EP2252568A1 - Procédé de traitement de composés hydrocarbonés comprenant des fonctions nitriles ou amines - Google Patents

Procédé de traitement de composés hydrocarbonés comprenant des fonctions nitriles ou amines

Info

Publication number
EP2252568A1
EP2252568A1 EP09703449A EP09703449A EP2252568A1 EP 2252568 A1 EP2252568 A1 EP 2252568A1 EP 09703449 A EP09703449 A EP 09703449A EP 09703449 A EP09703449 A EP 09703449A EP 2252568 A1 EP2252568 A1 EP 2252568A1
Authority
EP
European Patent Office
Prior art keywords
compounds
hydrocarbon compounds
hydrogen
catalyst
hydrodenitrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09703449A
Other languages
German (de)
English (en)
Inventor
Philippe Marion
Amélie HYNAUX
Dorothée LAURENTI
Christophe Geantet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Rhodia Operations SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Rhodia Operations SAS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2252568A1 publication Critical patent/EP2252568A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/08Preparation of ammonia from nitrogenous organic substances
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/321Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a non-metal atom
    • C07C1/323Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a non-metal atom the hetero-atom being a nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/10Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a process for treating hydrocarbon compounds comprising at least one nitrile or amine function.
  • It relates more particularly to a treatment method of converting the hydrocarbon compounds comprising at least one nitrile or amine function into ammonia, hydrogen, carbon monoxide and hydrocarbon compounds including hydrocarbon compounds comprising a small number of carbon.
  • the 2-pentenenitrile compound (2-PN) does not react with hydrogen cyanide to form a dinitrile and is recovered by distillation separation as a non-upgraded byproduct stream.
  • 2-methylglutaronitrile (MGN) formed in the second hydrocyanation stage [0005] This non-recoverable by-product is most often destroyed by incineration in boilers for the production of steam.
  • 2-methyl-glutaronithel (MGN) JI may be especially hydrogenated to produce a branched diamine 2-methyl-pentamethylene diamine (MPMD) used mainly as a monomer for the manufacture of polyamide or as a raw material for the synthesis of chemicals.
  • MPMD 2-methyl-pentamethylene diamine
  • TDA 2,4 and 2,6 toluenediamines
  • One of the aims of the present invention is to provide a process for treating these compounds does not have the disadvantages of combustion or incineration and to improve the overall economy of the process, especially by transforming them into compounds valued and advantageously recyclable.
  • the invention provides a process for the treatment of hydrocarbon compounds comprising at least one nitrile or amine function in value-added compounds, characterized in that it consists in treating said compounds in a hydrodenitrogenation or hydrogenation step.
  • hydrotreatment reaction with hydrogen under an absolute pressure between 0.1 and 10 MPa, preferably 0.5 MPa to 3 MPa, at a temperature between 200 0 C and 500 0 C, preferably from 300 ° C to 400 0 C and in the presence of a hydrodenitrogenation catalyst to convert these compounds into ammonia and hydrocarbon compounds.
  • the process of the invention makes it possible, for example, to treat all or part of the streams of non-upgraded compounds comprising nithyl or amine functions generated in the processes for the hydrocyanation of olefins, more particularly butadiene or in processes for the manufacture of toluene diamine for recovering the nitrogen atom in ammonia form and most of the carbon and hydrogen atoms in the form of hydrocarbon compounds comprising 1 to more carbon atoms.
  • These hydrocarbon compounds can be recovered as such or fed in a steam reforming and optionally methanation stage to be converted into either carbon monoxide and hydrogen or methane, products which are particularly valuable as energy generators but also as raw materials for the synthesis of many compounds.
  • hydrogen can be used in many productions of chemical compounds such as the hydrogenation of adiponitrile or dinitrotoluene
  • carbon monoxide can be used in the process of synthesis of phosgene and methane in the synthesis of hydrocyanic acid.
  • the hydrodenitrogenation catalyst comprises a metal element belonging to the group of noble metals consisting of platinum, palladium, rhodium, ruthenium or transition elements such as nickel.
  • the catalyst is of the supported catalyst type in which the metallic catalytic element is supported on a material, preferably porous, such as alumina, silica, aluminosilicates, silica-aluminas, activated carbons, zirconia, titanium oxide, zeolites.
  • the preferred catalyst of the invention comprises platinum deposited on a support selected from the group comprising silica, zirconia, aluminosilicates, silica-aluminas, zeolites.
  • the hydrodenitrogenation reaction is carried out in the presence of a heterogeneous catalyst which is either dispersed in suspension in the reactor or in the form of a fixed bed or fluidized bed through which the flow of nithyl compounds or amino is fed.
  • the catalyst can also be deposited on a monolithic support such as, for example, a honeycomb-shaped support.
  • the preferred hydrodenitrogenation catalysts of the invention include platinum catalysts on zirconia, platinum on aluminosilicate, platinum on silica-alumina, platinum on zeolite.
  • the conversion rate of the compounds to be treated involved is very high, close to or equal to 100%.
  • the products recovered are ammonia and mainly hydrocarbon compounds.
  • the treatment of methyl-2-glutaronitrile makes it possible to obtain as hydrocarbon compounds, for the most part, methyl-2-pentane.
  • the hydrodenitrogenation of orthotoluene diamine mainly leads to the production of methylcyclohexane. Ammonia is separated and recovered in particular by distillation.
  • hydrotreatment it may also occur thermal cracking hydrocarbon chains leading to the formation of hydrocarbon compounds without a nitrogen atom and / or hydrocarbon compounds comprising nitrogen atoms.
  • the latter can be converted into hydrocarbon compounds by reaction with hydrogen, depending on the operating conditions used.
  • cyclic compounds containing nitrogen atoms can also be formed such as picoline or its derivatives and piperidines, in the case of the hydrotreatment of MGN.
  • % HDN is the ratio expressed as a percentage of the number of moles of hydrocarbon compounds not comprising a nitrogen atom produced either by hydrotreatment or by thermal cracking with respect to the number of moles of compounds to be treated. .
  • the hydrocarbon compounds produced by hydrodenitrogenation or hydrotreatment such as 2-methylpentane and thermal cracking products may be subjected to a steam reforming or steamreforming to partially oxidize these compounds carbon monoxide (CO) and hydrogen (H 2 ). These two products can be recovered and recovered directly as a mixture or after purification and separation. In this embodiment, it is preferable to remove the traces of ammonia contained in the hydrocarbon compounds so as not to affect the performance of the steam reforming.
