EP2297594B1 - Lidar-verfahren zur messung von geschwindigkeiten und lidar-vorrichtung mit zeitgesteuerter detektion - Google Patents

Lidar-verfahren zur messung von geschwindigkeiten und lidar-vorrichtung mit zeitgesteuerter detektion Download PDF

Info

Publication number
EP2297594B1
EP2297594B1 EP09772451.2A EP09772451A EP2297594B1 EP 2297594 B1 EP2297594 B1 EP 2297594B1 EP 09772451 A EP09772451 A EP 09772451A EP 2297594 B1 EP2297594 B1 EP 2297594B1
Authority
EP
European Patent Office
Prior art keywords
detector
time
measurement
switching
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09772451.2A
Other languages
English (en)
French (fr)
Other versions
EP2297594A1 (de
Inventor
Nikolaus Schmitt
Wolfgang Rehm
Thomas Pistner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of EP2297594A1 publication Critical patent/EP2297594A1/de
Application granted granted Critical
Publication of EP2297594B1 publication Critical patent/EP2297594B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to a LIDAR method for measuring velocities and to a LIDAR device for carrying out such a LIDAR method.
  • the present invention describes a Doppler LIDAR system for measuring velocities using direct reception technology, which is used, for example, for measuring turbulence in front of an aircraft, but also for measuring wake turbulences, shear winds, obstacles, measuring wind fields for energy generation, etc . can be used.
  • the invention thus relates in particular to a Doppler LIDAR measurement of speeds by means of direct reception as well as a direct reception Doppler LIDAR device for carrying out the method.
  • LIDAR stands for "light detection and ranging” and is a very similar method to radar ("radiowave detection and ranging”) for distance and speed measurement as well as for the remote measurement of atmospheric parameters. Instead of radio waves like the RADAR, however, laser beams are used.
  • laser radiation is directed to the medium to be measured, and the radiation reflected thereafter is directly received and examined for Doppler shift of the laser wavelength so as to detect relative velocities.
  • Doppler LIDAR systems using direct reception technology are used, for example, for the forward-looking measurement of turbulences, side winds or wake turbulences in front of an aircraft, in particular aircraft.
  • the measurement signals can be coupled in particular directly into the flight control of the aircraft to proactively, for example, gusts, crosswinds or wake turbulence, that is, before the aircraft responds negatively to the external flow change so as to maintain a steady, steady state of flight while reducing aircraft load and ensuring safety in the aircraft and the aircraft.
  • DE 4013702 A1 is a method for detecting turbulence, in particular wind speeds, disclosed, wherein an evaluation device connected behind a detector only evaluates signals within individual time periods.
  • the object of the invention is to optimize a LIDAR measuring method which is fundamentally suitable for aircraft-supported application with regard to the aforementioned problems.
  • a LIDAR device is to be created by means of which the method can be carried out-preferably automatically.
  • a spatial measurement range is achieved by activating and / or inactivating the detector with at least one predetermined one or regulated time T1, T2 set less than about 500 ⁇ s after sending a laser pulse to the medium to be measured.
  • the invention proposes a LIDAR device for measuring velocities, comprising a laser source for emitting laser radiation to a medium to be measured and a detector for receiving radiation which is irradiated, in particular scattered, upon irradiation with the laser radiation from the medium.
  • the laser source is capable of emitting a laser pulse such that a switching device is capable of activating / deactivating the detector depending on a time of transmission of the laser pulse by the laser source and the switching means for activating / deactivating the detector with at least one predetermined one or regulated time T1, T2 less than about 500 ⁇ s is formed after sending the laser pulse to the medium to be measured.
  • the laser source is capable of emitting laser pulses, the pulse duration being shorter than the time required to travel through the measurement distance.
  • the measuring method according to the invention is preferably a Doppler LIDAR measuring method using the direct reception technique.
  • the LIDAR device is accordingly preferably a direct-receive Doppler LIDAR device.
  • the laser pulse is preferably transmitted through an optically transmissive element, wherein a first time duration T1 between emission of the laser pulse from the laser source and the switch-on time t1 is greater than the time required for the laser pulse to pass to and from the optically transmissive element.
  • Advantageous effects of the invention and / or its advantageous embodiments are the suppression of reflections on an optically transmissive element, such as cover and in particular passage window, reduction of the influence of dirt on it, optimization of measurement distance and depth of a LIDAR system and as far as possible suppression of the detection of disturbing background radiation ,
  • the measuring distance and the measuring depth can be adjusted.
  • the adaptation of the switching times can, according to an embodiment of the invention, for example, also depending on the intensity of the signal, e.g. due to changes in backscatter characteristic, and system requirements, e.g. Measurement of a separate speed of the LIDAR device, such as airspeed in aircraft-supported applications, expected gust gradients, etc. are controlled or regulated, so that the system is always operated in the optimum of the opposite parameters measurement distance / depth and signal intensity / accuracy requirement.
  • the LIDAR device is arranged on a moving carrier, wherein timings and / or time periods for activating / deactivating the detector are controlled depending on the speed of the carrier.
  • the system can be switched between different modes such as less accurate, but more predictive measurement to increase safety (negative -g -prevention) and increase the travel comfort or shorter range, but more accurate measurement for wing cell reduction or even shorter Distance for optical air data measurement.
  • the measuring distance can be adjusted with the means of an advantageous embodiment of this invention.
  • the measuring distance can be adjusted with the means of an advantageous embodiment of this invention.
  • At least one time period T1, T2 and / or at least one time t1, t2 for changing the spatial measuring range r2-r1 are selected, controlled, regulated and / or adjusted differently for different measuring tasks.
  • the first time duration T1 is particularly preferably changed depending on the speed of the measuring system from measuring pulse to measuring pulse within an exposure process.
  • the method is performed for measuring air velocities from an aircraft.
  • the method for safety and comfort increase with greater measuring distance, for load reduction of components of the aircraft with medium measuring distance with higher accuracy and for the optical measurement of air data with a short measuring distance, and the at least one time period T1, T2 and / or at least one of the times is particularly preferred t1, t2 set according to these measurement tasks.
  • a Doppler Lidar system for measuring speeds, for example, the air speed, using the direct reception technique
  • the detector is equipped with a fast switching device with switching times in the range of less than or less than 1 millisecond
  • the switching device is designed such that the duration of the exposure of the detector and / or the time of exposure of the detector can be controlled, for example via control electronics or other control device.
  • the control is preferably carried out in such a way that the measuring depth and / or the measuring distance can be adjusted.
  • a lidar system in particular a Doppler lidar system for measuring velocities, for example air velocity, using direct reception technology, in which a detector (for example a camera) or detector or detector (for example a camera) is used as the detector a plurality of individual photosensitive elements, such as photodiodes, photomultipliers, are used. Arrays of such photosensitive elements, CCD chips or the like can also be used as the detector.
  • the switching device has a switching element connected in front of the detector, which transmits light for activating the detector and blocks the light for deactivation.
  • switching elements are a switchable microchannel plate, an electro-optic material used for switching (for example LiNbO3), a liquid-crystal cell or a micromechanical element (for example a micromirror array) which can be moved for switching.
  • the circuit can also take place directly on the detector itself.
  • the circuit is electrically connected to the detector.
  • a circuit is preferably performed at each output for each light-sensitive detector element.
  • the detector remains switched off at least for the time, that of the path of the light from the beam source to an optical element, in particular a passage window of the light beam into the free environment, for example a window in an aircraft skin, and back again required to the detector, so that a possible reflection on this optically transmissive element, in particular windows, or a (dirt) layer located thereon can not be detected by the detector.
  • an optical element in particular a passage window of the light beam into the free environment, for example a window in an aircraft skin
  • the detector is switched again after a time which corresponds to the transit time of the light from the beam source to reaching the desired measurement volume and, if appropriate, after passing through it back to the detector such that it does not emit light detected more, so that the detection of any background light is reduced.
  • the time corresponding to a minimum measuring distance r1 which requires the light from the beam source until the beginning of the desired measuring volume and optionally back to the detector, or the maximum measuring distance r2, the light from the beam source to the end the required measurement volume and possibly back to the detector required, depending on measurement parameters such as the required intensity, accuracy, etc. set the detected signal.
  • the time corresponding to a minimum spatial measuring range or measuring volume r2-r1 which the light requires to pass through the measuring range / measuring volume and possibly back, is dependent on system parameters such as airspeed of an aircraft, e.g. Aircraft, in which the LIDAR system is mounted, or other procedures affecting the required measuring distance.
  • the adjustment of the time periods T1, T1 + T2 corresponding to r1, r2 is dynamically controlled or regulated during a longer measuring operation.
  • the time duration T2 corresponding to a minimum measurement volume r2-r1, which requires the light to pass through the measurement volume and optionally back is set or regulated as a function of measurement parameters such as the required intensity of the detected signal.
  • the time corresponding to a minimum measuring volume r2-r1 which requires the light to pass through the measuring volume and possibly back, is dependent on System parameters such as the expected dynamics of the measurement signal, coherence of a measured air bubble, etc, measured.
  • the adjustment of the time can advantageously be controlled or regulated dynamically during a longer lasting measuring insert.
  • the setting of the corresponding switching time and / or exposure time takes place according to the current requirement or sequentially to fulfill different measuring tasks. For example, a large measuring distance for safety / comfort increase, a short measuring distance with increased accuracy for wing-load reduction and very short range for the optical measurement of air data is set.
  • a correspondingly shortened time for switching the detector, with respect to time and / or time duration is used to measure a reference signal which was taken from the laser arrangement and was not scattered in the measurement volume.
  • the reference signal is detected periodically or randomly in a respective measurement cycle of the LIDAR measurement.
  • a signal to be detected in particular the reference signal and / or the radiated radiation, passed before impinging on the detector via an optical delay path to delay the signal.
  • the measurement of the reference signal can in particular be carried out periodically or randomly in the entire measuring cycle of the LIDAR measurement. Accordingly, the switching times of the detector can be changed periodically or randomly.
  • the aforesaid steps are preferably carried out automatically in a suitably designed (direct-reception-Doppler) LIDAR device, for example provided with a correspondingly configured and / or programmed control.
  • At least the first time duration T1 between the emission of the laser pulse and the switch-on time t1 or other relevant time periods or times is controlled or regulated as a function of the speed of a carrier of the LIDAR device.
  • a moving system such as an aircraft or the like
  • a measuring volume fixed in a stationary coordinate system.
  • the first time period T1 within an exposure which is performed with several of the laser pulses, shortened from pulse to pulse so that the measurement volume despite the proper motion of the carrier (eg aircraft) in the air-related outer coordinate system for each recorded laser pulse is constant.
  • Fig. 1 1 shows a schematic representation of a direct-reception Doppler LIDAR device 10.
  • the direct-reception Doppler-LIDAR device 10 is installed in the illustrated example in an aircraft, illustrated by the example of an aircraft 13, as a carrier.
  • Direct-receive Doppler LIDAR device 10 has a relatively narrow bandwidth laser source 11 (single-frequency operation, typically several kHz to MHz linewidth).
  • the light of the laser source 11 - emitted laser beam 15 - is sent through a window 14 into the atmosphere 16.
  • the light of the laser source 11 is elastically scattered on particles 17a, 17b, 17c,... Of the air in the case exemplified here.
  • the scattered light 18 is picked up by a detector arrangement 12.
  • the relative velocity is determined from the Doppler shift of the scattered light 18 backscattered relative to the direct-receiving Doppler LIDAR device 10 at the scattering particles 17a, 17b, 17c.
  • a switching device 24, for example in front of the detector, is provided for switching between an active state in which light can be detected and an inactive state in which light can not be detected.
  • a control device 22 is provided, by means of which the switching device 24 can be controlled by the laser source 11 depending on the emission of a laser pulse.
  • the window 20 is an optical transmissive element for the radiation used for covering the direct-reception Doppler LIDAR device 10 against environmental influences (cover element) and is located at a certain distance 20 from the laser source 11 and the detector arrangement 12.
  • the scattering of the particles 17a, 17b and 17c a distinction in this context, on the one hand, the scattering of molecules of the air (Rayleigh scattering) and the scattering of aerosols (dust particles, salt particles, etc., Mie scattering).
  • the Rayleigh scattering can be reliably measured in all atmospheric layers and independently of meteorological influences; it only depends on the particle density, which continuously decreases to higher altitudes.
  • the dispersion of aerosols is highly dependent on their local density, which can vary greatly depending on the weather conditions and other influences.
  • aerosol scattering is very strong in high pollutant emission areas, such as in industrial areas or volcanic areas.
  • aerosol scattering is quite low in the range of large bodies of water, for example over the oceans or in the area of the southern hemisphere of the earth.
  • the aerosols are also washed out by, for example, heavy rain, so that their concentration can then be very low.
  • the intensity of Rayleigh scattering is proportional to the reciprocal of the wavelength to the fourth power, it is useful to use a laser source 11 at the shortest possible wavelength, that is, for example, in the UV range.
  • FIG Fig. 2 An example of the detector array 12 of the direct-receive Doppler LIDAR device 10 is shown in FIG Fig. 2 shown in more detail.
  • the scattered radiation - scattered light 18 - is passed through an optical system 26 to a detector 35 and detected.
  • a frequency shift In principle, two measuring methods are conceivable for measuring a frequency shift.
