EP2257134B1 - Schaltungsanordnung zum Betreiben einer Reihenschaltung von mindestens zwei Niederdruck-Gasentladungslampen und entsprechendes Verfahren - Google Patents

Schaltungsanordnung zum Betreiben einer Reihenschaltung von mindestens zwei Niederdruck-Gasentladungslampen und entsprechendes Verfahren Download PDF

Info

Publication number
EP2257134B1
EP2257134B1 EP10161981A EP10161981A EP2257134B1 EP 2257134 B1 EP2257134 B1 EP 2257134B1 EP 10161981 A EP10161981 A EP 10161981A EP 10161981 A EP10161981 A EP 10161981A EP 2257134 B1 EP2257134 B1 EP 2257134B1
Authority
EP
European Patent Office
Prior art keywords
connection
arrangement
pair
capacitor
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10161981A
Other languages
English (en)
French (fr)
Other versions
EP2257134A1 (de
Inventor
Bernd Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2257134A1 publication Critical patent/EP2257134A1/de
Application granted granted Critical
Publication of EP2257134B1 publication Critical patent/EP2257134B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps

Definitions

  • Circuit arrangement for operating a series circuit of at least two low-pressure gas discharge lamps and corresponding method
  • the invention relates to a circuit arrangement for operating a series connection of at least one first and one second low-pressure gas discharge lamp, having an input with a first and a second input terminal for applying an AC supply voltage, an output having at least a first terminal arrangement, the first and a second terminal pair for connecting the first low-pressure gas discharge lamp, and a second connection arrangement, which has a first and a second terminal pair for connecting the second low-pressure gas discharge lamp, wherein a first terminal of the second terminal pair of the first terminal arrangement with a first terminal of the first terminal pair of the second terminal arrangement is coupled, a resonant circuit having a coupled between the first input terminal and a first terminal of the first terminal pair of the first terminal arrangement resonant choke and a resonance capacitor r, which is coupled between the first terminal pair of the first terminal arrangement and the second terminal pair of the second terminal arrangement.
  • the invention also relates to a method of operating a series circuit of at least a first and a second low-pressure gas discharge lamp on such a circuit arrangement.
  • Circuit arrangements for operating a series circuit of a plurality of low-pressure gas discharge lamps are already known from the prior art.
  • Such circuitry includes a resonant circuit including a resonant choke and a resonant capacitor; the resonance capacitor is connected in parallel with the series connection of the gas discharge lamps.
  • the interest is in particular the preheating of electrodes of the gas discharge lamps. It is state of the art to use additional heating coils on the resonance choke for this purpose. By such an approach, on the one hand, not inconsiderable continuous heating powers occur in the electrodes, which adversely affects the efficiency of the entire system including the circuit arrangement and the gas discharge lamps. On the other hand, several heating coils - three additional heating coils are usually used in a series connection of two gas discharge lamps - consuming to wrap, lead and isolate. In particular, the isolation of many additional heating coils is costly.
  • the circuit arrangement described in this document comprises a heating circuit with the aid of which the electrodes of two gas discharge lamps can be preheated.
  • a heating circuit has, for a series connection of two lamps, a separate heating transformer, a bridge rectifier, two transistors (one of which is a voltage-proof power supply), a plurality of diodes, as well as a plurality of ohmic resistors.
  • circuit arrangement of the type mentioned further comprises a capacitive voltage divider.
  • This voltage divider has a parallel to the first terminal assembly coupled first capacitor and a parallel to the second connection arrangement coupled second capacitor.
  • the effect according to the invention is achieved by a capacitive voltage divider, by means of which an electrical voltage applied between the first connection pair of the first connection arrangement and the second connection pair of the second connection arrangement is divided.
  • a capacitive voltage divider by means of which an electrical voltage applied between the first connection pair of the first connection arrangement and the second connection pair of the second connection arrangement is divided.
  • the ratio of the current intensity of the current flowing through the "outer" electrodes - those electrodes which are coupled to the first terminal pair of the first terminal arrangement and the second terminal pair of the second terminal arrangement - during preheating to the current intensity of this current during operation that is after ignition of the gas discharge lamps.
  • the ratio of the current of the Dauerterrorismstroms to the current of the preheating, or the ratio of the Treasureroniados to preheating reduced.
  • This reduction is attributable to the fact that the current intensity of the current flowing via the "outer" electrodes of the gas discharge lamps or via the resonance capacitor is determined directly by the amplitude of the voltage applied to the resonance capacitor.
  • circuit arrangement according to the invention it is possible with the circuit arrangement according to the invention to reliably preheat the outer electrodes of the gas discharge lamps; On the other hand, the circuit arrangement according to the invention results in significantly reduced losses in continuous operation. This succeeds in the circuit arrangement according to the invention without the use of a large number of expensive active and passive components, as described in the subject matter according to document DE 44 25 859 A1 be used.
  • the circuit arrangement according to the invention solves the above object with only a capacitive voltage divider, which makes them more cost-effective and component reduced as the known circuit arrangements can be made.
  • the capacitance values of both the first and second capacitors are preferably smaller than the capacitance value of the resonance capacitor. In this way, a reliable ignition of the gas discharge lamps can be made possible.
  • the capacitance values of the first and second capacitors may be 5% to 25% of the capacitance value of the resonant capacitor.
  • the first and the second capacitor should be chosen so large that the parasitic capacitances of the first and the second terminal arrangement do not affect the voltage distribution across the lamps.
  • the first and the second capacitor each have a capacitance value from a value range of 10 pF to 5 nF, preferably from a value range of 100 pF to 2.5 nF. Then, the above requirements regarding the voltages at the gas discharge lamps are satisfied.
  • the capacitance value of the first capacitor may be 1 nF and the capacitance value of the second capacitor 560 pF and the capacitance value of the resonant capacitor 10 may be nF.
  • the capacitance value of the first capacitor preferably differs from the capacitance value of the second capacitor.
  • the gas discharge lamps are ignited sequentially, that is, one after the other.
  • the first breaks Voltage to a first of the gas discharge lamps, which has an immediate increase in the voltage across the other gas discharge lamp and thereby the ignition of this gas discharge lamp result.
  • the ratio of the capacitance values of the two capacitors is preferably in a value range of 0.5 to 0.8. For example, this ratio may be 2/3.
  • the present circuit arrangement comes with only a single additional winding at the resonance choke (provided that two gas discharge lamps are operated).
  • the resonance choke as a component can thus in comparison to the prior art be made much easier and cheaper; the additional winding can be isolated from the main winding of the resonance choke without much effort.
  • more winding space is available for the main winding of the resonance choke, so that the thermal problems occurring in the prior art are effectively counteracted.
  • a dummy element in particular a choke, can be coupled between the terminals of the first terminal pair of the first terminal arrangement and / or between the terminals of the second terminal pair of the second terminal arrangement.
