EP2297443A1 - Procédé et dispositif permettant le diagnostic d'erreurs dans un système moteur avec commande de soupape variable - Google Patents

Procédé et dispositif permettant le diagnostic d'erreurs dans un système moteur avec commande de soupape variable

Info

Publication number
EP2297443A1
EP2297443A1 EP09730887A EP09730887A EP2297443A1 EP 2297443 A1 EP2297443 A1 EP 2297443A1 EP 09730887 A EP09730887 A EP 09730887A EP 09730887 A EP09730887 A EP 09730887A EP 2297443 A1 EP2297443 A1 EP 2297443A1
Authority
EP
European Patent Office
Prior art keywords
pressure
indication
combustion engine
internal combustion
modeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09730887A
Other languages
German (de)
English (en)
Inventor
Ipek Sarac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2297443A1 publication Critical patent/EP2297443A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method and a device for diagnosing the function of intake and exhaust valves of cylinders of an internal combustion engine by monitoring the intake manifold pressure.
  • Intake manifold pressure sensors are used to detect failure of intake valves in an internal combustion engine.
  • the profile of the intake manifold pressure is transformed into a frequency domain and detected by detecting a missing harmonic when an error in switching one of the intake valves can be detected.
  • this procedure is not suitable for determining in an internal combustion engine with variably controllable intake and exhaust valves when and at which of the valves an error has occurred.
  • An Electro-Hydraulic Valve System for use in an internal combustion engine includes valves with hydraulic actuators both at the inlet side for introducing an air-fuel mixture into the cylinders and the exhaust side for discharging exhaust gas into one exhaust system.
  • the electrohydraulic valves provide the ability to separately and fully variably control intake and exhaust valves, each of which can be controlled at an arbitrary time with a variable and adjustable rise time for opening and closing. This can be a wider one Range of combustion strategies for the operation of the internal combustion engine can be realized.
  • the electrohydraulic valves typically do not include any means to control the actual operating condition, such as the pressure. the valve lift to determine. Therefore, it is not possible to obtain a direct feedback indicating the setting state or indicating information as to whether the valve in question is in an open or closed state.
  • a diagnosis of the actuators can be achieved by providing position sensors on each actuator.
  • this approach significantly increases the cost of the overall system.
  • a method for diagnosing the function of a plurality of variably controllable intake and / or exhaust valves on a combustion engine.
  • the method comprises the following steps: - Determining a modeled pressure indication that provides an indication of a pressure in an air system of the internal combustion engine, using a pressure curve model, the pressure profile model operating point-dependent describes a pressure curve of a faultless internal combustion engine; Providing an indication of the actual instantaneous pressure in the air system;
  • valves are part of the air system of the internal combustion engine, their faults have a direct influence on the sensors in the air system, e.g. the air mass sensor and the intake manifold pressure sensor.
  • the effects of the function of the valves on other sensors would require additional information about other engine actuators and their states, so that in the above method, a pressure waveform model that uses the air intake sensors as input variables, the complexity in the Error detection of errors in the function of the valves reduced.
  • the pressure profile in the air system is modeled for a properly functioning internal combustion engine and the modeled pressure resulting for an operating point is compared with the actual pressure in the air system. Based on the deviation of the pressures from each other an error in the valve control is detected.
  • the plausibility of the valve position can be carried out by the error, which is detected by mounted on the valves position sensors.
  • the error can be detected as a function of the deviation variable and depending on a threshold value dependent on a rotational speed of the internal combustion engine.
  • a type of error is detected depending on the location of a particular time period in which the error is detected using the deviation amount.
  • the time period may be defined as the time interval between the times of successive actuations of the individual valves, whereby an error of the intake and / or exhaust valve is detected, whose activation marks the beginning of the time period in which the error is detected as a function of the deviation quantity ,
