EP2285178B1 - Système cognitif sans fil, dispositif cognitif sans fil et procédé de détection de signal sans fil - Google Patents

Système cognitif sans fil, dispositif cognitif sans fil et procédé de détection de signal sans fil Download PDF

Info

Publication number
EP2285178B1
EP2285178B1 EP09754834.1A EP09754834A EP2285178B1 EP 2285178 B1 EP2285178 B1 EP 2285178B1 EP 09754834 A EP09754834 A EP 09754834A EP 2285178 B1 EP2285178 B1 EP 2285178B1
Authority
EP
European Patent Office
Prior art keywords
signal
values
caf
peak
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09754834.1A
Other languages
German (de)
English (en)
Other versions
EP2285178A4 (fr
EP2285178A1 (fr
Inventor
Kazushi Muraoka
Masayuki Ariyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of EP2285178A1 publication Critical patent/EP2285178A1/fr
Publication of EP2285178A4 publication Critical patent/EP2285178A4/fr
Application granted granted Critical
Publication of EP2285178B1 publication Critical patent/EP2285178B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • This invention relates to a radio apparatus and a radio communication system which recognize a surrounding radio environment, and more particularly, to a technology of recognizing a surrounding radio environment, which is employed for a radio apparatus.
  • cognitive radio which is a radio communication system in which parameters used for radio communication are changed adaptively according to a surrounding radio environment
  • the parameters are optimized according to the radio environment by recognizing the surrounding radio environment (detecting a radio signal).
  • a cognitive radio system uses the frequency band in a shared manner as a secondary system, use efficiency of the frequency band improves.
  • the secondary system uses the frequency band in a shared manner with the primary system, the secondary system tries not to affect existing services provided by the primary system.
  • the secondary system needs to use a frequency band that is not being used by the primary system, or needs to perform such communication that produces an interference amount equal to or smaller than an amount allowed by the primary system.
  • the secondary system needs to accurately identify a status of frequency band usage of the primary system before using the frequency band.
  • spectrum sensing As a specific method of detecting whether or not a signal of the primary system exists in a frequency band used by the primary system (frequency band that the secondary system intends to use), there is known spectrum sensing, which is means used by a secondary system radio apparatus for detecting a radio signal in its surrounding.
  • the spectrum sensing is broadly divided into the following methods. That is, a method using energy detection, in which a determination is made based on the amount of received signal power obtained through time averaging (energy detection), and a method in which a feature value contained in a transmitted signal of the primary system is used for detection (feature detection).
  • IEEE 802.22 is one example of the radio communication system in which detection of the primary system is performed through the above-mentioned spectrum sensing and the secondary system uses a frequency band that is not being used by the primary system.
  • IEEE 802.22 the standardization of wireless regional area network (WRAN) systems using the frequency band allocated to the U.S. TV broadcast has been discussed.
  • IEEE 802.22 in a case where the received power of a signal compliant with Advanced Television Systems Committee (ATSC), which is a standard for the U.S. TV broadcast, is equal to or larger than -116 dBm, a misdetection rate and a false alarm rate are each defined to be set to 0.1 or smaller.
  • ATSC Advanced Television Systems Committee
  • the misdetection rate refers to a probability of determining that a searched frequency band is in an unoccupied state despite a fact that a signal of the primary system exists.
  • the false alarm rate refers to a probability of determining that a signal of the primary system exists despite a fact that a searched frequency band is in an unoccupied state.
  • Fig. 1 is a diagram illustrating, as an example, relation between the secondary system radio apparatus using the spectrum sensing and the primary system.
  • Fig. 1 illustrates a primary system radio apparatus 100 performing transmission, a primary system radio apparatus 110 performing reception, and a secondary system radio apparatus 200 that identifies a status of frequency band usage through the spectrum sensing.
  • a reference received power area 10 represents an area in which the misdetection rate and the false alarm rate of the secondary system radio apparatus 200 need to be controlled to predetermined values or smaller with regard to the detection of the primary system. Specifically, as illustrated in Fig.
  • the secondary system radio apparatus 200 in a case where the secondary system radio apparatus 200 is located within the reference received power area, the secondary system radio apparatus 200 is required to reduce the misdetection rate and the false alarm rate as much as possible, and also to control those rates to the predetermined values or smaller, by reliably detecting a signal transmitted from the primary system radio apparatus 100.
  • a detection method in which a feature value contained in the transmitted signal of the primary system is used for detection there are a method using cyclostationarity of a signal transmitted from the primary system, a method using cyclicity contained in the transmitted signal or a frame format, a method in which the secondary system radio apparatus prepares the same sequence as a pilot signal sequence of a received signal to examine correlation with the received signal, and the like.
  • Patent Document 1 discloses a spectrum sensing method in which the chi-square test is performed using the cyclostationarity of a signal transmitted from the primary system.
  • a cyclic autocorrelation value which is a feature value reflecting the cyclostationarity
  • the threshold is determined based on a chi-square distribution according to the false alarm rate set in the secondary system radio apparatus.
  • a characteristic thereof is that the threshold can be determined only with the set value of the false alarm rate independently of noise power and interference power, and hence there is no need to estimate the noise power or the interference power.
  • the misdetection rate can be set to the set value or smaller in an area having power equal to or larger than reference received power.
  • Patent Document 2 Patent Document 3
  • Non-patent Document 1 Other technologies are described in Patent Document 2, Patent Document 3, Non-patent Document 1, and the like.
  • the cyclicity contained in the transmitted signal or the frame format, which is used in the spectrum sensing method of Patent Document 2 also exists in an OFDM signal using a cyclic prefix, and hence it is possible to detect the OFDM signal by using the method of Patent Document 2. Further, by using the same characteristic as the cyclicity of the cyclic prefix employed in Patent Document 2, as described in Patent Document 3, an application to blind estimation of an effective symbol length and a guard interval length, which are parameters of the OFDM signal, is also possible.
  • the chi-square test of Patent Document 1 is a method limited to the spectrum sensing method that uses the cyclostationarity. Accordingly, it is impossible to use such feature values that are useful for the detection of the primary system, including a correlation characteristic of the pilot signal transmitted from the primary system, the cyclicity of the transmitted signal or the frame format of the primary system, and the like.
  • An object of this invention is to provide a cognitive radio system, a cognitive radio apparatus, and a spectrum sensing method, which are capable of detecting the primary system with high accuracy by using the feature value of the transmitted signal of the primary system and a non-feature value that does not reflect a typical feature of the primary system, which are useful for the detection of the primary system.
  • Another object of this invention is to provide a cognitive radio system, a cognitive radio apparatus, and a spectrum sensing method, which are capable of satisfying the set false alarm rate by using the feature value of the transmitted signal of the primary system and the non-feature value that does not reflect the typical feature of the primary system, which are useful for the detection of the primary system.
  • Another object of this invention is to provide a cognitive radio system, a cognitive radio apparatus, and a spectrum sensing method, which are capable of reducing the misdetection rate by using the feature value of the transmitted signal of the primary system and the non-feature value that does not reflect the typical feature of the primary system, which are useful for the detection of the primary system.
  • a cognitive radio system includes: a memory configured to store a system parameter and a pseudo parameter, the system parameter being used for generation of a feature value which has such a property that the feature value is large in a case where a radio signal of a radio system for which a search is performed exists in a received frequency band, the pseudo parameter being similar to the system parameter which is used for generation of a non-feature value which has such a property that, in a case where no radio signal of a radio system for which the search is performed exists in a received frequency band, the non-feature value has the same probability distribution as that of the above-mentioned feature value, and that, in the case where the radio signal of the radio system exists in a received frequency band, the non-feature value is kept small; a feature value generator configured to generate one or a plurality of the feature values based on a signal in a received frequency band by using the system parameter; a non-feature value generator configured to generate one or a plurality of non-feature values based on the signal in the received frequency
  • a cognitive radio apparatus includes: a memory configured to store a system parameter and a pseudo parameter, the system parameter being used for generation of a feature value which has such a property that the feature value is large in a case where a radio signal of a radio system for which the search is performed exists in a received frequency band, the pseudo parameter being similar to the system parameter which is used for generation of a non-feature value which has such a property that, in a case where no radio signal of a radio system for which the search is performed exists in a received frequency band, the non-feature value has the same probability distribution as that of the above-mentioned feature value, and that, in the case where the radio signal of the radio system exists in a received frequency band, the non-feature value is kept small; a feature value generator configured to generate one or a plurality of the feature values based on a signal in a received frequency band by using the system parameter; a non-feature value generator configured to generate one or a plurality of non-feature values based on the signal in the received frequency band
  • a radio signal detection method includes: receiving a radio signal in a frequency band for which a search is performed; generating one or a plurality of feature values by using a signal in a received frequency band and a system parameter of a radio system for which the search is performed, the feature value having such a property that the feature value is large in a case where a radio signal of a radio system for which the search is performed exists in a received frequency band; generating one or a plurality of non-feature values by using the signal in the received frequency band and a pseudo parameter similar to the system parameter, the non-feature value having such a property that in a case where no radio signal of a radio system for which the search is performed exists in a received frequency band, the non-feature value has the same probability distribution as that of the above-mentioned feature value, and that, in the case where the radio signal of the radio system exists in a received frequency band, the non-feature value is kept small; and determining whether or not a signal of the radio system exists by using the one or the