  • An inventive method is designed to operate a series circuit of at least a first and a second low-pressure gas discharge lamp to a circuit arrangement of the type mentioned.
  • an electrical voltage applied between the first connection pair of the first connection arrangement and the second connection pair of the second connection arrangement is divided by means of a capacitive voltage divider, which has a first capacitor coupled in parallel with the first connection arrangement and coupled in parallel with the second circuit arrangement having second capacitor.
  • a circuit arrangement 1 shown in the figure comprises an input 2 with a first input terminal 3 and a second input terminal 4.
  • the second input terminal 4 represents a reference potential of a control unit, not shown in the figure. With this reference potential is also not shown in the figure and coupled by the control unit controllable inverter, which provides a supply AC voltage U v .
  • This alternating supply voltage U v is applied between the first and the second input terminal 3, 4.
  • the AC supply voltage U v generated by the inverter from a DC link DC voltage, which is not shown in the figure DC bus capacitor is applied.
  • the DC link DC voltage is applied between a DC link 5 and the reference potential 4 of the control unit.
  • the circuit arrangement 1 also comprises an output with a first and a second connection arrangement, respectively for connecting a low-pressure gas discharge lamp 6, 7.
  • the first connection arrangement comprises a first terminal pair 8 with a first and a second terminal 8a, 8b and a second terminal pair 9 with a first and a second terminal 9a, 9b.
  • the second connection arrangement comprises a first connection pair 10 with a first connection 10a and a second connection 10b and a second connection pair 11 with a first connection 11a and a second connection 11b.
  • the first terminal 9a of the second terminal pair 9 of the first terminal arrangement is directly connected to the first terminal 10a of the first terminal pair 10 of the second terminal arrangement.
  • the first input terminal 3 of the input 2 is coupled via a resonance choke 12 to the first terminal 8a of the first terminal pair 8 of the first terminal arrangement.
  • the resonant choke 12 together with a resonant capacitor 13 forms a resonant circuit of the circuit arrangement 1.
  • the resonant capacitor 13 is between the second terminal 8b of the first terminal pair 8 of the first terminal arrangement and the second terminal 11b of the second terminal pair 11 of the second Connection arrangement switched.
  • the inductance value of the resonance choke 12 in the exemplary embodiment is 1.3 mH and the capacitance value of the resonance capacitor 13 is 7.5 nF.
  • an additional winding 14 is wound on the same component, via which the inner electrodes of the gas discharge lamps 6, 7 can be preheated.
  • the internal electrodes of the gas discharge lamps 6, 7 are understood to mean those electrodes which are connected to the second terminal pair 9 of the first terminal arrangement and to the first terminal pair 10 of the second terminal arrangement.
  • the additional winding 14 is coupled via a capacitor 15 to the second terminal 9b of the second terminal pair 9 of the first terminal arrangement.
  • the auxiliary winding 14 is connected to the second terminal 10b of the first terminal pair 10 of the second terminal arrangement.
  • Those electrodes of the gas discharge lamps 6, 7 which are coupled to the first terminal pair 8 of the first terminal arrangement and the second terminal pair 11 of the second terminal arrangement are referred to below as outer electrodes.
  • a capacitive voltage divider 16 is connected in parallel with the resonance capacitor 13.
  • the capacitive voltage divider 16 comprises a first capacitor 16a and a second capacitor 16b.
  • the first capacitor 16a is between the first terminal 8a of the first terminal pair 8 and the first terminal 9a of the second terminal pair 9 of the first terminal arrangement connected.
  • the first capacitor 16a is connected in parallel to the first terminal arrangement.
  • the second capacitor 16b is connected between the first terminal 10a of the first terminal pair 10 and the first terminal 11a of the second terminal pair 11 of the second terminal arrangement.
  • the second capacitor 16b is connected in parallel to the second terminal arrangement.
  • the capacitive voltage divider 16 must be coupled to the outer terminals 8, 11.
  • the connection point arranged between the capacitors 16a, 16b must be connected to exactly one of the connections 9 (9a or 9b) or 10 (10a or 10b).
  • the capacitance values of the first and second capacitors 16a, 16b in the exemplary embodiment are 1 nF and 560 pF, respectively.
  • the circuit arrangement 1 also has a first and a second coupling capacitor 17, 18.
  • the first terminal 11a of the second terminal pair 11 of the second terminal arrangement is connected via the first coupling capacitor 17 to the DC link 5, that is electrically decoupled from the DC link 5 by means of the first coupling capacitor 17.
  • the first terminal 11a of the second terminal pair 11 of the second terminal arrangement is connected via the second coupling capacitor 18 to the reference potential 4 of the control unit.
  • the two coupling capacitors 17, 18 ensure that no direct currents can flow via the gas discharge lamps 6, 7. Such DC currents could lead to an apparent inhomogeneity of the gas discharge lamps 6, 7 radiated light lead (cataphoresis).
  • the advantage is achieved by the symmetrical arrangement of the coupling capacitors 17, 18, that the current load of the DC link capacitor is the lowest.
  • a throttle 19 is connected between the first and the second connection 8a, 8b of the first connection pair 8 of the first connection arrangement. Accordingly, a throttle 20 is connected between the first and the second connection 11a, 11b of the second connection pair 11 of the second connection arrangement.
  • the throttles 19, 20 have the task of minimizing the Treasureußpare or the pin currents of the gas discharge lamps 6, 7.
  • the control unit initiates the preheat phase by setting the frequency of the AC supply voltage U V to a preheat frequency.
  • the alternating supply voltage U V is thus set such that the gas discharge lamps 6, 7 are not yet ignited.
  • the presence of the capacitive voltage divider 16 makes it possible to set the voltage applied to the resonance capacitor 13 during the preheating phase to a value which is higher than the ignition voltage of a single gas discharge lamp 6, 7. In this way, the outer electrodes of the gas discharge lamps 6, 7 with relatively high currents - the current strength of the current flowing through the resonant capacitor 13 current is determined by the amplitude of the voltage - acted upon and thereby reliably preheated.
  • the ratio of the current intensity of the continuous heating current flowing in operation via the outer electrodes to the current intensity of the preheating current flowing through the resonance capacitor 13 during the preheating phase is reduced by the use of the capacitive voltage divider 16. So also reduces the ratio of the continuous heating power to the preheating. In other words, the current strength of the Treasureitesstroms can be reduced and thereby lower Treasurefilpositione be achieved. These losses can be further reduced by means of the throttles 19, 20.
  • the frequency of the AC supply voltage U V is lowered so that the gas discharge lamps 6, 7 ignite. Due to the different capacitance values of the capacitors 16a, 16b, the ignition of the gas discharge lamps 6, 7 takes place sequentially. This means that the gas discharge lamps 6, 7 are ignited one after the other.
  • a circuit arrangement 1 which enables reliable preheating of electrodes of a series connection of at least two gas discharge lamps 6, 7.
  • the circuit arrangement 1 comes without additional cost-intensive and technically complex preheating circuits; It can be produced inexpensively and reduced component.
  • Reliable preheating of the electrodes is ensured by a capacitive voltage divider 16 including first and second capacitors 16a, 16b. It is unnecessary to use a plurality of additional windings on the resonance choke 12, it is sufficient only an additional winding 14, which can be wound without much effort and with a few turns.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