  • the pressure profile model can be learned depending on a training signal and depending on the indication of the actual, instantaneous pressure in the air system during operation of a faultless internal combustion engine.
  • the pressure profile model can simulate the periodic course of the pressure in the air system on the basis of a Fourier relationship with Fourier coefficients, the Fourier coefficients being determined on the basis of the measured pressure specification.
  • an apparatus for diagnosing the function of a plurality of variably controllable intake and / or exhaust valves on an internal combustion engine comprises:
  • a modeling unit for determining a modeled pressure indication, which provides an indication of a pressure in an air system of the internal combustion engine, using a pressure curve model, wherein the pressure profile model describes operating point-dependent a pressure curve of a faultless internal combustion engine;
  • An evaluation unit for detecting an error in the control of the intake and / or exhaust valves depending on the deviation quantity.
  • a switch may be provided to provide the indication of the actual, instantaneous pressure in the air system depending on a training signal of the modeling unit, so that the pressure profile model is taught depending on the measured pressure data during operation of a faultless internal combustion engine.
  • a computer program including a program code which, when executed on a data processing unit, executes the above method.
  • Fig. 1 is a schematic cross-sectional view of an air supply part of a cylinder with an intake valve
  • Fig. 2 is a plan view of an internal combustion engine with air supply
  • Fig. 3 is an illustration of the possible degrees of freedom for freely controllable
  • FIG. 4 shows a schematic block diagram for illustrating the method according to the invention
  • Fig. 5 is a signal-time diagram for illustrating that of the
  • Pressure sensor measured pressure curve and the stroke lengths (stroke) of the individual valves
  • FIG. 6 shows the pressure curve of the intake manifold pressure measured by the pressure sensor and a signal model indicating the first six harmonics of the Fourier series of the modeled intake manifold pressure curve and the course of the error between the modeled signal and the actual pressure progression;
  • Fig. 7 is a schematic representation of the actual pressure profile and the modeled pressure curve using the first six harmonics of the Fourier series in an error case in which the outlet valve does not open in the first cylinder and the course the squared error between the actual and the modeled pressure history;
  • Fig. 8 shows the progression of the squared filtered error between the modeled signal and the faulty signal, wherein the exhaust valves of the first and third cylinders do not open;
  • Fig. 12 shows the course of the actual pressure signal and the modeled pressure signal in the event of an error in which an inlet valve opens later than expected;
  • FIG. 13 shows the course of the pressure signal and the modeled signal in FIG.
  • Fig. 1 is a cross-sectional view of an air supply system for a single cylinder 2 of an internal combustion engine 1 is shown.
  • the air supply system comprises a suction pipe 3, in which a throttle valve 4 is arranged to control the supply of air to the cylinder 2 via the suction pipe 3.
  • a throttle valve 4 Upstream of the throttle valve 4, an air mass sensor 6 is usually provided in order to detect the amount of air flowing into the cylinders 2 of the internal combustion engine 1.
  • a pressure sensor 7 is further provided, which detects the dependent of the position of the throttle valve 4 air pressure in the intake manifold 3.
  • the air is introduced from the intake manifold 3 via a corresponding intake valve 8 from the intake manifold 3 into the combustion chamber of the cylinder 2, depending on the opening state of the intake valve 8.
  • FIG. 2 shows a top view of the engine system with the internal combustion engine 1, which has four cylinders 2.
  • the cylinders are labeled with Zl -Z4 in their arrangement sequence in the engine block.
  • the firing order of the cylinder 2 corresponds to Zl-Z3-Z2-Z4.
  • the engine system includes a common air supply 10, in which the throttle valve 4 is arranged. Upstream of the throttle valve 4, the air mass sensor 6 is arranged and downstream of the throttle valve 4, a Saugrohr- pressure sensor 7 is provided, with which the instantaneous pressure in the intake manifold 3 can be detected.
  • the four cylinders 2 of the internal combustion engine 1 are each provided with an intake valve 8 and an exhaust valve 12.
  • the suction pipe 3 branches to supply air to the corresponding intake valves 8 of the respective cylinder 2.
  • the exhaust valves 12 of the cylinders 2 are used for discharging combustion exhaust gas from the cylinders 2 in an exhaust line 13.
  • the intake valves used 8 and exhaust valves 12 are freely controllable valves whose opening conditions can be set variably.