  • the cognitive radio system, the cognitive radio apparatus, and the spectrum sensing method which are capable of detecting the primary system with high accuracy by using the feature value of the transmitted signal of the primary system and the non-feature value that does not reflect the typical feature of the primary system, which are useful for the detection of the primary system.
  • Fig. 2 is a functional block diagram of a secondary system radio apparatus 300 according to this embodiment. It should be noted that description of specifics that are of little relevance to this invention is omitted for clarity of description.
  • the secondary system radio apparatus 300 includes: an antenna 301 for receiving transmitted signals (radio waves) of a primary system; a radio frequency (RF) analog section 302 for extracting a signal in a desired frequency band from the signals received by the antenna 301; a memory for system parameter 303 for storing a system parameter of the primary system, which is used for generating a feature value specific to the primary system, and a pseudo parameter that is similar to the system parameter; a feature value generator 304 for generating the feature value based on the received signal and the system parameter; a non-feature value generator 305 for generating a non-feature value, which does not reflect typical features of the primary system, based on the received signal and the pseudo parameter; and a determination section 306 for determining whether or not a signal of the primary system exists.
  • RF radio frequency
  • the memory for system parameter 303 is formed of any one of a read only memory (ROM), a random access memory (RAM), and a hard disk drive (HDD), which are commonly-used storage devices, or a combination thereof.
  • the memory for system parameter 303 stores the system parameter, which corresponds to the feature value specific to the primary system for which a search is performed, and the pseudo parameter, which is a parameter similar to the system parameter and used for generating the non-feature value.
  • the feature value is a value obtained by quantifying a typical feature of a communication scheme or a frame format which is used in a search target primary system.
  • the feature value is generated by the feature value generator 304 using a signal in the received frequency band and the system parameter.
  • the system parameter used in the communication scheme or the frame format of the primary system is reflected to the feature value, and hence the feature value has such a property that the feature value is large in a case where a radio signal of the search target primary system exists in a searched frequency band (in a case where a characteristic radio signal is detected).
  • the non-feature value is a value generated so that, in a case where no radio signal of the search target primary system exists in the searched frequency band, the non-feature value has the same probability distribution as that of the above-mentioned feature value, and that, in the case where a radio signal of the primary system exists, the non-feature value is kept small.
  • the non-feature value is generated by the non-feature value generator 305 using the radio signal in the received frequency band and the pseudo parameter stored in the memory for system parameter 303.
  • the pseudo parameter which is similar to but different from the system parameter used in the generation processing for the feature value, is used instead of the system parameter.
  • the pseudo parameter is used as described above, and hence, even in the case where a radio signal of the primary system exists, there is provided such a property that the value of the non-feature value is kept small.
  • the feature value and the non-feature value are generated in the same manner, to thereby provide the feature value and the non-feature value with a property of having the same probability distribution. Further, when the feature value and the non-feature value have the same probability distribution, the feature value and the non-feature value are substantially the same value.
  • the feature value in a case where the feature value is large, there is a high probability that the primary system is transmitting a radio signal.
  • the feature value and the non-feature value are substantially the same value, this means that there is a high probability that the primary system is not transmitting a radio signal.
  • the number of the non-feature values to be generated is set to N-1 (N: an integer equal to or larger than 2), and then, in a case where the feature value is the largest value among the feature value and N-1 non-feature values, it is determined that the primary system exists.
  • N an integer equal to or larger than 2
  • a combination of the type of the feature value and the number of feature values, which are to be used for the determination in the determination section 306, is adjusted for the determination processing, and hence it is possible to reduce the misdetection rate while maintaining the desired value of the false alarm rate.
  • the number of feature values to be generated is set to n
  • the number of non-feature values to be generated is set to N-n (N: an integer equal to or larger than (n+1)).
  • m values are selected in descending order, and in a case where all the m values are the feature values, it is determined that the primary system exists. In a case where the non-feature value is among the m values, it is determined that the primary system does not exist.
  • the false alarm rate may be set to n C m / N C m , and it is possible to detect the primary system while reducing the misdetection rate.
  • Fig. 3 is a flow chart illustrating the detection operation of the secondary system radio apparatus 300 according to this embodiment.
  • radio signals in the frequency band for which a search is performed are input via the antenna 301, and a signal in the desired frequency band is received and then output to the feature value generator 304 and the non-feature value generator 305 (Step S301).
  • the feature value generator 304 acquires the system parameter from the memory for system parameter 303, and then generates one or a plurality of feature values by using the system parameter and the signal input from the RF analog section 302.
  • the feature value generator 304 outputs the generated feature value to the determination section 306 (Step S302).
  • the non-feature value generator 305 acquires the pseudo parameter from the memory for system parameter 303, and then generates one or a plurality of non-feature values by using the pseudo parameter and the signal input from the RF analog section 302.
  • the non-feature value generator 305 outputs the generated non-feature value to the determination section 306 (Step S303).
  • the determination section 306 makes a comparison as to which of the input feature value and the input non-feature value is larger, and determines that a signal of the primary system exists in a case where the feature value is larger. Further, in a case where the non-feature value is larger, the determination section 306 determines that no signal of the primary system exists (Step S304).
  • the secondary system radio apparatus 300 of this embodiment can detect a signal of the primary system with high accuracy.
  • the feature value generator 304 by setting the number of feature values to be generated by the feature value generator 304 and the number of non-feature values to be generated by the non-feature value generator 305 according to a desired false alarm rate, it is possible to detect the primary system with the desired false alarm rate achieved. In the same manner, if the determination processing is performed by increasing the number of feature values to be generated by the feature value generator 304, it is possible to detect the primary system with a reduced misdetection rate.
  • a control signal (control channel) used by the primary system is used as the feature value.
  • pilot signal which is inserted in the transmitted signal of the primary system for such purposes as timing synchronization, channel estimation, and frequency offset estimation.
  • detection of the primary system in which only one type of the pilot signal is used is described. It should be noted that the method of this embodiment is also applicable to a case where a plurality of types of pilot signals are available. Further, if a plurality of types of pilot signals are used, in addition to setting the false alarm rate, it is possible to reduce the misdetection rate.
  • Fig. 4 is a functional block diagram of a secondary system radio apparatus 400 according to this embodiment. It should be noted that description of specifics that are of little relevance to this embodiment is omitted.
  • the secondary system radio apparatus 400 includes: an antenna 401 for receiving transmitted signals (radio waves) of the primary system; an RF analog section 402 for extracting a signal in a desired frequency band from the signals received by the antenna 401 to convert the signal to a baseband signal; a memory for pilot signal sequence 403 for storing a pilot signal sequence used in the primary system and a plurality of signal sequences having little correlation with the pilot signal sequence, such as pseudo-random signal sequences; an autocorrelator 404 for correlating the baseband signal and the pilot signal sequence to generate a value as the feature value; a cross-correlator 405 for correlating the baseband signal and the pseudo-random signal sequence to generate a value as the non-feature value; and a determination section 406 for determining whether or not a signal of the primary system exists.
  • an antenna 401 for receiving transmitted signals (radio waves) of the primary system
  • an RF analog section 402 for extracting a signal in a desired frequency band from the signals received by the antenna 401 to
  • Fig. 5 is a block diagram illustrating in more detail the memory for pilot signal sequence 403, the autocorrelator 404, and the cross-correlator 405.
  • pilot signal sequence 410 which is a sequence specific to the primary system for which a search is performed
  • pseudo-random signal sequences (only 411 and 412 are illustrated in Fig. 5 ), which have the same length (same bit length) as that of the pilot signal sequence 410 and have little correlation with the pilot signal sequence 410.
  • N-1 pseudo-random signal sequences each of which is used to generate the non-feature value.
  • the autocorrelator 404 includes a correlator 421 and a largest-value selection section 431.
  • the cross-correlator 405 includes N-1 correlators (only 422 and 423 are illustrated) and N-1 largest-value selection sections (only 432 and 433 are illustrated).
  • a radio wave of the frequency band for which a search is performed is input, and the baseband signal in the desired frequency band is detected and then output to the autocorrelator 404 and the cross-correlator 405.
  • the baseband signal supplied from the RF analog section 402 is input to the correlator 421, and the correlator 421 calculates one or a plurality of correlations by using the pilot signal sequence 410 acquired from the memory for pilot signal sequence 403.
  • the correlations calculated by the correlator 421 are input to the largest-value selection section 431, and a correlation having the largest value is selected as the feature value from among the plurality of correlations. Further, the selected feature value is input to the determination section 406.
  • the correlator 421 calculates the correlations between the baseband signal and the pilot signal sequence 410 while shifting a timing to start correlation calculation within a predetermined search time window. In other words, correlation values corresponding to a plurality of start times are respectively calculated.
  • the above-mentioned search time window is determined according to the frame format of the transmitted signal of the primary system for which a search is performed. For example, in a case where the transmitted signal of the primary system exists and the pilot signal sequence is inserted cyclically to the transmitted signal, a cycle with which the pilot signal sequence is inserted is set as the search time window.