    Beschreibung
  • Schaltungsanordnung zum Betreiben einer Reihenschaltung von mindestens zwei Niederdruck-Gasentladungslampen und entsprechendes Verfahren
  • Technisches Gebiet
  • Die Erfindung betrifft eine Schaltungsanordnung zum Betreiben einer Reihenschaltung von mindestens einer ersten und einer zweiten Niederdruck-Gasentladungslampe, mit einem Eingang mit einem ersten und einem zweiten Eingangsanschluss zum Anlegen einer Versorgungswechselspannung, einem Ausgang mit zumindest einer ersten Anschlussanordnung, die ein erstes und ein zweites Anschlusspaar zum Anschließen der ersten Niederdruck-Gasentladungslampe aufweist, und einer zweiten Anschlussanordnung, die ein erstes und ein zweites Anschlusspaar zum Anschließen der zweiten Niederdruck-Gasentladungslampe aufweist, wobei ein erster Anschluss des zweiten Anschlusspaares der ersten Anschlussanordnung mit einem ersten Anschluss des ersten Anschlusspaares der zweiten Anschlussanordnung gekoppelt ist, einem Resonanzkreis mit einer zwischen dem ersten Eingangsanschluss und einem ersten Anschluss des ersten Anschlusspaares der ersten Anschlussanordnung gekoppelten Resonanzdrossel und einem Resonanzkondensator, der zwischen dem ersten Anschlusspaar der ersten Anschlussanordnung und dem zweiten Anschlusspaar der zweiten Anschlussanordnung gekoppelt ist. Die Erfindung bezieht sich außerdem auf ein Verfahren zum Betreiben einer Reihenschaltung von mindestens einer ersten und einer zweiten Niederdruck-Gasentladungslampe an einer solchen Schaltungsanordnung.
  • Stand der Technik
  • Schaltungsanordnungen zum Betreiben einer Reihenschaltung von mehreren Niederdruck-Gasentladungslampen sind bereits aus dem Stand der Technik bekannt. Solche Schaltungsanordnungen verfügen über einen Resonanzkreis einschließlich einer Resonanzdrossel und eines Resonanzkondensators; der Resonanzkondensator ist parallel zur Serienschaltung der Gasentladungslampen geschaltet. Weiterhin verwendet wird dabei i.a. mindestens ein so genannter Sequenzstartkondensator, der bei der Serienschaltung von zwei Lampen parallel zu einer der beiden Lampen geschaltet ist. Dieser ermöglicht die Reduzierung der effektiv benötigten Zündspannung für die Reihenschaltung der Lampen, da bis zur Zündung der nicht kapazitiv überbrückten Lampe fast die gesamte über der Reihenschaltung liegende Spannung an dieser Lampe anliegt und diese vor der anderen Lampe gezündet wird. Damit wird ein aufeinanderfolgendes Zünden der Lampen gewährleistet (Sequenz), und die notwendige Gesamtzündspannung für diese Konfiguration ergibt sich näherungsweise aus der Zündspannung plus der Brennspannung einer Lampe. Nachteilig dabei ist der Umstand, dass auch während der Vorheizung der Lampen die Gesamtspannung über den Lampen praktisch an einer Lampe anliegt. Dieser Wert darf einen Maximalwert nicht überschreiten, da die Lampen sonst vor ausreichender Vorheizung der Elektroden durchzünden und die Schaltfestigkeit der Lampen sehr negativ beeinflusst wird.
  • Vorliegend gilt das Interesse insbesondere dem Vorheizen von Elektroden der Gasentladungslampen. Es ist Stand der Technik, zu diesem Zwecke zusätzliche Heizwicklungen auf der Resonanzdrossel zu verwenden. Durch eine solche Vorgehensweise entstehen jedoch einerseits nicht unerhebliche Dauerheizleistungen in den Elektroden, was die Effizienz des gesamten Systems einschließlich der Schaltungsanordnung und der Gasentladungslampen negativ beeinflusst. Andererseits sind mehrere Heizwicklungen - es werden in der Regel drei zusätzliche Heizwicklungen bei einer Reihenschaltung von zwei Gasentladungslampen verwendet - aufwändig zu wickeln, zu führen und zu isolieren. Insbesondere die Isolierung von vielen zusätzlichen Heizwicklungen ist kostenaufwändig. Werden spezielle Drosselarmaturen verwendet, die separate Kammern zur Isolation der Heizwicklungen vorsehen, steht deutlich weniger Wickelraum für die Hauptwicklung der Resonanzdrossel zur Verfügung, und es muss dünnerer und damit hochohmigerer Draht verwendet werden. Dies hat i.a. erhebliche thermische Probleme bei diesem Bauteil zur Folge.
  • Es ist außerdem bekannt, zusätzliche Heizkreise für die Vorheizung von Elektroden der Gasentladungslampen einzusetzen. Hierbei wird auf die Offenbarung der Druckschrift DE 44 25 859 A1 verwiesen. Die in diesem Dokument beschriebene Schaltungsanordnung umfasst einen Heizkreis, mit dessen Hilfe die Elektroden zweier Gasentladungslampen vorgeheizt werden können. Ein solcher Heizkreis weist für eine Serienschaltung von zwei Lampen einen separaten Heiztransformator, einen Brückengleichrichter, zwei Transistoren (davon ein zündspannungsfester Leistungsmosfet), mehrere Dioden, wie auch eine Vielzahl von Ohmschen Widerständen auf. Mit einem solchen Heizkreis gelingt es, eine ausreichende Vorheizung der Elektroden der Gasentladungslampen zu gewährleisten. Es ist jedoch eine besondere Herausforderung, eine zuverlässige Vorheizung der Elektroden von zumindest zwei in Serie geschalteten Gasentladungslampen zu erzielen, ohne eine Vielzahl von zusätzlichen Bauelementen einsetzen zu müssen.
  • In der Schrift US 4 145 638 (Kaneda )ist eine Vorrichtung zum Betrieb von 2 Entladungslampen offenbart. Die Lampen werden mit Netzfrequenz betrieben und mit konventionellen Startern sequenziell gezündet.
  • In der Schrift EP 0 395 159 (De Bijl ) ist eine Vorrichtung zum Betrieb von 2 Entladungslampen offenbart. Die Lampen werden seriell in einer Vollbrücke betrieben. Beim Ausfall eines Brückenzweiges betreibt der verbliebene Brückenzweig eine Lampe weiter.
  • Darstellung der Erfindung
  • Es ist daher Aufgabe der Erfindung, eine Lösung aufzuzeigen, wie die Elektroden von zumindest zwei Niederdruck-Gasentladungslampen mit möglichst geringem technischen Aufwand zuverlässig vorgeheizt und mit geringen Dauerheizverlusten betrieben werden können.