  • the so-called coherent detection the fixed phase relationship between the emitted laser beam of sufficiently narrow line width and the received scattered radiation is utilized. Due to the coherence, this measuring method is very sensitive.
  • To measure the frequency shift a portion of the laser beam is redirected to the atmosphere prior to emission, mixed in a time-delayed manner and collinearly with the received scattered radiation on a photodetector of sufficiently large bandwidth. Due to the non-linearity of the photodetector, the difference frequency can be tapped directly as an electrical signal, which corresponds directly to the Doppler shift and therefore the relative velocity is proportional.
  • Prerequisite for this measurement method is a sufficiently narrow-band laser source, so that the coherence length of the light is greater than the path difference between delayed reference radiation and received scattered radiation. Furthermore, the scattered radiation itself must not contribute to any significant line broadening, since otherwise the coherence would be destroyed. Typical limit values for the maximum line width and broadening in the case of scattering lie in the range of a few MHz.
  • the in Fig. 2 illustrated so-called direct reception technique used, which does not require the phase of the radiation and makes only an intensity measurement.
  • another element - for example a Fabry-Perot interferometer, etalon, other interferometer, etc. 33 - is provided which has frequency discrimination or wavelength dispersion.
  • the received radiation 32 is supplied to the detector arrangement 12 for this purpose.
  • the received radiation 32 is supplied via a first optics - collimation optics 31 - a so-called Fabry-Perot etalon 33, which has two plane-parallel, partially reflecting plates or a single plane-parallel plate with partial reflection on both surfaces, which by self-superposition of the wave in a resonator leads to an interference of the wave with itself.
  • a spatial intensity distribution by imaging by means of a second optical system 36 on the detector 35, a spatial intensity distribution.
  • a circular interference figure is produced by multiple reflection - so-called rings or English.
  • Maxima and minima correspond to superimpositions of the same angle.
  • a change in the radius of this interference pattern of Fig. 3 is directly proportional to the change in the wavelengths or frequency change of the detected signal and thus the change in the Dopplershift and thus the change in the relative velocity of the scattering particles, so for example, the scattering particles 17a, 17b, 17c of the air (Molecules, aerosols) to the measuring system.
  • the relative velocity of the air with respect to the aircraft 13 can also be determined.
  • the absolute relative speed in contrast to the previously described change in the relative speed
  • the two- or even three-dimensional relative velocity vector can be determined. Accordingly, the principles and solutions proposed herein for one or more measurement directions may be applied.
  • the detector arrangement 12 can be constructed differently.
  • Various solutions include the use of filters at the edges of the interference maxima with downstream photodetectors, the interference pattern modeled concentric ring electrodes of a photomultiplier, the transformation of the circular pattern into a linear by means of fiber optics and detection with a CCD line detector or the detection with a two-dimensional photo Detector (for example CCD camera).
  • CCD line detector for example CCD camera
  • two-dimensional photo Detector for example CCD camera
  • the direct-reception Doppler-LIDAR device 10 as well as a measurement method that can be performed therewith will be described using the example of the use of a CCD camera as detector 35 (see FIG Fig. 2 ) with an upstream microchannel plate 34 for Reinforcement further described.
  • the microchannel plate 34 is also used as a switch in some embodiments.
  • the light transit time n * r / c, ie refractive index n times distance r by vacuum speed of light c In the described case of a so-called monostatic system, in which transmitter - here: laser source 11 - and receiver - here: detector assembly 12 - are in a similar position and backscatter is used for LIDAR measurement, the light transit time is twice this, ie 2 xnxr / c. It can therefore be calculated very accurately, after which time the emission of a light pulse is received again from a defined distance.
  • the detector 35 is switched on prematurely in advance ("exposure").
  • exposure By means of, for example, the microchannel plate 34 functioning as a switch, however, the entire detector arrangement 12 is normally deactivated as a rule and only after a first time duration T1 after emitting a laser pulse 40 (FIG. Fig.
  • Fig. 1 For the sake of simplicity, a beam propagation direction or measuring direction parallel to the direction of flight is sketched.
  • the first time duration T1 and a second time duration T2 within which the detector arrangement is actively switched are divided by cos ⁇ by the distance r calculate the aircraft. If r1, r2 does not denote the distance in front of the aircraft, but the distance between LIDAR and measuring volume, this division is omitted.
  • a CCD camera is used as detector 35, which has a typical exposure time of 16 ms at a frame rate of 60 frames per second, this image is actually exposed only with a fraction of this time.
  • Fig. 4a . 4b shown in the above illustration, the exposure times for the CCD camera are shown and below the time periods T1, T2 and times t1, t2 ( Fig. 4a ) for the switching device. Exposure is thus performed exactly so that only the light scattered at the desired distance is detected, see Fig. 4a . 4b , In addition, only during this short time backlight shines. In this way, however, only a comparatively small part of the background radiation is detected, while background light would be recorded during the entire exposure time of 16 ms with the detector array 12 constantly open
  • Fig. 4b shows the case of detecting multiple laser pulses (four in this example) during a single (camera or detector) exposure time. According to the number of laser pulses to be recorded, the switching with the durations T1 and T2 is carried out correspondingly often. This clearly shows the advantage that by switching off the detector arrangement after the second time period T2 is recorded with a duration T1 + x until the detection of the next laser pulse corresponding to less background light (in the periods nz * T1 + x) and the signal quality is significantly improved thereby, while several pulses are integrated into a single overall measurement (exposure time).
  • switching time ⁇ for activating and / or deactivating the detector arrangement 12 is as low as possible.
  • These switching times ⁇ (flanks) are in Fig. 9 shown in more detail.
  • this switching time ⁇ should be much less than 1 millisecond, preferably in the range of nanoseconds or microseconds. This can be achieved, for example, by means of a correspondingly fast switching element of the switching device 24, for example a switch connected upstream of the detector 35, or by, for example, electrical switching at the output of the detector 35.
  • An exemplary arrangement of the switching device 24 is shown in FIG Fig. 5 shown in more detail, to which reference is made in the following.
  • Fig. 5 shows the laser source 11 with the transmission beam - emitted laser beam 15 - and a decoupling device 50 for decoupling a portion of the laser beam 15 to a photodetector 52:
  • the photodetector is connected via an input interface 51 to a counter 53.
  • the counter 53 which is part of the control device 22 for activating / deactivating the detector arrangement 12, and a switching element of the switching device 24, here in the form of a switch 58, which is in the path of the scattered light 18 to be detected directed to the detector 35 is arranged.
  • the switch 58 could be formed by the microchannel plate 34 or by another switch.
  • the triggering of the switching on and off takes place by means of a suitable clock or the counter 53 or other suitable means, which in turn have an input for detecting the emitted laser pulse 40.
  • the counter 53 has an input interface 51 with the photodetector 52, the a small fraction of the emitted laser beam 15 receives.
  • the decoupling device 50 is provided with a slanted window 55 through which the fraction is decoupled.
  • the coupling-out device can use stray light at the exit window or at a coupling-out mirror of the laser source 11, etc.
  • a correspondingly processed electrical output signal is supplied to the counter 53, so that the first time period T1 can be referred to this time of the transmission of the laser pulse 40.
  • the counter 53 supplies a switching signal 57 to the switch 58 at its input 62.
  • the switch 58 is arranged in the receiving beam - scattered light 18 - and leaves this depending on the switching state to the detector 35 through or not.
  • Typical detectors 35 are, as mentioned above, cameras, for example CCD cameras or comparable, ie also, for example, CMOS cameras, as well as so-called intensified cameras formed from detector and switchable microchannel plate. Further possible detector principles include 2D photodetector arrays, line arrays of photodetectors, photomultipliers with concentrically arranged ring electrodes or other 1- or 2D arrays of photodetectors or single detectors.
  • switching device 24 in a corresponding manner also suitable switch is similar to the switching unit 60 constructed, but connected to the detector 35 and capable of short circuiting the detector 35 and its output accordingly (for example before the exposure).
  • switchable microchannel plates 34 are also shown, which enable correspondingly fast switching over a larger area (as required for a CCD chip).
  • Such rapidly switchable microchannel plates 34 can be switched either by controlling the acceleration voltage, or preferably by driving a gate electrode, usually a net-shaped electrode on the photocathode, or by both at the same time, typically in the range of nanoseconds.
  • the second time duration T2 corresponding to a minimum measurement volume r2-r1, which requires the light to pass through the measurement volume and possibly back, can now be dependent on system parameters such as airspeed of an aircraft 13 in which the direct-reception Doppler LIDAR device 10 is mounted , or other parameters influencing the required measuring distance are set, wherein the Time T1 and T2 or time t1, t2 either fixed or dynamically controlled during a longer measuring insert can be controlled (for example T1 shorter at lower airspeeds and longer at higher airspeeds, so that the time between measurement and "flying through" the measuring volume constant is).
  • the second time duration T2 corresponding to a minimum measurement volume r2-r1, which requires the light to pass through the measurement volume and possibly back can likewise be set as a function of measurement parameters such as the required intensity of the detected signal (eg T2 smaller with low backscatter intensity) Compensation due to larger backscatter volume, or T1 smaller with low backscatter intensity and thus also compensation due to smaller measuring distance).
  • measurement parameters such as the required intensity of the detected signal (eg T2 smaller with low backscatter intensity) Compensation due to larger backscatter volume, or T1 smaller with low backscatter intensity and thus also compensation due to smaller measuring distance).
  • Another possibility consists in the second time duration T2 corresponding to a minimum measurement volume r2-r1 which requires the light to pass through the measurement volume and optionally back, depending on system parameters such as the expected dynamics of the measurement signal, coherence or gradient of a measured or adapt to measuring air bubble etc.
  • the setting of the time can now be controlled or regulated dynamically during a longer lasting measuring insert, or fixed, depending on the requirement of the measurement and the integration into the overall system.
  • Fig. 7 shows a longer measurement sequence with several individual measurements in sections 1 to 8.
  • a large measurement range for safety / comfort increase may be set, as in Sections 3 and 4 in FIG Fig. 7 is shown.
  • the first time period T1 is set large, so that only distances r1 are detected at a relatively large distance. Stray light from all closer sections reaches the detector 35 before the set switch-on time t1 and is therefore not detected.
  • a short measuring distance is set with increased accuracy for the reduction of the wing area. This is done by setting the first time period T1 to a shorter value.
  • a very short range for the optical measurement of air data is set by a corresponding selection of a small first time T1.
  • the measurement depth can also be adapted to these requirements. For example, a large measurement depth at a great distance, ie set at T2, as in section 4 of Fig. 7 specified, or a small measurement depth at a short distance, as specified in section 1, set.
  • Section 3 shows an exemplary setting of the second time period T2 at a great distance but with strong backscatter, for example in clouds.
  • Section 1 describes the normal measurement conditions in relation to this.
  • Another possibility is to set the first time T1 in Fig. 4b to shorten within one exposure from laser pulse to laser pulse in such a way that, despite the proper movement of the aircraft 13 in the air-related outer coordinate system, the measurement volume remains constant for each recorded laser pulse remains. Otherwise, the measurement volume would shift from laser pulse to laser pulse in accordance with the aircraft movement.
  • the detector array 12 by activating and deactivating the detector array 12 such that the first time duration T1 is greater than the time that the light for the distance - distance 20 - in Fig. 1 from the laser source to the window 14 and back to the detector 35, a possible reflection on that window 14 or on a (dirt) layer thereon is not detected by the detector 35.
  • This is particularly advantageous since scattered light at the exit window can be considerably more intense than the useful signal to be detected due to surface scattering or contamination and thus extremely disturbing proper detection of the useful signal depending on the circumstances.
  • precisely this can be suppressed by the direct reception Doppler LIDAR device 10 described here and the measuring method described here.
  • the measurement of the temporal change of the interference signal alone would not be sufficient.
  • the change of the interference signal with respect to a reference point for example, known speed or speed equal to zero.
  • One way of using the direct-reception Doppler-LIDAR device 10 shown here is essentially to couple a portion of the emitted laser light - laser beam 15 - directly (i.e., without emission into the atmosphere) into the detector assembly 12. Since this part of the laser light experiences no scattering on particles moved relative to the system - particles 17a, 17b, 17c - here the Doppler shift is 0. The signal can thus be used as the zero-point reference signal.
  • Fig. 8 an embodiment of the direct-receive Doppler-LIDAR device 10 is illustrated, in which this signal is now obtained so that Part - laser signal 64 - of the laser source 11 emitted signal - laser beam 15 - is passed to the detector assembly 12 and the first time period T1 is now relative to the measurement in the air relatively short so chosen that this laser signal 64 is registered on the detector 35 , If the laser signal 64 is to be measured as a reference signal, the time periods T1 and T2 can now be selected so that T1 + T2 is smaller than the time until the laser light - scattered light 18 - is received from the atmosphere. By selecting T1 and T2 it is possible to select whether the reference signal or the atmospheric signal is detected.
  • the reference signal can also be delayed, for example by means of a fiber coil, such that the signal backscattered by the atmosphere is suppressed by the selection of a correspondingly adapted first time duration T1, which is weak only from a very large measuring distance and thus only extremely (negligibly) , the time-delayed reference signal but just optimally detected.
  • the above-described solution can be used for measuring several measuring directions for each of these directions, or only for individual ones, so that one reference signal is used as a reference for the other measuring directions.
  • This measurement of the reference signal can now take place periodically or randomly over the entire measuring cycle of the LIDAR measurement, correspondingly changing the switching times of the detector 35 periodically or randomly.

