EP2288953A1 - Vorrichtung, kamera und verfahren zur erzeugung von bildern der umgebung eines kraftfahrzeuges - Google Patents

Vorrichtung, kamera und verfahren zur erzeugung von bildern der umgebung eines kraftfahrzeuges

Info

Publication number
EP2288953A1
EP2288953A1 EP08874462A EP08874462A EP2288953A1 EP 2288953 A1 EP2288953 A1 EP 2288953A1 EP 08874462 A EP08874462 A EP 08874462A EP 08874462 A EP08874462 A EP 08874462A EP 2288953 A1 EP2288953 A1 EP 2288953A1
Authority
EP
European Patent Office
Prior art keywords
camera
images
motor vehicle
headlight
headlamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08874462A
Other languages
English (en)
French (fr)
Inventor
Petko Faber
Paul Ruhnau
Martin Rous
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2288953A1 publication Critical patent/EP2288953A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/12Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices with means for image conversion or intensification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems

Definitions

  • the invention relates to a device, a camera and a method for generating images of the surroundings of a motor vehicle.
  • EP 0 869 031 A2 discloses a method for regulating the headlight range and the direction of the direction of headlights in a motor vehicle, wherein a camera looks at the traffic area ahead of the motor vehicle with the roadway and captures image data. Based on the recorded image data, the course of the road is determined and the headlamp setting adjusted accordingly. Furthermore, it is apparent from EP 0 869 031 A2 that oncoming motor vehicles are detected and the lighting is controlled so that the oncoming motor vehicle does not experience glare.
  • the device according to the invention with the features of the independent claim has the advantage that the detection of oncoming and preceding vehicles, as well as of other objects with active light sources is improved. It is also advantageous that measurement data can be determined from the images generated, which are a measure of the ambient brightness. By generating the images in the dark phases of the headlamp, the measurement of the ambient brightness by reflections of their own Vehicle not distorted. This can be used to advantage to detect indirect lighting in localities, so close to a traffic situation within a village and turn off the high beam headlamps, since within built-up areas, the use of high beam is not permitted by law. This increases traffic safety on the one hand. On the other hand, this contributes to compliance with legal requirements.
  • a synchronization connection between the camera and the headlight since this synchronization can be done very reliable and accurate.
  • a camera which is configured such that the camera adjusts the recording times of the images as a function of the illumination of the surroundings of the motor vehicle recorded in the images in such a way that the camera generates the images in the dark phases of the headlight.
  • FIG. 1 shows a motor vehicle
  • FIG. 2 is a block diagram of the first embodiment
  • FIG. 3 is a timing diagram of the first embodiment
  • FIG. 4 is a block diagram of the second embodiment
  • FIG. 5 is a block diagram of the third embodiment
  • the following describes a device for a motor vehicle or a device in a motor vehicle, the device comprising a headlight for illuminating an environment of the motor vehicle with light pulses and a camera for generating images of the surroundings of the motor vehicle.
  • the camera and the headlight are synchronized in such a way that the camera produces the images in dark phases of the headlight.
  • a camera and a method for generating images are proposed.
  • FIG. 1 shows a motor vehicle 10 on a roadway 20 of the exemplary embodiments.
  • the motor vehicle 10 comprises a camera 12 and a headlight 14. Both the camera 12 and the headlight 14 are provided with a control unit
  • the camera 12 is mounted and aligned in the area of the windshield so that the camera 12 detects the surroundings in front of the motor vehicle 10 with the image capturing area 22.
  • the camera 12 comprises, in addition to a lens, a CMOS image sensor or a CCD image sensor.
  • a color camera is used.
  • a stereo camera is characterized by the fact that it comprises at least two cameras, which record essentially the same scene.
  • the camera 12 detects light at least in the wavelength Gen Scheme between 400 nm and 750 nm, preferably up to 1000 nm.
  • the control unit 16 determines in the embodiments of the images generated by the camera 12 measurement data of oncoming or preceding objects, in particular motor vehicles. For this purpose, the images taken by the camera 12 in dark phases of the headlights 14 are transmitted to the control unit 16.
  • the control unit 16 carries out an image evaluation by the control unit determining active light sources in the surroundings from the images.
  • the control unit 16 preferably determines bright image areas and classifies these image areas as objects, in particular as headlights of accommodating motor vehicles and / or as tail lights of vehicles in front and / or as light sources of cyclists and / or traffic lights. Subsequently, the control unit 16 determines the position of the detected objects and transmits these measured data to the headlights 14. In a variant, the control unit 16 determines from the recorded images measurement data, which are a measure of the ambient brightness. For this purpose, the controller 16 calculates the average brightness of a captured image or a predetermined portion of a captured image. Depending on the determined ambient brightness, the control unit 16 determines the traffic situation. In particular, the control unit 16 determines whether the motor vehicle 10 is within a closed locality by the control unit 16 determining the measured value for the vehicle
  • Ambient brightness compares to a threshold and closes when the threshold is exceeded to a closed location. Subsequently, the control unit 16 transmits a value indicating whether there is a closed locality and an ambient brightness value to the headlight 14. Depending on the value indicating whether there is a closed locality, the high beam headlights become the Headlight 14 then deactivated when the motor vehicle 10 is within a closed locality. Depending on the value for the ambient brightness, the headlights 14 are activated or deactivated. In order to ensure the clarity of Figure 1, only a single headlight 14 is located.
  • two headlights 14 are used, which are arranged in the front region of the motor vehicle 10 and which illuminate the area in front of the motor vehicle 10 with an illumination area 24.
  • the headlights 14 are characterized in that they emit pulsed light and thus illuminate the environment in front of the motor vehicle 10 pulsed, wherein the pulse rate is chosen so that the human eye perceives the light of the headlights 14 as continuous illumination.
  • the exemplary embodiments are preferably LED headlights or alternatively laser headlights.
  • the LED headlamps consist in the rougespie- len on the right and the left side of the motor vehicle 10 each consist of a low beam module and an additional high beam module.
  • the multi-chip LE Ds are used in the dipped-beam module, which generate white light by converting the blue light that is generated by it into a white light through a converter material.
  • the light distribution of the low-beam module is generated by reflectors and projection lenses. Accordingly, in
  • High-beam module also used the multi-chip LE Ds in conjunction with reflectors.
  • the headlights 14 are configured such that the illumination width and, in addition or alternatively, the range of the headlights 14 is adjustable.
  • the headlights 14 are configured to provide both the function of the low beam and the high beam function.
  • the headlights 14 are configured such that the headlights 14 selectively illuminate selectable areas of the low beam and / or high beam areas based on the measurement data transmitted by the controller 14, so that oncoming motor vehicles or preceding vehicles or cyclists are not dazzled, but still of the
  • a display 18 is connected to the control unit 16.
  • the control unit 16 transmits to the display 18 measurement data for detected traffic signals.