  • Diese Aufgabe wird erfindungsgemäß durch eine Schaltungsanordnung mit den Merkmalen gemäß Patentanspruch 1 gelöst, wie auch durch ein Verfahren mit den Merkmalen des Patentanspruchs 5. Vorteilhafte Ausführungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Bei einer Schaltungsanordnung der eingangs genannten Gattung ist demnach vorgesehen, dass sie weiterhin einen kapazitiven Spannungsteiler aufweist. Dieser Spannungsteiler weist einen parallel zu der ersten Anschlussanordnung gekoppelten ersten Kondensator und einen parallel zu der zweiten Anschlussanordnung gekoppelten zweiten Kondensator auf.
  • Demnach wird der erfindungsgemäße Effekt durch einen kapazitiven Spannungsteiler erzielt, mittels welchem eine zwischen dem ersten Anschlusspaar der ersten Anschlussanordnung und dem zweiten Anschlusspaar der zweiten Anschlussanordnung anliegende elektrische Spannung geteilt wird. Auf diesem Wege gelingt es, die an dem Resonanzkondensator und somit über den Lampen beim Vorheizen anliegende elektrische Gesamtspannung über einen für eine einzelne Gasentladungslampe zulässigen Wert und damit den Vorheizstrom in diesem Zweig zu erhöhen, ohne den Resonanzkondensator, dessen Kapazität die Dauerheizverluste bestimmt, zu vergrößern. Damit erhöht sich auch das Verhältnis der Stromstärke des über die "äußeren" Elektroden - diejenigen Elektroden, die mit dem ersten Anschlusspaar der ersten Anschlussanordnung und dem zweiten Anschlusspaar der zweiten Anschlussanordnung gekoppelt sind - während des Vorheizens fließenden Stroms zu der Stromstärke dieses Stroms im Betrieb (das heißt nach Zünden der Gasentladungslampen). Mit anderen Worten wird auf diese Art und Weise das Verhältnis der Stromstärke des Dauerheizstroms zur Stromstärke des Vorheizstroms, beziehungsweise das Verhältnis der Dauerheizleistung zur Vorheizleistung reduziert. Diese Reduktion ist darauf zurückzuführen, dass die Stromstärke des über die "äußeren" Elektroden der Gasentladungslampen beziehungsweise über den Resonanzkondensator fließenden Stroms unmittelbar durch die Amplitude der am Resonanzkondensator anliegenden Spannung bestimmt wird.
  • Mit der erfindungsgemäßen Schaltungsanordnung ist es einerseits möglich, die äußeren Elektroden der Gasentladungslampen zuverlässig vorzuheizen; andererseits entstehen durch die erfindungsgemäße Schaltungsanordnung deutlich verringerte Verluste im Dauerbetrieb. Dies gelingt bei der erfindungsgemäßen Schaltungsanordnung ohne Einsatz einer Vielzahl von teueren aktiven und passiven Bauelementen, wie sie im Gegenstand gemäß Druckschrift DE 44 25 859 A1 verwendet werden. Die erfindungsgemäße Schaltungsanordnung löst die obige Aufgabe mit lediglich einem kapazitiven Spannungsteiler, wodurch sie kostengünstiger und bauteilreduzierter als die bekannten Schaltungsanordnungen hergestellt werden kann.
  • Die Kapazitätswerte sowohl des ersten als auch des zweiten Kondensators sind bevorzugt kleiner als der Kapazitätswert des Resonanzkondensators. Hierdurch kann eine sichere Zündung der Gasentladungslampen ermöglicht werden. Zum Beispiel können die Kapazitätswerte des ersten und des zweiten Kondensators 5 % bis 25% des Kapazitätswerts des Resonanzkondensators betragen. Andererseits sollen der erste und der zweite Kondensator so groß gewählt werden, dass die parasitären Kapazitäten der ersten und der zweiten Anschlussanordnung die Spannungsaufteilung über den Lampen nicht beeinflussen. In einer Ausführungsform ist vorgesehen, dass für eine Betriebsfrequenz der Versorgungswechselspannung in einem Wertebereich zwischen etwa 40 kHz und etwa 50 kHz der erste und der zweite Kondensator jeweils einen Kapazitätswert aus einem Wertebereich von 10 pF bis 5 nF, bevorzugt aus einem Wertebereich von 100 pF bis 2,5 nF, aufweisen. Dann wird den oben genannten Anforderungen hinsichtlich der Spannungen an den Gasentladungslampen Genüge getan. In einer Ausführungsform kann der Kapazitätswert des ersten Kondensators 1 nF und der Kapazitätswert des zweiten Kondensators 560 pF und der Kapazitätswert des Resonanzkondensators 10 nF betragen.
  • Der Kapazitätswert des ersten Kondensators unterscheidet sich bevorzugt von dem Kapazitätswert des zweiten Kondensators. Somit wird erreicht, dass die Gasentladungslampen sequentiell, das heißt eine nach der anderen gezündet werden. Aufgrund der unterschiedlichen Kapazitätswerte der beiden Kondensatoren bricht nämlich zunächst die Spannung an einer ersten der Gasentladungslampen ein, was unmittelbar eine Erhöhung der Spannung über der anderen Gasentladungslampe und hierdurch das Zünden dieser Gasentladungslampe zur Folge hat. Das Verhältnis der Kapazitätswerte der beiden Kondensatoren liegt bevorzugt in einem Wertebereich von 0,5 bis 0,8. Zum Beispiel kann dieses Verhältnis 2/3 betragen.
  • Es hat sich als besonders vorteilhaft herausgestellt, wenn eine Zusatzwicklung an der Resonanzdrossel gewickelt ist, die mit einem zweiten Anschluss des zweiten Anschlusspaares der ersten Anschlussanordnung und mit einem zweiten Anschluss des ersten Anschlusspaares der zweiten Anschlussanordnung gekoppelt ist. Dann können auch die "inneren" Elektroden der Gasentladungslampen, welche an das zweite Anschlusspaar der ersten Anschlussanordnung respektive das erste Anschlusspaar der zweiten Anschlussanordnung angeschlossen sind, vorgeheizt werden. Dabei wird auch hier das Verhältnis Dauerheizstrom zu Vorheizstrom in einem vergleichbaren Maß wie in den äußeren Elektroden reduziert, weil die Spannung an der Resonanzdrossel beim Vorheizen und Zünden in erster Näherung proportional zur Spannung am Resonanzkondensator ist. Demzufolge kann die Windungszahl der sekundären Heizwicklung und damit die Dauerheizverluste reduziert werden. Gegenüber den bekannten Schaltungsanordnungen, bei denen drei oder mehrere zusätzliche Wicklungen an der Resonanzdrossel gewickelt werden, kommt die vorliegende Schaltungsanordnung mit lediglich einer einzigen Zusatzwicklung an der Resonanzdrossel aus (vorausgesetzt, dass zwei Gasentladungslampen betrieben werden). Die Resonanzdrossel als Bauteil kann somit im Vergleich zum Stand der Technik viel einfacher und kostengünstiger gefertigt werden; die Zusatzwicklung kann von der Hauptwicklung der Resonanzdrossel ohne viel Aufwand isoliert werden. Des Weiteren steht für die Hauptwicklung der Resonanzdrossel mehr Wickelraum zur Verfügung, so dass den im Stand der Technik auftretenden thermischen Problemen wirksam entgegengewirkt wird.