Description

  • Die Erfindung betrifft ein LIDAR-Verfahren zur Messung von Geschwindigkeiten und eine LIDAR-Vorrichtung zum Durchführen eines solchen LIDAR-Verfahrens.
  • Die vorliegende Erfindung beschreibt insbesondere ein Doppler-LIDAR-System zur Messung von Geschwindigkeiten unter Verwendung der Direktempfangstechnik, das beispielsweise zur Messung von Turbulenzen vor einem Flugzeug, aber auch zur Messung von Wirbelschleppen, Scherwinden, Strömungen vor Hindernissen, zur Vermessung von Windfeldern zur Energiegewinnung etc. verwendet werden kann. Die Erfindung betrifft damit insbesondere eine Doppler-LIDAR-Messung von Geschwindigkeiten mittels Direktempfang sowie eine Direktempfang-Doppler-LIDAR-Vorrichtung zur Durchführung des Verfahrens.
  • LIDAR steht für "light detection and ranging" und ist eine dem Radar ("radiowave detection and ranging") sehr verwandte Methode zur Entfernungs- und Geschwindigkeitsmessung sowie zur Fernmessung atmosphärischer Parameter. Statt Funkwellen wie beim RADAR werden jedoch Laserstrahlen verwendet.
  • Ein Beispiel für eine Doppler-LIDAR-Vorrichtung und ein damit durchführbares Verfahren zur Messung von Windgeschwindigkeiten ist aus der EP1756620 B1 , US 20080117433 A1 oder US 2006262324 A1 bekannt.
  • Bei Direktempfang-Doppler-Lidar-Vorrichtungen wird Laserstrahlung auf das zu messende Medium gerichtet und die daraufhin reflektierte Strahlung direkt empfangen und hinsichtlich einer Doppler-Verschiebung der Laserwellenlänge untersucht, um so Relativgeschwindigkeiten festzustellen.
  • Doppler-LIDAR-Systeme unter Verwendung der Direktempfangstechnik werden beispielsweise zur vorausschauenden Messung von Turbulenzen, Seitenwinden oder Wirbelschleppen vor einem Luftfahrzeug, insbesondere Flugzeug, verwendet. Im Falle einer luftfahrzeuggetragenen, insbesondere flugzeuggetragenen Anwendung zur Messung vor dem Luftfahrzeug, welche als typische Anwendung im Folgenden betrachtet wird, können neben einer reinen Warnfunktion die Messsignale insbesondere auch direkt in die Flugsteuerung des Luftfahrzeuges eingekoppelt werden, um beispielsweise Böen, Seitenwinde oder Wirbelschleppeneinflüsse proaktiv, also bevor das Luftfahrzeug negativ auf die äußere Strömungsänderung reagiert, so auszuregeln, dass ein gleichbleibender ruhiger Flugzustand erhalten bleibt, Belastung des Luftfahrzeuges reduziert werden und die Sicherheit im Luftfahrzeug und für das Luftfahrzeug gewährleistet bleibt.
  • Einige wesentliche Probleme bei bisher bekannter flugzeuggetragenen zu ähnlichen Zwecken konzipierten LIDAR-Systemen werden im Folgenden beispielhaft genannt:
    • Rückreflexe an einem das LIDAR-System abdeckenden optischen Fenster aufgrund von Oberflächenreflexen oder Verschmutzung stören die Messung.
    • Hintergrundlicht, insbesondere solare Hintergrundstrahlung im optischen Bereich muss aufwändig unterdrückt werden.
    • Es ist wünschenswert, die Messentfernung so zu optimieren, dass die Messung hinreichend weit vor dem Flugzeug erfolgt, so dass die Messsignale vor Durchfliegen der Störung im Flugzeug vorliegen. Zum Beispiel sollen die Messsignale frühzeitig in die Flugsteuerung eingekoppelt werden, so dass das Flugzeug gegen die Störung gesteuert werden kann. Aber trotzdem soll insgesamt eine hinreichende Signalintensität, welche mit zunehmender Messentfernung abnimmt, für gegebene Genauigkeitsanforderungen gewährleistet bleiben. Dies ist mit bisher bekannten Systemen nicht möglich.
    • Bei bisher bekannten Systemen lässt sich die Messtiefe nicht hinreichend flexibel einstellen oder optimieren. Jedoch ist eine Optimierung der Messtiefe derart wünschenswert, dass die Messung die Gradienten einer Turbulenz hinreichend aufgelöst erfassen kann (Turbulenzgradienten, Turbulenzlänge und Turbulenzkohärenz), aber insgesamt trotzdem eine hinreichende Signalintensität, welche mit abnehmender Messtiefe ebenfalls abnimmt, für gegebene Genauigkeitsanforderungen gewährleistet bleibt.
  • In N. P. Schmitt et. al, Aerosp. Sci. Technol. 11, 546 (2007) ist ein Kurzpuls-Direktempfang-UV-LIDAR zur Messung von relativen Windgeschwindigkeiten beschrieben, bei dem zur Optimierung der Signalintensität ein Detektor geschaltet wird.
  • In der US 2008/0043234 A1 ist ein LIDAR-System offenbart, bei dem ein in dem auszusendenden Strahl eingeschaltetes Prisma-System derart verwendet werden kann, dass eine von vier Winkelmessrichtungen und ein Zeitintervall eingestellt werden können.
  • Y. Durand et. al., Proc. SPIE, 6296, 62961 D-1 (2006) beschreibt ein LIDAR-System, bei dem einem von einem Messobjekt zurückgestreuten Signal zu vorbestimmten Zeitpunkten und -spannen eine Charakteristik über einen elektrooptischen Modulator aufgeprägt wird, um so das Signal zur unterdrücken.
  • In M. Endemann, Proc. SPIE, 6409, 64090 G-1 (2006) ist ein LIDAR-Verfahren beschrieben, bei dem in vorbestimmten zeitlichen Abständen und für vorbestimmte zeitliche Zeitspannen Laserstrahlen ausgesendet werden, um so die Messtiefe und die Messzeitpunkte der zurückgestreuten Laserstrahlen zu beeinflussen.
  • In der DE 4013702 A1 ist ein Verfahren zur Erfassung von Turbulenzen, insbesondere von Windgeschwindigkeiten, offenbart, wobei eine hinter einem Detektor geschaltete Auswerteeinrichtung nur Signale innerhalb von einzelnen Zeitabschnitten auswertet.
  • Aufgabe der Erfindung ist es, ein für luftfahrzeuggetragene Anwendung grundsätzlich geeignetes LIDAR-Messverfahren hinsichtlich der vorgenannten Probleme zu optimieren. Außerdem soll eine LIDAR-Vorrichtung geschaffen werden, mittels dem sich das Verfahren - vorzugsweise automatisch - durchführen lässt.
  • Diese Aufgabe wird durch ein LIDAR-Messverfahren mit den Schritten des Patentanspruches 1 sowie eine LIDAR-Vorrichtung mit den Merkmalen des Nebenanspruches gelöst.
  • Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Erfindungsgemäß wird bei einem Verfahren zur LIDAR-Messung von Geschwindigkeiten, wobei ein Laserstrahl auf das zu messende Medium gerichtet wird und von dem Medium daraufhin gestreute Strahlung mittels eines Detektors gemessen wird, ein räumlicher Messbereich durch Aktivieren und/oder Inaktivieren des Detektors mit wenigstens einer vorbestimmten oder geregelten Zeitdauer T1, T2 von weniger als etwa 500µs nach Absenden eines Laserpulses auf das zu messende Medium eingestellt.
  • Weiter wird erfindungsgemäß eine LIDAR-Vorrichtung zum Messen von Geschwindigkeiten vorgeschlagen, mit einer Laserquelle zum Aussenden von Laserstrahlung auf ein zu messendes Medium und einem Detektor zum Empfangen von Strahlung, die bei Bestrahlung mit der Laserstrahlung von dem Medium abgestrahlt, insbesondere gestreut, wird. Es ist vorgesehen, dass die Laserquelle zur Aussendung eines Laserpulses fähig ist, dass eine Schalteinrichtung zum Aktivieren/Deaktivieren des Detektors abhängig von einem Zeitpunkt des Aussendens des Laserpulses durch die Laserquelle fähig ist und dass die Schalteinrichtung zum Aktivieren/Deaktivieren des Detektors mit wenigstens einer vorbestimmten oder geregelten Zeitdauer T1, T2 von weniger als etwa 500µs nach Absenden des Laserpulses auf das zu messende Medium ausgebildet ist.
  • In bevorzugter Ausgestaltung wird eine LIDAR-Vorrichtung zum Messen von Geschwindigkeiten vorgeschlagen, mit einer Laserquelle zum Aussenden von Laserstrahlung auf ein zu messendes Medium, einem Detektor zum Empfangen von Strahlung, die bei Bestrahlung mit der Laserstrahlung von dem Medium abgestrahlt, insbesondere gestreut, wird, und einer Auswerteeinrichtung, welche aufgrund der von dem Detektor empfangenen Strahlung wenigstens eine Geschwindigkeit des Mediums bestimmt. Die Laserquelle ist zur Aussendung von Laserpulsen fähig, wobei die Pulsdauer kürzer als die zum Durchlaufen der Messentfernung erforderliche Zeit ist.
  • Vorzugsweise weist der Detektor wenigstens eine der folgenden Lichterfassungseinrichtungen auf:
    • einen bildgebender Detektor, insbesondere Kamera,
    • ein lichtempfindliches Element, insbesondere Photodiode oder Photomultiplier, oder
    • eine Gruppe von lichtempfindlichen Elementen, insbesondere Photodioden.
  • Das erfindungsgemäße Messverfahren ist vorzugsweise ein Doppler-LIDAR-Messverfahren unter Verwendung der Direktempfangstechnik. Die LIDAR-Vorrichtung ist demgemäß vorzugsweise eine Direktempfang-Doppler-LIDAR-Vorrichtung.
  • Der Laserpuls wird vorzugsweise durch ein optisch durchlässiges Element gesendet, wobei eine erste Zeitdauer T1 zwischen Aussenden des Laserpulses aus der Laserquelle und dem Einschaltzeitpunkt t1größer als die Zeit ist, die der Laserpuls zu dem optisch durchlässigen Element und von dort zurück zu dem Detektor benötigt.
  • Vorteilhafte Wirkungen der Erfindung und/oder deren vorteilhaften Ausgestaltungen sind die Unterdrückung von Reflexen an einem optisch durchlässigen Element, wie Abdeckelement und insbesondere Durchtrittsfenster, Reduktion des Einflusses von Schmutz hierauf, Optimierung von Messentfernung und Messtiefe eines LIDAR-Systems und weitestgehende Unterdrückung der Detektion störender Hintergrundstrahlung.
  • In der vorliegenden Erfindung wird vorgeschlagen, einen Detektor, mit dem von einem Medium, das zuvor mit einem Laserpuls bestrahlt worden ist, kommendes Licht erfassbar ist, schnell zu schalten (engl. gating), beispielsweise um nur das rückgestreute Licht aus der erwünschten Messentfernung und Messtiefe zu erhalten.
  • In vorteilhaften Ausgestaltungen lassen sich durch entsprechende vorteilhafter Einstellung z.B. durch schnelles Schalten des Detektors Reflexe an einer Scheibe und Schmutz unterdrücken und das Hintergrundlicht reduzieren. Weiter können durch geeignete Einstellung oder sogar dynamische Regelung der Schaltzeiten (Gatezeiten) der Messabstand und die Messtiefe angepasst werden.
  • Die Anpassung der Schaltzeiten kann gemäß einer Weiterbildung der Erfindung zum Beispiel auch je nach Intensität des Signals, z.B. aufgrund Änderungen in der Rückstreucharakteristik, und Systemanforderungen, z.B. Messung einer eigenen Geschwindigkeit der LIDAR-Vorrichtung, beispielsweise Fluggeschwindigkeit bei luftfahrzeuggetragenen Anwendungen, erwartete Böengradienten etc. gesteuert oder geregelt werden, so dass das System immer im Optimum der gegenläufigen Parameter Messentfernung/Messtiefe und Signalintensität/Genauigkeitsanforderung betrieben wird.
  • Vorzugsweise ist die LIDAR-Vorrichtung auf einem bewegten Träger angeordnet, wobei Zeitpunkte und/oder Zeitdauern zum Aktivieren/Deaktivieren des Detektors abhängig von der Geschwindigkeit des Trägers gesteuert sind.
  • Gemäß einer weiteren Weiterbildung der Erfindung kann das System umgeschaltet werden zwischen verschiedenen Modi wie beispielsweise ungenauerer, aber weiter vorausschauender Messung zur Erhöhung der Sicherheit (negative -g -prevention) und Erhöhung des Reisekomforts oder aber kürzerreichweitigere, aber genauere Messung für Flügellastreduktion oder in noch kürzerer Entfernung für optische Luftdatenmessung.
  • Bei sich ändernder Signalintensität aufgrund beispielweise schwankender Rückstreuung oder reduzierter Anforderungen an die Messentfernung aufgrund beispielsweise reduzierter Fluggeschwindigkeit bei luftfahrzeuggetragenen Anwendungen kann mit den Mitteln einer vorteilhaften Ausgestaltung dieser Erfindung die Messentfernung angepasst werden.
  • Ebenso kann bei sich ändernder Signalintensität aufgrund beispielsweise schwankender Rückstreuung oder reduzierter Anforderungen an die Messtiefe beispielsweise in Erwartung nur langer Böen mit geringen Gradienten mit den Mitteln einer vorteilhaften Ausgestaltung dieser Erfindung die Messentfernung angepasst werden.
  • Vorteilhaft wird wenigstens eine Zeitdauer T1, T2 und/oder wenigstens ein Zeitpunkt t1, t2 zur Veränderung des räumlichen Messbereichs r2-r1 für unterschiedliche Messaufgaben unterschiedlich ausgewählt, gesteuert, geregelt und/oder eingestellt.
  • Dabei wird besonders bevorzugt die erste Zeitdauer T1 bei einem bewegten Messsystem abhängig von der Geschwindigkeit des Messsystems von Messpuls zu Messpuls innerhalb eines Belichtungsvorganges verändert.
  • Vorzugsweise wird das Verfahren zur Vermessung von Luftgeschwindigkeiten von einem Luftfahrzeug aus durchgeführt.