  • FIG. 3 to illustrate the driveability of the intake and exhaust valves 8, 12
  • different flow paths of the flow cross-section of a freely controllable valve over a certain period of time are shown, during which the valve is opened and closed again.
  • These degrees of freedom can be used by a suitable control of the valves. If there are deviations between the control of the valve and the behavior of the valve, there is an error. Some fault cases where the behavior of the valve does not correspond to the desired behavior may be serious for the operation of such an engine system in which the intake and exhaust valves 8, 12 are variably independently controllable.
  • the method described below now makes it possible, in the above-described engine system, to detect faults in the intake and exhaust valves if the intake or exhaust valves 8, 12 are not opened at all, the intake valve 8 is opened too late or the exhaust valve 12 is closed too late (with the inlet valve open).
  • a fault of a valve is detected when the pressure curve in the intake manifold deviates from a modeled pressure curve.
  • the modeled pressure curve corresponds to a pressure curve which would ideally be present if the behavior of the inlet 8 and outlet valves 12 corresponds to the desired behavior given known air system dynamics.
  • the pressure profile in the intake manifold can be modeled, for example, by recording a pressure curve of an internal combustion engine 1 with faultless intake 8 and exhaust valves 12. Subsequently, the resulting pressure profile is analyzed by means of a Fourier analysis. Since the pressure curve in the intake manifold 3 is a periodic signal, it can be represented as follows:
  • a 0 corresponds to a DC component needed to approximate the modeled signal
  • P mod is the modeled pressure signal for the intake manifold pressure
  • N is the number of harmonics
  • is the angular frequency of the fundamental
  • a n and b n are the even and odd Fourier coefficients .
  • the corresponding Fourier coefficients a n and b n can be determined for the course of the pressure signal, which are the basis for the modeled pressure signal.
  • the pressure signal is thus modeled by determining the coefficients a n and b n . Since the pressure waveforms are dependent on the operating point of the internal combustion engine 1, the coefficients a n and b n must be made available, for example, stored in a map, so that depending on the speed n of the internal combustion engine 1, the load M of the internal combustion engine 1, the temperature T of the internal combustion engine 1 and other parameters to be expected for the error-free operation of intake manifold pressure modeled.
  • Faults in the intake and exhaust valves 8, 12 are now detected by continuously comparing the currently measured in the intake manifold 3, measured intake manifold pressure P man with an according to the above formula for the pressure curve modeled intake manifold pressure P mod .
  • the modeled intake manifold pressure P mod It considers the frequency of the fundamental vibration as a function of the instantaneous rotational speed n of the internal combustion engine 1.
  • FIG. 4 shows a block diagram for illustrating the diagnostic function.
  • the diagnostic function is realized by means of a modeling unit 20, a comparison unit 21 and an evaluation unit 22.
  • the modeling unit 20 includes a map memory 23 in which the Fourier coefficients a n and b n can be stored.
  • a pressure P mod can be determined according to an intake manifold pressure model be modeled, which corresponds to the current pressure in the intake manifold 3 in a properly functioning internal combustion engine 1. Times are defined by successive activations of the individual valves
  • the data EV, IV on the activation times of intake valve 8 and exhaust valve 12 are provided by a motor control unit or the like and are operating point dependent, ie depending on eg an engine speed n, an applied load torque M, the temperature T of the internal combustion engine 1 and the intake manifold 3, determined, so that ultimately the modeled pressure P mod results as an operating point-dependent variable. Also other parameters can be considered. Furthermore, the modeled pressure P mod may still depend on an operating mode of the internal combustion engine 1, such as one of the following operating modes: partial load operation, cylinder deactivation, auto-ignition operation and the like.
  • the characteristic map memory 23 stores model values of the pressure P mod as a function of the data EV, IV over the actuation times of inlet valve 8 and outlet valve 12.
  • the intake manifold pressure sensor 7 detects the current intake manifold pressure P man .
  • Both the modeled intake manifold pressure P mod and the measured intake manifold pressure P man are fed to the comparator unit 21, in which the modeled intake manifold pressure P mod and the measured intake manifold pressure P man are compared.
  • a deviation quantity A is determined, which is transmitted to the evaluation unit 22.