  • this mixture of carbon monoxide and hydrogen may be subjected to a methanation reaction leading to the formation of water and alkanes with a low carbon number such as the methane.
  • This steam reforming / methanation treatment is widely used in the oil industry.
  • Typical catalysts for these reactions include supported nickel catalysts.
  • the operating temperature is between 400 and 700 0 C for steam reforming and between 200 and 400 0 C for methanation.
  • the method of the invention is particularly applicable to the adiponitrile manufacturing process by hydrocyanation of butadiene in two stages. This process is described in many patents and a detailed description is available in the SRI REPORTS No. 31 suppl B entitled "H EXAM ETHYL N DIAMINE".
  • Catalyst A Pt deposited on zirconia (Pt / ZrO 2 )
  • Catalyst B Platinum deposited on a silica-alumina support comprising a weight percentage of silica equal to 10 called Pt / SiAl 10 Catalyst A was obtained using a zirconia support with a specific surface area of 83 m 2 / g.
  • Catalyst B comprises a silica-alumina support with a specific surface area of 352 m 2 / g marketed by Condisputeda under the trade name SIRAL10. This support contains 10% by weight of SiO 2.
  • the supports are impregnated with a hexachloroplatinic acid solution H 2 PtCl.sub.2. They are left to mature for two hours at room temperature to allow the solution to penetrate the pores.
  • the products are then dried overnight (> 12 h) at 110 ° C. and then calcined under a stream of air at 500 ° C. for 1 hour (air flow rate of 60 cm 3 min -1 , temperature rise ramp). of 2 ° C.min "1 ), in order to decompose the precursor complex into platinum oxide. They are then reduced under a stream of hydrogen for 6 hours at 310 ° C. (hydrogen flow rate of 60 cm 3 min -1 , temperature ramp up to 1 ° C min -1 ) to obtain a platinum metal.
  • the dispersion and the size of the platinum particles were determined by chemisorption of hydrogen.
  • the platinum assay was performed by plasma emission spectrometry.
  • the hydrodenitrogenation reaction (HDN) of methylglutaronitrile was carried out at different temperatures and under an absolute pressure of 0.1 MPa with a hydrogen flow rate of 55 ml / min and fixed bed of catalyst A with a mass of 15 mg, according to the following procedure in a dynamic microreactor.
  • the reaction mixture comprises pure 2-methylglutaronithl and hydrogen.
  • Hydrogen the flow rate of which is regulated by a mass flow meter (0 - 200 ml / min)
  • dabbles in a saturator filled with liquid MGN then goes into a condenser whose temperature controls the partial pressure of the MGN to obtain a partial pressure in MGN equal to 1.33 kPa.
  • the reactor is placed in a tubular furnace whose temperature is controlled by a platinum probe regulator.
  • the reaction temperature is measured by means of a thermocouple located at the level of the catalytic bed.
  • the temperature of the entire apparatus is constantly maintained at 180 ° C.
  • a trap is located at the outlet of the test for condensing the reaction products and the unconverted reagent. The gases then go to the vent.
  • Example 1 is repeated using 50 mg of catalyst A under an absolute pressure of 0.55 MPa and a hydrogen flow rate of 4 ml / min.
  • the reaction mixture is injected after expansion at atmospheric pressure in a gas chromatograph via a six-way valve.
  • EXAMPLE 4 Hydrodenitrogenation of MGN under an absolute pressure of 1 MPa and a partial pressure of MGN equal to 1.33 kPa with catalyst B.
  • Example 1 is repeated except for the type of catalyst which is catalyst B.
  • the hydrodenitrogenation reaction of orthotoluene diamine (OTD) was carried out under an absolute pressure of 1 MPa in a device identical to that of Example 1 with a hydrogen flow rate of 20 ml / min. catalyst mass A of 50 mg.
  • the reaction mixture consists of hydrogen and a mixture obtained as a by-product in a toluene diamine (TDA) production plant essentially comprising 2,3-diaminotoluene and 3,4-diaminotoluene.
  • Hydrogen the flow rate of which is regulated by a mass flow meter (0 - 200 ml / min) is bubbled in a saturator filled with molten OTD, then goes into a condenser whose temperature controls the partial pressure of OTD).
  • the absolute pressure is 1 MPa with an OTD partial pressure of 1.33 kPa, the conditioning temperature being 140 ° C.
  • the reactor used under pressure of 1 MPa is made of stainless steel (inner diameter 10 mm, length 40 mm). It is placed in a tubular furnace whose temperature is controlled by a platinum probe regulator. The reaction temperature is measured by means of a thermocouple located at the level of the catalytic bed.
  • a capillary When the catalytic tests are carried out under pressure (1 MPa), a capillary is located at the outlet of the reactor. It allows to maintain in the apparatus a pressure upstream, which is a function of the flow rate used as well as the diameter and length of the capillary. After expansion at atmospheric pressure, the reaction mixture is injected into a gas chromatograph via a six-way valve.
  • the temperature of the entire apparatus is constantly heated to 180 ° C.
  • a trap is located at the outlet of the test for condensing the reaction products and the unconverted reagent. The gases then go to the vent.
  • reaction mixture is fully automated and performed online by gas chromatography (Hewlett Packard chromatograph equipped with a flame ionization detector, an HP 3396 II series integrator and a capillary column of DB1 type of dimensions 50 mx 0.32 mm x 5 ⁇ m).
  • gas chromatography Hewlett Packard chromatograph equipped with a flame ionization detector, an HP 3396 II series integrator and a capillary column of DB1 type of dimensions 50 mx 0.32 mm x 5 ⁇ m).
  • the methylcyclohexane is obtained very predominantly at 300 ° C. At 350 ° C., the significant presence of toluene and methylcyclohexane is noted.
  • Example 6 Vapororeforming hydrocarbon compounds produced such as methylpentane: A flow of 5 g / h of methylpentane is fed to a gas phase reactor in parallel with a water flow of 7.5 g / h.
  • the reactor contains about 100 ml of nickel base catalyst supported on alumina (70% nickel). The temperature is maintained around 550 0 C by external heating. The pressure is regulated at 23 bar. At the outlet, the gas is cooled and analyzed. The conversion of methylpentane is complete. Only CO, hydrogen and to a lesser extent CO2 are detected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Pyridine Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La présente invention concerne un procédé de traitement de composés hydrocarbonés comprenant au moins une fonction nitrile ou amine. Elle concerne plus particulièrement un procédé de traitement consistant à transformer, par hydrodésazotation, les composés hydrocarbonés comprenant au moins une fonction nitrile ou amine tels que le méthylglutaronitrile ou l'orthotoluènediamine, en ammoniac, hydrogène, monoxyde de carbone et composés hydrocarbonés notamment en composés hydrocarbonés comprenant un faible nombre de carbone comme le méthane ou en ammoniac.