  • Besonders bevorzugt wird das Verfahren zur Sicherheit und Komforterhöhung mit größerer Messentfernung, zur Lastreduktion von Bauteilen des Luftfahrzeuges mit mittlerer Messentfernung mit höherer Genauigkeit und zur optischen Messung von Luftdaten mit kurzer Messentfernung durchgeführt und die wenigstens eine Zeitdauer T1, T2 und/oder wenigstens eine der Zeitpunkte t1, t2 entsprechend diesen Messaufgaben eingestellt.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist ein Doppler-Lidar-System zur Messung von Geschwindigkeiten, beispielsweise der Luftgeschwindigkeit, unter Verwendung der Direktempfangs-Technik vorgesehen, bei der der Detektor mit einer schnellen Schalteinrichtung mit Schaltzeiten im Bereich kleiner oder deutlich kleiner 1 Millisekunde ausgestattet ist. Die Schalteinrichtung ist derart ausgebildet, dass beispielsweise über eine Steuerelektronik oder sonstige Steuereinrichtung die Dauer der Belichtung des Detektors und/oder der Zeitpunkt der Belichtung des Detektor gesteuert werden kann. Die Steuerung erfolgt vorzugsweise derart, dass die Messtiefe und/oder der Messabstand eingestellt werden kann.
  • Ein weiterer vorteilhafter Aspekt der Erfindung betrifft ein Lidar-System, insbesondere ein Doppler-Lidar-System zur Messung von Geschwindigkeiten, beispielsweise der Luftgeschwindigkeit, unter Verwendung der Direktempfangs-Technik, bei der als Detektor ein bildgebender Detektor (beispielsweise eine Kamera) oder ein oder mehrere einzelne lichtempfindliche Elemente, beispielsweise Photodioden, Photomultiplier, verwendet werden. Als Detektor können auch Arrays solcher lichtempfindlicher Elemente, CCD-Chips oder dergleichen Verwendung finden.
  • Gemäß einem weiteren vorteilhaften Aspekt der Erfindung weist die Schalteinrichtung ein vor den Detektor geschaltetes Schaltelement auf, das zum Aktivieren des Detektors Licht durchlässt und zum Deaktivieren das Licht abblockt.
  • Ein Umschalten zwischen diesen Zuständen ist mit den erwähnten kurzen Schaltzeiten möglich. Beispiele für solche Schaltelemente sind eine schaltbare Mikrokanalplatte (gateable microchannel plate), ein zur Schaltung verwendetes elektrooptisches Material (bspw. LiNbO3), eine Flüssigkristallzelle oder ein zum Schalten bewegbares mikromechanisches Element (beispielsweise ein Mikrospiegelarray).
  • Anstelle oder zusätzlich zu einem solchen Schaltelement kann die Schaltung aber auch unmittelbar an dem Detektor selbst erfolgen. Hierzu ist gemäß einem vorteilhaften Aspekt der Erfindung vorgesehen, dass die Schaltung elektrisch am Detektor erfolgt. Im Falle eines Lichtdetektorarrays, das als Detektor eingesetzt wird, wird eine Schaltung vorzugsweise an jedem Ausgang für jedes lichtsensitive Detektorelement durchgeführt.
  • Gemäß einem vorteilhaften Aspekt der Erfindung bleibt der Detektor zumindest für die Zeit ausgeschaltet, die der Strecke des Lichtes von der Strahlquelle bis zu einem optischen Element, wie insbesondere einem Durchtrittsfenster des Lichtstrahls in die freie Umgebung, beispielsweise einem Fenster in einer Flugzeughaut, und wieder zurück zum Detektor benötigt, so dass ein möglicher Reflex an diesem optisch durchlässigen Element, insbesondere Fenster, oder einer sich darauf befindlichen (Schmutz)schicht nicht vom Detektor wahrgenommen werden kann.
  • Gemäß einem weiteren vorteilhaften Aspekt der Erfindung wird der Detektor nach einer Zeit, die der Laufzeit des Lichtes von der Strahlquelle bis zum Erreichen des angestrebten Messvolumens und gegebenenfalls nach Durchlaufen derselben hin- und wieder zurück zum Detektor entspricht, wieder so geschaltet, dass er kein Licht mehr detektiert, so dass die Detektion eventuellen Hintergrundlichtes reduziert wird.
  • Gemäß einem weiteren vorteilhaften Aspekt der Erfindung wird die einer minimalen Messentfernung r1 entsprechende Zeit, die das Licht von der Strahlquelle bis zum Beginn des gewünschten Messvolumens und gegebenenfalls zurück zum Detektor benötigt, oder die maximale Messentfernung r2, die das Licht von der Strahlquelle bis zum Ende des gewünschten Messvolumens und gegebenenfalls zurück zum Detektor benötigt, in Abhängigkeit von Messparametern wie beispielsweise der erforderlichen Intensität, Genauigkeit etc. des detektierten Signals eingestellt.
  • Gemäß einem weiteren vorteilhaften Aspekt der Erfindung wird die einem minimalen räumlichen Messbereich oder Messvolumen r2-r1 entsprechende Zeit, die das Licht zum Durchlaufen des Messbereichs/Messvolumens und gegebenenfalls zurück benötigt, in Abhängigkeit von Systemparametern wie beispielsweise Fluggeschwindigkeit eines Luftfahrzeuges, z.B. Flugzeugs, in welchem das LIDAR system montiert ist, oder sonstiger die erforderliche Messentfernung beeinflussender Verfahren eingestellt.
  • Gemäß einem weiteren vorteilhaften Aspekt der Erfindung wird die Einstellung der r1, r2 entsprechenden Zeitdauern T1, T1+T2 dynamisch während eines länger dauernden Messeinsatzes gesteuert oder geregelt.
  • Gemäß einem weiteren vorteilhaften Aspekt der Erfindung wird die einem minimalen Messvolumen r2-r1 entsprechende Zeitdauer T2, die das Licht zum Durchlaufen des Messvolumens und gegebenenfalls zurück benötigt, in Abhängigkeit von Messparametern wie beispielsweise der erforderlichen Intensität des detektierten Signals eingestellt oder geregelt.
  • Gemäß einem weiteren vorteilhaften Aspekt der Erfindung wird die einem minimalen Messvolumen r2-r1 entsprechende Zeit, die das Licht zum Durchlaufen des Messvolumens und gegebenenfalls zurück benötigt, in Abhängigkeit von Systemparametern wie beispielsweise der erwarteten Dynamik des Messsignals, Kohärenz einer zu messenden Luftböe etc, gemessen.
  • Die Einstellung der Zeit kann vorteilhafterweise dynamisch während eines länger dauernden Messeinsatzes gesteuert oder geregelt werden.
  • Gemäß einem weiteren vorteilhaften Aspekt der Erfindung erfolgt die Einstellung der entsprechenden Schaltzeit und/oder Belichtungszeit nach aktueller Erfordernis oder sequentiell zur Erfüllung unterschiedlicher Messaufgaben. Beispielsweise wird eine große Messentfernung für Sicherheit/Komforterhöhung, eine kurze Messweite mit erhöhter Genauigkeit zur Flügellastreduktion und ganz kurze Reichweite zur optischen Messung von Luftdaten eingestellt.
  • Gemäß einem weiteren vorteilhaften Aspekt der Erfindung wird zur Messung eines Referenzsignals, welches der Laseranordnung entnommen und nicht im Messvolumen gestreut wurde, eine entsprechend verkürzte Zeit zur Schaltung des Detektors, und zwar in Bezug auf Zeitpunkt und/oder Zeitdauer, verwendet.
  • Vorzugsweise erfolgt eine Erfassung des Referenzsignals periodisch oder zufällig in einem jeweiligen Messzyklus der LIDAR-Messung.
  • Besonders bevorzugt wird ein zu detektierendes Signal, insbesondere das Referenzsignal und/oder die abgestrahlte Strahlung, vor Auftreffen auf den Detektor über eine optische Verzögerungsstrecke geleitet, um das Signal zu verzögern.
  • Die Messung des Referenzsignals kann insbesondere periodisch oder zufällig im gesamten Messzyklus der LIDAR-Messung erfolgen. Entsprechend können dadurch die Schaltzeiten des Detektors periodisch oder zufällig geändert werden. Die vorgenannten Schritte werden vorzugsweise automatisch in einer entsprechend ausgebildeten, zum Beispiel mit einer entsprechend eingerichteten und/oder programmierten Steuerung versehenen (Direktempfang-Doppler-)LIDAR-Vorrichtung durchgeführt.
  • Bei einer besonders bevorzugten Ausgestaltung der Erfindung wird wenigstens die erste Zeitdauer T1 zwischen dem Aussenden des Laserpulses und der Einschaltzeitpunkt t1 oder andere relevante Zeitdauern oder Zeitpunkte abhängig von der Geschwindigkeit eines Trägers der LIDAR-Vorrichtung gesteuert oder geregelt. Damit kann man insbesondere aus einem bewegten System wie einem Luftfahrzeug oder dergleichen heraus ein in einem ortsfesten Koordinatensystem ortsfestes Messvolumen vermessen. In einer konkreten praktischen beispielhaften Ausgestaltung wird zum Beispiel die erste Zeitdauer T1 innerhalb einer Belichtung, die mit mehreren der Laserpulse durchgeführt wird, von Puls zu Puls so verkürzt, dass das Messvolumen trotz der Eigenbewegung des Trägers (z.B. Flugzeugs) im luftbezogenen äußeren Koordinatensystems für jeden aufgenommenen Laserpuls konstant ist.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Darin zeigen
  • Fig. 1
    eine schematische Darstellung einer flugzeuggetragenen LIDAR-Vorrichtung am Beispiel einer Messanordnung eines LIDARS zur vorausschauenden Turbulenzmessung in einem Flugzeug mit Kennzeichnung von drei Strecken r1, r2, 20;
    Fig. 2
    eine schematische Darstellung einer bei der Vorrichtung von Fig. 1 einsetzbaren Detektoranordnung am Beispiel einer Detektoranordnung bei Direktempfang;
    Fig. 3
    ein Beispiel eines Interferogramms (fringe image), das mit der Detektoranordnung von Fig. 3 aufgenommen wird;
    Fig. 4a
    eine schematische Darstellung eines Zeitdiagramms mit An- und Abschaltzeiten zum Schalten der Detektor-Anordnung;
    Fig. 4b
    eine schematische Darstellung analog zu Fig. 4a eines Zeitdiagramms mit An- und Abschaltzeiten zum Schalten der Detektor-Anordnung mit mehreren Schaltvorgängen innerhalb einer Belichtungszeit;
    Fig. 5
    eine schematische Darstellung der Anordnung eines Zählers, der durch einen Teil eines Sendestrahls getriggert ist und einer Schalteinrichtung zum Schalten der Detektor-Anordnung einen Schaltimpuls zuführt;
    Fig. 6a
    eine schematische Darstellung eines Ausführungsbeispiels für einen Detektor mit vorgesetztem Schalter;
    Fig. 6b
    eine schematische Darstellung eines weiteren Ausführungsbeispiels für einen Detektor mit einem CCD-Array und mit einer Mikrokanalplatte als Schalter;
    Fig. 7
    ein schematisches Diagramm zur Veranschaulichung eines Beispiels der Wahl von Schaltzeiten T1 und T2 bei unterschiedlichen Ziel-Messparametern;
    Fig. 8
    eine schematische Darstellung einer beispielhaften Anordnung zur wahlweisen Messung des direkten Laserstrahls als Referenz oder des atmosphärischen Rückstreusignals bei entsprechender Wahl der Zeiten T1 und T2; und
    Fig. 9
    eine schematische Darstellung von Schaltflanke τ zum Aktivieren und/oder Deaktivieren des Detektors.
  • Fig. 1 zeigt eine schematische Darstellung einer Direktempfang-Doppler-LIDAR-Vorrichtung 10. Die Direktempfang-Doppler-LIDAR-Vorrichtung 10 ist in dem dargestellten Beispiel in einem Luftfahrzeug, dargestellt am Beispiel eines Flugzeuges 13, als Träger eingebaut.
  • Die Direktempfang-Doppler-LIDAR-Vorrichtung 10 weist eine Laserquelle 11 mit relativ schmaler Bandbreite (Einfrequenzbetrieb, typischerweise einige kHz bis MHz Linienbreite) auf. Das Licht der Laserquelle 11 - ausgesendeter Laserstrahl 15 - wird durch ein Fenster 14 in die Atmosphäre 16 gesendet. In der Atmosphäre 16 wird das Licht der Laserquelle 11 an Teilchen 17a, 17b, 17c, ... der Luft in dem hier beispielhaft dargestellten Fall elastisch gestreut. Das Streulicht 18 wird von einer Detektor-Anordnung 12 aufgenommen. In einer Auswerteeinrichtung 19 wird aus der Dopplerverschiebung des an den Streupartikeln - Teilchen 17a, 17b, 17c - , welche sich relativ zur Direktempfang-Doppler-LIDAR-Vorrichtung 10 bewegen, rückgestreuten Streulichts 18 die Relativgeschwindigkeit bestimmt.
  • Weiter ist eine Schalteinrichtung 24, beispielsweise vor dem Detektor, zum Umschalten zwischen einem Aktiv-Zustand, in dem Licht detektiert werden kann, und einem Inaktiv-Zustand, in dem Licht nicht detektiert werden kann, vorgesehen. Weiter ist eine Steuereinrichtung 22 vorgesehen, mittels der die Schalteinrichtung 24 abhängig von der Aussendung eines Laserpulses durch die Laserquelle 11 gesteuert werden kann.
  • Das Fenster 20 ist ein für die verwendete Strahlung optisch durchlässiges Element zum Abdecken der Direktempfang-Doppler-LIDAR-Vorrichtung 10 gegenüber Umwelteinflüssen (Abdeckelement) und befindet sich in einem bestimmten Abstand 20 von der Laserquelle 11 und der Detektor-Anordnung 12.
  • Bei der Streuung an den Teilchen 17a, 17b und 17c unterscheidet man in diesem Zusammenhang einerseits die Streuung an Molekülen der Luft (Rayleigh-Streuung) und die Streuung an Aerosolen (Staubpartikel, Salzpartikel etc., Mie-Streuung). Die Rayleighstreuung kann zuverlässig in allen atmosphärischen Schichten und unabhängig von meteorologischen Einflüssen gemessen werden; sie ist nur abhängig von der Teilchendichte, welche kontinuierlich zu größeren Höhen abnimmt. Dagegen ist die Streuung an Aerosolen sehr stark von deren lokaler Dichte abhängig, die örtlich und insbesondere in Abhängigkeit von Wettereinflüssen und anderen Einflüssen stark variieren kann.
  • Beispielsweise ist die Aerosolstreuung sehr stark in Gebieten mit hoher Schadstoffemission, wie beispielsweise in Industriegebieten oder vulkanischen Gebieten. Dagegen ist die Aerosolstreuung recht niedrig im Bereich von großen Gewässern, beispielsweise über den Ozeanen oder im Bereich der südlichen Hemisphäre der Erde. Insbesondere werden die Aerosole aber auch durch beispielsweise starken Regen ausgewaschen, so dass deren Konzentration dann sehr gering sein kann.