  • the correlator 421 can calculate correlations so that the calculated correlations always contain a correlation of a timing at which the pilot signal sequence contained in the baseband signal and the pilot signal sequence 410 prepared in advance are in temporal synchronization.
  • the baseband signal supplied from the RF analog section 402 is input to the correlator 422, and the correlator 422 calculates correlations by using the pseudo-random signal sequence 411 acquired from the memory for pilot signal sequence 403.
  • the plurality of correlations calculated by the correlator 422 are input to the largest-value selection section 432, and a correlation having the largest value is selected from among the plurality of correlation values as the non-feature value. Further, the selected non-feature value is input to the determination section 406.
  • correlators (423 and the like) and largest-value selection sections (433 and the like) than the correlator 422 and the largest-value selection section 432 of the cross-correlator 405 operate in the same manner as the correlator 422 and the largest-value selection section 432 by using the pseudo-random signal sequences (412 and the like) acquired from the memory for pilot signal sequence 403.
  • Each of the correlators (422 and the like) of the cross-correlator 405 calculates a plurality of correlations between the pseudo-random signal sequence 411 or the like and the baseband signal while shifting the timing to start the correlation calculation within the search time window used in the correlator 421. After that, a total of N-1 non-feature values, which are output from the respective largest-value selection sections (433 and the like) of the cross-correlator 405, are input to the determination section 406.
  • the largest value is selected from among the feature value and the non-feature values, which are input from the autocorrelator 404 and the cross-correlator 405 in a total number of N.
  • the determination section 406 determines that a signal of the primary system exists. Further, in a case where any one of the N-1 non-feature values generated by the cross-correlator 405 is the selected value, the determination section 406 determines that no signal of the primary system exists and that the frequency band is in an unoccupied state.
  • the secondary system radio apparatus 400 of this embodiment can perform such detection that satisfies the desired false alarm rate determined by the set number of N.
  • the largest feature value is acquired in the autocorrelator 404 in a case where the pilot signal sequence contained in the baseband signal and the prepared pilot signal sequence are in temporal synchronization.
  • the feature value generated using the pilot signal sequence in the autocorrelator 404 is larger than the non-feature value generated using the pseudo-random signal sequence in the cross-correlator 405, and hence the primary system can be detected.
  • the received signal is formed only of noise components or interference components, and hence the feature value generated by the autocorrelator 404 and the N-1 non-feature values generated by the cross-correlator 405 all have the same probability distribution.
  • a probability that the feature value obtained using the pilot signal sequence 410 and input from the autocorrelator 404 is the largest in the determination section 406 is 1/N, and hence the false alarm rate is 1/N.
  • the false alarm rate is set to 0.1 to perform the detection of the primary system
  • cyclicity with which the same signal is repeated within the transmitted signal of the primary system is used as the feature value.
  • a cyclic prefix used in orthogonal frequency division multiplexing (OFDM) or single carrier-frequency division multiple access (SC-FDMA), a pilot signal inserted continuously or repeatedly at fixed intervals, or the like.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier-frequency division multiple access
  • cyclicity in this embodiment refers to a fact that the same signal is used repeatedly within the transmitted signal of the primary system. Further, a cyclic time refers to a time interval with which the same signal is used repeatedly.
  • Fig. 6 is a functional block diagram of a secondary system radio apparatus 500 according to this embodiment.
  • the secondary system radio apparatus 500 includes: an antenna 501 for receiving transmitted signals (radio waves) of the primary system; an RF analog section 502 for extracting an RF signal in a desired frequency band from the signals received by the antenna; a memory for cyclic time 503 for storing the cyclic time of the transmitted signal of the primary system and an acyclic time showing no cyclicity; a feature value correlator 504 for generating the feature value specific to the transmitted signal of the primary system by using the cyclic time; a non-feature value correlator 505 for generating a plurality of non-feature values by using the acyclic time; and a determination section 506 for determining whether or not a signal of the primary system exists.
  • time T 521 which is a cyclic time specific to the primary system for which a search is performed
  • acyclic times (only 522 and 523 are illustrated in Fig. 7 ).
  • N-1 acyclic times each of which is used to generate the non-feature value.
  • the feature value correlator 504 includes a delay section 511 and a correlator 512.
  • the non-feature value correlator 505 includes N-1 delay sections and N-1 correlators.
  • the received signal is used as an RF signal, but the secondary system radio apparatus 500 may convert the received signal to an intermediate frequency (IF) signal or a baseband signal, and may process such a signal in the same manner as in the case of the RF signal.
  • IF intermediate frequency
  • the secondary system radio apparatus 500 may convert the received signal to an intermediate frequency (IF) signal or a baseband signal, and may process such a signal in the same manner as in the case of the RF signal.
  • IF intermediate frequency
  • Fig. 7 is a functional block diagram illustrating in more detail the memory for cyclic time 503 and the feature value correlator 504.
  • a radio signal of the frequency band for which a search is performed is output to the feature value correlator 504 and the non-feature value correlator 505 (not shown) as the RF signal in the desired frequency band.
  • the RF signal supplied from the RF analog section 502 is input to the delay section 511 and the correlator 512.
  • the input RF signal is delayed by the cyclic time 521 acquired from the memory for cyclic time 503, to thereby generate a delayed signal.
  • the delayed signal thus acquired is correlated with the original RF signal in the correlator 512, and then, the generated feature value is input to the determination section 506. It should be noted that the generation processing for the feature value is described later in detail.
  • the non-feature values are generated based on the RF signal and the delayed signal.
  • the delay time used in the non-feature value correlator 505 the acyclic time (522, 523) stored in the memory for cyclic time 503 is used.
  • the non-feature value correlator 505 based on the acyclic times T 1 to T N-1 different from the cyclic time T, a total of N-1 non-feature values are generated, and are then transmitted to the determination section 506.
  • the largest value is selected from among the feature value and the non-feature values, which are input from the feature value correlator 504 and the non-feature value correlator 505 in a total number of N.
  • the determination section 506 determines that a signal of the primary system exists. Further, in a case where any one of the N-1 non-feature values generated by the non-feature value correlator 505 is the selected value, the determination section 506 determines that no signal of the primary system exists and that the frequency band is in an unoccupied state.
  • the secondary system radio apparatus 500 of this embodiment can perform such detection that satisfies the desired false alarm rate determined by the set number of N.
  • Fig. 8 is a diagram illustrating an acquired OFDM signal and a delayed OFDM signal.
  • the horizontal axis represents time
  • the vertical axis represents the types of OFDM signals having different delay times.
  • a time T F represents an effective symbol length of the OFDM signal.
  • a cyclic prefix which is a copy of the latter part of each OFDM symbol, is inserted in a guard interval (GI) part.
  • GI guard interval
  • the copy source of the cyclic prefix of the original signal temporally coincides with the guard interval part of the T F -delayed signal, and hence correlation is generated.
  • the secondary system radio apparatus 500 in which the cyclic prefix of the OFDM signal is used for detecting a signal of the primary system, in the case where a signal of the primary system exists, a high correlation value generated due to the cyclicity of the cyclic prefix of the OFDM signal is generated as the feature value in the correlator 512 of Fig. 7 .
  • GI coincidence section a section in which the copy source of the cyclic prefix and the guard interval part of the delayed signal temporally coincide with each other (hereinafter, referred to as GI coincidence section) is generated for every OFDM symbol length (total time of the GI and the effective symbol length).
  • the largest value selected through the above-mentioned method may be used as the correlation, and, with this method, it is possible to eliminate unnecessary signal components from the correlation calculation. It should be noted that, in this case, the same correlation calculation method is used also in the correlation calculation that is performed by the non-feature value correlator 505 using acyclic time delay.
  • the effective symbol length is defined as 3.2 ⁇ s
  • the guard interval length is defined as 0.8 ⁇ s.
  • the effective symbol length of 3.2 ⁇ s serves as the cyclic time as described above.
  • times other than the cyclic time that is, 3.2 ⁇ s, may be used, including 0.8 ⁇ s, 1.6 ⁇ s, 2.4 ⁇ s, 4.0 ⁇ s, 4.8 ⁇ s, 5.6 ⁇ s, and 6.4 ⁇ s.
  • Fig. 9 is a diagram illustrating signals in which the pilot signal sequence is inserted continuously and cyclically.
  • the horizontal axis represents time
  • the vertical axis represents the types of delayed signals obtained by delaying the original signal by a plurality of different delay times.
  • the original signal has one unit formed by combining two identical pilot signal sequences each having a length of T p and a data sequence having a length of T d , and this unit is repeated to form the signal. Accordingly, pilot signal sequences #1 to #4 (2010, 2020, 2030, and 2040) are all the same signal sequences.
  • various delay times may be used as the cyclic times for generating the feature values.
  • the pilot signal sequence #4 (2040) of the original signal and the pilot signal sequence #3 (2130) of the T p -delayed signal temporally coincide with each other.
  • the pilot signal sequence #3 (2030) of the original signal and the pilot signal sequence #2 (2220) of the (T p +T d )-delayed signal temporally coincide with each other.
  • the pilot signal sequence #3 (2030) of the original signal temporally coincides with the pilot signal sequence #1 (2310) of the (2T p +T d )-delayed signal
  • the pilot signal sequence #4 (2040) of the original signal temporally coincides with the pilot signal sequence #2 (2320) of the (2T p +T d )-delayed signal.
  • a plurality of cyclic times can be set for a detection target radio signal
  • delay sections and correlators corresponding to the plurality of cyclic times may be provided to the feature value correlator 504, and a plurality of feature values may be output from the feature value correlator 504 for the use in the determination section 506.
  • the cyclicity of the transmitted signal of the primary system is used, and, in a case where a transmitted signal having the cyclicity exists, the feature value generated by the feature value correlator 504 becomes large. By utilizing this characteristic, the detection of the primary system is performed.
  • the feature value generated by the feature value correlator 504 is larger than the N-1 non-feature values generated by the non-feature value correlator 505, and hence it is determined that a signal of the primary system exists.