Description

Procédé de traitement de composés hydrocarbonés comprenant des fonctions nitriles ou aminés
[0001] La présente invention concerne un procédé de traitement de composés hydrocarbonés comprenant au moins une fonction nitrile ou aminé.
[0002] Elle concerne plus particulièrement un procédé de traitement consistant à transformer les composés hydrocarbonés comprenant au moins une fonction nitrile ou aminé en ammoniac, hydrogène, monoxyde de carbone et composés hydrocarbonés notamment en composés hydrocarbonés comprenant un faible nombre de carbone.
[0003] De nombreux procédés industriels génèrent des effluents contenant des composés hydrocarbonés comprenant des fonctions nitriles ou aminés. De tels effluents ne peuvent être rejetés dans l'environnement sans traitement. Quand la concentration de ces composés est faible dans les effluents générés, plusieurs procédés de traitement ont été proposés tels que l'incinération, les traitements biologiques, la nitrification ou les procédés d'adsorption. Toutefois, quand la concentration en composés comprenant des fonctions aminés ou nitriles est élevée ou que ces composés nitriles ou aminés sont des sous-produits non directement valorisâmes d'un procédé industriel de fabrication de produits chimiques, il est préférable pour l'économie de ces procédés et pour l'environnement de recycler ces composés sans transformation ou après transformation en produits directement utilisables dans le procédé voire dans d'autres procédés.
[0004] A titre d'exemple, on peut citer comme procédé industriel générant des effluents contenant une concentration élevée en composés comprenant au moins une fonction nitrile ou des sous-produits nitriles, le procédé de fabrication de l'adiponitrile par hydrocyanation du butadiène exploité industriellement depuis 1970.
Ainsi, le composé 2-pentènenitrile (2-PN) ne réagit pas avec l'acide cyanhydrique pour former un dinitrile et est récupéré par séparation par distillation sous forme d'un flux de sous-produits non valorisâmes. De même, le 2-méthyl glutaronitrile (MGN) formé dans la seconde étape d'hydrocyanation [0005] n'est pas valorisable en h exa méthylène diamine.Ces sous-produits non valorisâmes sont le plus souvent détruits par incinération dans des chaudières pour la production de vapeur.
[0006] Toutefois, certains de ceux-ci peuvent être valorisés totalement ou partiellement par transformation chimique en de nouveaux composés utiles. Ainsi, le sous-produit le plus important en quantité dans la fabrication de l'adiponitrile, le 2-méthyl-glutaronithle (MGN)JI peut être notamment hydrogéné pour produire une diamine ramifiée la 2-méthyl-pentaméthylène diamine (MPMD) utilisée principalement comme monomère pour la fabrication de polyamide ou comme matière première pour la synthèse de produits chimiques. D'autres valorisations du MGN ont été décrites.
[0007] Les autres sous-produits dinitriles ou mononitriles sont essentiellement valorisés par combustion pour produire de l'énergie. Toutefois, comme ces composés comprennent des atomes d'azote, les gaz de combustion contiennent des oxydes d'azote. Ainsi, il peut être nécessaire de traiter les gaz de combustion dans des unités de transformation et destruction des oxydes d'azote appelées DENOx.
[0008] Les procédés industriels de synthèse des 2,4 et 2,6 toluènediamines (TDA) génère des sous-produits qui doivent être détruits car ne présentant que peu d'intérêt, à savoir, le mélange d'isomères des orthotoluènediamines.
[0009] Le problème de traitement et valorisation des sous-produits non valorisâmes dans, notamment, le procédé d'hydrocyanation du butadiène et le procédé de fabrication de la toluènediamine n'est donc toujours pas entièrement résolu et de nouvelles solutions sont constamment recherchées.
[0010] Un des buts de la présente invention est de proposer un procédé de traitement de ces composés ne présentant pas les inconvénients de la combustion ou incinération et permettant d'améliorer l'économie globale du procédé, notamment en les transformant sous forme de composés valorisâmes et avantageusement recyclables.
[0011] A cet effet, l'invention propose un procédé de traitement par transformation de composés hydrocarbonés comprenant au moins une fonction nitrile ou aminé en composés valorisâmes caractérisé en ce qu'il consiste à traiter lesdits composés dans une étape d'hydrodésazotation ou d'hydrotraitement par réaction avec de l'hydrogène sous une pression absolue comprise entre 0,1 et 10 MPa, de préférence de 0.5 MPa à 3 MPa, à une température comprise entre 2000C et 5000C, de préférence de 300°C à 4000C et en présence d'un catalyseur d'hydrodésazotation pour transformer ces composés en ammoniac et composés hydrocarbonés.