  • the display 18 is preferably a visual display. Alternatively or additionally, an acoustic display and / or a haptic display is provided.
  • the signaling (red, green, yellow, red-yellow) of the detected traffic lights is preferably displayed on the display, and thus the driver of the motor vehicle 10 is informed or even warned.
  • Figure 2 shows a block diagram of the first embodiment, comprising one or more cameras 12 and one or more headlights 14, with respect to Figure 1, only the elements are listed, which are necessary to explain the synchronization of camera 12 and headlight 14.
  • the headlight 14 illuminates the surroundings 28 and the camera 12 detects at least part of the illuminated surroundings.
  • a bicycle 30, a motorized road user 32, such as a car or a truck or a motorcycle, and a traffic light 34 are shown in FIG.
  • the camera 12 and the headlight 14 are synchronized via a synchronization connection 26 in such a way that the camera 12 stores the images in FIG
  • the synchronization connection 26 is designed as a wired line, wherein the wired line is designed either as a bus, for example as a CAN bus, or as permanently assigned and interconnected line. Alternatively or additionally, the synchronization connection 26 is designed as a radio link.
  • Figure 3 shows a timing diagram of the first embodiment in a schematic representation.
  • the time t is plotted on the x-axis of the time diagram.
  • the upper partial diagram shows the time curve 40 of the illumination of the
  • the headlights emit in a periodic sequence pulsed light with light phases 46 and dark phases 48.
  • the headlights emit light to the environment, while the headlights emit no light in the dark phases 48.
  • the headlamps are thus switched on and there are switch-on phases of the headlamps, while in the dark phases 48, the headlamps are switched off and thus switch-off phases of the headlamps are present.
  • the dark phase 48 is between 1 ms and 5 ms, preferably 4 ms.
  • the ratio between see dark phase 48 and light phase 46 is one in ten.
  • the light phases 46 are ten times longer than the dark phases 48.
  • one to ten dark phases 48 preferably ten dark phases 48, with a duration between 1 ms and 5 ms, preferably 4 ms, are generated by the headlight per second.
  • the dark phase 48 is selected such that a human being does not consciously perceive the dark phases 48.
  • the middle partial diagram shows the time course 42 of the synchronization signal on the synchronization connection between the camera and headlights.
  • the headlight In the dark phases 48, the headlight generates a short synchronization pulse 50, which is transmitted from the headlight to the camera.
  • the camera As shown in the lower partial diagram, which shows the time course 44 of the image recording of the camera, the camera generates an image recording 50 within the dark phase 48 of the camera 5 triggered by the synchronization pulse 50
  • the camera is thus designed such that the camera adjusts recording times of the images such that the camera generates the images in the dark phases 48 of the headlight.
  • the time course 40 of the headlight illumination is predetermined and the time course 44 of the image acquisition of the camera is variable and is synchronized to the time course 40 of the headlight illumination.
  • the headlight is triggered by a synchronization pulse 50 of the camera in order to transmit a light pulse only when the image recording 52 of the camera has been completed.
  • the synchronization pulse 50 is generated by the camera and the synchronization pulse is transmitted from the camera to the headlight.
  • the headlight is designed such that the headlight sets the light pulses in such a way that the camera generates the images in the dark phases 48 of the headlight.
  • the time course 44 of the image capture of the camera is given and
  • Time course 40 of the headlight illumination is variable and is synchronized to the time course 44 of the image acquisition.
  • Figure 4 shows a block diagram of the second embodiment, comprising one or more cameras 12 and one or more headlights 14, with respect to Figure 1, only the elements are listed, which are necessary to explain the synchronization of camera 12 and headlight 14.
  • the headlight 14 illuminates the surroundings 28 and the camera 12 captures at least a part of the illuminated surroundings 28.
  • the surroundings 28 there is a bicycle 30, a motorized road user 32 a car or a truck or a motorcycle, and a traffic light 34 located.
  • the camera 12 and the headlight 14 are not synchronized via a synchronization connection.
  • the camera 12 is configured in such a way that the camera 12 can be used as a function of the images recorded in the images. Illumination of the environment of the motor vehicle by the headlights 14, the recording times of the images set such that the camera 12 generates the images in the dark phases of the headlight 14. For this purpose, the camera 12 performs a plurality of successive image recordings by the camera 12 takes pictures of the environment 28 of the motor vehicle. Depending on the offset between the
  • the environment 28 is illuminated during the recording of an image by the headlights 14, temporarily lit or not illuminated. Subsequently, the camera 12 determines, for the individual recorded images, whether the headlight 14 was switched on during the image recording, was temporarily switched on or switched off. From this, the camera 12 determines the time lag between the time course of the headlight illumination and the time course of the image acquisition. Based on the temporal offset, the camera 12 adjusts the recording times of the images so that the camera 12 generates the images in the dark phases of the headlight 14.
  • FIG. 5 shows a block diagram of the third exemplary embodiment, comprising one or more cameras 12 and one or more headlights 14, and at least one light sensor 36, with only the elements being compared with FIG. 1 being used to explain the synchronization of camera 12 and
  • Headlights 14 are necessary. As already explained with reference to FIG. 1, the headlight 14 illuminates the surroundings 28 and the camera 12 captures at least part of the illuminated surroundings 28.
  • the surroundings 28 there is a bicycle 30, a motorized road user 32, such as a car or a truck or a motorcycle, as well as a traffic light
  • the camera 12 and the headlight 14 are not synchronized via a synchronization connection. Rather, the light sensor 36 detects the brightness in the surroundings 28, in particular the light pulses of the headlights 14 in the surroundings 28. The light sensor 36 transmits the detected brightness values to the camera 12 via a line connection 38.
  • the camera 12 is designed in such a way that the Camera 12 as a function of the light detected by the light sensor 36 light pulses of the headlight 14, the recording times of the images set such that the camera 12 generates the images in the dark phases of the headlight 14.
  • the camera 12 determines from the detected brightness values of the light sensor 36 Time course of the headlight illumination. Based on this, the camera 12 adjusts the recording timings of the images such that the camera 12 generates the images in the dark phases of the headlight 14.
  • FIG. 6 shows a flowchart of the method.
  • dark phases 48 and light phases 46 alternate periodically. Accordingly, image recordings 52 and times without image recordings 54 also alternate periodically repeating.
  • the camera and the headlight are synchronized with each other by a synchronization 58 such that the camera generates image recordings 52 in the dark phases 48 of the headlight.
  • the images recorded in the dark phases 48 of the headlight are optionally supplied to an image evaluation 56.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Studio Devices (AREA)

Abstract

Es wird eine Vorrichtung für ein Kraftfahrzeug (10) vorgeschlagen, wobei die Vorrichtung einen Scheinwerfer (14) zur Beleuchtung einer Umgebung des Kraftfahrzeuges (10) mit Lichtpulsen und eine Kamera (12) zur Erzeugung von Bildern der Umgebung des Kraftfahrzeuges umfasst. Die Kamera (12) und der Scheinwerfer (14) sind derart synchronisiert, dass die Kamera (12) die Bilder in Dunkelphasen des Scheinwerfers (14) erzeugt. Ferner werden eine Kamera und ein Verfahren zur Erzeugung von Bildern vorschlagen.