  • Insgesamt nimmt die auf der Aerosoldichte beruhende Mie-Streuung überproportional gegenüber der Rayleighstreuung an Molekülen der Luft ab. Für eine zuverlässige Messung von Turbulenzen etc. ist daher eine rein auf Aerosolen beruhende Messung nicht geeignet, vielmehr sollte die Rayleighstreuung auch gemessen werden können.
  • Da die Intensität der Rayleighstreuung proportional dem Kehrwert der Wellenlänge zur vierten Potenz ist, verwendet man sinnvollerweise eine Laserquelle 11 bei möglichst kurzer Wellenlänge, also beispielsweise im UV-Bereich.
  • Ein Beispiel für die Detektor-Anordnung 12 der Direktempfang-Doppler-LIDAR-Vorrichtung 10 ist in Fig. 2 näher dargestellt. Die gestreute Strahlung - Streulicht 18 - wird über eine Optik 26 auf einen Detektor 35 geleitet und detektiert.
  • Zur Messung einer Frequenzverschiebung sind prinzipiell zwei Messmethoden denkbar. Bei einer Messmethode, der sogenannten kohärenten Detektion, wird die feste Phasenbeziehung zwischen dem ausgesandten Laserstrahl hinreichend schmaler Linienbreite und der empfangenen Streustrahlung ausgenutzt. Aufgrund der Kohärenz ist dieses Messverfahren sehr empfindlich. Zur Messung der Frequenzverschiebung wird ein Teil des Laserstrahls vor Aussendung in die Atmosphäre umgeleitet, zeitverzögert und kollinear mit der empfangenen Streustrahlung auf einem Photodetektor hinreichend großer Bandbreite gemischt. Aufgrund der Nichtlinearität des Photodetektors kann die Differenzfrequenz als elektrisches Signal direkt abgegriffen werden, welche direkt der Dopplerverschiebung entspricht und daher der Relativgeschwindigkeit proportional ist.
  • Voraussetzung für diese Meßmethode ist eine hinreichend schmalbandige Laserquelle, so dass die Kohärenzlänge des Lichts größer als die Wegdifferenz zwischen verzögerter Referenzstrahlung und empfangener Streustrahlung ist. Weiter darf die Streustrahlung selbst aber zu keiner wesentlichen Linienverbreiterung beitragen, da ansonsten die Kohärenz zerstört würde. Typische Grenzwerte für die maximale Linienbreite sowie Verbreiterung bei Streuung liegen im Bereich einiger MHz.
  • Nun ist die an Aerosolen gestreute Strahlung zwar nahezu gleich schmalbandig wie die einfallende Strahlung, dies gilt jedoch nicht für die an Molekülen gestreute Strahlung: Aufgrund der Boltzmannverteilung der Partikelgeschwindigkeiten bewegen sich die sehr leichten Moleküle bei üblichen Temperaturen weit über dem absoluten Nullpunkt mit hoher Geschwindigkeit (Brown'sche Molekularbewegung), welche zu einer erheblichen Dopplerverbreiterung alleine aufgrund dieses Effektes führt. Typische Werte liegen im Bereich um 3 GHz. Eine kohärente Detektion gemäß des oben beschriebenen Verfahrens (Mischung auf einem Photodetektor) ist daher für eine Messung der Rayleighstreuung nicht möglich.
  • Zur Messung der Rayleighstreuung (Streuung an Molekülen) wird daher bei dem hier dargestellten Verfahren und bei der hier dargestellten Direktempfang-Doppler-LIDAR-Vorrichtung 10 die in Fig. 2 dargestellte sogenannte Direktempfangstechnik verwendet, welche die Phase der Strahlung nicht benötigt und lediglich eine Intensitätsmessung vornimmt. Um die Doppler-Frequenzverschiebung zu bestimmen, ist ein weiteres Element - zum Beispiel ein Fabry-Perot-Interferometer, Etalon, anderes Interferometer etc. 33 - vorgesehen, welches eine Frequenzdiskriminierung oder Wellenlängen-Dispersion aufweist.
  • Bei der in Fig. 2 dargestellten Detektor-Anordnung 12 wird hierzu die empfangene Strahlung 32 der Detektor-Anordnung 12 zugeführt. Die empfangene Strahlung 32 wird über eine erste Optik - Kollimationsoptik 31 - einem sogenannten Fabry-Perot-Etalon 33, welches zwei planparallele, teilreflektierende Platten oder eine einzelne planparallelen Platte mit Teilreflexion auf beiden Oberflächen aufweist, zugeführt, welches durch Selbstüberlagerung der Welle in einem Resonator zu einer Interferenz der Welle mit sich selbst führt.
  • Auf diese Weise entsteht durch Abbildung mittels einer zweiten Optik 36 auf den Detektor 35 eine räumliche Intensitätsverteilung. In dem dargestellten Beispiel entsteht durch Vielfachreflexion eine kreisförmige Interferenzfigur - sogenannte Ringe oder engl. Fringes, siehe Fig. 3. Maxima und Minima entsprechen dabei jeweils Überlagerungen gleichen Winkels. Eine Änderung des Radius dieses Interferenzmusters von Fig. 3 ist direkt proportional der Änderung der Wellenlängen bzw. Frequenzänderung des detektierten Signals und damit der Änderung der Dopplershift und somit der Änderung der Relativgeschwindigkeit der Streupartikel, also beispielsweise der streuenden Teilchen 17a, 17b, 17c der Luft (Moleküle, Aerosole) gegenüber dem Messsystem. Beispielsweise lässt sich damit bei flugzeuggetragenen Systemen auch die Relativgeschwindigkeit der Luft in Bezug auf das Flugzeug 13 bestimmen.
  • Vergleicht man die Radien des Interferenzmusters beispielsweise mit einem gleichzeitig oder zu einem anderen Zeitpunkt gemessenen Signal des direkt abgeleiteten Lasersignals, so kann auch die absolute Relativgeschwindigkeit (im Unterschied zur vorher beschriebenen Änderung der Relativgeschwindigkeit) bestimmt werden. Erfolgt diese Messung gleichzeitig oder hintereinander in unterschiedliche Raumrichtungen (Aussenden des Laserstrahls in unterschiedliche Raumrichtungen und Messung der Rückstreuung daraus), so kann der zwei- oder auch dreidimensionale relative Geschwindigkeitsvektor bestimmt werden. Entsprechend können die hier vorgeschlagenen Prinzipien und Lösungen für eine oder mehrere Messrichtungen angewandt werden.
  • Dieses in Fig. 3 als Beispiel dargestellte Interferenzmuster ist nun mit einem geeigneten Detektor aufzunehmen.
  • Die Detektoranordnung 12 kann unterschiedlich aufgebaut sein. Verschiedene Lösungen beinhalten die Verwendung von Filtern an den Kanten der Interferenzmaxima mit nachgeordneten Photodetektoren, dem Interferenzmuster nachempfundene konzentrische Ringelektroden eines Photomultipliers, die Umformung des kreisförmigen Musters in ein lineares mittels beispielsweise Faseroptik und Detektion mit einem CCD-Zeilendetektor oder die Detektion mit einem zweidimensionalem Photo-Detektor (beispielsweise CCD-Kamera). Für die dargestellte Direktempfang-Doppler-LIDAR-Vorrichtung 10 sind alle diese Detektoren und auch andere geeignet. Der Einfachheit halber wird die Direktempfang-Doppler-LIDAR-Vorrichtung 10 sowie ein damit durchführbares Messverfahren jedoch am Beispiel der Verwendung einer CCD-Kamera als Detektor 35 (siehe Fig. 2) mit einer vorgeschalteten Mikrokanalplatte 34 zur Verstärkung weiter beschrieben. Die Mikrokanalplatte 34 ist in einigen Ausführungsformen auch als Schalter verwendet.
  • Nun beträgt die Lichtlaufzeit n*r/c, also Brechungsindex n mal Strecke r durch Vakuum-Lichtgeschwindigkeit c. Im beschriebenen Falle eines sogenannten monostatischen Systems, bei welchem Sender - hier: Laserquelle 11 - und Empfänger - hier: Detektor-Anordnung 12 - sich in ähnlicher Position befinden und Rückstreuung zur LIDAR-Messung verwendet wird, beträgt die Lichtlaufzeit das Doppelte hieraus, also 2 x n x r/c. Es kann also sehr exakt berechnet werden, nach welcher Zeit der Aussendung eines Lichtimpulses dieser aus einer definierten Entfernung wieder empfangen wird.
  • Wie in den Fig. 4a und 4b veranschaulicht, wird bei der hier beschriebenen Direktempfang-Doppler-LIDAR-Vorrichtung 10 und dem damit durchführbaren Messverfahren der Detektor 35 zuvor frühzeitig eingeschaltet ("Belichtung"). Durch z.B. die als Schalter fungierende Mikrokanalplatte 34 wird die gesamte Detektoranordnung 12 jedoch nun im Regelfall deaktiviert und erst nach einer ersten Zeitdauer T1 nach Aussenden eines Laserpulses 40 (Fig. 5), zu einem Einschaltzeitpunkt t1, aktiviert, so dass das Streulicht 18 erst aus einer Entfernung (Messentfernung) von mindestens r1= c*T1/2*n detektiert wird entsprechend der ersten Zeitdauer T1, die das Licht von der Strahlquelle bis zum Beginn des gewünschten Messvolumens und gegebenenfalls zurück zum Detektor benötigt. In Fig. 1 ist der Einfachheit halber eine Strahlausbreitungsrichtung oder Messrichtung parallel zur Flugrichtung skizziert. Wird unter einem Winkel α zur Flugrichtung gemessen, so ist die erste Zeitdauer T1, sowie eine zweite Zeitdauer T2, innerhalb der die Detektoranordnung aktiv geschaltet ist (zwischen dem Einschaltzeitpunkt t1 und einem Ausschaltzeitpunkt t2) durch cos α zu teilen, um die Entfernung r vor dem Flugzeug zu errechnen. Soll r1, r2 nicht die Entfernung vor dem Flugzeug, sondern die Entfernung zwischen LIDAR und Messvolumen bezeichnen, so entfällt diese Teilung.
  • Weiter kann, wie ebenfalls aus Fig. 4a ersichtlich, bei dem hier dargestellten Messverfahren sowie der entsprechend ausgebildeten Direktempfang-Doppler-LIDAR-Vorrichtung 10 die Detektoranordnung 12 nach der zweiten Zeitdauer T2, zu dem Ausschaltzeitpunkt t2, wieder deaktiviert werden, während der Detektor 35 noch im Zustand "Belichtung" ist" so dass lediglich das Streulicht 18 in der Entfernung zwischen r1=c*T1/2*n und r2=c*(T1+T2)/2*n (Messtiefe) (vergleiche auch Fig. 1) detektiert wird und so die maximale Messentfernung r2, die das Licht von der Strahlquelle bis zum Ende des gewünschten Messvolumens und gegebenenfalls zurück zum Detektor 35 benötigt, in Abhängigkeit von Messparametern wie beispielsweise der erforderlichen Intensität des detektierten Signals eingestellt werden kann, wobei der Detektor weiter im Zustand "Belichtung" ist. Das Ein- und Abschalten erfolgt mittels der Schalteinrichtung 24.
  • Wird beispielsweise eine CCD-Kamera als Detektor 35 verwendet, welche bei einer Bildrate von 60 Bilder pro Sekunde eine typische Belichtungszeit von 16 ms aufweist, wird dieses Bild nur mit einem Bruchteil dieser Zeit tatsächlich belichtet. Dies ist in Fig. 4a, 4b näher dargestellt, wo in der obigen Darstellung die Belichtungszeiten für die CCD-Kamera dargestellt sind und unten die Zeitdauern T1, T2 und Zeitpunkte t1, t2 (Fig. 4a) für die Schalteinrichtung. Die Belichtung erfolgt damit genau so, dass nur das in gewünschten Entfernung gestreute Licht detektiert wird, siehe Fig. 4a, 4b. Zusätzlich strahlt auch nur während dieser kurzen Zeit Hintergrundlicht ein. Auf dieses Weise wird aber nur ein vergleichsweise geringer Teil der Hintergrundstrahlung detektiert, während bei ständig geöffneter Detektoranordnung 12 während der gesamten Belichtungszeit von 16 ms Hintergrundlicht aufgenommen würde
  • Fig. 4b zeigt den Fall der Detektion von mehreren Laserpulsen (in diesem Beispiel vier) während einer einzigen (Kamera- oder Detektor-)Belichtungszeit. Entsprechend der Zahl aufzunehmender Laserpulse wird das Schalten mit den Zeitdauern T1 und T2 entsprechend oft durchgeführt. Hier zeigt sich deutlich der Vorteil, dass durch Abschalten der Detektoranordnung nach der zweiten Zeitdauer T2 mit einer Dauer T1+x bis zur Detektion des nächsten Laserpulses entsprechend weniger Hintergrundlicht (in den Zeiträumen n z* T1+x) aufgenommen und die Signalqualität damit deutlich verbessert wird, während mehrere Pulse so zu einer einzigen Gesamtmessung (Belichtungszeit) aufintegriert werden.
  • Hierbei ist vorteilhaft, wenn die Schaltzeit τ zum Aktivieren und/oder Deaktivieren der Detektoranordnung 12 möglichst gering ist. Diese Schaltzeiten τ (Flanken) sind in Fig. 9 näher dargestellt. Insbesondere sollte diese Schaltzeit τ sehr viel kleiner 1 Millisekunde betragen, vorzugsweise im Bereich von Nanosekunden oder Mikrosekunden. Dies lässt sich z.B. durch ein entsprechend schnelles Schaltelement der Schalteinrichtung 24, zum Beispiel einen dem Detektor 35 vorgeschalteten Schalter, oder durch ein z.B. elektrisches Schalten am Ausgang des Detektors 35 erreichen. Eine beispielhafte Anordnung der Schalteinrichtung 24 ist in Fig. 5 näher dargestellt, auf die im folgenden Bezug genommen wird.
  • Fig. 5 zeigt die Laserquelle 11 mit dem Sendestrahl - ausgesendeter Laserstrahl 15 - und einer Auskoppeleinrichtung 50 zum Auskoppeln eines Teils des Laserstrahls 15 auf einen Photodetektor 52: Der Photodetektor ist über eine Eingangsschnittstelle 51 mit einem Zähler 53 verbunden. Weiter ist der Zähler 53, der Teil der Steuereinrichtung 22 zur Zeitsteuerung des Aktivierens/Deaktivierens der Detektoranordnung 12 ist, und ein Schaltelement der Schalteinrichtung 24, hier in Form eines Schalters 58 dargestellt, der im Weg des zu dem Detektor 35 gerichteten zu detektierenden Streulichts 18 angeordnet ist. Der Schalter 58 könnte durch die Mikrokanalplatte 34 oder durch einen anderen Schalter gebildet werden.