  • the deviation quantity A corresponds to an indication of the difference between the modeled intake manifold pressure P mod and the measured intake manifold pressure P man .
  • the indication of the difference between the two intake pipe pressures P mo d, P m a n can be squared in order to obtain as deviation quantity A a sign-neutral indication of the difference between the intake pipe pressures P mo d, P m a n .
  • an error is detected if the deviation quantity A exceeds an amount which is indicated by a threshold value S. Then, the error signal F is generated, which starts a diagnosis in the evaluation unit 22 and / or allows a plausibility of position sensors on the intake 8 and / or exhaust valves 12.
  • the threshold value S can be determined as a function of the rotational speed n and / or the load torque M of the internal combustion engine 1 in order to take account of the pressure levels occurring at different operating points.
  • the evaluation unit 22 also receives the data EV, IV over the activation times for each of the intake 8 and exhaust valves 12, so that depending on the instantaneous activation state of the valves 8, 12 and the error signal F, the type of fault and the location of the fault (the cylinder 2 to which the faulty intake 8 or exhaust valve 12 is associated) can be detected. In particular, by analyzing the time periods between individual valve drive changes, e.g. Opening and closing one of the valves 8, 12 to open and close one of the next valves 8, 12 periods are defined. If the error signal F indicates an error, over the period in which the error has occurred, the valve 8, 12 can be identified, at which the error has occurred.
  • the actual intake manifold pressure P man can be supplied to the modeling unit 20 in order to carry out a training of the characteristic map 23 there.
  • the teaching is performed by determining the Fourier coefficients from the measured values of the intake manifold pressure P man and by assigning the Fourier coefficients to the respective operating point or the information EV, IV on the Activation times of the intake and exhaust valves 8, 12.
  • the teach-in can be displayed by the teach-in signal E.
  • FIG. 5 shows the curves of the measured pressure (upper curve) and the valve opening time at a speed of 2,000 rpm above the crankshaft angle.
  • the exhaust valves 12 have larger strokes (in mm) than the intake valves 8.
  • the lower curve shows the deviations between the modeled pressure signal P mod and the actual pressure P man .
  • gradients are plotted against the angle of rotation in ⁇ radians, rather than over time, to achieve speed independence.
  • FIG. 7 shows the course of the intake manifold pressure and the pressure signal P mod modulated by means of the six harmonics in a case in which the exhaust valve 12 does not open in the first cylinder 2.
  • the lower curve shows the squared deviation between the two pressure signals P man , P mo d.- The squaring of the deviation serves to be able to evaluate the deviation with neutral sign.
  • the squared deviation between the modeled pressure profile P mod and the actual pressure profile P man can be filtered.
  • An error of one of the valves 8, 12 can be detected if the value thus determined exceeds the predetermined threshold value S.
  • the threshold value S which in the example of FIG. 8 is approximately 250 kPa 2 , is preferably chosen as a function of the speed and, in the example shown, is set at a speed of 3,000 rpm.
  • the course of the squared deviation which is shown in FIG. 8, signals a non-opening inlet valve 8 for the cylinder Z1 and cylinder Z3. This is determined by the evaluation unit 22 in that the deviation immediately after the opening control of the Inlet valves of the cylinders Zl and Z3 takes place.
  • FIG. 9 shows the curves of the modeled intake manifold pressure P mod and the actual intake manifold pressure P man (upper curve) and the corresponding ones squared deviations are shown in the lower curve.
  • the error case shown here corresponds to an error in which the exhaust valve 12 does not open in the first cylinder Z1. This is determined by the evaluation unit 22 in that the deviation takes place immediately after the activation for closing the outlet valve of the cylinder Z1.
  • the threshold at which an error is to be detected is about 250 kPa 2 at a speed of 3,000 rpm.
  • FIG. 11 shows a plurality of curves of squared and filtered deviations between the modeled pressure curve and the actual pressure curve for faulty intake valves 8 of the cylinders Z1 and cylinders Z3 and faulty exhaust valves 12 of the cylinder Z1 and cylinder Z3.
  • FIG. 12 shows the curves of the modeled intake manifold pressure P mod and the actual intake manifold pressure P man in the event of a fault in which an intake valve 8 opens later than expected for the first cylinder Z 1.
  • the lower curve shows the squared deviation between the two pressure gradients.