[0012] Ainsi, le procédé de l'invention permet, par exemple, de traiter la totalité ou une partie des flux de composés non valorisâmes comprenant des fonctions nithles ou aminés générés dans les procédés d'hydrocyanation des oléfines, plus particulièrement du butadiène ou dans les procédés de fabrication de la toluène diamine pour récupérer l'atome d'azote sous forme ammoniac et la majeure partie des atomes de carbone et d'hydrogène sous forme de composés hydrocarbonés comprenant de 1 à plusieurs atomes de carbone. Ces composés hydrocarbonés peuvent être valorisés tels quels ou alimentés dans une étape de vaporéformage et éventuellement de méthanation pour être transformés soit en monoxyde de carbone et hydrogène soit en méthane, produits valorisâmes notamment comme générateur d'énergie mais aussi comme matière première pour la synthèse de nombreux composés. Ainsi et à titre d'exemple, l'hydrogène peut être utilisé dans de nombreuses productions de composés chimiques comme l'hydrogénation de l'adiponitrile ou du dinitrotoluène, le monoxyde de carbone peut être utilisé dans le procédé de synthèse du phosgène et le méthane dans la synthèse de l'acide cyanhydrique.
[0013] Selon une autre caractéristique de l'invention, le catalyseur d'hydrodésazotation comprend un élément métallique appartenant au groupe des métaux nobles constitué par le platine, le palladium, le rhodium, le ruthénium ou aux éléments de transition comme le nickel.
[0014] Avantageusement et préférentiellement le catalyseur est du type catalyseur supporté dans lequel l'élément catalytique métallique est supporté sur un matériau, préférentiellement poreux, tel que l'alumine, la silice, les aluminosilicates, les silice-alumines, les charbons actifs, la zircone, l'oxyde de titane, les zéolithes.
[0015] Le catalyseur préféré de l'invention comprend du platine déposé sur un support choisi dans le groupe comprenant la silice, la zircone, les aluminosilicates, les silice-alumines, les zéolithes. [0016] La réaction d'hydrodésazotation est réalisée en présence d'un catalyseur hétérogène qui est soit dispersé en suspension dans le réacteur soit sous forme de lit fixe ou lit fluidisé à travers lequel le flux de composés nithles ou aminés est alimenté. Le catalyseur peut être aussi déposé sur un support monolithique comme par exemple, un support en forme de nid d'abeille.
[0017] La présente invention n'est pas limitée à ces modes de réalisation donnés uniquement à titre d'illustration.
[0018] Les catalyseurs d'hydrodésazotation préférés de l'invention sont notamment les catalyseurs platine sur zircone, platine sur aluminosilicate, platine sur silice-alumine, platine sur zéolithe.
[0019] Le taux de transformation des composés à traiter engagés est très élevé, proche ou égal à 100%. Les produits récupérés sont l'ammoniac et majoritairement des composés hydrocarbonés. Ainsi, le traitement du méthyl-2- glutaronitrile permet d'obtenir comme composés hydrocarbonés, très majoritairement du méthyl-2-pentane. L'hydrodésazotation de l'orthotoluène diamine conduit majoritairement à l'obtention de methylcyclohexane. L'ammoniac est séparé et récupéré notamment par distillation.
[0020] Au cours de cet hydrotraitement, il peut se produire également un craquage thermique des chaines hydrocarbonés conduisant à la formation de composés hydrocarbonés sans atome d'azote et/ou de composés hydrocarbonés comprenant des atomes d'azote. Ces derniers pourront être transformés en composés hydrocarbonés par réaction avec l'hydrogène, selon les conditions opératoires mises en œuvre. Par ailleurs, des composés cycliques contenant des atomes d'azote peuvent également se former comme la picoline ou ses dérivés et des pipéridines, dans le cas de l'hydrotraitement du MGN. Selon l'invention, on appelle % HDN, le rapport exprimé en pourcentage du nombre de moles de composés hydrocarbonés ne comprenant pas d'atome d'azote produites soit par hydrotraitement soit par craquage thermique par rapport au nombre de moles de composés à traiter engagées.
[0021] Selon une caractéristique préférée de l'invention, les composés hydrocarbonés produits par l'hydrodésazotation ou hydrotraitement tels que le méthyl-2 pentane et des produits de craquage thermique peuvent être soumis à un vaporéformage ou steamreforming permettant d'oxyder partiellement ces composés en oxyde de carbone (CO) et hydrogène (H2). Ces deux produits peuvent être récupérés et valorisés directement en mélange ou après purification et séparation. Dans ce mode de réalisation, il est préférable d'éliminer les traces d'ammoniac contenu dans les composés hydrocarbonés pour ne pas affecter les performance du vaporéformage.