Description

Beschreibung
Titel
Vorrichtung, Kamera und Verfahren zur Erzeugung von Bildern der Umgebung eines Kraftfahrzeuges
Stand der Technik
Die Erfindung betrifft eine Vorrichtung, eine Kamera und ein Verfahren zur Erzeugung von Bildern der Umgebung eines Kraftfahrzeuges.
Aus der EP 0 869 031 A2 ist ein Verfahren zur Regulierung von Leuchtweite und Leuchtrichtung von Schweinwerfern in einem Kraftfahrzeug bekannt, wobei eine Kamera den vor dem Kraftfahrzeug liegenden Verkehrsraum mit der Fahrbahn betrachtet und Bilddaten erfasst. Basierend auf den erfassten Bilddaten wird der Straßenverlauf ermittelt und die Scheinwerfereinstellung entsprechend ange- passt. Ferner geht aus der EP 0 869 031 A2 hervor, dass entgegenkommende Kraftfahrzeuge erkannt werden und die Beleuchtung so geregelt wird, dass das entgegenkommende Kraftfahrzeug keine Blendung erfährt.
Offenbarung der Erfindung
Vorteile der Erfindung
Die erfindungsgemäße Vorrichtung mit den Merkmalen des unabhängigen An- spruchs hat demgegenüber den Vorteil, dass die Erkennung von entgegenkommenden und vorausfahrenden Kraftfahrzeugen, sowie von anderen Objekten mit aktiven Lichtquellen verbessert ist. Vorteilhaft ist ferner, dass sich aus den erzeugten Bildern Messdaten ermittelt lassen, die ein Maß für die Umgebungshelligkeit sind. Durch die Erzeugung der Bilder in den Dunkelphasen des Scheinwer- fers, wird die Messung der Umgebungshelligkeit durch Reflexionen des eigenen Fahrzeuges nicht verfälscht. Dies lässt sich in vorteilhafter Weise dazu nutzen, eine indirekte Beleuchtung in Ortschaften zu detektieren, damit auf eine Verkehrssituation innerhalb einer Ortschaft zu schließen und die Fernlichtscheinwerfer auszuschalten, da innerhalb geschlossener Ortschaften die Benutzung von Fernlicht gesetzlich nicht zulässig ist. Damit wird einerseits die Verkehrssicherheit erhöht. Andererseits trägt dies dazu bei, dass gesetzliche Vorschriften eingehalten werden.
Vorteilhaft ist eine Synchronisationsverbindung zwischen der Kamera und dem Scheinwerfer, da hierdurch die Synchronisation besonders verlässlich und genau erfolgen kann.
Besonders vorteilhaft ist eine Kamera, die derart ausgestaltet ist, dass die Kamera in Abhängigkeit der in den Bildern erfassten Beleuchtung der Umgebung des Kraftfahrzeuges durch die Scheinwerfer die Aufnahmezeitpunkte der Bilder derart einstellt, dass die Kamera die Bilder in den Dunkelphasen des Scheinwerfers erzeugt. Hierdurch entfällt die physikalische Synchronisationsleitung. Dies trägt einerseits zu geringeren Kosten der Vorrichtung bei, andererseits sind die Kameras einfacher mit Scheinwerfern kombinierbar, da die Kamera selbst die Syn- chronisation durchführt.
Vorteilhaft sind Dunkelphasen zwischen einer Millisekunde und fünf Millisekunden, bevorzugt vier Millisekunden, da ein Mensch derart gewählte Dunkelphasen nicht wahrnimmt. Vielmehr nimmt ein Mensch ein solches Scheinwerferlicht bei entsprechend langen Hellphasen als kontinuierliche Beleuchtung wahr.
Die für die Vorrichtung genannten Vorteile gelten entsprechend für die nachfolgend beschriebene Kamera und das erfindungsgemäße Verfahren.
Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezug auf die Figuren und aus den abhängigen Ansprüchen.
Zeichnungen Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Aus- führungsform näher erläutert.
Es zeigen:
- Figur 1 ein Kraftfahrzeug,
- Figur 2 ein Blockdiagramm des ersten Ausführungsbeispiels,
- Figur 3 ein Zeitdiagramm des ersten Ausführungsbeispiels,
- Figur 4 ein Blockdiagramm des zweiten Ausführungsbeispiels, - Figur 5 ein Blockdiagramm des dritten Ausführungsbeispiels,
- Figur 6 ein Ablaufdiagramm.
Beschreibung von Ausführungsbeispielen
Nachfolgend wird eine Vorrichtung für ein Kraftfahrzeug oder eine Vorrichtung in einem Kraftfahrzeug beschrieben, wobei die Vorrichtung einen Scheinwerfer zur Beleuchtung einer Umgebung des Kraftfahrzeuges mit Lichtpulsen und eine Kamera zur Erzeugung von Bildern der Umgebung des Kraftfahrzeuges umfasst. Die Kamera und der Scheinwerfer sind derart synchronisiert, dass die Kamera die Bilder in Dunkelphasen des Scheinwerfers erzeugt. Ferner werden eine Kamera und ein Verfahren zur Erzeugung von Bildern vorgeschlagen.
Figur 1 zeigt ein Kraftfahrzeug 10 auf einer Fahrbahn 20 der Ausführungsbeispiele. Das Kraftfahrzeug 10 umfasst eine Kamera 12 und einen Scheinwerfer 14. Sowohl die Kamera 12 als auch der Scheinwerfer 14 sind mit einem Steuergerät
16 verbunden. Die Kamera 12 ist im Bereich der Windschutzscheibe so angebracht und ausgerichtet, dass die Kamera 12 die Umgebung vor dem Kraftfahrzeug 10 mit dem Bilderfassungsbereich 22 erfasst. Die Kamera 12 umfasst neben einem Objektiv einen CMOS-Bildsensor oder einen CCD-Bildsensor. Bevor- zugt wird eine Farbkamera verwendet. Alternativ wird eine Schwarz-Weiß-
Kamera eingesetzt. In den Ausführungsbeispielen wird eine Mono- Kamera, also eine einzelne Kamera 12 verwendet. Alternativ ist in einer Variante vorgesehen, dass eine Stereokamera verwendet wird. Eine Stereokamera zeichnet sich dadurch aus, dass sie mindestens zwei Kameras umfasst, die im Wesentlichen die- selbe Szene aufnehmen. Die Kamera 12 erfasst Licht zumindest im Wellenlän- genbereich zwischen 400 nm und 750 nm, bevorzugt bis 1000 nm. Das Steuergerät 16 ermittelt in den Ausführungsbeispielen aus den von der Kamera 12 erzeugten Bildern Messdaten von entgegenkommenden oder vorausfahrenden Objekten, insbesondere Kraftfahrzeugen. Hierzu werden die von der Kamera 12 in Dunkelphasen der Scheinwerfer 14 aufgenommene Bilder an das Steuergerät 16 übertragen. Das Steuergerät 16 führt eine Bildauswertung durch, indem das Steuergerät aus den Bildern aktive Lichtquellen in der Umgebung ermittelt. Bevorzugt ermittelt das Steuergerät 16 helle Bildbereiche und klassifiziert diese Bildbereiche als Objekte, insbesondere als Scheinwerfer von entgegenkommen- den Kraftfahrzeugen und/oder als Rückleuchten von vorausfahrenden Kraftfahrzeugen und/oder als Lichtquellen von Fahrradfahrern und/oder als Verkehrsampeln. Anschließend bestimmt das Steuergerät 16 die Position der ermittelten Objekte und überträgt diese Messdaten an die Scheinwerfer 14. In einer Variante ermittelt das Steuergerät 16 aus den aufgenommenen Bildern Messdaten, die ein Maß für die Umgebungshelligkeit sind. Hierzu berechnet das Steuergerät 16 die mittlere Helligkeit eines aufgenommenen Bildes oder eines vorbestimmten Teilbereichs eines aufgenommenen Bildes. In Abhängigkeit der ermittelten Umgebungshelligkeit bestimmt das Steuergerät 16 die Verkehrssituation. Insbesondere bestimmt das Steuergerät 16, ob sich das Kraftfahrzeug 10 innerhalb einer ge- schlossenen Ortschaft befindet, indem das Steuergerät 16 den Messwert für die