Abstract

L’invention concerne un procédé permettant le diagnostic d’erreurs de fonctionnement d’une ou plusieurs soupapes d’entrée (8) et/ou de sortie (12) pouvant être commandées de manière variable sur un moteur à combustion (1), comprenant les étapes suivantes : - déterminer une indication de pression modélisée (Pmod) qui fournit une indication sur une pression dans un système d’alimentation en air d’un moteur à combustion (1) sur la base d’un modèle de courbe de pression, le modèle de courbe de pression décrivant en fonction du point de fonctionnement une courbe de pression d’un moteur à combustion (1) ne présentant pas de défaut: fournir une indication de la pression effective du moment (Pman) dans le système d’alimentation en air; calculer une grandeur d’écart en fonction de l’indication de pression modélisée (Pmod) et de l’indication de la pression effective (Pman) dans le système d’alimentation en air; détecter une erreur de fonctionnement de la soupape d’entrée (8) et/ou de sortie (12) en fonction de la grandeur d’écart.
EP09730887A 2008-04-09 2009-04-03 Procédé et dispositif permettant le diagnostic d'erreurs dans un système moteur avec commande de soupape variable Withdrawn EP2297443A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008001099A DE102008001099A1 (de) 2008-04-09 2008-04-09 Verfahren und Vorrichtung zur Fehlerdiagnose in einem Motorsystem mit variabler Ventilansteuerung
PCT/EP2009/054031 WO2009124891A1 (fr) 2008-04-09 2009-04-03 Procédé et dispositif permettant le diagnostic d’erreurs dans un système moteur avec commande de soupape variable

Publications (1)

Publication Number Publication Date
EP2297443A1 true EP2297443A1 (fr) 2011-03-23

Family

ID=40852569

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09730887A Withdrawn EP2297443A1 (fr) 2008-04-09 2009-04-03 Procédé et dispositif permettant le diagnostic d'erreurs dans un système moteur avec commande de soupape variable

Country Status (5)