  • the received signal is formed only of noise components or interference components, and hence the feature value generated by the feature value correlator 504 and the N-1 non-feature values generated by the non-feature value correlator 505 all have the same probability distribution.
  • a probability that the feature value input from the feature value correlator 504 is the largest in the determination section 506 is 1/N, and hence, by setting N, the false alarm rate may be set to 1/N. Further, a desired false alarm rate may be set in the secondary system radio apparatus to automatically calculate N in the secondary system radio apparatus, and the detection processing of the primary system may be performed using the calculated value.
  • the false alarm rate is set to 0.1 to perform the detection of the primary system
  • one feature value is generated by the feature value correlator 504
  • the determination section 506 selects a value having the largest real part or a value having the largest complex absolute value from among the feature value and the non-feature values which are input from the feature value correlator 504 and the non-feature value correlator 505 in a total number of N.
  • the determination method performed in the determination section 506 after the selection of the largest value is the same between the case of using the RF signal and the case of using the IF signal or the baseband signal. According to whether the selected largest value is the feature value or the non-feature value, the determination section 506 determines whether or not a signal of the primary system exists.
  • This invention is also applicable to such detection of the primary system that uses cyclostationarity of the received signal.
  • the cyclostationarity is used as a feature of the transmitted signal of the primary system, to thereby detect the primary system.
  • represents a cyclic frequency.
  • T represents the number of samples used for averaging, ⁇ represents a sampling time, and ⁇ represents the number of samples corresponding to a delay time for calculating a value of CAF.
  • * represents complex conjugate.
  • Fig. 10 illustrates a cyclic autocorrelation function of a case where a signal has the cyclostationarity. It should be noted that the horizontal axis represents the cyclic frequency normalized by a peak interval, and the vertical axis represents the absolute value of the cyclic autocorrelation function. The absolute value of the cyclic autocorrelation function is expressed by Expression 2.
  • R y a ⁇ the absolute value of the cyclic autocorrelation function
  • Fig. 10 is a graph illustrating, as an example, the cyclic autocorrelation function of a case in which the OFDM signal is used as the signal y(t).
  • peaks are generated at cyclic frequencies having an interval of 1/Ts (Ts represents an OFDM symbol length combining the guard interval and the effective symbol length). Further, in the case of the OFDM signal, when ⁇ is equal to the effective symbol length, the peak of the cyclic autocorrelation function becomes largest. As in this example, a cyclostationary signal has peaks generated in its cyclic autocorrelation function at the cyclic frequencies having a constant interval.
  • a value of CAF obtained at a cyclic frequency at which the cyclic autocorrelation function reaches the peak is referred to as peak value of CAF
  • a value of CAF obtained at a cyclic frequency at which the cyclic autocorrelation function does not reach the peak is referred to as non-peak value of CAF.
  • Fig. 11 is a functional block diagram of a secondary system radio apparatus 600 according to this embodiment.
  • the secondary system radio apparatus 600 includes: an antenna 601 for receiving the transmitted signals (radio waves) of the primary system; an RF analog section 602 for converting, of the signals received by the antenna, a signal in a desired frequency band to a baseband signal; a memory for the parameter of CAF 603 for storing the cyclic frequency and the delay time with which the cyclic autocorrelation function of the transmitted signal of the primary system reaches the peak and the cyclic frequency and the delay time with which the cyclic autocorrelation function does not reach the peak; a generator of peak values of CAF 604 for generating, as the feature value, a peak value of CAF based on the baseband signal by using the cyclic frequency and the delay time with which the cyclic autocorrelation function reaches the peak; a generator of non-peak values of CAF 605 for generating, as the non-feature value, a non-peak value of CAF based on the baseband signal by using the cyclic frequency and the delay time with which the cyclic auto
  • the received signal is converted to the baseband signal
  • the received signal may be converted to an intermediate frequency (IF) signal, and the same processing as in the case of the baseband signal may be performed.
  • IF intermediate frequency
  • radio signals of the frequency band for which a search is performed are input, and a radio signal in the desired frequency band is converted to the baseband signal, which is then output to the generator of peak values of CAF 604 and the generator of non-peak values of CAF 605.
  • Fig. 12 is a graph illustrating, as an example, a cyclic autocorrelation function according to this embodiment.
  • the horizontal axis represents the cyclic frequency
  • the vertical axis represents the value of CAF (absolute value).
  • the generator of peak values of CAF 604 acquires, from the memory for the parameter of CAF 603, the cyclic frequency and the delay time with which the cyclic autocorrelation function of the transmitted signal of the primary system reaches the peak, generates n peak values of CAF (peak #1 (611) and the like of Fig. 12 ) by using the acquired cyclic frequency and delay time and the baseband signal input from the RF analog section 602, and transmits the absolute values thereof to the determination section 606.
  • non-peak set 632 a set of cyclic frequencies used by the generator of non-peak values of CAF 605, at which the cyclic autocorrelation function does not reach the peak.
  • the generator of non-peak values of CAF 605 transmits, to the determination section 606, the absolute values of N-n non-peak values of CAF obtained at the respective cyclic frequencies of the non-peak set 632.
  • the determination section 606 selects m (provided m ⁇ n) values in descending order of the absolute value from among the peak values of CAF and the non-peak values of CAF which are input in a total number of N. In a case where all of the selected m values of CAF are the peak values of CAF selected from a peak set 631, the determination section 606 determines that a signal of the primary system exists. Further, in a case where the selected m values of CAF contain a value selected from the non-peak values of CAF obtained at the cyclic frequencies of the non-peak set 632, it is determined that no signal of the primary system exists and that the frequency band is in an unoccupied state.
  • the secondary system radio apparatus 600 of this embodiment can perform such detection that satisfies a desired false alarm rate determined by set numbers of n, m, and N.
  • the cyclostationarity of the transmitted signal of the primary system is used, and, in the case where the transmitted signal exists, n peak values of CAF generated by the generator of peak values of CAF 604 become large. By utilizing this characteristic, the detection of the primary system is performed.
  • n peak values of CAF generated by the generator of peak values of CAF 604 are larger than N-n non-peak values of CAF generated by the generator of non-peak values of CAF 605. Accordingly, there is a high probability that the peak values of CAF are selected as the m values of CAF by the determination section 606. Therefore, it is possible to detect the primary system.
  • n peak values of CAF generated by the generator of peak values of CAF 604 and N-n non-peak values of CAF generated by the generator of non-peak values of CAF 605 all have the same probability distribution. Accordingly, a probability that all of the m values of CAF selected in the determination section 606 are peak value elements of CAF obtained at the cyclic frequencies of the peak set 631 is n C m / N C m (C represents a combination), and thus the false alarm rate is n C m / N C m .
  • the number of peak values of CAF to be generated by the generator of peak values of CAF 604 is set to 3
  • the cyclostationarity of the transmitted signal of the primary system is used, but there is a difference from the fourth embodiment in the feature value used at the time of determining whether or not a signal of the primary system exists.
  • Fig. 13 is a functional block diagram of a secondary system radio apparatus 700 according to this embodiment.
  • the secondary system radio apparatus 700 includes: an antenna 701 for receiving the transmitted signals (radio waves) of the primary system; an RF analog section 702 for converting, of the signals received by the antenna, a signal in a desired frequency band to a baseband signal; a memory for the parameter of CAF combining 703 for storing the cyclic frequency and the delay time with which the cyclic autocorrelation function of the transmitted signal of the primary system reaches the peak, a replica of the value of CAF of the transmitted signal, which is obtained at that cyclic frequency and with that delay time, and the cyclic frequency and the delay time with which the cyclic autocorrelation function does not reach the peak; a generator of combined peak values of CAF 704 for generating, based on the baseband signal, a combined peak value of CAF as the feature value by using the cyclic frequency and the delay time with which the cyclic autocorrelation function reaches the peak and the replica of the value of CAF; a generator of combined non-peak values of CAF 705 for
  • the received signal is converted to the baseband signal.
  • the received signal may be converted to an intermediate frequency (IF) signal, and the same processing as in the case of the baseband signal may be performed.
  • IF intermediate frequency
  • radio signals of the frequency band for which a search is performed are input, and a radio signal in the desired frequency band is converted to the baseband signal, which is then output to the generator of combined peak values of CAF 704 and the generator of combined non-peak values of CAF 705.
  • Fig. 14 is a graph illustrating, as an example, a cyclic autocorrelation function according to this embodiment.
  • the generator of combined peak values of CAF 704 acquires, from the memory for the parameter of CAF combining 703, the cyclic frequency and the delay time with which the cyclic autocorrelation function of the transmitted signal of the primary system reaches the peak, and then generates n peak values of CAF (peak #1 (711) and the like of Fig. 14 ) by using the acquired cyclic frequency and delay time and the baseband signal input from the RF analog section 702.
  • a set of cyclic frequencies at which the cyclic autocorrelation function generated by the generator of combined peak values of CAF 704 reaches the peak is illustrated as a peak set A 741.
  • the generator of combined peak values of CAF 704 acquires the replicas of the values of CAF from the memory for the parameter of CAF combining 703, performing complex weighting with the acquired replicas of the values of CAF and combining of the generated n peak values of CAF obtained at the cyclic frequencies of the peak set A 741, and generates a combined peak value of CAF D shown in Expression 3.
  • R y ⁇ k ⁇ represents the peak value of CAF at each cyclic frequency ⁇ k in the peak set A 741 generated based on the baseband signal.
  • R ⁇ x ⁇ k ⁇ represents the replica of the value of CAF. It should be noted that, as the replica of the value of CAF, a value calculated in advance is stored in the memory for the parameter of CAF combining 703.
  • the generator of combined peak values of CAF 704 transmits the combined peak value of CAF thus generated to the determination section 706.
  • N-1 sets of cyclic frequencies at which the peak does not occur are defined, and are set as non-peak sets (only B 1 742 and B N-1 743 are illustrated). Further, each of the non-peak sets has n cyclic frequencies as its elements.
  • the generator of combined non-peak values of CAF 705 generates, for each non-peak set, the non-peak values of CAF obtained at the cyclic frequencies in the non-peak set, and performs the complex weighting with the replicas of the values of CAF and combining of the generated non-peak values of CAF, to thereby generate the combined non-peak value of CAF.