Umgebungshelligkeit mit einem Schwellenwert vergleicht und bei Überschreiten des Schwellenwerts auf eine geschlossene Ortschaft schließt. Anschließend ü- berträgt das Steuergerät 16 einen Wert, der kennzeichnet, ob eine geschlossene Ortschaft vorliegt, und einen Wert für die Umgebungshelligkeit an die Scheinwer- fer 14. In Abhängigkeit des Wertes, der kennzeichnet, ob eine geschlossene Ortschaft vorliegt, werden die Fernlichtscheinwerfer der Scheinwerfer 14 dann deaktiviert, wenn sich das Kraftfahrzeug 10 innerhalb einer geschlossenen Ortschaft befindet. In Abhängigkeit des Wertes für die Umgebungshelligkeit werden die Scheinwerfer 14 aktiviert oder deaktiviert. Um die Übersichtlichkeit der Figur 1 zu gewährleisten ist lediglich ein einzelner Scheinwerfer 14 eingezeichnet. Bevorzugt werden in den Ausführungsbeispielen zwei Scheinwerfer 14 verwendet, die im Frontbereich des Kraftfahrzeuges 10 angeordnet sind und die mit einem Beleuchtungsbereich 24 den Bereich vor dem Kraftfahrzeug 10 beleuchten. Die Scheinwerfer 14 zeichnen sich dadurch aus, dass sie gepulstes Licht abgegeben und somit die Umgebung vor dem Kraftfahrzeug 10 gepulst beleuchten, wobei die Pulsfrequenz so gewählt ist, dass das menschliche Auge das Licht der Scheinwerfer 14 als kontinuierliche Beleuchtung wahrnimmt. In den Ausführungsbeispielen handelt es sich bevorzugt um LED-Scheinwerfer oder alternativ Laser-Scheinwerfer. Die LED-Scheinwerfer bestehen in den Ausführungsbeispie- len auf der rechten und der linken Seite des Kraftfahrzeuges 10 jeweils aus einem Abblendlichtmodul und einem zusätzlichen Fernlichtmodul. Beim Abblendlichtmodul werden mehrere Mehrchip- LE Ds eingesetzt, die weißes Licht dadurch generieren, dass das ursächlich erzeugte blaue Licht durch ein Konvertermaterial in weißes Licht umgewandelt wird. Die Lichtverteilung des Abblendlichtmoduls wird durch Reflektoren und Projektionslinsen erzeugt. Entsprechend werden im
Fernlichtmodul ebenfalls die Mehrchip- LE Ds in Verbindung mit Reflektoren eingesetzt. Die Scheinwerfer 14 sind derart ausgestaltet, dass die Leuchtbreite und zusätzlich oder alternativ die Leuchtweite der Scheinwerfer 14 einstellbar ist. Somit sind die Scheinwerfer 14 derart ausgestaltet, dass sie sowohl die Funktion des Abblendlichtes als auch die Funktion des Fernlichtes bereitstellen. Darüber hinaus sind die Scheinwerfer 14 derart ausgestaltet, dass die Scheinwerfer 14 basierend auf den von dem Steuergerät 14 übertragenen Messdaten selektiv auswählbare Bereiche des Abblendlicht- und/oder des Fernlichtbereiches ausleuchten, so dass entgegenkommende Kraftfahrzeuge oder vorausfahrende Kraftfahrzeuge oder Fahrradfahrer nicht geblendet werden, aber trotzdem der
Bereich vor dem Kraftfahrzeug 10 optimal ausgeleuchtet ist. Ferner ist an das Steuergerät 16 eine Anzeige 18 angeschlossen. Das Steuergerät 16 überträgt an die Anzeige 18 Messdaten zu erfassten Verkehrsampeln. Bei der Anzeige 18 handelt es sich bevorzugt um eine optische Anzeige. Alternative oder zusätzlich ist eine akustische Anzeige und/oder eine haptische Anzeige vorgesehen. Bevorzugt wird auf der Anzeige die Signalisierung (rot, grün, gelb, rot-gelb) der erfassten Verkehrsampeln angezeigt und so der Fahrer des Kraftfahrzeuges 10 informiert oder auch gewarnt.
Figur 2 zeigt ein Blockdiagramm des ersten Ausführungsbeispiels, umfassend eine oder mehrere Kameras 12 und einen oder mehrere Scheinwerfer 14, wobei gegenüber Figur 1 nur die Elemente aufgeführt sind, die zur Erläuterung der Synchronisation von Kamera 12 und Scheinwerfer 14 notwendig sind. Wie mit Bezug auf Figur 1 bereits erläutert, beleuchtet der Scheinwerfer 14 die Umge- bung 28 und die Kamera 12 erfasst zumindest einen Teil der beleuchteten Um- gebung 28. Beispielhaft sind in Figur 2 in der Umgebung 28 ein Fahrrad 30, ein motorisierter Verkehrsteilnehmer 32, wie ein Auto oder ein Lastkraftwagen oder ein Motorrad, sowie eine Verkehrsampel 34 eingezeichnet. Im ersten Ausführungsbeispiel sind die Kamera 12 und der Scheinwerfer 14 über eine Synchroni- sationsverbindung 26 derart synchronisiert, dass die Kamera 12 die Bilder in
Dunkelphasen des Scheinwerfers 14 erzeugt. Bevorzugt ist die Synchronisationsverbindung 26 als drahtgebundene Leitung ausgeführt, wobei die drahtgebundene Leitung entweder als Bus, beispielsweise als CAN-Bus, oder als fest zugeordnet und verschaltete Leitung ausgeführt ist. Alternativ oder zusätzlich ist die Synchronisationsverbindung 26 als Funkverbindung ausgeführt. Die zeitliche
Synchronisation wird nachfolgend anhand der Figur 3 erläutert.
Figur 3 zeigt ein Zeitdiagramm des ersten Ausführungsbeispiels in einer schematischen Darstellung. Auf der x-Achse des Zeitdiagramms ist die Zeit t aufgetra- gen. Das obere Teildiagramm zeigt den Zeitverlauf 40 der Beleuchtung der
Scheinwerfer. Die Scheinwerfer emittieren in einer periodischen Abfolge gepulstes Licht mit Hellphasen 46 und Dunkelphasen 48. In den Hellphasen 46 geben die Scheinwerfer Licht an die Umgebung ab, während die Scheinwerfer in den Dunkelphasen 48 kein Licht abgeben. In den Hellphasen 46 sind die Scheinwer- fer somit eingeschaltet und es liegen Einschaltphasen der Scheinwerfer vor, während in den Dunkelphasen 48 die Scheinwerfer abgeschaltet sind und somit Ausschaltphasen der Scheinwerfer vorliegen. In dem ersten Ausführungsbeispiel, aber auch in den weiteren Ausführungsbeispielen, beträgt die Dunkelphase 48 zwischen 1 ms und 5 ms, bevorzugt 4 ms. Bevorzugt beträgt das Verhältnis zwi- sehen Dunkelphase 48 und Hellphase 46 eins zu zehn. Somit sind die Hellphasen 46 zehnmal länger als die Dunkelphasen 48. In einer Variante der Ausführungsbeispiele werden pro Sekunde ein bis zehn Dunkelphasen 48, bevorzugt zehn Dunkelphasen 48, mit einer Dauer zwischen 1 ms und 5 ms, bevorzugt 4 ms, durch den Scheinwerfer erzeugt. Damit ist die Dunkelphase 48 derart ge- wählt, dass ein Mensch die Dunkelphasen 48 nicht bewusst wahrnimmt. Die