Country Link
US (1) US20110137509A1 (fr)
EP (1) EP2297443A1 (fr)
CN (1) CN102057150A (fr)
DE (1) DE102008001099A1 (fr)
WO (1) WO2009124891A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8286471B2 (en) * 2009-01-13 2012-10-16 Ford Global Technologies, Llc Variable displacement engine diagnostics
CN103221668A (zh) * 2010-11-18 2013-07-24 丰田自动车株式会社 内燃机的控制装置
US20130104516A1 (en) * 2011-10-31 2013-05-02 General Electric Company Method of monitoring an operation of a compressor bleed valve
US9279406B2 (en) * 2012-06-22 2016-03-08 Illinois Tool Works, Inc. System and method for analyzing carbon build up in an engine
DE102013102071B4 (de) * 2013-03-04 2014-12-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Überprüfen einer Funktion eines Auslassventiles
US9175613B2 (en) * 2013-09-18 2015-11-03 Tula Technology, Inc. System and method for safe valve activation in a dynamic skip firing engine
JP6111954B2 (ja) * 2013-09-27 2017-04-12 マツダ株式会社 気筒休止状態判定装置
DE102015209665B4 (de) * 2014-06-25 2022-10-20 Vitesco Technologies GmbH Verfahren zur Identifizierung von Ventilsteuerzeiten eines Verbrennungsmotors
JP6181675B2 (ja) * 2015-01-16 2017-08-16 マツダ株式会社 気筒休止状態判定装置
KR102057124B1 (ko) * 2015-12-27 2020-01-22 자콥스 비히클 시스템즈, 인코포레이티드. 배기 브레이크 고장을 판정하기 위한 방법 및 장치
DE102016216652A1 (de) * 2016-09-02 2018-03-08 Volkswagen Aktiengesellschaft Verfahren, Steuervorrichtung und System zum Erkennen einer Abweichung eines tatsächlichen Betätigungszeitpunkts eines Gaswechselventils einer Verbrennungskraftmaschine von einem vorgegebenen Betätigungszeitpunkt
DE102017209386B4 (de) * 2017-06-02 2024-05-08 Vitesco Technologies GmbH Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb
US10571366B2 (en) 2017-07-25 2020-02-25 Ford Global Technologies, Llc Systems and methods for diagnostics of a variable displacement engine
US10152834B1 (en) * 2017-08-24 2018-12-11 GM Global Technology Operations LLC Combustion engine airflow management systems and methods
DE102018204450B4 (de) 2018-03-22 2021-12-23 Vitesco Technologies GmbH Verfahren zum Prüfen einer variablen Ventilhubsteuerung eines Verbrennungsmotors
DE102018208037A1 (de) * 2018-05-23 2019-11-28 Robert Bosch Gmbh Verfahren zur Diagnose von Ventilsteuerzeiten einer Brennkraftmaschine
US11365699B2 (en) * 2018-09-26 2022-06-21 Hitachi Astemo, Ltd. Internal combustion engine control device
DE102018126693A1 (de) 2018-10-25 2020-04-30 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors
CN109441653B (zh) * 2018-12-29 2021-07-20 潍柴动力股份有限公司 一种发动机配气机构故障检测方法及装置
DE102019211495B4 (de) 2019-08-01 2021-04-01 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Überprüfung des Zustands der Auslassventile eines Motors eines Kraftfahrzeugs
DE102019212275A1 (de) 2019-08-15 2021-02-18 Volkswagen Aktiengesellschaft Verfahren zur Adaption einer erfassten Nockenwellenstellung, Steuergerät zur Durchführung des Verfahrens, Verbrennungsmotor und Fahrzeug
US10928275B1 (en) 2019-11-18 2021-02-23 Ford Global Technologies, Llc Systems and methods for coordinating engine-off vehicle diagnostic monitors
US20230011920A1 (en) * 2019-12-20 2023-01-12 Volvo Truck Corporation Method for diagnosing a part of a powertrain system
EP3882452B1 (fr) * 2020-03-18 2024-05-08 Volvo Car Corporation Procédé de détection de fuite de soupape d'un moteur à combustion
DE102020207172B3 (de) 2020-06-09 2021-07-01 Volkswagen Aktiengesellschaft Verfahren zur Bestimmung einer Nockenwellenposition einer Verbrennungskraftmaschine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69010991T2 (de) * 1989-05-25 1994-11-17 Honda Motor Co Ltd Verfahren zur Fehlererkennung bei einem Ventilzeitsteuerungssystem für eine innere Verbrennungskraftmaschine.
JP3068806B2 (ja) * 1997-12-15 2000-07-24 三菱電機株式会社 内燃機関のバルブタイミング制御装置
DE19857183A1 (de) * 1998-12-11 2000-06-15 Bosch Gmbh Robert Diagnose einer variablen Ventilsteuerung bei Verbrennungsmotoren
JP2002097973A (ja) * 2000-09-22 2002-04-05 Honda Motor Co Ltd 内燃機関の制御装置
EP1580407B1 (fr) * 2004-03-26 2006-12-27 Ford Global Technologies, LLC Procédé de détection de dysfonctionnement dans un système pour le changement du profil de came
DE102005026054B4 (de) * 2005-06-07 2007-04-12 Dr.Ing.H.C. F. Porsche Ag Verfahren und Vorrichtung zur Überwachung der Funktionstüchtigkeit einer Ventilhub-Verstelleinrichtung einer Brennkraftmaschine in einer Kaltstartphase
DE602006001839D1 (de) * 2006-01-23 2008-08-28 Ford Global Tech Llc Verfahren zur Diagnose des Betriebs eines Nockenprofil-Umschaltsystems
JP4621627B2 (ja) * 2006-04-24 2011-01-26 本田技研工業株式会社 内燃機関の仕事量算出装置
DE102007013252A1 (de) * 2007-03-20 2008-09-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung des Saugrohrdruckes einer Brennkraftmaschine
DE102007013250B4 (de) * 2007-03-20 2018-12-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit mindestens einem Zylinder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009124891A1 *