  • Um die Dauerheizverluste beziehungsweise die Stiftströme der Gasentladungslampen weiterhin zu reduzieren, kann ein Blindelement, insbesondere eine Drossel, zwischen den Anschlüssen des ersten Anschlusspaares der ersten Anschlussanordnung und/oder zwischen den Anschlüssen des zweiten Anschlusspaares der zweiten Anschlussanordnung gekoppelt sein.
  • Ein erfindungsgemäßes Verfahren ist zum Betreiben einer Reihenschaltung von mindestens einer ersten und einer zweiten Niederdruck-Gasentladungslampe an einer Schaltungsanordnung der eingangs genannten Gattung ausgelegt. Bei dem Verfahren ist vorgesehen, dass eine zwischen dem ersten Anschlusspaar der ersten Anschlussanordnung und dem zweiten Anschlusspaar der zweiten Anschlussanordnung anliegende elektrische Spannung mittels eines kapazitiven Spannungsteilers geteilt wird, welcher einen parallel zu der ersten Anschlussanordnung gekoppelten ersten Kondensator und einen parallel zu der zweiten Schaltungsanordnung gekoppelten zweiten Kondensator aufweist.
  • Die mit Bezug auf die erfindungsgemäße Schaltungsanordnung vorgestellten bevorzugten Ausführungsformen sowie deren Vorteile gelten entsprechend für das erfindungsgemäße Verfahren.
  • Kurze Beschreibung der Zeichnung
  • Die Erfindung wird nun anhand eines bevorzugten Ausführungsbeispiels sowie unter Bezugnahme auf die Zeichnung näher erläutert, wobei die einzige Figur in schematischer Darstellung eine Schaltungsanordnung gemäß einer Ausführungsform der Erfindung veranschaulicht.
  • Bevorzugte Ausführung der Erfindung
  • Eine in der Figur dargestellte Schaltungsanordnung 1 umfasst einen Eingang 2 mit einem ersten Eingangsanschluss 3 und einem zweiten Eingangsanschluss 4. Der zweite Eingangsanschluss 4 stellt ein Bezugspotential einer in der Figur nicht dargestellten Steuereinheit dar. Mit diesem Bezugspotential ist ebenfalls ein in der Figur nicht dargestellter und von der Steuereinheit ansteuerbarer Wechselrichter gekoppelt, welcher eine Versorgungswechselspannung Uv bereitstellt. Diese Versorgungswechselspannung Uv liegt zwischen dem ersten und dem zweiten Eingangsanschluss 3, 4 an. Die Versorgungswechselspannung Uv erzeugt der Wechselrichter aus einer Zwischenkreisgleichspannung, die an einem in der Figur nicht dargestellten Zwischenkreiskondensator anliegt. Die Zwischenkreisgleichspannung liegt dabei zwischen einem Zwischenkreispol 5 und dem Bezugspotential 4 der Steuereinheit an.
  • Die Schaltungsanordnung 1 umfasst außerdem einen Ausgang mit einer ersten und einer zweiten Anschlussanordnung jeweils zum Anschließen einer Niederdruck-Gasentladungslampe 6, 7. Die erste Anschlussanordnung umfasst ein erstes Anschlusspaar 8 mit einem ersten und einem zweiten Anschluss 8a, 8b sowie ein zweites Anschlusspaar 9 mit einem ersten und einem zweiten Anschluss 9a, 9b. Entsprechend umfasst die zweite Anschlussanordnung ein erstes Anschlusspaar 10 mit einem ersten Anschluss 10a und einem zweiten Anschluss 10b sowie ein zweites Anschlusspaar 11 mit einem ersten Anschluss 11a und einem zweiten Anschluss 11b.
  • Der erste Anschluss 9a des zweiten Anschlusspaares 9 der ersten Anschlussanordnung ist mit dem ersten Anschluss 10a des ersten Anschlusspaares 10 der zweiten Anschlussanordnung direkt verbunden. Somit liegt eine Reihenschaltung der beiden Gasentladungslampen 6, 7 vor.
  • Der erste Eingangsanschluss 3 des Eingangs 2 ist über eine Resonanzdrossel 12 mit dem ersten Anschluss 8a des ersten Anschlusspaares 8 der ersten Anschlussanordnung gekoppelt. Die Resonanzdrossel 12 bildet zusammen mit einem Resonanzkondensator 13 einen Resonanzkreis der Schaltungsanordnung 1. Dabei ist der Resonanzkondensator 13 zwischen den zweiten Anschluss 8b des ersten Anschlusspaares 8 der ersten Anschlussanordnung und dem zweiten Anschluss 11b des zweiten Anschlusspaares 11 der zweiten Anschlussanordnung geschaltet. Der Induktivitätswert der Resonanzdrossel 12 beträgt im Ausführungsbeispiel 1,3 mH und der Kapazitätswert des Resonanzkondensators 13 7,5 nF.
  • Neben der Resonanzdrossel 12 ist an demselben Bauteil eine Zusatzwicklung 14 gewickelt, über welche die inneren Elektroden der Gasentladungslampen 6, 7 vorgeheizt werden können. Unter den inneren Elektroden der Gasentladungslampen 6, 7 werden hier diejenigen Elektroden verstanden, die an das zweite Anschlusspaar 9 der ersten Anschlussanordnung und an das erste Anschlusspaar 10 der zweiten Anschlussanordnung angeschlossen sind. Die Zusatzwicklung 14 ist über einen Kondensator 15 mit dem zweiten Anschluss 9b des zweiten Anschlusspaares 9 der ersten Anschlussanordnung gekoppelt. Andererseits ist die Zusatzwicklung 14 mit dem zweiten Anschluss 10b des ersten Anschlusspaares 10 der zweiten Anschlussanordnung verbunden.