Schaltzeiten der Scheinwerfer, insbesondere der LED- und Laser-Scheinwerfer, von einer Hellphase 46 zu einer Dunkelphase 48 oder umgekehrt betragen in den Ausführungsbeispielen unter 0,1 ms. Bevorzugt liegen die Schaltzeiten im Nanosekundenbereich. Das mittlere Teildiagramm zeigt den Zeitverlauf 42 des Synchronisationssignals auf der Synchronisationsverbindung zwischen Kamera und Scheinwerfer. In den Dunkelphasen 48 erzeugt der Scheinwerfer einen kurzen Synchronisationsimpuls 50, der vom Scheinwerfer zur Kamera übertragen wird. Wie im unteren Teildiagramm dargestellt, das den Zeitverlauf 44 der Bildaufnahme der Kamera zeigt, erzeugt die Kamera durch den Synchronisationsim- puls 50 angetriggert eine Bildaufnahme 50 innerhalb der Dunkelphase 48 der
Scheinwerferbeleuchtung. In dieser Variante des ersten Ausführungsbeispiels ist die Kamera somit derart ausgestaltet, dass die Kamera Aufnahmezeitpunkte der Bilder derart einstellt, dass die Kamera die Bilder in den Dunkelphasen 48 des Scheinwerfers erzeugt. Somit ist der Zeitverlauf 40 der Scheinwerferbeleuchtung vorgegeben und der Zeitverlauf 44 der Bildaufnahme der Kamera ist variable und wird auf den Zeitverlauf 40 der Scheinwerferbeleuchtung synchronisiert. In einer Variante des ersten Ausführungsbeispiels wird umgekehrt der Scheinwerfer durch einen Synchronisationsimpuls 50 der Kamera getriggert, um erst dann einen Lichtimpuls abzugeben, wenn die Bildaufnahme 52 der Kamera abgeschlos- sen ist. In dieser Variante wird der Synchronisationsimpuls 50 von der Kamera erzeugt und der Synchronisationsimpuls wird von der Kamera zum Scheinwerfer übertragen. Somit ist in dieser Variante des ersten Ausführungsbeispiels der Scheinwerfer derart ausgestaltet ist, dass der Scheinwerfer die Lichtpulse derart einstellt, dass die Kamera die Bilder in den Dunkelphasen 48 des Scheinwerfers erzeugt. Der Zeitverlauf 44 der Bildaufnahme der Kamera ist vorgegeben und
Zeitverlauf 40 der Scheinwerferbeleuchtung ist variable und wird auf den Zeitverlauf 44 der Bildaufnahme synchronisiert.
Figur 4 zeigt ein Blockdiagramm des zweiten Ausführungsbeispiels, umfassend eine oder mehrere Kameras 12 und einen oder mehrere Scheinwerfer 14, wobei gegenüber Figur 1 nur die Elemente aufgeführt sind, die zur Erläuterung der Synchronisation von Kamera 12 und Scheinwerfer 14 notwendig sind. Wie mit Bezug auf Figur 1 bereits erläutert, beleuchtet der Scheinwerfer 14 die Umgebung 28 und die Kamera 12 erfasst zumindest einen Teil der beleuchteten Um- gebung 28. Beispielhaft sind in Figur 4 in der Umgebung 28 ein Fahrrad 30, ein motorisierter Verkehrsteilnehmer 32, wie ein Auto oder ein Lastkraftwagen oder ein Motorrad, sowie eine Verkehrsampel 34 eingezeichnet. Im zweiten Ausführungsbeispiel sind die Kamera 12 und der Scheinwerfer 14 nicht über eine Synchronisationsverbindung synchronisiert. Vielmehr ist die Kamera 12 derart aus- gestaltet, dass die Kamera 12 in Abhängigkeit der in den Bildern erfassten Be- leuchtung der Umgebung des Kraftfahrzeuges durch die Scheinwerfer 14 die Aufnahmezeitpunkte der Bilder derart einstellt, dass die Kamera 12 die Bilder in den Dunkelphasen des Scheinwerfers 14 erzeugt. Hierzu führt die Kamera 12 mehrere aufeinanderfolgende Bildaufnahmen durch, indem die Kamera 12 Bilder der Umgebung 28 des Kraftfahrzeuges aufnimmt. Je nach Versatz zwischen dem
Zeitverlauf der Scheinwerferbeleuchtung und dem Zeitverlauf der Bildaufnahme ist die Umgebung 28 während der Aufnahme eines Bildes durch die Scheinwerfer 14 beleuchtet, zeitweise beleuchtet oder nicht beleuchtet. Anschließend bestimmt die Kamera 12 für die einzelnen aufgenommenen Bilder, ob der Schein- werfer 14 während der Bildaufnahme eingeschaltet, zeitweise eingeschaltet oder ausgeschaltet war. Daraus ermittelt die Kamera 12 den zeitlichen Versatz zwischen dem Zeitverlauf der Scheinwerferbeleuchtung und dem Zeitverlauf der Bildaufnahme. Basierend auf dem zeitlichen Versatz stellt die Kamera 12 die Aufnahmezeitpunkte der Bilder derart ein, dass die Kamera 12 die Bilder in den Dunkelphasen des Scheinwerfers 14 erzeugt.
Figur 5 zeigt ein Blockdiagramm des dritten Ausführungsbeispiels, umfassend eine oder mehrere Kameras 12 und einen oder mehrere Scheinwerfer 14, sowie zumindest einen Lichtsensor 36, wobei gegenüber Figur 1 nur die Elemente auf- geführt sind, die zur Erläuterung der Synchronisation von Kamera 12 und
Scheinwerfer 14 notwendig sind. Wie mit Bezug auf Figur 1 bereits erläutert, beleuchtet der Scheinwerfer 14 die Umgebung 28 und die Kamera 12 erfasst zumindest einen Teil der beleuchteten Umgebung 28. Beispielhaft sind in Figur 4 in der Umgebung 28 ein Fahrrad 30, ein motorisierter Verkehrsteilnehmer 32, wie ein Auto oder ein Lastkraftwagen oder ein Motorrad, sowie eine Verkehrsampel
34 eingezeichnet. Im dritten Ausführungsbeispiel sind die Kamera 12 und der Scheinwerfer 14 nicht über eine Synchronisationsverbindung synchronisiert. Vielmehr erfasst der Lichtsensor 36 die Helligkeit in der Umgebung 28, insbesondere die Lichtpulse der Scheinwerfer 14 in der Umgebung 28. Der Lichtsen- sor 36 überträgt über eine Leitungsverbindung 38 die erfassten Helligkeitswerte an die Kamera 12. Die Kamera 12 ist derart ausgestaltet, dass die Kamera 12 in Abhängigkeit der von dem Lichtsensor 36 erfassten Lichtpulse des Scheinwerfers 14 die Aufnahmezeitpunkte der Bilder derart einstellt, dass die Kamera 12 die Bilder in den Dunkelphasen des Scheinwerfers 14 erzeugt. Hierzu ermittelt die Kamera 12 aus den erfassten Helligkeitswerten des Lichtsensors 36 den Zeitverlauf der Scheinwerferbeleuchtung. Darauf basierend stellt die Kamera 12 die Aufnahmezeitpunkte der Bilder derart ein, dass die Kamera 12 die Bilder in den Dunkelphasen des Scheinwerfers 14 erzeugt.
Figur 6 zeigt ein Ablaufdiagramm des Verfahrens. Auf der Scheinwerferseite wechseln sich Dunkelphasen 48 und Hellphasen 46 periodisch wiederholend ab. Entsprechend wechseln sich Bildaufnahmen 52 und Zeiten ohne Bildaufnahmen 54 ebenfalls periodisch wiederholend ab. Die Kamera und der Scheinwerfer sind durch eine Synchronisation 58 derart miteinander synchronisiert, dass die Kame- ra Bildaufnahmen 52 in den Dunkelphasen 48 des Scheinwerfers erzeugt. Die in den Dunkelphasen 48 des Scheinwerfers aufgenommenen Bilder werden optional einer Bildauswertung 56 zugeführt.