[0022] Selon un autre mode de réalisation de l'invention, ce mélange de monoxyde de carbone et d'hydrogène peut être soumis à une réaction de méthanation conduisant à former de l'eau et des alcanes à faible nombre de carbone tel que le méthane. Ce traitement de vaporeformage/méthanation est très utilisé dans l'industrie pétrolière. Comme catalyseurs usuels pour ces réactions, on peut citer les catalyseurs nickel supportés. La température de mise en œuvre est comprise entre 400 et 7000C pour le vaporéformage et entre 200 et 4000C pour la méthanation.
[0023] Une description générale des procédés de vaporéformage et méthanation est donnée dans l'ouvrage « Les procédés de pétrochimie » Edition TECHNIP Tome 1 1965 dont les auteurs sont A. CHAUVEL, G. LEFEBVRE et L. CASTEX.
[0024] Le procédé de l'invention s'applique notamment au procédé de fabrication d'adiponitrile par hydrocyanation du butadiène en deux étapes. Ce procédé est décrit dans de nombreux brevets et une description détaillée est disponible dans les RAPPORTS SRI n° 31 suppl B intitulé « H EXAM ETHYLE N E DIAMINE ».
[0025] II s'applique également au procédé de fabrication du toluène diamine décrit dans de nombreux documents et notamment dans les Rapports SRI n°1 supplément B « Isocyanates ».
[0026] D'autres avantages, détails de l'invention apparaîtront plus clairement au vu des exemples qui seront donnés ci-après à titre d'illustration uniquement.
[0027] Les essais décrits ci-après ont été réalisés avec deux catalyseurs d'hydrodésazotation :
[0028] Catalyseur A : Pt déposé sur de la zircone (Pt/ZrO2)
[0029] Catalyseur B : Platine déposé sur un support silice-alumine comprenant un pourcentage pondéral de silice égal à 10 appelé Pt/SiAI10 [0030] Le catalyseur A a été obtenu en utilisant un support zircone de surface spécifique égale à 83 m2/g..
[0031] Le catalyseur B comprend un support silice-alumine de surface spécifique égale à 352 m2/g commercialisée par la société Condéa sous l'appellation commerciale SIRAL10. Ce support contient 10 % en poids de Siθ2.
[0032] Ces catalyseurs sont préparés selon le mode opératoire ci-dessous.
[0033] Les supports sont imprégnés par une solution d'acide hexachloroplatinique H2PtCIe. Ils sont laissés à maturation pendant deux heures à température ambiante, afin de permettre à la solution de pénétrer dans les pores. Les produits sont ensuite séchés pendant une nuit (> 12 h) à 1100C puis calcinés sous flux d'air à 5000C pendant 1 heure (débit d'air de 60 cm3. min"1, rampe de montée en température de 2°C.min"1), afin de décomposer le complexe précurseur en oxyde de platine. Ils sont ensuite réduits sous un flux d'hydrogène pendant 6 heures à 3100C (débit d'hydrogène de 60 cm3. min"1, rampe de montée en température de 1 °C.min"1) pour obtenir un dépôt de platine métallique.
[0034] Les caractéristiques physico-chimiques des catalyseurs PtVZrO2 et Pt/SiAM O sont rassemblées dans le tableau I.
[0035] La dispersion et la taille des particules de platine ont été déterminées par chimisorption d'hydrogène. Le dosage du platine a été effectué par spectrométrie d'émission plasma.
Tableau I
[0036] Dans les exemples suivants, les abréviations utilisées ont les significations indiquées ci-dessous :
> MP : 2-méthylpentane
> Pic : picolines (β-picoline, 2-amino-3-picoline, 6-amino-3-picoline)
> % HDN : pourcentage de produits hydrocarbonés ne contenant pas d'atomes d'hydrogène par rapport aux nombre de moles de composés à traiter. [0037] Exemple 1 : Hydrodésazotation du MGN sous une pression absolue de 0.1 MPa avec le catalyseur A.
[0038] La réaction d'hydrodésazotation (HDN) du méthylglutaronitrile a été réalisée à différentes températures et sous une pression absolue de 0.1 Mpa avec un débit d'hydrogène de 55 ml/min et lit fixe de catalyseur A de masse 15 mg, selon le mode opératoire suivant dans un microréacteur dynamique.
[0039] Le mélange réactionnel comprend du 2-méthylglutaronithle pur et de l'hydrogène. L'hydrogène, dont le débit est régulé par un débitmètre massique (0 - 200 ml/min), barbote dans un saturateur rempli de MGN liquide, puis passe dans un condenseur dont la température contrôle la pression partielle du MGN pour obtenir une pression partielle en MGN égale à 1.33 kPa. Le réacteur est placé dans un four tubulaire dont la température est contrôlée par un régulateur à sonde de platine. La température de réaction est mesurée grâce à un thermocouple situé au niveau du lit catalytique.
[0040] Afin d'éviter la condensation du réactif et des produits de réaction, la température de l'ensemble de l'appareil est constamment maintenue à 1800C. Un piège est situé en sortie du test pour condenser les produits de réaction et le réactif non converti. Les gaz partent ensuite à l'évent.
[0041] La concentration et le nombre de moles de chaque composé présent dans le milieu condensé sont déterminés par analyse chromatographique en phase gaz. Les différents rendements obtenus sont rassemblés dans le tableau II ci-dessous :
Tableau II