  • Diejenigen Elektroden der Gasentladungslampen 6, 7, die mit dem ersten Anschlusspaar 8 der ersten Anschlussanordnung und dem zweiten Anschlusspaar 11 der zweiten Anschlussanordnung gekoppelt sind, werden nachfolgend als äußere Elektroden bezeichnet. Um ein zuverlässiges Vorheizen der äußeren Elektroden der Gasentladungslampen 6, 7 zu gewährleisten, ist ein kapazitiver Spannungsteiler 16 parallel zum Resonanzkondensator 13 geschaltet. Der kapazitive Spannungsteiler 16 umfasst einen ersten Kondensator 16a sowie einen zweiten Kondensator 16b. Dabei ist der erste Kondensator 16a zwischen den ersten Anschluss 8a des ersten Anschlusspaares 8 und dem ersten Anschluss 9a des zweiten Anschlusspaares 9 der ersten Anschlussanordnung geschaltet. Mit anderen Worten ist der erste Kondensator 16a parallel zu der ersten Anschlussanordnung geschaltet. Der zweite Kondensator 16b ist zwischen dem ersten Anschluss 10a des ersten Anschlusspaares 10 und dem ersten Anschluss 11a des zweiten Anschlusspaares 11 der zweiten Anschlussanordnung geschaltet. Also ist der zweite Kondensator 16b parallel zu der zweiten Anschlussanordnung geschaltet. Allgemein muss der kapazitive Spannungsteiler 16 mit den äußeren Anschlüssen 8, 11 gekoppelt sein. Der zwischen den Kondensatoren 16a, 16b angeordnete Verbindungspunkt muss an genau einen der Anschlüsse 9 (9a oder 9b) oder 10 (10a oder 10b) geschaltet sein. Die Kapazitätswerte des ersten und des zweiten Kondensators 16a, 16b betragen im Ausführungsbeispiel 1 nF respektive 560 pF.
  • Die Schaltungsanordnung 1 weist außerdem einen ersten und einen zweiten Koppelkondensator 17, 18 auf. Der erste Anschluss 11a des zweiten Anschlusspaares 11 der zweiten Anschlussanordnung ist über den ersten Koppelkondensator 17 mit dem Zwischenkreispol 5 verbunden, das heißt mittels des ersten Koppelkondensators 17 von dem Zwischenkreispol 5 galvanisch entkoppelt. Andererseits ist der erste Anschluss 11a des zweiten Anschlusspaares 11 der zweiten Anschlussanordnung über den zweiten Koppelkondensator 18 mit dem Bezugspotential 4 der Steuereinheit verbunden. Die beiden Koppelkondensatoren 17, 18 sorgen dafür, dass über die Gasentladungslampen 6, 7 keine Gleichströme fließen können. Solche Gleichströme könnten zu einer ersichtlichen Inhomogenität des von den Gas entladungslampen 6, 7 abgestrahlten Lichts führen (Kataphorese). Außerdem wird durch die symmetrische Anordnung der Koppelkondensatoren 17, 18 der Vorteil erzielt, dass die Strombelastung des Zwischenkreiskondensators am geringsten ist.
  • Darüber hinaus ist zwischen dem ersten und dem zweiten Anschluss 8a, 8b des ersten Anschlusspaares 8 der ersten Anschlussanordnung eine Drossel 19 geschaltet. Entsprechend ist zwischen dem ersten und dem zweiten Anschluss 11a, 11b des zweiten Anschlusspaares 11 der zweiten Anschlussanordnung eine Drossel 20 geschaltet. Die Drosseln 19, 20 haben dabei die Aufgabe, die Dauerheizverluste beziehungsweise die Stiftströme der Gasentladungslampen 6, 7 zu minimieren.
  • Nachfolgend wird die Betriebsweise der Schaltungsanordnung 1 näher erläutert:
    • Zunächst wird die Zwischenkreisgleichspannung bereitgestellt, nämlich zum Beispiel durch Schließen eines Netzschalters durch eine Bedienperson. Liegt die Zwischenkreisgleichspannung an dem Zwischenkreiskondensator an, so ist auch die Steuereinheit in Betrieb, sie kann die Versorgungswechselspannung UV unter entsprechender Ansteuerung des Wechselrichters erzeugen. Vor der Inbetriebnahme der Gasentladungslampen 6, 7 wird zunächst eine Vorheizphase eingeleitet, in welcher die Elektroden - nämlich sowohl die äußeren als auch die inneren Elektroden - der Gasentladungslampen 6, 7 aufgeheizt werden. Die Elektroden werden dabei auf eine solche Temperatur aufgeheizt, die für einen schonenden Start der Gasentladungslampen 6, 7 sorgt.
  • Die Steuereinheit leitet die Vorheizphase ein, indem die Frequenz der Versorgungswechselspannung UV auf eine Vorheizfrequenz eingestellt wird. Während der Vorheizphase wird die Versorgungswechselspannung UV also derart eingestellt, dass die Gasentladungslampen 6, 7 noch nicht gezündet werden. Das Vorhandensein des kapazitiven Spannungsteilers 16 ermöglicht es, die an dem Resonanzkondensator 13 während der Vorheizphase anliegende elektrische Spannung auf einen solchen Wert einzustellen, der höher als die Zündspannung einer einzelnen Gasentladungslampe 6, 7 liegt. Auf diesem Wege können die äußeren Elektroden der Gasentladungslampen 6, 7 mit relativ hohen Strömen - die Stromstärke des über den Resonanzkondensator 13 fließenden Stroms wird durch die Amplitude der Spannung bestimmt - beaufschlagt und hierdurch zuverlässig vorgeheizt werden. Gleichzeitig reduziert sich durch den Einsatz des kapazitiven Spannungsteilers 16 das Verhältnis der Stromstärke des im Betrieb über die äußeren Elektroden fließenden Dauerheizstromes zu der Stromstärke des über den Resonanzkondensator 13 während der Vorheizphase fließenden Vorheizstroms. Also reduziert sich auch das Verhältnis der Dauerheizleistung zu der Vorheizleistung. Mit anderen Worten kann die Stromstärke des Dauerheizstroms reduziert und hierdurch geringere Dauerheizverluste erzielt werden. Diese Verluste können noch weiter mithilfe der Drosseln 19, 20 reduziert werden.
  • Nach Abschluss der Vorheizphase wird die Frequenz der Versorgungswechselspannung UV so erniedrigt, dass die Gasentladungslampen 6, 7 zünden. Aufgrund der unterschiedlichen Kapazitätswerte der Kondensatoren 16a, 16b erfolgt die Zündung der Gasentladungslampen 6, 7 sequentiell. Dies bedeutet, dass die Gasentladungslampen 6, 7 nacheinander gezündet werden.
  • Insgesamt wird also eine Schaltungsanordnung 1 bereitgestellt, welche eine zuverlässige Vorheizung von Elektroden einer Reihenschaltung von zumindest zwei Gasentladungslampen 6, 7 ermöglicht. Dabei kommt die Schaltungsanordnung 1 ohne zusätzliche kostenintensive und technisch aufwändige Vorheizkreise aus; sie kann kostengünstig und bauteilreduziert hergestellt werden. Für die zuverlässige Vorheizung der Elektroden sorgt ein kapazitiver Spannungsteiler 16 einschließlich eines ersten und eines zweiten Kondensators 16a, 16b. Es erübrigt sich der Einsatz von mehreren Zusatzwicklungen an der Resonanzdrossel 12, es genügt lediglich eine Zusatzwicklung 14, die ohne viel Aufwand und mit wenigen Windungen gewickelt werden kann.