  • a combined non-peak value of CAF D m of a non-peak set B m (1 ⁇ m ⁇ N-1) is generated with an expression shown as Expression 4.
  • T' represents the number of averaged samples used for generation of the non-peak value of CAF at the cyclic frequency ⁇ n in the non-peak set B m .
  • Expression 5 can be generated with one non-peak value of CAF, and is corrected with a coefficient so as to comply with the same probability distribution as in the case of Expression 4. It should be noted that, as the cyclic frequency used in Expression 5 for generation of the non-peak value of CAF, a cyclic frequency other than ⁇ n may be used as long as the cyclic frequency is contained in the non-peak set B m .
  • the generator of combined non-peak values of CAF 705 generates the combined non-peak values of CAF for all of the non-peak sets, and then inputs a total of N-1 combined non-peak values of CAF to the determination section 706.
  • the determination section 706 selects a value having the largest real part or a value having the largest complex absolute value from among the combined peak value of CAF and the N-1 combined non-peak values of CAF, which are input as above. In a case where the selected largest value is the combined peak value of CAF, the determination section 706 determines that a signal of the primary system exists. Further, in a case where the selected largest value is selected from the N-1 combined non-peak values of CAF, the determination section 706 determines that no signal of the primary system exists and that the frequency band is in an unoccupied state.
  • the secondary system radio apparatus 700 of this embodiment can perform such detection that satisfies the desired false alarm rate.
  • the cyclostationarity of the transmitted signal of the primary system is used.
  • the phases of the peak values of CAF at the respective cyclic frequencies are made identical, which thus enables in-phase combining of the peak values of CAF. Therefore, in this embodiment, a signal power to noise power ratio (or signal to noise interference power ratio) may be improved, with a result that the combined peak value of CAF is increased.
  • the combined peak value of CAF is larger than the N-1 combined non-peak values of CAF generated by the generator of combined non-peak values of CAF 705, and hence it is possible to detect the primary system.
  • the received signal is formed only of noise components or interference components, and hence the combined peak value of CAF and the N-1 combined non-peak values of CAF all have the same probability distribution, and a probability that the combined peak value of CAF is selected as the largest value is 1/N.
  • the false alarm rate is 1/N.
  • the determination section 706 determines that the primary system exists. In the case where any one of the combined non-peak values of CAF is the largest value thereof, the determination section 706 determines that the primary system does not exist.
  • the transmitted signal of the primary system is such a signal that has both the cyclicity and the cyclostationarity as is used in the third embodiment and the fifth embodiment.
  • Fig. 15 is a functional block diagram of a secondary system radio apparatus 800 according to this embodiment.
  • the secondary system radio apparatus 800 includes: an antenna 801 for receiving the transmitted signals (radio waves) of the primary system; an RF analog section 802 for extracting an IF signal or a baseband signal in a desired frequency band from the signals received by the antenna; a memory for cyclic time 803 (identical to the memory for cyclic time 503) for storing the cyclic time of the transmitted signal of the primary system and the acyclic time showing no cyclicity; a feature value correlator 804 (identical to the feature value correlator 504) for generating the feature value specific to the transmitted signal of the primary system by using the cyclic time; a non-feature value correlator 805 (identical to the non-feature value correlator 505) for generating a plurality of non-feature values by using the acyclic time; a determination section 806 for determining whether or not a signal of the primary system exists; a memory for the parameter of CAF combining 813 (identical to the memory for the parameter of CAF
  • a product of a value output from the feature value correlator 804 and a value output from the generator of combined peak values of CAF 814 is input as the feature value
  • products of N-1 values output from the non-feature value correlator 805 and N-1 values output from the generator of combined non-peak values of CAF 815 are input as the non-feature values.
  • the largest value is selected from among the feature value and the non-feature values, which are input in a total number of N.
  • the determination section 806 determines that a signal of the primary system exists. Further, in the case where the selected value is any one of the N-1 non-feature values, the determination section 806 determines that no signal of the primary system exists and that the frequency band is in an unoccupied state.
  • the product of the output values of the feature value correlator 804 and the generator of combined peak values of CAF 814, or the products of the output values of the non-feature value correlator 805 and the generator of combined non-peak values of CAF 815 are input to the determination section 806.
  • the input values are not limited to products, and values obtained by addition with weigting may be used.
  • the secondary system radio apparatus 800 of this embodiment can perform such detection that satisfies the desired false alarm rate.
  • both the values of the feature value correlator 804 and the generator of combined peak values of CAF 814 are large, which means that the feature value, which is the product of those output values, becomes even larger, and hence the feature value is larger than the N-1 non-feature values generated as the products of the non-feature value correlator 805 and the generator of combined non-peak values of CAF 815.
  • the feature value which is the product of those output values
  • the received signal is formed only of noise components or interference components, and hence the feature value and the N-1 non-feature values all have the same probability distribution.
  • a probability that the feature value is the largest in the determination section 806 is 1/N, and hence the false alarm rate is 1/N.
  • one feature value which is the product of the output values of the feature value correlator 804 and the generator of combined peak values of CAF 814
  • nine non-feature values which are the products of the output values of the non-feature value correlator 805 and the generator of combined non-peak values of CAF 815
  • the largest value is selected in the determination section 806.
  • N may be set in advance as N according to the desired value of the false alarm rate for each radio system for which a search is performed, the number of feature values to be generated for the determination, and the like. For example, N may be set to 10 for a particular search target radio system, while N may be set to 100 for another particular search target radio system.
  • the secondary system by performing the determination processing with the use of a plurality of feature values, in addition to setting the false alarm rate to the desired value, it is possible to reduce the misdetection rate of the primary system.
  • This invention is applicable to, for example, the purpose of determining whether or not a frequency band is already used or has started to be used by another system or another radio apparatus in a radio communication system in which the frequencies are shared among radio communication systems or radio apparatuses (radio terminals) within a radio communication system.
  • the setting of the false alarm rate to the desired value has been described to be achieved by setting the number (for example, N) of feature values to be generated or the like.
  • the desired value of the false alarm rate itself may be set, and N or the like may be calculated by the radio apparatus automatically, to thereby perform the detection processing for the primary system by using a value thus calculated.
  • the radio apparatus determines the number of feature values to be used for the determination, sets to N-n the number of non-feature values which is determined based on n assuming that the number of feature values is n, and calculates the number of non-feature values which allows the false alarm rate to be set to 0.1.
  • the radio system generates the determined number of feature values and the calculated number of non-feature values, and then determines whether or not a signal of the primary system exists. Further, the number of feature values and the number of non-feature values, which are used for the determination, may be set in advance in association with the desired value of the false alarm rate.
  • the generation and/or the determination processing of the feature value and the non-feature value is performed using another device (server or another radio apparatus).
  • the secondary system radio apparatus performs only the extraction of a signal (RF signal or the like) in the received frequency band, or performs processing up until the generation of the feature value and the non-feature value.
  • the generated signal may be output to another device to cause the another device to perform the rest of the processing, and a determination result thus obtained may be output to the secondary system radio apparatus.
  • a notification section for notifying another secondary system radio apparatus or a server of the determination result through wireless or wired communication, and the determination result may be shared for use.
  • the numbers of feature values and non-feature values to be generated are described to be set in advance.
  • set numbers are the numbers of feature values and non-feature values used for the determination in the determination section, and accordingly do not always need to be identical to the numbers of feature values and non-feature values to be generated.
  • a large number of feature values and non-feature values may be generated, and a necessary number of non-feature values may be arbitrarily selected therefrom for the determination.
  • a frequency band for which a search can be performed and information on an extractable feature value for each primary system used in that frequency band may be stored in advance in association with each other, along with other information.
  • primary system information there are stored a used frequency band (for example, center frequency, bandwidth) of the primary system that is permitted to use a frequency band and is being operated in a frequency band that can be detected by the secondary system radio apparatus, a radio standard, and the extractable feature value, and, in association with the primary system information, there are stored, as information used for generation of the feature value (system setting parameters), the type of a used feature value, the number of feature values to be used in the determination section, the number of non-feature values to be used in the determination section, parameters for generation of various feature values and non-feature values (for example, pilot signal sequence, cyclic time, cyclic frequency and delay time, replica of value of CAF), and the like (see Fig.
  • N, n, and M serving as the set values for the false alarm rate, the desired value of the false alarm rate, and the like may be stored in advance in association with the system parameters and the pseudo parameters. Further, as the primary system information, a used time slot and the like of the primary system may be recorded and used for improvement in false alarm rate value and misdetection rate value.
  • the respective sections and the respective types of means of the radio system or the radio apparatus may be implemented by hardware or a combination of hardware and software.
  • programs are expanded in the RAM or the like, and the respective sections and the respective types of means are implemented by operating such hardware as a control section according to the programs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Claims (25)