  • Die Triggerung des An- und Abschaltens erfolgt durch eine geeignete Uhr oder den Zähler 53 oder andere geeignete Mittel, welche ihrerseits einen Eingang zur Detektion des ausgestrahlten Laserpulses 40 haben. In dem dargestellten Beispiel hat der Zähler 53 eine Eingangsschnittstelle 51 mit dem Photodetektor 52, der einen kleinen Bruchteil des ausgesendeten Laserstrahls 15 empfängt. Hierzu ist die Auskoppeleinrichtung 50 mit einem durch schräggestellten Fenster 55 versehen, durch welches der Bruchteil ausgekoppelt wird. Alternativ kann die Auskoppelvorrichtung Streulicht am Austrittsfenster oder an einem Auskoppelspiegel der Laserquelle 11 usw. ausnutzen.
  • Von der Eingangsschnittstelle 51 wird ein entsprechend aufbereitetes elektrisches Ausgangssignal dem Zähler 53 zugeführt, so dass die erste Zeitdauer T1 auf diesen Zeitpunkt der Aussendung des Laserpulses 40 bezogen werden kann.
  • Der Zähler 53 führt ein Schaltsignal 57 dem Schalter 58 an dessen Eingang 62 zu. Der Schalter 58 ist im Empfangsstrahl - Streulicht 18 - angeordnet und lässt diesen je nach Schaltzustand zu dem Detektor 35 durch oder nicht.
  • Typische Detektoren 35 sind wie zuvor erwähnt Kameras, beispielsweise CCD-Kameras oder vergleichbare, also auch beispielsweise CMOS-Kameras, sowie aus Detektor und schaltbarer Mikrokanalplatte gebildete sogenannte intensivierte Kameras. Weitere mögliche Detektorprinzipien beinhalten 2D-Photodetektor-Arrays, Zeilenarrays von Photodetektoren, Photomultiplier mit konzentrisch angeordneten Ringelektroden oder andere 1- oder 2D- Anordnungen von Photodetektoren oder auch Einzeldetektoren.
  • Wie in den Fig. 6a und 6b vergleichend dargestellt können als "Schalter 58" zum An- und Abschalten des Detektors 35 verschiedene Anordnungen verwendet werden:
    • Fig. 6a zeigt eine in den Strahlengang gestellte Schalteinheit 60, die als mechanischer Verschluss, insoweit er die Anforderungen an die kurzen Schaltzeiten τ von kleiner 1 ms, vorzugsweise im Bereich von Nano- oder Mikrosekunden, erfüllt, oder als elektrooptischer Schalter (zum Beispiel elektrooptische LiNbO3), als akustooptischer Schalter, faseroptischer Schalter, als Flüssigkristall-Zelle, mikromechanischer Schalter (zum Beispiel Mikrospiegel oder Mikrospiegel-Arrays) oder als elektrischer Schalter ausgebildet sein kein. Geeignet für die Schalteinheit 60 sind insbesondere solche Schalter 58, die über den Ansteuereingang 62 verfügen und in der Lage sind, den Detektor 35 bzw. den Lichteinfall im Empfangspfad vor dem Detektor 35 entsprechend schnell zu schalten.
  • Ein anderer, hier nicht näher dargestellter, zum Bilden der Schalteinrichtung 24 in entsprechender Weise ebenfalls geeigneter Schalter ist vergleichbar zu der Schalteinheit 60 aufgebaut, jedoch an dem Detektor 35 anschließbar und in der Lage, den Detektor 35 bzw. dessen Ausgang entsprechend schnell kurzzuschließen (beispielsweise vor der Belichtung).
  • Bei Verwendung von CCD-Kameras wie in Fig. 6b dargestellt werden insbesondere auch schaltbare Mikrokanalplatten 34 (Microchannel-Plates) eingesetzt, welche ein entsprechend schnelles Schalten über eine größere Fläche (wie für einen CCD-Chip erforderlich) ermöglichen. Derartige schnell schaltbaren Mikrokanalplatten 34 können entweder durch Ansteuerung der Beschleunigungsspannung, oder vorzugsweise durch Ansteuerung einer Gate-Elektrode, meist eine netzförmige Elektrode auf der Photokathode, oder durch beides zugleich geschaltet werden, typisch im Bereich von Nanosekunden.
  • Es können jedoch auch eine ganze Reihe anderer Schalter eingesetzt werden, solange sie ein entsprechend schnelles Schalten ermöglichen.
  • Die einem minimalen Messvolumen r2-r1 entsprechende zweite Zeitdauer T2, die das Licht zum Durchlaufen des Messvolumens und gegebenenfalls zurück benötigt, kann nun in Abhängigkeit von Systemparametern wie beispielsweise Fluggeschwindigkeit eines Flugzeugs 13, in welchem die Direktempfang-Doppler-LIDAR-Vorrichtung 10 montiert ist, oder sonstiger die erforderliche Messentfernung beeinflussender Parameter eingestellt werden, wobei die Zeitdauern T1 und T2 oder Zeitpunkt t1, t2 entweder fest vorgegeben oder dynamisch während eines länger dauernden Messeinsatzes gesteuert oder geregelt werden können (beispielsweise T1 kürzer bei geringeren Fluggeschwindigkeiten und länger bei größeren Fluggeschwindigkeiten, so dass die Zeit zwischen Messung und "Durchfliegen" des Messvolumens konstant ist).
  • Weiter kann die einem minimalen Messvolumen r2-r1 entsprechende zweite Zeitdauer T2, die das Licht zum Durchlaufen des Messvolumens und gegebenenfalls zurück benötigt, ebenfalls in Abhängigkeit von Messparametern wie beispielsweise der erforderlichen Intensität des detektierten Signals eingestellt werden (beispielsweise T2 kleiner bei geringer Rückstreuintensität, damit Kompensation durch größeres Rückstreuvolumen, oder T1 kleiner bei geringer Rückstreuintensität und damit ebenfalls Kompensation durch geringeren Messabstand).
  • Eine andere Möglichkeit besteht nun darin, die einem minimalen Messvolumen r2-r1 entsprechende zweite Zeitdauer T2, die das Licht zum Durchlaufen des Messvolumens und gegebenenfalls zurück benötigt, in Abhängigkeit von Systemparametern wie beispielsweise der erwarteten Dynamik des Messsignals, Kohärenz oder Gradient einer gemessenen oder zu messenden Luftböe etc. anzupassen.
  • Insbesondere kann nun aufgrund des hier vorgestellten Verfahrens die Einstellung der Zeit dynamisch während eines länger dauernden Messeinsatzes gesteuert oder geregelt werden, oder aber fest vorgegeben werden, je nach Erfordernis der Messung und der Einbindung in das Gesamtsystem.
  • Wie in Fig. 7, auf die im folgenden Bezug genommen wird, veranschaulicht, kann beispielsweise die Einstellung der Zeitdauern T1 und T2 auch nach Erfordernis oder sequentiell zur Erfüllung unterschiedlicher Messaufgaben erfolgen. Fig. 7 zeigt hierbei eine längere Messsequenz mit mehreren Einzelmessungen in den Abschnitten 1 bis 8.
  • Beispielsweise kann bei der flugzeuggetragenen Direktempfang-Doppler-LIDAR-Vorrichtung 10 eine große Messentfernung für Sicherheit/Komforterhöhung eingestellt sein, wie dies bei den Abschnitten 3 und 4 in Fig. 7 dargestellt ist. Hierzu ist die erste Zeitdauer T1 groß eingestellt, so dass nur Entfernungen r1 in relativ großem Abstand erfasst werden. Streulicht aus allen näheren Abschnitten erreicht vor dem eingestellten Einschaltzeitpunkt t1 den Detektor 35 und wird somit nicht erfasst. In den Abschnitten 2 und 5 der Fig. 7 ist dagegen eine kurze Messweite mit erhöhter Genauigkeit zur Flügellastreduktion eingestellt. Dies geschieht durch Einstellung der ersten Zeitdauer T1 auf einen kürzeren Wert. In den Abschnitten 6 und 8 von Fig. 7 ist eine ganz kurze Reichweite zur optischen Messung von Luftdaten durch eine entsprechende Auswahl einer kleinen ersten Zeitdauer T1 eingestellt. Diese unterschiedlichen Einstellung können nacheinander automatisch, beispielsweise in einer vorbestimmten Reihenfolge oder auf Anforderung eingestellt werden.
  • Wie gezeigt lässt sich auch die Messtiefe diesen Anforderungen anpassen. Beispielsweise wird eine große Messtiefe bei großer Entfernung, d.h. auf T2 groß gesetzt, wie in Abschnitt 4 von Fig. 7 angegeben, oder eine kleine Messtiefe bei kurzer Entfernung, wie in Abschnitt 1 angegeben, eingestellt. Abschnitt 3 zeigt eine beispielhafte Einstellung der zweiten Zeitdauer T2 bei großer Entfernung aber starker Rückstreuung beispielsweise in Wolken. Abschnitt 1 beschreibt in Relation hierzu die normalen Messbedingungen.
  • Eine weitere Möglichkeit besteht darin, die erste Zeitdauer T1 in Fig. 4b innerhalb einer Belichtung so von Laserpuls zu Laserpuls zu verkürzen, dass das Messvolumen trotz der Eigenbewegung des Flugzeugs 13 im luftbezogenen äußeren Koordinatensystems für jeden aufgenommenen Laserpuls konstant bleibt. Andernfalls würde sich das Messvolumen von Laserpuls zu Laserpuls entsprechend der Flugzeugbewegung verschieben.
  • Weiter wird durch ein Aktivieren und Deaktivieren der Detektoranordnung 12 derart, dass die erste Zeitdauer T1 größer ist als die Zeit, die das Licht für die Strecke - Abstand 20 - in Fig. 1 von der Laserquelle bis zu dem Fenster 14 und wieder zurück zum Detektor 35 benötigt, ein möglicher Reflex an diesem Fenster 14 oder einer sich darauf befindlichen (Schmutz)schicht nicht vom Detektor 35 wahrgenommen. Dies ist besonders vorteilhaft, da Streulicht am Austrittsfenster durch Oberflächenstreuung oder Verschmutzung wesentlich intensiver als das zu detektierende Nutzsignal sein kann und somit eine einwandfreie Detektion des Nutzsignals je nach Umständen extrem stören könnte. Durch die hier beschriebene Direktempfang-Doppler-LIDAR-Vorrichtung 10 und das hier beschriebene Messverfahren kann aber genau dies unterdrückt werden.
  • In einem wie oben beschriebenen LIDAR-System soll oftmals nicht nur die Änderung der Geschwindigkeit, sondern die Geschwindigkeit selbst gemessen werden. Hierzu wäre die Messung der zeitliche Änderung des Interferenzsignals alleine noch nicht ausreichend. Zum Beispiel wird zur Messung der Geschwindigkeit selbst die Änderung des Interferenzsignals in Bezug auf einen Bezugspunkt (zum Beispiel bekannte Geschwindigkeit oder Geschwindigkeit gleich Null) gemessen. Eine Möglichkeit unter Verwendung der hier dargestellten Direktempfang-Doppler-LIDAR-Vorrichtung 10 besteht im wesentlichen darin, einen Teil des ausgesandten Laserlichts - Laserstrahl 15 - direkt (d.h. ohne Aussenden in die Atmosphäre) in die Detektor-Anordnung 12 zu koppeln. Da dieser Teil des Laserlichts keine Streuung an relativ zum System bewegten Partikeln - Teilchen 17a, 17b, 17c - erfährt, beträgt hier die Dopplerverschiebung 0. Das Signal kann damit als Nullpunkts-Referenzsignal verwendet werden.
  • In Fig. 8 wird eine Ausführungsform der Direktempfang-Doppler-LIDAR-Vorrichtung 10 verdeutlicht, bei der dieses Signal nun so gewonnen wird, dass ein Teil - Lasersignal 64 - des von der Laserquelle 11 ausgesandten Signals - Laserstrahl 15 - auf die Detektoranordnung 12 geleitet wird und die erste Zeitdauer T1 nun relativ zur Messung in der Luft relativ kurz so gewählt wird, dass dieses Lasersignal 64 auf dem Detektor 35 registriert wird. Soll das Lasersignal 64 als Referenzsignal gemessen werden, können die Zeitdauern T1 und T2 nun gerade so gewählt werden, dass T1+T2 kleiner ist als die Zeit, bis das Laserlicht - Streulicht 18 - aus der Atmosphäre empfangen wird. Durch Wahl von T1 und T2 kann so ausgewählt werden, ob das Referenzsignal oder das Atmosphärensignal detektiert wird.
  • Umgekehrt kann das Referenzsignal auch beispielsweise mittels einer Faserspule derart verzögert werden, dass durch die Wahl einer entsprechend angepassten ersten Zeitdauer T1 das von der Atmosphäre rückgestreute Signal dadurch unterdrückt wird, dass dieses nur aus einer sehr großen Messentfernung und damit nur äußerst (vernachlässigbar) schwach ist, das zeitverzögerte Referenzsignal aber gerade optimal detektiert wird.
  • Aus praktischen Gründen kann es sinnvoll sein, zuzüglich die Strecke für die Rückstreusignale - Streulicht 15 - aus der Atmosphäre 16 künstlich dadurch zu verlängern, dass in diesen Empfangspfad eine Faserspule eingebracht wird, so dass das Atmosphärensignal deutlich getrennt vom Referenzsignal auf den Detektor 35 trifft und somit die beschriebene Auswahl der Signale durch entsprechende Wahl der Zeitdauern T1 und T2 leichter ermöglicht wird.
  • Die vorbeschriebene Lösung kann bei Messung mehrerer Messrichtungen für jede diese Richtungen angewandt werden, oder nur für einzelne, so dass ein Referenzsignal als Referenz für die jeweils anderen Messrichtungen verwendet wird.
  • Diese Messung des Referenzsignals kann nun periodisch oder zufällig im gesamten Messzyklus der LIDAR-Messung erfolgen, wobei entsprechend die Schaltzeiten des Detektors 35 periodisch oder zufällig geändert werden.
  • Bezugzeichenliste:
  • 10
    Direktempfang-Doppler-LIDAR-Vorrichtung
    11
    Laserquelle
    12
    Detektor-Anordnung
    13
    Flugzeug
    14
    Fenster
    15
    ausgesendeter Laserstrahl
    16
    Atmosphäre
    17a
    Teilchen der Luft
    17b
    Teilchen der Luft
    17c
    Teilchen der Luft
    18
    Streulicht
    19
    Auswerteeinrichtung
    20
    Abstand
    22
    Steuereinrichtung
    24
    Schalteinrichtung
    26
    Optik
    31
    Kollimationsoptik
    32
    empfangene Strahlung
    33
    Fabry-Perot-Etalon
    34
    Mikrokanalplatte
    35
    Detektor
    36
    zweite Optik
    40
    Laserpuls
    50
    Auskoppeleinrichtung
    51
    Eingangsschnittstelle
    52
    Photodetektor
    53
    Zähler
    57
    Schaltsignal
    58
    Schalter
    60
    Schalteinheit
    62
    Eingang des Schalters
    64
    Lasersignal