Claims (5)

  1. Schaltungsanordnung (1) zum Betreiben einer Reihenschaltung von mindestens einer ersten und einer zweiten Niederdruck-Gasentladungslampe (6, 7), mit
    - einem Eingang (2) mit einem ersten und einem zweiten Eingangsanschluss (3, 4) zum Anlegen einer Versorgungswechselspannung (Uv),
    - einem Ausgang (8, 9, 10, 11) mit zumindest einer ersten Anschlussanordnung (8, 9), die ein erstes und ein zweites Anschlusspaar (8, 9) zum Anschließen der ersten Niederdruck-Gasentladungslampe (6) aufweist, und einer zweiten Anschlussanordnung (10, 11), die ein erstes und ein zweites Anschlusspaar (10, 11) zum Anschließen der zweiten Niederdruck-Gasentladungslampe (7) aufweist, wobei ein erster Anschluss (9a) des zweiten Anschlusspaares (9) der ersten Anschlussanordnung (8, 9) mit einem ersten Anschluss (10a) des ersten Anschlusspaares (10) der zweiten Anschiussanordnung (10, 11) gekoppelt ist,
    - einem Resonanzkreis mit einer zwischen dem ersten Eingangsanschluss (3) und einem ersten Anschluss (8a) des ersten Anschlusspaares (8) der ersten Anschlussanordnung (8, 9) gekoppelten Resonanzdrossel (12) und einem Resonanzkondensator (13),
    dadurch gekennzeichnet, dass
    der resonanzkondensator (13) zwischen dem zweiten Anschluss (8b) des ersten Anschlusspaares (8) der ersten Anschlussanordnung und dem zweiten Anschluss (11b) des zweiten Anschluss- paares (11) der zweiten Anschlussanordnung geschaltet ist.
    die Schaltungsanordnuzag (1) weiterhin einen kapazitiven Spannungsteiler (16) aufweist, welcher einen parallel zu der ersten Anschlussanordnung (8, 9) gekoppelten ersten Kondensator (16a) und einen parallel zu der zweiten Anschlussanordnung (10, 11) gekoppelten zweiten Kondensator (16b) aufweist, wobei der erste Kondensator (16a) zwischen dem ersten Anschluss (8a) des ersten Anschlusspaares 8 und dem ersten Anschluss (9a) des zweiten Anschlusspaares (9) der ersten Anschlussanordnung geschaltet ist,
    und wobei der zweite Kondensator (16b) zwischen dem ersten Anschluss (10a) des ersten Anschlusspaares (10) und dem ersten Anschluss (11a) des zweiten Anschlusspaares (11) der zweiten Anschlussanordnung geschaltet ist.
  2. Schaltungsanordnung (1) nach Anspruch 1, dadurch gekennzeichnet, dass für eine Betriebsfrequenz der Versorgungswechselspannung (Uv) in einem Wertebereich zwischen etwa 40 kHz und etwa 50 kHz der erste und der zweite Kondensator (16a, 16b) jeweils einen Kapazitätswert aus einem Wertebereich von 10 pF bis 5 nF, bevorzugt aus einem Wertebereich von 100 pF bis 2,5 nF, aufweisen.
  3. Schaltungsanordnung (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Zusatzwicklung (14) auf die Resonanzdrossel (12) gewickelt ist, die mit einem zweiten Anschluss (9b) des zweiten Anschlusspaares (9) der ersten Anschlussanordnung (8, 9) und mit einem zweiten Anschluss (10b) des ersten Anschlusspaares (10) der zweiten Anschlussanordnung (10, 11) gekoppelt ist.
  4. Schaltungsanordnung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Blindelement (19, 20), insbesondere eine Drossel (19, 20), zwischen den Anschlüssen (8a, 8b) des ersten Anschlusspaares (8) der ersten Anschlussanordnung (8, 9) und/oder zwischen den Anschlüssen (11a, 11b) des zweiten Anschlusspaares (11) der zweiten Anschlussanordnung (10, 11) gekoppelt ist.
  5. Verfahren zum Betreiben einer Reihenschaltung von mindestens einer ersten und einer zweiten Niederdruck-Gasentladungslampe (6, 7) an einer Schaltungsanordnung (1) mit einem Eingang (2) mit einem ersten und einem zweiten Eingangsanschluss (3, 4) zum Anlegen einer Versorgungswechselspannung (Uv), mit einem Ausgang (8, 9, 10, 11) mit zumindest einer ersten Anschlussanordnung (8, 9), die ein erstes und ein zweites Anschlusspaar (8, 9) zum Anschließen der ersten Niederdruck-Gasentladungslampe (6) aufweist, und einer zweiten Anschlussanordnung (10, 11), die ein erstes und ein zweites Anschlusspaar (10, 11) zum Anschließen der zweiten Niederdruck-Gasentladungslampe (7) aufweist, wobei ein erster Anschluss (9a) des zweiten Anschlusspaares (9) der ersten Anschlussanordnung (8, 9) mit einem ersten Anschluss (10a) des ersten Anschlusspaares (10) der zweiten Anschlussanordnung (10, 11) gekoppelt ist, mit einem Resonanzkreis mit einer zwischen dem ersten Eingangsanschluss (3) und einem ersten Anschluss (8a) des ersten Anschlusspaares (8) der ersten Anschlussanordnung (8, 9) gekoppelten Resonanzdrossel (12) und einem Resonanzkondensator (13), dadurch gekennzeichnet, das der resonanzkondensator (13) zwischen dem zweiten Anschluss (8b) des ersten Anschlusspaares (8) der ersten Anschlussanordnung und dem zweiten Anschluss (11b) des zweiten Anschlusspaares (11) der zweiten Anschlussanordnung geschaltet ist, eine zwischen dem ersten Anschlusspaar (8) der ersten Anschlussanordnung (8, 9) und dem zweiten Anschlusspaar (11) der zweiten Anschlussanordnung (10, 11) anliegende elektrische Spannung mittels eines kapazitiven Spannungsteilers (16) geteilt wird, welcher einen parallel zu der ersten Anschlussanordnung (8, 9) gekoppelten ersten Kondensator (16a) und einen parallel zu der zweiten Anschlussanordnung (10, 11) gekoppelten zweiten Kondensator (16b) aufweist,
    wobei der erste Kondensator (16a) zwischen den ersten Anschluss (8a) des ersten Anschlusspaares 8 und dem ersten Anschluss (9a) des zweiten Anschlusspaares (9) der ersten Anschlussanordnung geschaltet ist,
    und wobei der zweite Kondensator (16b) zwischen dem ersten Anschluss (10a) des ersten Anschlusspaares (10) und dem ersten Anschluss (11a) des zweiten Anschlusspaares (11) der zweiten Anschlussanordnung geschaltet ist.
EP10161981A 2009-05-20 2010-05-05 Schaltungsanordnung zum Betreiben einer Reihenschaltung von mindestens zwei Niederdruck-Gasentladungslampen und entsprechendes Verfahren Not-in-force EP2257134B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009022072A DE102009022072A1 (de) 2009-05-20 2009-05-20 Schaltungsanordnung zum Betreiben einer Reihenschaltung von mindestens zwei Niederdruck-Gasentladungslampen und entsprechendes Verfahren