Claims

Ansprüche
1. Vorrichtung eines Kraftfahrzeuges (10),
- mit einem Scheinwerfer (14), wobei der Scheinwerfer (14) eine Umgebung (28) des Kraftfahrzeuges (10) mit Lichtpulsen beleuchtet, und - mit einer Kamera (12), wobei die Kamera (12) Bilder der Umgebung (28) des
Kraftfahrzeuges (10) erzeugt, dadurch gekennzeichnet, dass die Kamera (12) und der Scheinwerfer (14) derart synchronisiert sind, dass die Kamera (12) die Bilder in Dunkelphasen (48) des Scheinwerfers (14) erzeugt.
2. Vorrichtung nach Anspruch 1, gekennzeichnet durch eine Synchronisationsverbindung (26), insbesondere durch eine als Busverbindung ausgeführte Synchronisationsleitung, zwischen der Kamera (12) und dem Scheinwerfer (14).
3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kamera (12) derart ausgestaltet ist, dass die Kamera (12) Aufnahmezeitpunkte der Bilder derart einstellt, dass die Kamera (12) die Bilder in den Dunkelphasen (48) des Scheinwerfers (14) erzeugt.
4. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Scheinwerfer (14) derart ausgestaltet ist, dass der Scheinwerfer (14) die Lichtpulse derart einstellt, dass die Kamera (12) die Bilder in den Dunkelphasen (48) des Scheinwerfers (14) erzeugt.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Kamera (12) derart ausgestaltet ist, dass die Kamera (12) in Abhängigkeit der in den Bildern erfassten Beleuchtung der Umgebung (28) des Kraftfahrzeuges (10) durch die Scheinwerfer (14) die Aufnahmezeitpunkte der Bilder derart ein- stellt, dass die Kamera (12) die Bilder in den Dunkelphasen (48) des Scheinwerfers (14) erzeugt.
6. Vorrichtung nach Anspruch 1, gekennzeichnet durch einen Lichtsensor (36), wobei der Lichtsensor (36) die Lichtpulse der Scheinwerfer (14) erfasst und wobei die Kamera (12) derart ausgestaltet ist, dass die Kamera (12) in Abhängigkeit der von dem Lichtsensor (36) erfassten Lichtpulse des Scheinwerfers (14) die Aufnahmezeitpunkte der Bilder derart einstellt, dass die Kamera (12) die Bilder in den Dunkelphasen (48) des Scheinwerfers (14) erzeugt.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Steuergerät (16), das aus den erzeugten Bildern Messdaten von entgegenkommenden oder vorausfahrenden Objekten, insbesondere Kraftfahrzeugen, ermittelt und/oder das aus den erzeugten Bildern Messdaten er- mittelt, die ein Maß für die Umgebungshelligkeit sind.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Scheinwerfer (14) derart ausgestaltet sind, dass eine Leuchtbreite und/oder eine Leuchtweite der Scheinwerfer (14) einstellbar ist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dunkelphasen (48) zwischen einer Millisekunde und fünf Millisekunden, bevorzugt vier Millisekunden, lang sind.
10. Kamera (12) eines Kraftfahrzeuges (10), wobei die Kamera (12) Bilder der
Umgebung (28) des Kraftfahrzeuges (10) erzeugt, dadurch gekennzeichnet, dass die Kamera (12) derart ausgestaltet ist, dass die Kamera (12) mit einem Lichtpulse abgebenden Scheinwerfer (14) des Kraftfahrzeuges (10) derart synchronisierbar ist, dass die Kamera (12) Bilder der Umgebung (28) des Kraftfahrzeuges (10) in Dunkelphasen (48) des Scheinwerfers (14) erzeugt.
11. Verfahren zur Erzeugung von Bildern der Umgebung (28) eines Kraftfahrzeuges (10) mittels einer Kamera (12), wobei ein Scheinwerfer (14) des Kraftfahrzeuges (10) die Umgebung (28) des Kraftfahrzeuges (10) mit Lichtpulsen beleuchtet, dadurch gekennzeichnet, dass die Kamera (12) und der Schein- werfer (14) derart synchronisiert sind, dass die Kamera (12) die Bilder in Dunkelphasen (48) des Scheinwerfers (14) erzeugt.
EP08874462A 2008-05-28 2008-11-28 Vorrichtung, kamera und verfahren zur erzeugung von bildern der umgebung eines kraftfahrzeuges Withdrawn EP2288953A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008002026A DE102008002026A1 (de) 2008-05-28 2008-05-28 Vorrichtung, Kamera und Verfahren zur Erzeugung von Bildern der Umgebung eines Kraftfahrzeuges
PCT/EP2008/066391 WO2009143910A1 (de) 2008-05-28 2008-11-28 Vorrichtung, kamera und verfahren zur erzeugung von bildern der umgebung eines kraftfahrzeuges

Publications (1)

Publication Number Publication Date
EP2288953A1 true EP2288953A1 (de) 2011-03-02

Family

ID=40521723

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08874462A Withdrawn EP2288953A1 (de) 2008-05-28 2008-11-28 Vorrichtung, kamera und verfahren zur erzeugung von bildern der umgebung eines kraftfahrzeuges

Country Status (5)

Country Link
US (1) US20110074956A1 (de)
EP (1) EP2288953A1 (de)
CN (1) CN102047166B (de)
DE (1) DE102008002026A1 (de)
