track section | |
EP2718167B1 (en) | Method and controlling device for determining the length of at least one track section | |
DE2347951C3 (en) | Mobile track melee vehicle for continuous measurement and recording of the gauge of railway tracks | |
EP3789264A1 (en) | Method and device for slip detection and rail vehicle | |
DE2943183A1 (en) | METHOD AND VEHICLE FOR CORRECTING TRACK ERRORS | |
EP4337514A1 (en) | Computer-implemented method for creating measurement data describing a railway network or a vehicle travelling on a track | |
EP4342765A1 (en) | Train completion control | |
EP3782868A2 (en) | Method for calibrating a speed sensor of a railway vehicle | |
EP4230501A1 (en) | Method for detecting a movement of a rail vehicle along a rail path | |
EP4098991A1 (en) | Device and method for determining out-of-roundness of a wheel of a rail-bound vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
17P | Request for examination filed |
Effective date: 20110708 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502010014069 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B61K0009080000 Ipc: B61L0023040000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B61K 9/08 20060101ALI20170213BHEP Ipc: B61L 23/04 20060101AFI20170213BHEP Ipc: B61L 25/02 20060101ALI20170213BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170322 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 923221 Country of ref document: AT Kind code of ref document: T Effective date: 20170915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010014069 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170830 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171130 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171230 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171130 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AECN Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 18. MAI 2018 REAKTIVIERT WORDEN. Ref country code: DE Ref legal event code: R097 Ref document number: 502010014069 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170929 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170929 |
|
26N | No opposition filed |
Effective date: 20180531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171030 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 923221 Country of ref document: AT Kind code of ref document: T Effective date: 20170929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170830 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20231002 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240919 Year of fee payment: 15 |