Publications (2)

Publication Number Publication Date
EP2257134A1 EP2257134A1 (de) 2010-12-01
EP2257134B1 true EP2257134B1 (de) 2012-11-21

Family

ID=42307870

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10161981A Not-in-force EP2257134B1 (de) 2009-05-20 2010-05-05 Schaltungsanordnung zum Betreiben einer Reihenschaltung von mindestens zwei Niederdruck-Gasentladungslampen und entsprechendes Verfahren

Country Status (5)

Country Link
US (1) US8354797B2 (de)
EP (1) EP2257134B1 (de)
KR (1) KR20100125193A (de)
CN (1) CN101896031B (de)
DE (1) DE102009022072A1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081718A (en) * 1975-05-20 1978-03-28 Nec Sylvania Corporation Discharge lamp lighting device using a backswing booster
JP2810662B2 (ja) * 1987-12-23 1998-10-15 松下電工株式会社 放電灯点灯装置
ATE120331T1 (de) * 1989-04-28 1995-04-15 Philips Electronics Nv Wechselrichter zum speisen zweier gas und / oder dampfentladungslampen.
DE4425859A1 (de) * 1994-07-21 1996-01-25 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Schaltungsanordnung zum Betrieb einer oder mehrerer Niederdruckentladungslampen
US6630797B2 (en) * 2001-06-18 2003-10-07 Koninklijke Philips Electronics N.V. High efficiency driver apparatus for driving a cold cathode fluorescent lamp
DE10252834A1 (de) * 2002-11-13 2004-05-27 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Vorrichtung zum Betreiben von Entladungslampen mittels eines Transformators mit vier Wicklungen und entsprechendes Verfahren

Also Published As

Publication number Publication date
DE102009022072A1 (de) 2010-11-25
EP2257134A1 (de) 2010-12-01
CN101896031A (zh) 2010-11-24
KR20100125193A (ko) 2010-11-30
US8354797B2 (en) 2013-01-15
CN101896031B (zh) 2014-07-09
US20100295459A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
EP1286572B1 (de) Vorschaltgerät zum Betrieb mindestens einer Niederdruckentladungslampe
EP1938670B1 (de) Elektronisches vorschaltgerät und verfahren zum betreiben einer elektrischen lampe
EP2252133A2 (de) Schaltungsanordnung zum betreiben einer niederdruck-gasentladungslampe und entsprechendes verfahren
EP1653785B1 (de) Zündvorrichtung für eine Hochdruckentladungslampe und Hochdruckentladungslampe mit Zündvorrichtung sowie Betriebsverfahren für eine Hochdruckentladungslampe
WO1998053647A1 (de) Zündvorrichtung für eine entladungslampe und verfahren zum zünden einer entladungslampe
EP1033907A2 (de) Schaltungsanordnung zum Betrieb mindestens einer Hochdruckentladungslampe und Betriebsverfahren
EP1583403B1 (de) Vorschaltgerät für mindestens eine Lampe
EP2257134B1 (de) Schaltungsanordnung zum Betreiben einer Reihenschaltung von mindestens zwei Niederdruck-Gasentladungslampen und entsprechendes Verfahren
DE3342010A1 (de) Wechselrichterschaltung
EP2274960B1 (de) Verfahren und schaltungsanordnung zum betreiben mindestens einer entladungslampe
EP1263267B1 (de) Verfahren zum Start einer Entladungslampe
EP1424880A2 (de) Vorrichtung zum Betreiben von Entladungslampen
EP0794695B1 (de) Schaltung zum Betrieb einer Hochdruckgasentladungslampe
DE10226899A1 (de) Vorrichtung zum Betreiben von Entladungslampen
DE102005030007B4 (de) Verfahren zum Vorheizen einer Anzahl von Heizwendeln
DE202007006644U1 (de) Adapter-System für eine Gasentladungslampe
EP2659747B1 (de) Schaltungsanordnung und verfahren zum betreiben mindestens einer hochdruckentladungslampe
DE102010029511B4 (de) Schaltungsanordnung zum Betreiben einer Entladungslampe
EP2594117B1 (de) Zündschaltung für eine hochdruck-gasentladungslampe
DE4245092B4 (de) Vorschaltgerät für mindestens ein parallel betriebenes Gasentladungslampen-Paar
EP1672964B1 (de) Schaltungsanordnung
DE202005020517U1 (de) Schaltungsanordnung zum Betreiben einer Leuchtstofflampe
DE19923083A1 (de) Vorschaltgerät für Niederdruckentladungslampen
WO2004054327A1 (de) Elektrische schaltung zum zünden einer entladungslampe und verfahren zum zünden der entladungslampe
EP1176854A2 (de) Reduzierung der Klemmenspannung von Betriebsgeräten für Gasentladungslampen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20101220

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 41/295 20060101AFI20120509BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 585634

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSRAM GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010001668

Country of ref document: DE

Effective date: 20130117

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: OSRAM GMBH, DE

Effective date: 20130220

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121121

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSRAM GMBH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130321

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010001668

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010001668

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

BERE Be: lapsed

Owner name: OSRAM A.G.

Effective date: 20130531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010001668

Country of ref document: DE

Effective date: 20130822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130505

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130505

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100505

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 585634

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160520

Year of fee payment: 7

Ref country code: DE

Payment date: 20160520

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160520

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010001668

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170505

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170505

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121