WO (1) WO2009143910A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106297303A (zh) * 2016-09-07 2017-01-04 重庆云途交通科技有限公司 一种夜间安全行车辅助方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044554A1 (de) 2010-09-07 2012-03-08 Valeo Schalter Und Sensoren Gmbh Verfahren und Vorrichtung zur Erkennung von Umgebungslichtquellen in einem Fahrzeug
DE102010053197A1 (de) 2010-12-03 2011-08-25 Daimler AG, 70327 Verfahren und Vorrichtung zur Steuerung einer an oder in einem Fahrzeug angeordneten Bilderfassungseinheit
DE102011084613A1 (de) * 2011-10-17 2013-04-18 Robert Bosch Gmbh Erkennen einer Straßenbeleuchtung
JP5742753B2 (ja) * 2012-03-06 2015-07-01 岩崎電気株式会社 輝度測定装置
DE102012012501B4 (de) * 2012-06-21 2019-10-24 Volkswagen Aktiengesellschaft Kamerasystem für ein Kraftfahrzeug
CN102815259B (zh) * 2012-08-07 2015-05-20 北京经纬恒润科技有限公司 一种前照灯的调节方法、装置及驾驶员辅助系统
DE102012018118A1 (de) * 2012-09-13 2014-03-13 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer Frontkamera eines Kraftfahrzeugs unter Berücksichtigung des Lichts des Scheinwerfers, entsprechende Vorrichtung und Kraftfahrzeug
JP5492962B2 (ja) * 2012-09-28 2014-05-14 富士重工業株式会社 視線誘導システム
US9527602B1 (en) * 2013-05-10 2016-12-27 Rockwell Collins, Inc. System for and method of providing an enhanced vision image using synchronization
DE102013211876A1 (de) * 2013-06-24 2014-12-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Überprüfen der Einstellung eines Scheinwerfers in einem Kraftfahrzeug
KR101848451B1 (ko) * 2013-08-19 2018-04-12 젠텍스 코포레이션 차량 후미등과 점멸 적색 정지등을 구별하기 위한 차량 촬상 시스템 및 방법
DE102013220712B3 (de) * 2013-10-14 2015-02-19 Conti Temic Microelectronic Gmbh Kamerasystem eines Fahrzeugs mit einer Kameraoptik zur Erfassung eines Hauptsichtfeldes der Umgebung des Fahrzeugs und einem Bildsensor
DE102014216008A1 (de) 2014-08-13 2016-02-18 Conti Temic Microelectronic Gmbh Steuervorrichtung, Serversystem und Fahrzeug
US9654703B2 (en) 2014-09-08 2017-05-16 Nxp B.V. Illumination apparatus
JP6484011B2 (ja) * 2014-11-25 2019-03-13 スタンレー電気株式会社 発光ダイオード装置
CN104849026B (zh) * 2015-04-28 2018-07-06 奇瑞汽车股份有限公司 一种灯光测试台架
EP3136291A1 (de) 2015-08-31 2017-03-01 Continental Automotive GmbH Verfahren und vorrichtung zur erkennung von objekten bei dunkelheit mittels einer fahrzeugkamera und einer fahrzeugbeleuchtung
DE102016002590B4 (de) * 2016-03-03 2017-11-23 Audi Ag Fahrzeug mit Kameraeinrichtung und Außenlichtanlage
CN105835755B (zh) * 2016-05-04 2018-07-06 江苏新安电器有限公司 基于obd接口的智能车灯控制系统和车身总线协议自适应方法
DE102016007591A1 (de) 2016-06-21 2017-02-16 Daimler Ag Verfahren zur Synchronisation eines Scheinwerfers eines Fahrzeuges mit einer Kamera
DE102016221123A1 (de) * 2016-10-26 2018-04-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines Anzeigesystems mit einer Datenbrille
US10488028B2 (en) * 2017-05-03 2019-11-26 Fluence Bioengineering, Inc. Systems and methods for a heat sink
US10634317B2 (en) * 2017-08-03 2020-04-28 Toyota Motor Engineering & Manufacturing North America, Inc. Dynamic control of vehicle lamps during maneuvers
US10821882B2 (en) * 2017-10-27 2020-11-03 Gentex Corporation Headlamp assembly with autodimming functionality
DE102017219790A1 (de) * 2017-11-07 2019-05-09 Volkswagen Aktiengesellschaft System und Verfahren zum Bestimmen einer Pose einer Augmented-Reality-Brille, System und Verfahren zum Einmessen einer Augmented-Reality-Brille, Verfahren zum Unterstützen einer Posenbestimmung einer Augmented-Reality-Brille und für das Verfahren geeignetes Kraftfahrzeug
JP7182368B2 (ja) * 2018-03-16 2022-12-02 株式会社豊田中央研究所 車載表示装置、車載表示装置を制御する方法及びコンピュータプログラム
US10960818B2 (en) * 2018-09-20 2021-03-30 Continental Automotive Systems, Inc. Illumination for camera based automotive trailer function
DE102020207922A1 (de) 2020-06-25 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Erkennung eines Objekts in einer Umgebung eines Kraftfahrzeugs
KR102460660B1 (ko) 2020-08-24 2022-10-31 현대모비스 주식회사 카메라 내장 헤드램프의 램프 제어기 연동 시스템 및 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920412A (en) * 1988-12-22 1990-04-24 Sperry Marine Inc. Atmospheric obscurant penetrating target observation system with range gating
DE19713884A1 (de) 1997-04-04 1998-10-08 Bosch Gmbh Robert Verfahren zur Regelung von Leuchtweite und/oder Leuchtrichtung
US6774367B2 (en) * 2002-08-14 2004-08-10 Ford Global Technologies, Llc Active night vision system for vehicles employing anti-blinding scheme
DE102005033863A1 (de) * 2005-07-20 2007-01-25 Robert Bosch Gmbh Bildaufnahmesystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009143910A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106297303A (zh) * 2016-09-07 2017-01-04 重庆云途交通科技有限公司 一种夜间安全行车辅助方法