  1. Système radio cognitif comprenant :
    une mémoire (303) configurée pour stocker un paramètre de système et un pseudo paramètre, le paramètre de système étant utilisé pour la génération d'une valeur caractéristique qui a une propriété telle que la valeur caractéristique soit grande dans un cas où un signal radio d'un système radio pour lequel une recherche est effectuée existe dans une bande de fréquences reçue, le pseudo paramètre étant similaire au paramètre de système qui est utilisé pour la génération d'une valeur non caractéristique qui a une propriété telle que, dans un cas où aucun signal radio d'un système radio pour lequel la recherche est effectuée n'existe dans une bande de fréquences reçue, la valeur non caractéristique a la même distribution de probabilité que celle de la valeur caractéristique précitée, et que, dans le cas où le signal radio du système radio existe dans une bande de fréquences reçue, la valeur non caractéristique est maintenue petite ;
    un générateur de valeur caractéristique (304) configuré pour générer une ou une pluralité des valeurs caractéristiques sur la base d'un signal dans une bande de fréquences reçue en utilisant le paramètre de système ;
    un générateur de valeur non caractéristique (305) configuré pour générer une ou une pluralité de valeurs non caractéristiques sur la base du signal dans la bande de fréquences reçue en utilisant le pseudo paramètre ; et
    une section de détermination (306) configurée pour déterminer si un signal du système radio existe ou non en utilisant l'une ou la pluralité des valeurs caractéristiques et l'une ou la pluralité de valeurs non caractéristiques.
  2. Système radio cognitif selon la revendication 1, dans lequel la section de détermination (306) est configurée pour exécuter une comparaison sur laquelle parmi l'une ou la pluralité des valeurs caractéristiques et l'une ou la pluralité de valeurs non caractéristiques est plus grande, déterminer, dans le cas où l'une ou la pluralité des valeurs caractéristiques est plus grande, que le signal du système radio existe, et déterminer, dans un cas où l'une ou la pluralité de valeurs non caractéristiques est plus grande, que le signal du système radio n'existe pas.
  3. Système radio cognitif selon la revendication 1 ou 2, dans lequel un nombre des valeurs caractéristiques et un nombre des valeurs non caractéristiques, qui sont utilisées pour la détermination dans la section de détermination (306), sont des nombres fixés sur la base d'une valeur désirée d'un taux de fausses alarmes.
  4. Système radio cognitif selon l'une quelconque des revendications 1 à 3, dans lequel un nombre des valeurs caractéristiques utilisées pour la détermination dans la section de détermination (306) est un nombre correspondant à une valeur désirée d'un taux d'erreurs de détection.
  5. Système radio cognitif selon l'une quelconque des revendications 1 à 4, dans lequel, quand un nombre de valeurs caractéristiques utilisées pour la détermination est fixé comme n et un nombre des valeurs non caractéristiques utilisées pour la détermination est fixé comme N-n, où n est un entier égal ou supérieur à 1 et N est un entier égal ou supérieur à n+1 :
    la section de détermination (306) est configurée pour sélectionner m valeurs par ordre décroissant parmi l'une ou la pluralité des valeurs caractéristiques et l'une ou la pluralité des valeurs non caractéristiques, où m est un entier qui satisfait m ≤ n, et détermine, dans un cas ou toutes les valeurs m sont des valeurs caractéristiques, que le système radio existe ; et
    la section de détermination (306) est configurée pour déterminer, dans un cas où les m valeurs contiennent la valeur non caractéristique, que le système radio n'existe pas.
  6. Système radio cognitif selon l'une quelconque des revendications 1 à 5, dans lequel la mémoire (303) est configurée pour stocker à l'avance une bande de fréquences pour laquelle la recherche peut être effectuée et des informations sur une valeur caractéristique extractible pour chaque système radio utilisé dans la bande de fréquences en association l'une avec l'autre.
  7. Système radio cognitif selon l'une quelconque des revendications 1 à 6, dans lequel :
    la mémoire (303) est configurée pour stocker, comme le paramètre de système, une fréquence cyclique et un temps de retard avec lesquels une fonction d'autocorrélation cyclique d'un signal transmis du système radio atteint un pic, et stocker, comme le pseudo paramètre, une fréquence cyclique et un temps de retard avec lesquels la fonction d'autocorrélation cyclique n'atteint pas le pic ;
    le générateur de valeur caractéristique (304) est configuré pour générer, comme la valeur caractéristique, une ou une pluralité de valeurs de pic de CAF représentant le pic de la fonction d'autocorrélation cyclique sur la base du signal dans la bande de fréquences reçue en utilisant le paramètre de système ;
    le générateur de valeur non caractéristique (305) est configuré pour générer, comme la valeur non caractéristique, une ou une pluralité de valeurs de non pic de CAF ne représentant pas le pic de la fonction d'autocorrélation cyclique sur la base du signal dans la bande de fréquences reçue en utilisant le pseudo paramètre ; et
    la section de détermination (306) est configurée pour déterminer si le signal du système radio existe ou non en utilisant l'une ou la pluralité de valeurs de pic de CAF et l'une ou la pluralité de valeurs de non pic de CAF.
  8. Système radio cognitif selon l'une quelconque des revendications 1 à 6, dans lequel :
    la mémoire (303) est configurée pour stocker une réplique d'une valeur de CAF calculée à l'avance, une fréquence cyclique et un temps de retard avec lesquels une fonction d'autocorrélation cyclique d'un signal transmis du système radio atteint un pic comme le paramètre de système, et une fréquence cyclique et un temps de retard avec lesquels la fonction d'autocorrélation cyclique n'atteint pas le pic comme le pseudo paramètre ;
    le générateur de valeur caractéristique (304) est configuré pour générer une pluralité de valeurs de pic de CAF représentant le pic de la fonction d'autocorrélation cyclique sur la base du signal dans la bande de fréquences reçue en utilisant le paramètre de système, pour générer ainsi, comme la valeur caractéristique, une valeur de pic de CAF combinée en effectuant une pondération complexe et une combinaison en utilisant la pluralité générée de valeurs de pic de CAF et les répliques des valeurs de CAF ;
    le générateur de valeur non caractéristique (305) est configuré pour générer une pluralité de valeurs de non pic de CAF ne représentant pas le pic de la fonction d'autocorrélation cyclique sur la base du signal dans la bande de fréquences reçue en utilisant le pseudo paramètre, pour générer ainsi, comme la valeur non caractéristique, une valeur de non pic de CAF combinée en effectuant la pondération complexe et la combinaison en utilisant la pluralité générée de valeurs de non pic de CAF et les répliques des valeurs de CAF ; et
    la section de détermination (306) est configurée pour déterminer si le signal du système radio existe ou non en utilisant des parties réelles ou des valeurs complexes absolues de la valeur de pic de CAF combinée et de la valeur de non pic de CAF combinée.
  9. Système radio cognitif selon l'une quelconque des revendications 1 à 6, dans lequel :
    la mémoire (303) est configurée pour stocker, comme le paramètre de système, un ou une pluralité de temps cycliques représentant un temps de répétition d'une séquence de signal contenue dans un signal transmis reçu à partir du système radio, et stocker, comme le pseudo paramètre, un ou une pluralité de temps acycliques différents de l'un ou la pluralité de temps cycliques ;
    le générateur de valeur caractéristique (304) est configuré pour générer l'une ou la pluralité des valeurs caractéristiques par le biais d'un traitement de corrélation entre le signal transmis et un signal retardé obtenu en étant retardé du temps cyclique ;
    le générateur de valeur non caractéristique (305) est configuré pour générer l'une ou la pluralité de valeurs non caractéristiques par le biais du traitement de corrélation entre le signal transmis et un signal retardé obtenu en étant retardé du temps acyclique ; et
    la section de détermination (306) est configurée pour déterminer si le signal du système radio existe ou non en utilisant l'une ou la pluralité des valeurs caractéristiques et l'une ou la pluralité des valeurs non caractéristiques.
  10. Système radio cognitif selon la revendication 9, dans lequel le temps cyclique est une longueur de symbole effective d'un signal OFDM, ou une longueur de bloc d'un signal SC-FDMA excluant une longueur de préfixe cyclique, ou un intervalle avec lequel un préfixe cyclique est inséré, ou un intervalle avec lequel une séquence de signal pilote est insérée.
  11. Système radio cognitif selon l'une quelconque des revendications 1 à 6, dans lequel :
    la mémoire (303) est configurée pour stocker, comme le paramètre de système, une séquence de signal d'un signal de commande (canal de commande) du système radio, et stocker, comme le pseudo paramètre, une pluralité de séquences de signal d'un pseudo signal de commande, qui sont différentes de la séquence de signal du signal de commande ;
    le générateur de valeur caractéristique (304) est configuré pour générer l'une ou la pluralité des valeurs caractéristiques par le biais d'un traitement de corrélation entre un signal transmis et le signal de commande ;
    le générateur de valeur non caractéristique (305) est configuré pour générer l'une ou la pluralité de valeurs non caractéristiques par le biais du traitement de corrélation entre le signal transmis et le pseudo signal de commande ; et
    la section de détermination (306) est configurée pour déterminer si le signal du système radio existe ou non en utilisant l'une ou la pluralité de valeurs de caractéristiques et l'une ou la pluralité de valeurs non caractéristiques.
  12. Système radio cognitif selon la revendication 11, dans lequel la séquence de signal du signal de commande comprend une séquence de signal pilote insérée dans le signal transmis et la pluralité de séquences de signal du pseudo signal de commande comprend une séquence de signal aléatoire ayant la même longueur que la séquence de signal pilote.
  13. Système radio cognitif selon l'une quelconque des revendications 1 à 6, dans lequel :
    la mémoire (303) est configurée pour stocker, comme les paramètres de système, une combinaison d'au moins deux types sélectionnés parmi une fréquence cyclique et un temps de retard avec lesquels une fonction d'autocorrélation cyclique atteint un pic, un temps cyclique représentant un temps de répétition d'une séquence de signal, d'une séquence de signal d'un signal de commande et d'une réplique d'une valeur de CAF calculée à l'avance, qui correspond à des caractéristiques contenues dans un signal transmis du système radio ;