[0042] Exemple 2 : Hydrodésazotation du MGN sous une pression absolue de 0.1 MPa (pression partielle en MGN = 1.33kPa) avec le catalyseur B. [0043] L'exemple 1 est répété à l'exception du type de catalyseur qui est le catalyseur B.
[0044] Les rendements obtenus sont rassemblés dans le tableau III ci- dessous :
Tableau III
[0045] Exemple 3 : Hydrodésazotation du MGN à une pression absolue de 0.55 MPa (pression partielle en MGN = 1 ,33kPa) sur le catalyseur B.
[0046] L'exemple 1 est répété en utilisant 50 mg de catalyseur A sous une pression absolue de 0.55 MPa et un débit d'hydrogène de 4 ml/min. Quand les essais sont effectués sous pression, le mélange réactionnel est injecté après détente à la pression atmosphérique dans un chromatographe en phase gaz par l'intermédiaire d'une vanne six voies.
[0047] Les rendements obtenus sont rassemblés dans le tableau IV ci- dessous :
Tableau IV
[0048] Exemple 4 : Hydrodésazotation du MGN sous une pression absolue de 1 MPa et une pression partielle en MGN égale à 1 ,33 kPa avec le catalyseur B. [0049] L'exemple 1 est répété à l'exception du type de catalyseur qui est le catalyseur B.
[0050] Les rendements obtenus sont rassemblés dans le tableau V ci- dessous
Tableau V
[0048] Ces résultats montrent que la transformation du MGN en composés hydrocarbonés est faible sous une pression de 0.1 MPa pour une température comprise entre 2500C < T < 3500C, démontrant une faible activité du catalyseur dans ces conditions opératoires.
[0049] Sous une pression de 1 MPa, le rendement de la transformation du MGN en composés hydrocarbonés est plus élevé et atteint une valeur de 100% pour une température de 350°C.
[0050] Sous une pression de 0,55 MPa, il est également possible d'obtenir un rendement de cette transformation du MGN en composés hydrocarbonés de 100 % pour une température de 300°
[0051] Exemple 5 :
[0052] La réaction d'hydrodésazotation de l'orthotoluène diamine (OTD) a été réalisée sous une pression absolue de 1 MPa dans un dispositif identique à celui de l'exemple 1 avec un débit d'hydrogène de 20 ml/min et une masse de catalyseur A de 50 mg.
[0053] Le mélange réactionnel est constitué d'hydrogène et d'un mélange obtenu comme sous-produit dans une installation de production de toluène diamine (TDA) comprenant essentiellement du 2,3 diaminotoluène et du 3,4 diaminotoluène. L'hydrogène, dont le débit est régulé par un débitmètre massique (0 - 200 ml/min), barbote dans un saturateur remplit d'OTD fondue, puis passe dans un condenseur dont la température contrôle la pression partielle d'OTD). Dans l'exemple considérée, la pression absolue est de 1 MPa avec une pression partielle en OTD de 1.33 kPa, la température de conditionnement étant de 1400C.
[0054] Le réacteur utilisé sous pression de 1 MPa est en acier inoxydable (diamètre intérieur 10 mm, longueur 40 mm). Il est placé dans un four tubulaire dont la température est contrôlée par un régulateur à sonde de platine. La température de réaction est mesurée grâce à un thermocouple situé au niveau du lit catalytique.
[0055] Lorsque les tests catalytiques sont effectués sous pression (1 MPa), un capillaire est situé en sortie du réacteur. Il permet de maintenir dans l'appareil une pression en amont, laquelle est fonction du débit utilisé ainsi que du diamètre et de la longueur du capillaire. Après détente à pression atmosphérique, le mélange réactionnel est injecté dans un chromatographe en phase gaz par l'intermédiaire d'une vanne six voies.
[0056] Afin d'éviter la condensation du réactif et des produits de réaction, la température de l'ensemble de l'appareil est constamment chauffé à 1800C. Un piège est situé en sortie du test pour condenser les produits de réaction et le réactif non converti. Les gaz partent ensuite à l'évent.
[0057] L'analyse du mélange réactionnel est entièrement automatisée et réalisée en ligne par chromatographie en phase gazeuse (chromatographe Hewlett Packard équipé d'un détecteur à ionisation de flamme, d'un intégrateur HP 3396 série II et d'une colonne capillaire de type DB1 de dimensions 50 m x 0,32 mm x 5 μm).
[0058] Le méthylcyclohexane est obtenu très majoritairement à 300°C . A 3500C, on note la présence significative de toluène et de méthylcyclohexane.
[0059] Exemple 6 : Vaporéformage des composés hydrocarbonés produits tels que le methylpentane : [0060] Un flux de 5g/h de methylpentane est alimenté à un réacteur en phase gaz en parallèle à un flux d'eau de 7,5g/h. Le réacteur contient environ 100 ml de catalyseur base nickel supporté sur alumine (70% de nickel). La température est maintenue vers 5500C par chauffage externe. La pression est régulée à 23 bar. En sortie, le gaz est refroidi puis analysé. La conversion du methylpentane est totale. On ne détecte que le CO, l'hydrogène et à un degré moindre du CO2.