Also Published As

Publication number Publication date
US20110074956A1 (en) 2011-03-31
WO2009143910A1 (de) 2009-12-03
DE102008002026A1 (de) 2009-12-03
CN102047166A (zh) 2011-05-04
CN102047166B (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
EP2288953A1 (de) Vorrichtung, kamera und verfahren zur erzeugung von bildern der umgebung eines kraftfahrzeuges
DE112011103104B4 (de) Scheinwerfervorrichtung und dafür vorgesehenes Lichtstärke-Steuerverfahren
DE102007051891B4 (de) Fahrzeugleuchtvorrichtung, Fahrzeugleuchtregelungsverfahren und Speicherungsmedium das ein Fahrzeugleuchtregelungsprogramm speichert
AT519976B1 (de) Verfahren zum melden einer von gegenverkehr ausgehenden blendung und eine kraftfahrzeugbeleuchtungseinrichtung zum ausführen eines solchen verfahrens
DE102013104276B4 (de) Verfahren für die Anpassung wenigstens eines Ausleuchtparameters in einem lokalen Ausleuchtabschnitt eines Ausleuchtbereichs
DE102014212162A1 (de) Frontscheinwerfersteuerungsvorrichtung
DE102015008774B4 (de) Verfahren und Vorrichtung zur Erfassung eines Fahrzeug-Umfelds
WO2010136380A1 (de) Verfahren und vorrichtung zur fahrzeug gestützten beleuchtung bei unzureichend beleuchteten verkehrsumgebungen
DE102006022022A1 (de) Verfahren und Vorrichtung zur Steuerung der Lichtfunktionen bei Frontscheinwerfern für Straßenfahrzeuge
DE102010048100B4 (de) Verfahren und Vorrichtung zur Fahrlichtsteuerung eines Fahrzeugs
DE102005047331A1 (de) Verfahren und Vorrichtung zur Beleuchtungssteuerung bei Straßenfahrzeugen
EP1950089B1 (de) Fahrzeugbeleuchtung
EP2864158B1 (de) Verfahren zum betreiben eines scheinwerfersystems in einem fahrzeug und dazugehöriges scheinwerfersystem
EP1964717A2 (de) Verfahren und Vorrichtung zum Steuern der Lichtabgabe eines Fahrzeugs abhängig vom Verlauf einer Fahrbahn
DE102011081432A1 (de) Verfahren und Steuergerät zum Anpassen einer Leuchtstärke zumindest eines Scheinwerfers eines Fahrzeugs
EP2147823B1 (de) Verfahren und Vorrichtung zum Ermitteln einer geeigneten Lichtverteilung des durch mindestens einen Frontscheinwerfer eines Fahrzeugs abgestrahlten Lichts
AT517415B1 (de) Steuerungsvorrichtung für eine Beleuchtungsvorrichtung eines Kraftfahrzeuges sowie Verfahren zum Steuern einer solchen Beleuchtungsvorrichtung
DE102010025349A1 (de) Verfahren zum Betrieb einer Kraftfahrzeugbeleuchtungseinrichtung mit automatischer Abblendfunktion
DE102008008880A1 (de) Fahrzeugleuchtensystem
EP3140159B1 (de) Verfahren zum betreiben eines fahrerassistenzsystems eines kraftfahrzeugs, fahrerassistenzsystem sowie kraftfahrzeug
DE102007049618A1 (de) Vorrichtung und Verfahren zum Ermitteln eines Betriebsparameters von zumindest einem Leuchtmittel einer Lichtquelle eines Kraftfahrzeuges
DE102013222628A1 (de) Verfahren und Vorrichtung zum Erfassen einer Fehleinstellung einer lichttechnischen Einrichtung eines Fahrzeugs
DE102013017625B4 (de) Verfahren zum Betreiben einer Fahrerassistenzeinrichtung eines Kraftfahrzeugs sowie Fahrerassistenzeinrichtung
EP3649575A2 (de) Beleuchten einer fahrzeugumgebung eines kraftfahrzeugs
DE102019001259A1 (de) Verfahren zum Optimieren der Funktion von visuellen Sensoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170601