    la mémoire (303) est configurée pour stocker une combinaison des pseudo paramètres correspondant aux paramètres de système ; et
    la section de détermination (306) est configurée pour déterminer si le signal du système radio existe ou non en utilisant l'une ou la pluralité des valeurs caractéristiques et l'une ou la pluralité de valeurs non caractéristiques, qui sont générées sur la base de valeurs de sortie respectivement du générateur de valeur caractéristique (304) et du générateur de valeur non caractéristique (305), les valeurs de sortie étant obtenues sur la base des au moins deux types des paramètres de système correspondant aux caractéristiques contenues dans le signal transmis du système radio et des pseudo paramètres.
  14. Système radio cognitif selon l'une quelconque des revendications 1 à 13, comprenant en outre une section de notification pour notifier à un autre dispositif ou appareil radio un résultat de la détermination effectuée par la section de détermination (306), pour partager ainsi le résultat de la détermination.
  15. Procédé de détection de signal radio comprenant :
    la réception (S301) d'un signal radio dans une bande de fréquences pour laquelle une recherche est effectuée ;
    la génération (S302) d'une ou d'une pluralité de valeurs caractéristiques en utilisant un signal dans une bande de fréquences reçue et d'un paramètre de système d'un système radio pour lequel la recherche est effectuée, la valeur caractéristique ayant une propriété telle que la valeur caractéristique soit grande dans un cas où un signal radio d'un système radio pour lequel la recherche est effectuée existe dans une bande de fréquences reçue ;
    la génération (S303) d'une ou d'une pluralité de valeurs non caractéristiques en utilisant le signal dans la bande de fréquences reçue et un pseudo paramètre similaire au paramètre de système, la valeur non caractéristique ayant une propriété telle que, dans un cas où aucun signal radio d'un système radio pour lequel la recherche est effectuée n'existe dans une bande de fréquences reçue, la valeur non caractéristique a la même distribution de probabilité que celle de la valeur caractéristique précitée, et que, dans le cas où le signal radio du système radio existe dans une bande de fréquences reçue, la valeur non caractéristique est maintenue petite ; et
    la détermination (S304) qu'un signal du système radio existe ou non en utilisant l'une ou la pluralité de valeurs caractéristiques et l'une ou la pluralité de valeurs non caractéristiques.
  16. Procédé de détection de signal radio selon la revendication 15, dans lequel la détermination (S304) comprend :
    l'exécution d'une comparaison sur laquelle parmi l'une ou la pluralité de valeurs caractéristiques et l'une ou la pluralité de valeurs non caractéristiques est plus grande ;
    la détermination, dans un cas où l'une ou la pluralité de valeurs caractéristiques est plus grande, que le signal du système radio existe ; et
    la détermination, dans un cas où l'une ou la pluralité de valeurs non caractéristiques est plus grande, que le signal du système radio n'existe pas.
  17. Procédé de détection de signal radio selon la revendication 15 ou 16, comprenant en outre le réglage à l'avance d'un nombre des valeurs caractéristiques et d'un nombre des valeurs non caractéristiques, qui sont utilisées dans la détermination, de manière qu'un taux de fausses alarmes devienne une valeur désirée.
  18. Procédé de détection de signal radio selon l'une quelconque des revendications 15 à 17, comprenant en outre le réglage à l'avance d'un nombre des valeurs caractéristiques utilisées dans la détermination en correspondance avec une valeur désirée d'un taux d'erreurs de détection.
  19. Procédé de détection de signal radio selon l'une quelconque des revendications 15 à 18, dans lequel :
    la conversion en fréquence du signal radio dans la bande de fréquences pour laquelle la recherche est effectuée en un signal de bande de base ou un signal IF ;
    la génération d'une ou d'une pluralité de valeurs de pic de CAF comme les valeurs caractéristiques représentant un pic d'une fonction d'autocorrélation cyclique en utilisant le signal de bande de base ou le signal IF et une fréquence cyclique et un temps de retard avec lesquels la fonction d'autocorrélation cyclique d'un signal transmis du système radio pour lequel la recherche est effectuée atteint le pic ;
    la génération d'une ou d'une pluralité de valeurs de non pic de CAF, comme les valeurs non caractéristiques ne représentant pas le pic de la fonction d'autocorrélation cyclique en utilisant le signal de bande de base ou le signal IF et une fréquence cyclique et un temps de retard avec lesquels la fonction d'autocorrélation cyclique du signal transmis du système radio pour lequel la recherche est effectuée n'atteint pas le pic ; et
    la détermination que le signal du système radio existe ou non en utilisant l'une ou la pluralité de valeurs de pic de CAF et l'une ou la pluralité de valeurs de non pic de CAF.
  20. Procédé de détection de signal radio selon la revendication 19, dans lequel la détermination comprend :
    l'exécution d'une comparaison entre l'une ou la pluralité de valeurs de pic de CAF et l'une ou la pluralité de valeurs de non pic de CAF, ou entre une valeur de pic de CAF combinée et une valeur de non pic de CAF combinée, la valeur de pic de CAF combinée étant obtenue par une combinaison en phase des valeurs de pic de CAF en utilisant des répliques de valeurs de pic de CAF du signal transmis du système radio pour lequel la recherche est effectuée, la valeur de non pic de CAF combinée étant générée sur la base des valeurs de non pic de CAF en utilisant les répliques des valeurs de CAF ; et
    la détermination, dans un cas où l'une ou la pluralité de valeurs de pic de CAF est plus grande que l'une ou la pluralité de valeurs de non pic de CAF, que le signal du système radio existe et la détermination, dans un cas où l'une ou la pluralité de valeurs de non pic de CAF est plus grande que l'une ou la pluralité de valeurs de pic de CAF, que le signal du système radio n'existe pas, ou
    la détermination, dans un cas où la valeur de pic de CAF combinée est plus grande que la valeur de non pic de CAF combinée, que le signal du système radio existe et la détermination, dans un cas où la valeur de non pic de CAF combinée est plus grande que la valeur de pic de CAF combinée, que le signal du système radio n'existe pas.
  21. Procédé de détection de signal radio selon l'une quelconque des revendications 15 à 18, dans lequel :
    l'extraction, comme un signal RF, du signal radio dans la bande de fréquences pour laquelle la recherche est effectuée ou la conversion en fréquence du signal RF en un signal de bande de base ou un signal IF ;
    la génération des valeurs caractéristiques par le biais d'un traitement de corrélation qui utilise le signal RF ou le signal de bande de base converti en fréquence ou le signal IF converti en fréquence et un signal retardé obtenu en étant retardé d'un ou d'une pluralité de temps cycliques, qui sont chacun un temps de répétition d'une séquence de signal utilisé par le système radio pour lequel la recherche est effectuée ;
    la génération des valeurs non caractéristiques par le biais du traitement de corrélation qui utilise le signal RF ou le signal de bande de base converti en fréquence ou le signal IF converti en fréquence et un ou une pluralité de signaux retardés obtenu en étant retardé d'un ou d'une pluralité de temps acycliques, différents de l'un ou la pluralité de temps cycliques ; et
    la détermination que le signal du système radio existe ou non en utilisant l'une ou la pluralité des valeurs caractéristiques et l'une ou la pluralité des valeurs non caractéristiques.
  22. Procédé de détection de signal radio selon la revendication 21, dans lequel le temps cyclique est une longueur de symbole effective d'un signal OFDM, ou une longueur de bloc d'un signal SC-FDMA excluant une longueur de préfixe cyclique, ou un intervalle avec lequel un préfixe cyclique est inséré, ou un intervalle avec lequel une séquence de signal pilote est insérée.
  23. Procédé de détection de signal radio selon l'une quelconque des revendications 15 à 18, dans lequel :
    la conversion en fréquence du signal radio dans la bande de fréquences pour laquelle la recherche est effectuée en un signal de bande de base ;
    la génération des valeurs caractéristiques par le biais d'un traitement de corrélation qui utilise le signal de bande de base converti en fréquence et une ou une pluralité de séquences de signal pilote utilisée par le système radio pour lequel la recherche est effectuée ;
    la génération des valeurs non caractéristiques par le biais du traitement de corrélation qui utilise le signal de bande de base converti en fréquence et une ou une pluralité de séquences de signal pseudo aléatoire similaire à l'une ou la pluralité de séquences de signal pilote ; et
    la détermination que le signal du système radio existe ou non en utilisant l'une ou la pluralité des valeurs caractéristiques et l'une ou la pluralité des valeurs non caractéristiques.
  24. Procédé de détection de signal radio selon l'une quelconque des revendications 15 à 18, dans lequel :
    la génération de l'une ou la pluralité de valeurs caractéristiques en utilisant, comme les paramètres de système, une combinaison d'au moins deux types sélectionnés parmi une fréquence cyclique et un temps de retard avec lesquels une fonction d'autocorrélation cyclique atteint un pic, un temps cyclique représentant un temps de répétition d'une séquence de signal, d'une séquence de signal d'un signal de commande et d'une réplique d'une valeur de CAF calculée à l'avance, qui correspond à des caractéristiques contenues dans un signal transmis du système radio ;
    la génération de l'une ou la pluralité de valeurs non caractéristiques en utilisant une combinaison des pseudo paramètres correspondant aux paramètres de système ; et
    la détermination que le signal du système radio existe ou non en utilisant l'une ou la pluralité des valeurs caractéristiques et l'une ou la pluralité de valeurs non caractéristiques.
  25. Système radio cognitif selon l'une quelconque des revendications 1 à 14, dans lequel :
    la mémoire (303), le générateur de valeur caractéristique (304), le générateur de valeur non caractéristique (305) et la section de détermination (306) sont compris dans un unique appareil radio cognitif (300).
EP09754834.1A 2008-05-27 2009-05-25 Système cognitif sans fil, dispositif cognitif sans fil et procédé de détection de signal sans fil Not-in-force EP2285178B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008137471 2008-05-27
PCT/JP2009/059918 WO2009145326A1 (fr) 2008-05-27 2009-05-25 Système cognitif sans fil, dispositif cognitif sans fil et procédé de détection de signal sans fil