Claims

Revendications
1. Procédé de traitement de composés hydrocarbonés comprenant au moins une fonction nitrile (azotée) consistant à les transformer en ammoniac et composés hydrocarbonés caractérisé en ce qu'il consiste à traiter lesdits composés comprenant au moins une fonction nitrile ou aminé dans une étape d'hydrodésazotation par réaction avec de l'hydrogène sous une pression absolue d'hydrogène comprise entre 0,1 et 10 MPa, une température comprise entre 2000C et 5000C en présence d'un catalyseur d'hydrodésazotation pour transformer lesdits composés en ammoniac et composés hydrocarbonés.
2. Procédé selon la revendication 1 , caractérisé en ce que le catalyseur d'hydrodésazotation est un élément métallique choisi dans le groupe comprenant le platine, le palladium, le rhodium, le ruthénium et le nickel.
3. Procédé selon la revendication 2, caractérisé en ce que le catalyseur comprend un élément métallique supporté sur un support choisi dans le groupe comprenant, l'alumine, la silice, les aluminosilicates, les silice- alumines, les charbons actifs, la zircone, l'oxyde de titane.
4. Procédé selon la revendication 3, caractérisé en ce que le catalyseur comprend du platine déposé sur un support choisi dans le groupe comprenant la zircone, silice, alumine, aluminosilicate, silice-alumine.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la pression absolue en hydrogène est comprise entre 0,5 MPa et 3 MPa.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que la température est comprise entre 300°C et 4000C
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que les composés sont des composés nitriles choisis dans le groupe comprenant le méthylglutaronithle, l'éthylsuccinonitrile, le 2-pentènenitrile, le 2-méthyl-2- butènenitrile ou leurs mélanges, les isomères d'ortho TDA.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que les composés hydrocarbonés récupérés à l'issue de l'étape d'hydrodésazotation sont traités dans une étape de vaporeformage pour produire du monoxyde de carbone et de l'hydrogène
9. Procédé selon la revendication 8, caractérisé en ce que le monoxyde de carbone et l'hydrogène sont traités dans un procédé de méthanation pour produire des alcanes inférieurs tels que le méthane.
10. Procédé selon la revendication 8 ou 9, caractérisé en ce que l'étape de vaporeformage et méthanation est mise en œuvre en présence d'un catalyseur à base de nickel supporté à une température comprise entre 400 et
7000C pour le vaporeformage et entre 200 et 4000C pour la méthanation.
EP09703449A 2008-01-18 2009-01-09 Procédé de traitement de composés hydrocarbonés comprenant des fonctions nitriles ou amines Withdrawn EP2252568A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0800256A FR2926546A1 (fr) 2008-01-18 2008-01-18 Procede de traitement de composes hydrocarbones comprenant des fonctions nitriles ou aminees
PCT/EP2009/050194 WO2009092634A1 (fr) 2008-01-18 2009-01-09 Procédé de traitement de composés hydrocarbonés comprenant des fonctions nitriles ou amines