Also Published As

Publication number Publication date
DE102008001099A1 (de) 2009-10-15
US20110137509A1 (en) 2011-06-09
CN102057150A (zh) 2011-05-11
WO2009124891A1 (fr) 2009-10-15

Similar Documents

Publication Publication Date Title
EP2297443A1 (fr) Procédé et dispositif permettant le diagnostic d'erreurs dans un système moteur avec commande de soupape variable
DE102008041804B4 (de) Verfahren und Vorrichtung zur Überwachung einer Abgasrückführungsanordnung
DE102008027762B3 (de) Verfahren und Vorrichtung zum Diagnostizieren eines Ansaugtrakts einer Brennkraftmaschine
DE102010044164B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102007013250B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit mindestens einem Zylinder
EP1552128B1 (fr) Procede, appareil de commande, et programme informatique pour detecter des detecteurs de pression defectueux dans un moteur a combustion interne
DE102007009689B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Abgasrückführung
DE102012207655B4 (de) Verfahren zur Diagnose eines Ventils einer Fluidzuleitung
DE102007013252A1 (de) Verfahren und Vorrichtung zur Überwachung des Saugrohrdruckes einer Brennkraftmaschine
DE102005027565A1 (de) Verfahren zur Fehlerdiagnose eines Umgebungsdrucksensors und eines Saugrohrdrucksensors
DE102013102071B4 (de) Verfahren zum Überprüfen einer Funktion eines Auslassventiles
EP3507475B1 (fr) Procédé, dispositif de commande et système permettant de détecter un écart entre un instant d'actionnement réel d'une soupape d'échange de gaz d'un moteur à combustion interne et un instant d'actionnement prédéfini
DE10258426B4 (de) Verfahren und Vorrichtung zum Überwachen einer Steuereinrichtung einer Brennkraftmaschine
DE102007050026A1 (de) Verfahren und Vorrichtung zum Überwachen von Steuer- und Regelkreisen in einem Motorsystem
DE10345311B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, sowie Computerprogramm, elektrisches Speichermedium, Steuer- und/oder Regeleinrichtung und Brennkraftmaschine
DE102004016724B4 (de) Verfahren zum Überwachen einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine
AT503956B1 (de) Verfahren zur diagnose von fehlerhaften betriebszuständen
DE19954535C2 (de) Verfahren zur Plausibilitätsprüfung der gemessenen Last bei einer Brennkraftmaschine mit variabler Ventilhubsteuerung
DE102009055120A1 (de) Verfahren und Vorrichtung zur Durchführung einer Onboard-Diagnose
DE102005012946A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008008532A1 (de) Verfahren und Vorrichtung zur Diagnose des Betriebes einer Brennkraftmaschine
WO2009109421A1 (fr) Procédé et dispositif de différenciation entre une concentration attendue par erreur et une concentration détectée par erreur d’une composante des gaz d’échappement d’un moteur à combustion interne
DE10238288B4 (de) Verfahren zur Diagnose eines Abgasturboladerstellers
DE102004054231B4 (de) Verfahren zur Fehlererkennung in der Motorsteuerung bei Brennkraftmaschinen mit wenigstens zwei Steuergeräten
DE102005058299A1 (de) Verfahren zur Diagnose von Abgasrückführungen bei Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131101