Publications (3)

Publication Number Publication Date
EP2285178A1 EP2285178A1 (fr) 2011-02-16
EP2285178A4 EP2285178A4 (fr) 2016-10-12
EP2285178B1 true EP2285178B1 (fr) 2018-04-18

Family

ID=41377194

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09754834.1A Not-in-force EP2285178B1 (fr) 2008-05-27 2009-05-25 Système cognitif sans fil, dispositif cognitif sans fil et procédé de détection de signal sans fil

Country Status (5)

Country Link
US (1) US8804860B2 (fr)
EP (1) EP2285178B1 (fr)
JP (2) JPWO2009145326A1 (fr)
CN (1) CN102047749B (fr)
WO (1) WO2009145326A1 (fr)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514816B1 (ko) * 2008-06-02 2015-04-23 삼성전자주식회사 알려진 신호를 이용하여 간섭을 인지하는 인지 무선 통신시스템
US9119165B2 (en) 2009-09-10 2015-08-25 Nextnav, Llc Coding in a wide area positioning system (WAPS)
JP2011101234A (ja) * 2009-11-06 2011-05-19 Sumitomo Electric Ind Ltd 信号検出器、信号検出方法、受信用プロセッサ及び受信機
US9237449B2 (en) * 2009-12-21 2016-01-12 Thomson Licensing Autocorrelation-based spectrum sensing for FM signals
JP5337111B2 (ja) * 2010-01-07 2013-11-06 株式会社エヌ・ティ・ティ・ドコモ 無線通信システムの無線局で使用される信号検出装置及び信号検出方法
CN102123124A (zh) * 2010-01-07 2011-07-13 上海华虹集成电路有限责任公司 一种ofdm定时同步装置及实现方法
US10045220B2 (en) * 2010-05-20 2018-08-07 Nokia Technologies Oy Sensing in a communication system
JP5624847B2 (ja) * 2010-10-19 2014-11-12 株式会社Nttドコモ 信号検出装置及び信号検出方法
KR20120056644A (ko) * 2010-11-25 2012-06-04 한국전자통신연구원 직교주파수분할다중화 신호 검출 방법 및 장치
WO2012096049A1 (fr) * 2011-01-14 2012-07-19 住友電気工業株式会社 Dispositif de station de base, dispositif terminal, et système et procédé de communication sans fil
US8526520B2 (en) * 2011-01-17 2013-09-03 Nokia Corporation Cyclostationary signal detection in the angular domain for communication systems
JP5683992B2 (ja) * 2011-02-17 2015-03-11 株式会社Nttドコモ マルチモード無線機及び接続先システムを発見する方法
JP5667497B2 (ja) 2011-03-31 2015-02-12 パナソニック株式会社 信号検出装置及び信号検出方法
US10504360B2 (en) 2011-04-08 2019-12-10 Ross Gilson Remote control interference avoidance
US9645249B2 (en) * 2011-06-28 2017-05-09 Nextnav, Llc Systems and methods for pseudo-random coding
JP5891623B2 (ja) * 2011-07-07 2016-03-23 ソニー株式会社 通信制御装置、通信制御方法およびプログラム
JP5806078B2 (ja) * 2011-10-19 2015-11-10 株式会社Nttドコモ 通信装置及び周波数共用方法
JP5825675B2 (ja) * 2012-02-03 2015-12-02 国立研究開発法人情報通信研究機構 通信装置、通信方法
JP5591270B2 (ja) 2012-03-22 2014-09-17 株式会社Nttドコモ 通信の可否を判定する判定装置及び判定方法
US8744390B2 (en) * 2012-03-29 2014-06-03 Adc Telecommunications, Inc. Systems and methods for adjusting system tests based on detected interference
US9210605B2 (en) 2012-06-29 2015-12-08 Qualcomm Incorporated Channel state information reporting for partially cancelled interference
TWI561103B (en) * 2012-08-30 2016-12-01 Univ Nat Tsing Hua Active sensing method based on spectral correlation for cognitive radio systems
US9912463B2 (en) * 2013-12-13 2018-03-06 Zte Corporation Full duplex transmission setup and release mechanism
US9532243B2 (en) * 2014-01-20 2016-12-27 Apple Inc. WLAN and LTE coexistence in unlicensed radio frequency bands
CN104065429B (zh) * 2014-07-04 2016-12-07 哈尔滨工程大学 基于频域盒维数的盲频谱感知方法
EP3512109B1 (fr) 2014-09-25 2021-03-03 Huawei Technologies Co., Ltd. Procédé de communication de données et appareil associé
WO2016079956A1 (fr) * 2014-11-17 2016-05-26 日本電気株式会社 Terminal de communication, et procédé de sélection de canal de terminal de communication
TWI554045B (zh) * 2015-01-30 2016-10-11 財團法人資訊工業策進會 頻譜感知偵測器及其頻譜感知偵測方法
AU2016315197B2 (en) * 2015-08-28 2020-05-21 Sony Corporation Information processing device and information processing method
US10531473B2 (en) * 2015-09-25 2020-01-07 Qualcomm Incorporated Blind detection and reporting of interference in unlicensed spectrum
FR3047578B1 (fr) * 2016-02-05 2018-05-04 Zodiac Data Systems Procede d'estimation de parametres de signaux contenus dans une bande de frequences
CN106161297B (zh) * 2016-06-22 2019-03-01 西安交通大学 Ofdm系统中基于独立分量分析的抗导频欺骗攻击信道估计和识别方法
CN107819491B (zh) * 2016-09-12 2021-07-02 中兴通讯股份有限公司 一种干扰源定位的方法及装置
US10333693B2 (en) * 2016-12-09 2019-06-25 Micron Technology, Inc. Wireless devices and systems including examples of cross correlating wireless transmissions
JP6892646B2 (ja) * 2017-03-02 2021-06-23 株式会社国際電気通信基礎技術研究所 判定装置、コンピュータに実行させるためのプログラム、およびプログラムを記録したコンピュータ読み取り可能な記録媒体
JP7007975B2 (ja) * 2018-03-29 2022-01-25 Kddi株式会社 測定装置、測定方法及びプログラム
JP6815569B2 (ja) * 2018-08-15 2021-01-20 三菱電機株式会社 信号検出装置、信号検出方法、制御回路およびプログラム
JP7253286B2 (ja) * 2019-07-22 2023-04-06 南通大学 変調信号の周期的自己相関関数の対称なピーク値に基づくスペクトル検知方法
JP7175858B2 (ja) * 2019-08-07 2022-11-21 株式会社日立製作所 情報処理装置および正規通信判定方法
US11088877B1 (en) * 2020-05-04 2021-08-10 Bae Systems Information And Electronic Systems Integration Inc. Method to estimate multi-periodic signals and detect their features in interference
US11156647B1 (en) 2020-06-05 2021-10-26 Bae Systems Information And Electronic Systems Integration Inc. Method to estimate the rise-time of a pulse for single and multi-channel data
JP7487791B2 (ja) * 2020-11-09 2024-05-21 日本電信電話株式会社 受信装置、受信方法、及び受信プログラム
US11982698B2 (en) 2020-12-21 2024-05-14 Bae Systems Information And Electronic Systems Integration Inc. Joint denoising and delay estimation for the extraction of pulse-width of signals in RF interference
US11757481B1 (en) * 2021-12-07 2023-09-12 Amazon Technologies, Inc. Detecting co-channel interference using cyclic autocorrelation test

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925067B2 (en) * 1999-04-23 2005-08-02 Qualcomm, Incorporated Configuration of overhead channels in a mixed bandwidth system
JP4524582B2 (ja) * 2004-06-11 2010-08-18 ソニー株式会社 データ処理装置およびデータ処理方法、プログラムおよびプログラム記録媒体、並びにデータ記録媒体
JP4531581B2 (ja) * 2005-02-09 2010-08-25 株式会社エヌ・ティ・ティ・ドコモ 無線通信用送受信装置における制御装置及び無線通信用送受信方法
JP4309878B2 (ja) * 2005-08-17 2009-08-05 株式会社東芝 無線端末
US7570577B2 (en) * 2005-09-13 2009-08-04 Nec Corporation Apparatus, method, and program for detecting communication parameter
US20070092045A1 (en) * 2005-10-21 2007-04-26 Wangmyong Woo Systems, Methods, and Apparatuses for Fine-Sensing Modules
US7710919B2 (en) 2005-10-21 2010-05-04 Samsung Electro-Mechanics Systems, methods, and apparatuses for spectrum-sensing cognitive radios
CN100546232C (zh) * 2006-04-26 2009-09-30 电子科技大学 一种基于可靠度的分布式频谱检测方法
EP2025184A1 (fr) * 2006-05-18 2009-02-18 Koninklijke Philips Electronics N.V. Procédé et système de détection des largeurs de bande du spectre rf temporairement inutilisées
JP4246755B2 (ja) * 2006-05-30 2009-04-02 株式会社エヌ・ティ・ティ・ドコモ 受信信号周波数帯域検出器
JP4327832B2 (ja) * 2006-09-15 2009-09-09 株式会社東芝 通信装置およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8804860B2 (en) 2014-08-12
JP5477606B2 (ja) 2014-04-23
JP2014039287A (ja) 2014-02-27
CN102047749A (zh) 2011-05-04
WO2009145326A1 (fr) 2009-12-03
EP2285178A4 (fr) 2016-10-12
EP2285178A1 (fr) 2011-02-16
JPWO2009145326A1 (ja) 2011-10-20
US20110085612A1 (en) 2011-04-14
CN102047749B (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
EP2285178B1 (fr) Système cognitif sans fil, dispositif cognitif sans fil et procédé de détection de signal sans fil
JP6031137B2 (ja) 無線通信システムにおける距離範囲拡大のための構成可能なランダム・アクセス・チャネル構造
US20190239249A1 (en) Processing of random access preamble sequences
RU2336640C2 (ru) Устройство и способ назначения канала регулирования диапазона и передачи и приема сигнала регулирования диапазона в ofdm-системе
US7991084B2 (en) Apparatus, method and computer program product for detecting non-synchronized random access channel preamble
KR101384503B1 (ko) 셀룰러 통신 시스템에서 셀 그룹 검출을 위한 제 2 동기화 시퀀스
CN101295999B (zh) 一种随机接入前导的检测方法
EP2016731B1 (fr) Détection de signal dans un système de communication à porteuses multiples
US8155251B2 (en) Detection of access bursts in a random access channel
US20100220664A1 (en) Apparatus, Methods, and Computer Program Products Providing Limited Use of Zadoff-Chu Sequences in Pilot or Preamble Signals
US9763177B1 (en) False cell filtering during cell search
US20090202021A1 (en) Frequency offset compensation for detecting random access channel prefix
CN102316601A (zh) 一种随机接入信道的前导序列检测方法和装置
WO2006096728A2 (fr) Systeme et procede de mesure de distance
JP2004282764A (ja) 無線lanシステムの直交周波数分割多重化受信器及びそのシンボル同期化方法
US7986757B2 (en) Apparatus and method of acquiring initial synchronization of terminal in mobile communication system
EP1980098A1 (fr) Détection de la présence de signaux de télévision intégrés dans un bruit à l'aide d'une boîte à outils cyclostationnaire
EP2560292B1 (fr) Dispositif de communication CDMA et procédés associés
WO2018167476A1 (fr) Détection de signal basée sur une résonance stochastique
Lundén Spectrum sensing for cognitive radio and radar systems
KR101126682B1 (ko) Ofdma 시스템에서 레인징 성능 향상을 위한 레인징 장치 및 그 방법
US8121203B1 (en) Ranging code detection
US9985744B2 (en) Wireless receiver
de Figueiredo et al. A modified ca-cfar method for lte random access detection
JP2008167304A (ja) 受信機、移動局および基地局

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160912

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 27/00 20060101ALI20160906BHEP

Ipc: H04J 11/00 20060101ALI20160906BHEP

Ipc: H04W 88/02 20090101AFI20160906BHEP

Ipc: H04W 16/14 20090101ALI20160906BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04W 88/02 20090101AFI20171023BHEP

Ipc: H04W 16/14 20090101ALI20171023BHEP

Ipc: H04J 11/00 20060101ALI20171023BHEP

Ipc: H04L 27/00 20060101ALI20171023BHEP

INTG Intention to grant announced

Effective date: 20171107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009051853

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 991781

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180514

Year of fee payment: 10

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180523

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180719

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009051853

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 991781

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180820

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

26N No opposition filed

Effective date: 20190121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180525

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180818