Claims (15)

  1. Verfahren zur LIDAR-Messung von Geschwindigkeiten, wobei ein Laserstrahl (15) auf das zu messende Medium (16) gerichtet wird und von dem Medium (16) daraufhin abgestrahlte Strahlung (18) mittels eines Detektors (35) gemessen wird, und wobei ein räumlicher Messbereich (r1, r2) durch Aktivieren des Detektors (35) nach einer ersten vorbestimmten oder geregelten Zeitdauer (T1) von weniger als etwa 500µs nach Absenden eines Laserpulses (40) auf das zu messende Medium (16) und Inaktivieren des Detektors (35) nach einer zweiten Zeitdauer (T2) eingestellt wird, umfassend die Schritte:
    a) Aussenden eines Laserpulses (40) bei inaktivem Detektor (35),
    b) Aktivieren des Detektors (35) zu einem vorbestimmten oder geregelten Einschaltzeitpunkt (t1) nach Aussenden des Laserpulses (40) derart, dass ein von dem Medium (16) nach Empfang des Laserpulses (40) gestreuter Strahlungsimpuls (18) empfangen werden kann, und
    c) Inaktiv-Setzen des Detektors (35) zu einem vorbestimmten oder geregelten Ausschaltzeitpunkt (t2), wobei Schritt c) nach Schritt b) durchgeführt wird, und weiter umfassend:
    Einstellen des vorbestimmten oder geregelten Einschaltzeitzeitpunktes (t1) entsprechend einer gewünschten Mindestmessentfernung (r1) von der Laserquelle (11) und
    Einstellen der vorbestimmten oder geregelten zweiten Zeitdauer (T2) zwischen dem Einschaltzeitpunkt (t1) und dem Ausschaltzeitpunkt (t2) entsprechend einer gewünschten Messtiefe (r2-r1), wobei die zweite Zeitdauer (T2) weniger als etwa 1µs beträgt,
    gekennzeichnet durch
    Einschalten des Detektors zu Beginn einer Belichtungszeit und Aktivieren sowie Inaktivieren des Detektors mittels einer Schalteinrichtung während dieser Belichtungszeit, wobei das Schalten mit der ersten und der zweiten Zeitdauer mehrmals durchgeführt wird, um mehrere Laserpulse während einer einzigen Belichtungszeit zu detektieren,
    wobei die Zeitdauern (T1, T2) und/oder der Zeitpunkte (t1, t2) abhängig von den folgenden Parametern geregelt werden:
    • Mindestintensität des detektierten Signals, und
    • Maximalintensität des detektierten Signals.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass eine Umschaltzeit (τ) kürzer als etwa 1µs im Bereich von Nanosekunden ist.
  3. Verfahren nach einem der voranstehenden Ansprüche,
    gekennzeichnet durch
    Einstellen oder Regeln der Zeitdauern (T1, T2) und/oder der Zeitpunkte (t1, t2) in Abhängigkeit von Messparametern und/oder Systemparametern.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die Zeitdauern (T1, T2) und/oder der Zeitpunkte (t1, t2) abhängig von wenigstens einem der folgenden Parameter eingestellt oder geregelt wird:
    • Soll-Intensität des detektierten Signals,
    • Bewegungsgeschwindigkeit einer LIDAR-Vorrichtung, mittels der das Messverfahren durchgeführt wird,
    • erwartete Dynamik des Messsignals,
    • Kohärenz und/oder Gradient einer gemessenen Strömung in dem Medium (16), insbesondere einer Luftböe bei Messung von Luftgeschwindigkeiten.
  5. Verfahren nach einem der Ansprüche 3 oder 4,
    dadurch gekennzeichnet,
    dass wenigstens eine der Zeitdauern (T1, T2) und/oder der Zeitpunkte (t1, t2) während eines länger dauernden Messeinsatzes dynamisch automatisch gesteuert und/oder geregelt wird.
  6. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass wenigstens eine Zeitdauer (T1, T2) und/oder wenigstens ein Zeitpunkt (t1, t2) zur Veränderung des räumlichen Messbereichs (r2-r1) für unterschiedliche Messaufgaben unterschiedlich ausgewählt, gesteuert, geregelt und/oder eingestellt wird.
  7. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die erste Zeitdauer (T1) bei einem bewegten Messsystem abhängig von der Geschwindigkeit des Messsystems von Messpuls zu Messpuls innerhalb eines Belichtungsvorganges verändert wird.
  8. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Verfahren zur Vermessung von Luftgeschwindigkeiten von einem Luftfahrzeug aus durchgeführt wird und dass das Verfahren zur Sicherheit und Komforterhöhung mit größerer Messentfernung, zur Lastreduktion von Bauteilen des Luftfahrzeuges mit mittlerer Messentfernung mit höherer Genauigkeit und zur optischen Messung von Luftdaten mit kurzer Messentfernung durchgeführt und die wenigstens eine Zeitdauer (T1, T2) und/oder wenigstens eine der Zeitpunkte (t1, t2) entsprechend diesen Messaufgaben eingestellt werden.
  9. Verfahren nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass ein Teil des Laserstrahls (15) als Lasersignal (64) zum Liefern eines Referenzsignals auf den Detektor (35) geleitet wird, wobei durch Änderung der Zeitdauern (T1, T2) eine Detektion des Referenzsignals und/oder eine Detektion der von dem Medium abgestrahlten Strahlung (18) ausgewählt wird.
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet,
    dass eine Erfassung des Referenzsignals periodisch oder zufällig in einem jeweiligen Messzyklus der LIDAR-Messung erfolgt.
  11. Verfahren nach einem der Ansprüche 9 oder 10,
    dadurch gekennzeichnet,
    dass das Referenzsignal vor Auftreffen auf den Detektor (35) über eine optische Verzögerungsstrecke geleitet wird, um das Referenzsignal zu verzögern.
  12. LIDAR-Vorrichtung (10) zum Messen von Geschwindigkeiten, mit einer Laserquelle (11) zum Aussenden von Laserstrahlung (15) auf ein zu messendes Medium (16) und einem Detektor (35) zum Empfangen von Strahlung (18), die bei Bestrahlung mit der Laserstrahlung (15) von dem Medium (16) abgestrahlt, insbesondere gestreut, wird,
    wobei die Laserquelle (11) zur Aussendung eines Laserpulses (40) fähig ist, wobei eine Schalteinrichtung (24) zum Aktivieren/Deaktivieren des Detektors (35) abhängig von einem Zeitpunkt des Aussendens des Laserpulses (40) durch die Laserquelle (11) vorgesehen ist und
    wobei die Schalteinrichtung (24) zum Aktivieren des Detektors (35) nach einer vorbestimmten oder geregelten ersten Zeitdauer (T1) von weniger als etwa 500µs nach Absenden des Laserpulses (40) auf das zu messende Medium (16) und zum Deaktivieren des Detektors (35) nach einer zweiten Zeitdauer (T2) ausgebildet ist, wobei eine Steuereinrichtung (22) vorgesehen ist, mittels der die erste Zeitdauer (T1) zwischen dem Aussenden des Laserpulses aus der Laserquelle (11) und dem Einschaltzeitpunkt (t1) für den Detektor (35) und die zweite Zeitdauer (T2) zwischen dem Einschaltzeitpunkt (t1) und dem Ausschaltzeitpunkt (t2) für den Detektor (35) derart steuerbar sind, dass damit ein Messabstand (r1) und eine Messtiefe (r2-r1) einstellbar sind, wobei die zweite Zeitdauer (T2) zwischen dem Einschaltzeitpunkt (t1) und dem Ausschaltzeitpunkt (t2) weniger als etwa 1µs beträgt, dadurch gekennzeichnet, dass die Steuereinrichtung (22) dazu ausgebildet ist, den Detektor (35) zu Beginn einer Belichtungszeit einzuschalten und den Detektor mittels der Schalteinrichtung (24) während dieser Belichtungszeit zu aktivieren und inaktivieren, so dass das Schalten mit der ersten und der zweiten Zeitdauer mehrmals durchgeführt wird, um mehrere Laserpulse während einer einzigen Belichtungszeit zu detektieren, und die Zeitdauern (T1, T2) und/oder die Zeitpunkte (t1, t2) abhängig von den folgenden Parametern zu regeln:
    • Mindestintensität des detektierten Signals und
    • Maximalintensität des detektierten Signals.
  13. LIDAR-Vorrichtung nach Anspruch 12,
    dadurch gekennzeichnet,
    dass der Detektor (35) wenigstens eine der folgenden Lichterfassungseinrichtungen aufweist:
    • einen bildgebender Detektor, insbesondere Kamera (36),
    • ein lichtempfindliches Element, insbesondere Photodiode oder Photomultiplier, oder
    • eine Gruppe von lichtempfindlichen Elementen, insbesondere Photodioden, und
    a) dass die Schalteinrichtung (24) wenigstens ein dem Detektor (35) vorgeschaltetes Schaltelement (58, 60, 34) zum Durchlassen oder Sperren eines Lichtdurchganges und/oder einer Lichtleitung zu dem Detektor (35) aufweist, das ausgewählt ist aus einer Gruppe, die:
    • eine schaltbare Mikrokanalplatte (34),
    • ein elektrooptischer Schalter mit elektrooptischem Material,
    • eine Flüssigkristallzelle und/oder
    • ein mikromechanisches, zur Schaltung bewegbares Schaltelement umfasst, und/oder
    b) dass die Schalteinrichtung (24) mit wenigstens einem Ausgang des Detektors (35) verbunden ist, um die Schaltung zur Aktivierung/Deaktivierung elektrisch am Ausgang des Detektors (35) durchzuführen.
  14. LIDAR-Vorrichtung nach einem der Ansprüche 12 oder 13,
    dadurch gekennzeichnet,
    dass ein optisch durchlässiges Abdeckelement, insbesondere ein Fenster (14), zwischen der Laserquelle (11) und dem Detektor (35) einerseits und dem zu messenden Medium (16) andererseits vorgesehen ist,
    wobei die Zeitpunkte (t1, t2) zum Aktivieren/Deaktivieren des Detektors (35) derart eingestellt sind, dass der Detektor (35) während einer Zeit inaktiv ist, in der ein von der Laserquelle (11) abgesandter Laserpuls (40), der an dem optisch durchlässigen Abdeckelement (14) reflektiert und/oder gestreut wird, an dem Detektor (35) ankommt.
  15. LIDAR-Vorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet,
    dass sie auf einem bewegten Träger angeordnet ist, wobei Zeitpunkte und/oder Zeitdauern zum Aktivieren/Deaktivieren des Detektors abhängig von der Geschwindigkeit des Trägers gesteuert sind.
EP09772451.2A 2008-07-04 2009-06-30 Lidar-verfahren zur messung von geschwindigkeiten und lidar-vorrichtung mit zeitgesteuerter detektion Active EP2297594B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008031681A DE102008031681A1 (de) 2008-07-04 2008-07-04 LIDAR-Verfahren zur Messung von Geschwindigkeiten und LIDAR-Vorrichtung mit zeitgesteuerter Detektion
PCT/EP2009/058213 WO2010000751A1 (de) 2008-07-04 2009-06-30 Lidar-verfahren zur messung von geschwindigkeiten und lidar-vorrichtung mit zeitgesteuerter detektion

Publications (2)

Publication Number Publication Date
EP2297594A1 EP2297594A1 (de) 2011-03-23
EP2297594B1 true EP2297594B1 (de) 2016-09-07

Family

ID=41213153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09772451.2A Active EP2297594B1 (de) 2008-07-04 2009-06-30 Lidar-verfahren zur messung von geschwindigkeiten und lidar-vorrichtung mit zeitgesteuerter detektion

Country Status (4)