Publications (1)

Publication Number Publication Date
EP2252568A1 true EP2252568A1 (fr) 2010-11-24

Family

ID=39689273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09703449A Withdrawn EP2252568A1 (fr) 2008-01-18 2009-01-09 Procédé de traitement de composés hydrocarbonés comprenant des fonctions nitriles ou amines

Country Status (10)

Country Link
US (1) US20110112202A1 (fr)
EP (1) EP2252568A1 (fr)
JP (1) JP2011512327A (fr)
KR (1) KR20100103605A (fr)
CN (1) CN101970386A (fr)
FR (1) FR2926546A1 (fr)
RU (1) RU2482104C2 (fr)
SG (1) SG188077A1 (fr)
TW (1) TW200948778A (fr)
WO (1) WO2009092634A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2926549B1 (fr) * 2008-01-18 2015-05-01 Rhodia Operations Procede de fabrication de composes nitriles
CN113526526A (zh) * 2021-07-12 2021-10-22 苏州大学 氘代氨制备方法及以其作为氘源参与的氘代反应

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562919A (en) * 1979-06-22 1981-01-13 Jgc Corp Preparation of gas rich in methane
US4591430A (en) * 1984-05-18 1986-05-27 Exxon Research And Engineering Co. Process for the denitrogenation of nitrogen-containing hydrocarbon compounds
FR2783252B1 (fr) * 1998-08-28 2002-06-14 Ct Nat De La Rech Scient I De Procede pour l'hydrodesazotation et l'hydrogenation de structures aromatiques de coupes petrolieres
JP3798949B2 (ja) * 2001-03-06 2006-07-19 エヌ・イーケムキャット株式会社 水素化分解用触媒
RU2198910C1 (ru) * 2001-11-16 2003-02-20 Довганюк Владимир Федорович Способ тонкой каталитической доочистки бензольных фракций от сернистых и непредельных соединений
FR2926549B1 (fr) * 2008-01-18 2015-05-01 Rhodia Operations Procede de fabrication de composes nitriles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009092634A1 *

Also Published As

Publication number Publication date
KR20100103605A (ko) 2010-09-27
FR2926546A1 (fr) 2009-07-24
RU2010134410A (ru) 2012-02-27
CN101970386A (zh) 2011-02-09
WO2009092634A1 (fr) 2009-07-30
JP2011512327A (ja) 2011-04-21
TW200948778A (en) 2009-12-01
SG188077A1 (en) 2013-03-28
US20110112202A1 (en) 2011-05-12
RU2482104C2 (ru) 2013-05-20

Similar Documents

Publication Publication Date Title
KR20080011265A (ko) 방향족 아민의 제조 방법
CN1245163A (zh) 整体催化剂在使二硝基甲苯加氢成甲苯二胺中的应用
EP2234921B1 (fr) Procede de fabrication d´adiponitrile par hydrocyanation du butadiène
Rode et al. Catalytic ring hydrogenation of phenol under supercritical carbon dioxide
CN1768022A (zh) 制备烃的至少一种部分氧化和/或氨氧化产物的方法
EP2252568A1 (fr) Procédé de traitement de composés hydrocarbonés comprenant des fonctions nitriles ou amines
US11760718B2 (en) Production of acetonitrile and/or hydrogen cyanide from ammonia and methanol
TW201431787A (zh) 製造氰化氫及回收氫氣的方法
Gebauer‐Henke et al. Nitro promoters for selectivity control in the core hydrogenation of toluidines: controlling adsorption on catalyst surfaces
US8759588B2 (en) Process for producing xylylenediamine
TW201425277A (zh) 製造二胺之整合製程
US6521791B1 (en) Process for regenerating a monolith hydrogenation catalytic reactor
Coeck et al. Ammonolytic transfer dehydrogenation of amines and amides: a versatile method to valorize nitrogen compounds to nitriles
TWI486324B (zh) 製造1,6-己二胺之整合製程
EP1851196A1 (fr) Procede de fabrication de lactames
FR2809394A1 (fr) Procede de fabrication de nitriles insatures
TW202244046A (zh) 製備脒類的方法
JPH06234677A (ja) 二酸化炭素からのメタノールの製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140801