Country Link
US (1) US9383447B2 (de)
EP (1) EP2297594B1 (de)
DE (1) DE102008031681A1 (de)
WO (1) WO2010000751A1 (de)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
US8666570B1 (en) * 2010-11-19 2014-03-04 The Boeing Company Volcanic ash detection by optical backscatter using standard aircraft lights
EP2926164A4 (de) * 2012-11-30 2015-12-16 Tchoryk Peter Atmosphärenmesssystem
EP2994772B1 (de) 2013-05-06 2020-06-24 Danmarks Tekniske Universitet Koaxiales lidar-system mit direkterfassung
FR3005746B1 (fr) 2013-05-14 2016-09-16 Cie Ind Des Lasers - Cilas Dispositif d'illumination laser a obturateur integre.
WO2016208373A1 (ja) * 2015-06-24 2016-12-29 コニカミノルタ株式会社 対物センサ、対物センサの汚れ判定方法および物体検出装置
DE102016200653A1 (de) 2016-01-20 2017-07-20 Robert Bosch Gmbh Scheinwerfermodul, Scheinwerfer, Scheinwerfersystem und Betriebsverfahren für ein Scheinwerfermodul
US10444367B2 (en) * 2016-02-26 2019-10-15 Honeywell International Inc. Enhanced LiDAR air data using supplementary sensor outputs
US20170276790A1 (en) * 2016-03-22 2017-09-28 Honeywell International Inc. Hybrid air data systems using lidar and legacy air data sensors
US10451740B2 (en) * 2016-04-26 2019-10-22 Cepton Technologies, Inc. Scanning lidar systems for three-dimensional sensing
US20180341009A1 (en) 2016-06-23 2018-11-29 Apple Inc. Multi-range time of flight sensing
DE102016223892A1 (de) 2016-12-01 2018-06-07 Zf Friedrichshafen Ag LiDAR mit preselektiertem Erfassungsbereich
CN110506220B (zh) * 2016-12-30 2023-09-15 图达通智能美国有限公司 多波长lidar设计
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US11009605B2 (en) 2017-01-05 2021-05-18 Innovusion Ireland Limited MEMS beam steering and fisheye receiving lens for LiDAR system
US10969475B2 (en) 2017-01-05 2021-04-06 Innovusion Ireland Limited Method and system for encoding and decoding LiDAR
US10838067B2 (en) 2017-01-17 2020-11-17 Aptiv Technologies Limited Object detection system
WO2018191630A1 (en) * 2017-04-14 2018-10-18 Arizona Board Of Regents On Behalf Of The University Of Arizona Systems and methods for beam steering using a micromirror device
WO2018191696A1 (en) 2017-04-14 2018-10-18 Arizona Board Of Regents On Behalf Of The University Of Arizona Methods and apparatus employing angular and spatial modulation of light
US11223805B2 (en) 2017-04-14 2022-01-11 Arizona Board Of Regents On Behalf Of The University Of Arizona Methods and apparatus for angular and spatial modulation of light
DE102017111117A1 (de) * 2017-05-22 2018-11-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Ermittlung der Luftgeschwindigkeit eines Flugzeugs
EP3646057A1 (de) 2017-06-29 2020-05-06 Apple Inc. Flugzeittiefenkartierung mit parallaxkompensation
US10754033B2 (en) * 2017-06-30 2020-08-25 Waymo Llc Light detection and ranging (LIDAR) device range aliasing resilience by multiple hypotheses
BR112019028145A2 (pt) * 2017-06-30 2020-07-07 A^3 By Airbus, Llc sistema e método de monitoramento de aeronave
DE102017115710A1 (de) 2017-07-12 2019-02-07 Airbus Defence and Space GmbH LIDAR-Anordnung und LIDAR-Verfahren
US10627492B2 (en) * 2017-08-01 2020-04-21 Waymo Llc Use of extended detection periods for range aliasing detection and mitigation in a light detection and ranging (LIDAR) system
US10955552B2 (en) 2017-09-27 2021-03-23 Apple Inc. Waveform design for a LiDAR system with closely-spaced pulses
CN111542765A (zh) 2017-10-19 2020-08-14 图达通爱尔兰有限公司 具有大动态范围的lidar
WO2019125349A1 (en) 2017-12-18 2019-06-27 Montrose Laboratories Llc Time-of-flight sensing using an addressable array of emitters
WO2019126637A1 (en) 2017-12-22 2019-06-27 Arizona Board Of Regents On Behalf Of The University Of Arizona Methods and apparatus for angular and spatial modulation of light
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
US10948599B2 (en) 2018-01-03 2021-03-16 Goodrich Corporation Phasing light pulses with detectors
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
US11977184B2 (en) 2018-01-09 2024-05-07 Seyond, Inc. LiDAR detection systems and methods that use multi-plane mirrors
US11927696B2 (en) 2018-02-21 2024-03-12 Innovusion, Inc. LiDAR systems with fiber optic coupling
US11391823B2 (en) 2018-02-21 2022-07-19 Innovusion, Inc. LiDAR detection systems and methods with high repetition rate to observe far objects
US11422234B2 (en) 2018-02-23 2022-08-23 Innovusion, Inc. Distributed lidar systems
WO2020013890A2 (en) 2018-02-23 2020-01-16 Innovusion Ireland Limited Multi-wavelength pulse steering in lidar systems
WO2019245614A2 (en) 2018-03-09 2019-12-26 Innovusion Ireland Limited Lidar safety systems and methods
US10439713B1 (en) * 2018-03-15 2019-10-08 The Boeing Company System and method for receiving signal information for networking using a free space optical link
US11789132B2 (en) 2018-04-09 2023-10-17 Innovusion, Inc. Compensation circuitry for lidar receiver systems and method of use thereof
US11675053B2 (en) 2018-06-15 2023-06-13 Innovusion, Inc. LiDAR systems and methods for focusing on ranges of interest
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11860316B1 (en) 2018-08-21 2024-01-02 Innovusion, Inc. Systems and method for debris and water obfuscation compensation for use in LiDAR systems
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
DE112019005684T5 (de) 2018-11-14 2021-08-05 Innovusion Ireland Limited Lidar-systeme und verfahren, bei denen ein mehrfacettenspiegel verwendet wird
DE112020000407B4 (de) * 2019-01-10 2024-02-15 Innovusion, Inc. Lidar-systeme und -verfahren mit strahllenkung und weitwinkelsignaldetektion
CN113330328A (zh) 2019-02-11 2021-08-31 苹果公司 使用脉冲束稀疏阵列的深度感测
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
US11500094B2 (en) 2019-06-10 2022-11-15 Apple Inc. Selection of pulse repetition intervals for sensing time of flight
US11828771B2 (en) 2019-07-15 2023-11-28 The Boeing Company Method and system for collecting air data using a laser-induced plasma channel
US11555900B1 (en) 2019-07-17 2023-01-17 Apple Inc. LiDAR system with enhanced area coverage
US11556000B1 (en) 2019-08-22 2023-01-17 Red Creamery Llc Distally-actuated scanning mirror
US11733359B2 (en) 2019-12-03 2023-08-22 Apple Inc. Configurable array of single-photon detectors
US11774594B2 (en) 2020-06-23 2023-10-03 Honeywell International Inc. Air data system with optical modulator on receive channels for stroboscopic detection
DE102020211101A1 (de) 2020-09-03 2022-03-03 Robert Bosch Gesellschaft mit beschränkter Haftung Optischer Umgebungssensor sowie Fahrzeug
US11754484B2 (en) * 2020-09-22 2023-09-12 Honeywell International Inc. Optical air data system fusion with remote atmospheric sensing
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
EP4260086A1 (de) 2021-03-01 2023-10-18 Innovusion, Inc. Faserbasierte sender- und empfängerkanäle von lichtdetektions- und entfernungsmesssystemen
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
EP4305450A1 (de) 2021-04-22 2024-01-17 Innovusion, Inc. Kompaktes lidar-design mit hoher auflösung und ultrabreitem sichtfeld
US11294040B1 (en) 2021-05-10 2022-04-05 Optowaves, Inc. Time-of-interference light detection and ranging apparatus
US11520023B2 (en) 2021-05-10 2022-12-06 Optowaves, Inc. High-speed time-of-interference light detection and ranging apparatus
EP4314885A1 (de) 2021-05-12 2024-02-07 Innovusion, Inc. Systeme und vorrichtungen zur minderung von lidar-rauschen, -vibration und -schärfe
US11662440B2 (en) 2021-05-21 2023-05-30 Innovusion, Inc. Movement profiles for smart scanning using galvonometer mirror inside LiDAR scanner
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
US11681028B2 (en) 2021-07-18 2023-06-20 Apple Inc. Close-range measurement of time of flight using parallax shift
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device
US11892566B1 (en) 2022-09-22 2024-02-06 Optowaves, Inc. Multiplexed light detection and ranging apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384903B1 (en) * 1977-02-28 2002-05-07 Bae Systems Information And Electronic Systems Integration, Inc. Range gated remote measurement utilizing two-photon absorption
US4195931A (en) * 1978-05-18 1980-04-01 The United States Of America As Represented By The Secretary Of The Army Clear air turbulence detector
DE4013702C2 (de) 1990-04-28 1996-01-11 Christian Dipl Phys Heupts Verfahren zur Erfassung von Turbulenzen in der Atmosphäre sowie Einrichtung zur Durchführung des Verfahrens
US5394238A (en) * 1992-11-09 1995-02-28 Honeywell Inc. Look-ahead windshear detector by filtered Rayleigh and/or aerosol scattered light
US7495774B2 (en) 2002-03-01 2009-02-24 Michigan Aerospace Corporation Optical air data system
CA2494458C (en) * 2002-08-02 2009-06-30 Ophir Corporation Optical air data measurement systems and methods
GB0304344D0 (en) * 2003-02-26 2003-04-02 Bae Systems Plc Gas velocity sensor
DE10316762B4 (de) * 2003-04-10 2007-01-25 Eads Deutschland Gmbh Verfahren zur Erfassung von Windgeschwindigkeiten mit einem Doppler-Lidar-System, insbesondere an Bord von Flugzeugen, und Doppler-Lidar-System
FR2870942B1 (fr) 2004-05-25 2006-08-25 Airbus France Sas Systeme de mesure anticipee d'une turbulence en amont d'un aeronef
DE102005034729B3 (de) * 2005-07-21 2007-02-08 Eads Deutschland Gmbh Verfahren und Lidar-System zur Messung von Luftturbulenzen an Bord von Luftfahrzeugen sowie für Flughäfen und Windfarmen
US7554652B1 (en) * 2008-02-29 2009-06-30 Institut National D'optique Light-integrating rangefinding device and method
EP2430392B1 (de) * 2009-05-15 2015-07-22 Michigan Aerospace Corporation Bereichsabbildungs-lidar
US8730472B2 (en) * 2011-07-22 2014-05-20 Exxonmobil Research And Engineering Company Method for predicting haze in lubricant base stocks

Also Published As

Publication number Publication date
US20110181864A1 (en) 2011-07-28
WO2010000751A1 (de) 2010-01-07
US9383447B2 (en) 2016-07-05
DE102008031681A1 (de) 2010-01-14
EP2297594A1 (de) 2011-03-23

Similar Documents

Publication Publication Date Title
EP2297594B1 (de) Lidar-verfahren zur messung von geschwindigkeiten und lidar-vorrichtung mit zeitgesteuerter detektion
EP2300852B1 (de) Direktempfang-doppler-lidar-verfahren und direktempfang-doppler-lidar-vorrichtung
DE10316762B4 (de) Verfahren zur Erfassung von Windgeschwindigkeiten mit einem Doppler-Lidar-System, insbesondere an Bord von Flugzeugen, und Doppler-Lidar-System
EP2476013B1 (de) Photonendetektor mit paralysierbarem photonen-empfindlichem element, insbesondere spad, sowie entfernungsmessgerät mit solchem photonendetektor
EP2486370B1 (de) Optisches entfernungsmessgerät mit kalibrierungseinrichtung
DE2726999C2 (de) Verfahren zur Wolkenhöhenmessung und langlebiger augensicherer Wolkenhöhenmesser nach dem Laufzeitprinzip
EP1901093B1 (de) Aufnahme von Entfernungsbildern
DE69635858T2 (de) Telezentrische 3d kamera und zugehöriges verfahren
DE19531632B4 (de) Entfernungsmeßgerät
DE112012004255T5 (de) Räumlich selektive Erkennung unter Verwendung einer dynamischen Maske in einer Bildebene
DE102005015914A1 (de) Kombinierte Laser-Höhen- und Bodengeschwindigkeits-Messvorrichtung
CN106443707B (zh) 一种超光谱激光雷达系统及其控制方法
DE202006014264U1 (de) Lidar-System
EP4083660A1 (de) Doppler lidar zur erfassung von wind- und/oder wirbelsituationen
DE102018220932A1 (de) Verfahren zum Bestimmen des Abstands und Rückstrahlvermögens einer Objektoberfläche
DE112015000377T5 (de) Optischer Sensor
EP3809157B1 (de) Entfernungsmessender optoelektronischer sensor und verfahren zur erfassung eines zielobjekts
EP3519858B1 (de) Abtasteinheit einer optischen sende- und empfangseinrichtung einer optischen detektionsvorrichtung eines fahrzeugs
EP3193195B1 (de) Optischer sensor
CN100510929C (zh) 转盘式机械快门的大动态范围无盲区变频控制方法
US11550033B2 (en) Electro-optical beam deflecting unit for light detection and ranging (LiDAR)
WO2010025846A1 (de) Vorrichtung und verfahren zur geschwindigkeitsmessung
DE10044690A1 (de) Verfahren und Vorrichtung zur Messung von Entfernungen und Geschwindigkeiten durch Laserpulse
DE3316600A1 (de) Augensicheres schraegsichtmessgeraet
DE102020126735A1 (de) Doppler-LiDAR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130430

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009013063

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01S0017950000

Ipc: G01S0017580000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 17/58 20060101AFI20160413BHEP

Ipc: G01S 17/95 20060101ALI20160413BHEP

INTG Intention to grant announced

Effective date: 20160429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013063

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 827343

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013063

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

26N No opposition filed

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009013063

Country of ref document: DE

Representative=s name: KASTEL PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009013063

Country of ref document: DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009013063

Country of ref document: DE

Representative=s name: KASTEL PATENTANWAELTE PARTG MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009013063

Country of ref document: DE

Representative=s name: KASTEL PATENTANWAELTE PARTG MBB, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 827343

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220628

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630