EP2252555A2 - Procede d'elaboration de verre - Google Patents

Procede d'elaboration de verre

Info

Publication number
EP2252555A2
EP2252555A2 EP09722477A EP09722477A EP2252555A2 EP 2252555 A2 EP2252555 A2 EP 2252555A2 EP 09722477 A EP09722477 A EP 09722477A EP 09722477 A EP09722477 A EP 09722477A EP 2252555 A2 EP2252555 A2 EP 2252555A2
Authority
EP
European Patent Office
Prior art keywords
glass
bubbling
refining
bubbles
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09722477A
Other languages
German (de)
English (en)
Inventor
Philippe Pedeboscq
Dorothée MARTIN
Octavio Cintora
Raphaël HUCHET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0851371A external-priority patent/FR2928145A1/fr
Priority claimed from FR0856322A external-priority patent/FR2936239B1/fr
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2252555A2 publication Critical patent/EP2252555A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels

Definitions

  • the invention relates to the field of melting glass. It relates more particularly to a method for adjusting the redox degree of the glass, and the products obtained by this method.
  • the melting of the glass is generally done using a continuous process using an oven.
  • pulverulent raw materials such as for example sand, limestone, dolomite, sodium carbonate, boric acid, alumina, feldspars, spodumene .
  • the pulverulent raw materials are indeed less dense than the molten glass and float on the latter.
  • the furnace is generally heated using at least one overhead burner, the or each flame of which extends over this area as well as over areas further downstream and not covered by this carpet. unmelted material.
  • the oven may for example comprise several air burners, each developing a flame in a direction substantially perpendicular to the movement of the glass. Under the effect of the radiation emitted by the or each flame of the at least one burner, the pulverulent materials melt and / or react chemically with each other so as to create a bath of molten glass.
  • This glass bath is however filled with gaseous inclusions (or bubbles), because the chemical reactions undergone by the pulverulent raw materials release for some large quantities of gas (for example CO 2 for the decarbonation of limestone or sodium carbonate. ).
  • gaseous inclusions or bubbles
  • the glass must be rid of these gaseous inclusions during a step called refining step. This step generally occurs at a higher temperature than the melting step, because the high temperatures have the effect of reducing the viscosity of the glass, thus accelerating the rise of the bubbles in the glass bath and their removal on the surface of said bath of glass. The rise of the bubbles is all the faster as the bubbles are of large diameter.
  • a refining technique commonly employed then consists in allowing a clearance gaseous within the glass bath: the bubbles thus formed will coalesce with the residual bubbles of the glass bath, forming large diameter bubbles whose rate of elimination is high.
  • This gas evolution is often obtained during refining by thermally assisted reduction of initially oxidized species, for example species such as Sb 2 O 5 , As 2 O 5 , CeO 2 or SnO 2 .
  • These species, called refining agents are introduced in small quantities with the other raw materials. To fully play their role of oxygen release, it is important that these species are initially very predominantly present in their highest degree of oxidation. To do this, it is known to introduce these agents together with oxidizing chemical agents such as nitrates.
  • a continuous process for producing the glass comprises the following successive stages corresponding to different zones of the oven: charging, melting, then refining and finally cooling (or embers).
  • Application FR 2 187 709 describes the bubbling of oxygen during the melting or refining step in order to homogenize the molten glass.
  • the application US 2008/0034799 finally describes the bubbling of oxygen during the melting and refining of special glasses (glasses containing high levels of heavy metal oxides such as tantalum, lead or bismuth) in order to avoid the reduction of these oxides to metals.
  • special glasses glasses containing high levels of heavy metal oxides such as tantalum, lead or bismuth
  • the inventors have now demonstrated that a bubbling of oxidizing gas produced after the refining step may have certain advantages, especially in terms of redox of the formed glass. These advantages are explained in the rest of the text.
  • the method according to the invention has proved especially particularly advantageous for obtaining glasses with very low redox, thus highly oxidized glasses, without the use of chemical oxidants.
  • the subject of the invention is therefore a continuous process for producing glass comprising the successive stages of charging powdery raw materials, obtaining a glass bath by melting, refining and then cooling.
  • the method is characterized in that an oxidizing gas is bubbled within said glass bath after the refining step.
  • Fusion is understood to mean any reaction or set of chemical reactions which makes it possible to obtain a mass of molten glass from raw materials in the solid state. It is not usually a fusion in the physical sense of the term, although actual fusion reactions may be involved in the overall merger process.
  • refinement step is meant any step during which the gaseous inclusions contained in the glass bath are removed. It can in particular be a chemical refining, in the sense that refining agents are introduced with the raw materials. These refining agents cause gassing during the melting and refining stages.
  • the refining agents may in particular be chosen from oxides of arsenic, antimony, cerium or tin, sulphates (in particular sodium sulphate, or calcium sulfate, called gypsum), sulphides (for example zinc sulphide), or halogens, especially chlorides (for example calcium chloride or barium chloride), or a mixture thereof.
  • the glass is preferably a glass based on silica, that is to say containing more than 50%, especially 60% by weight of SiO 2 . It preferably contains less than 1% or even less than 0.5% or a zero amount of heavy metal oxides such as Ta, Bi, Pb, Nb, Sb. According to the invention, the bubbling of the oxidizing gas is carried out either between the refining and cooling stages, or during the cooling step. Bubbling at the time of cooling is preferred in some cases because it has been observed that lower temperatures favor the more oxidized species.
  • the bubbling takes place in a well-refined glass bath, that is to say substantially free of gaseous inclusions before bubbling.
  • the temperature of the glass bath at the time of bubbling may be equal to or close to the refining temperature, or, more generally, less than this refining temperature.
  • bubbling of the oxidizing gas is carried out only after the refining step. In this case, no bubbling of oxidizing gas is achieved during the melting or the refining of the glass, because this type of bubbling has been shown to be inefficient to obtain the advantages of the invention.
  • the oxidizing gas preferably contains oxygen. It may be in particular pure oxygen, or a mixture of oxygen with another gas, especially a neutral gas such as nitrogen or argon.
  • the oxidizing gas preferably does not contain carbon-containing gases, such as carbon dioxide (CO 2 ) or hydrocarbons. Pure oxygen is preferred because its oxidizing power is much more efficient. Oxygen comprising water vapor is also useful because it has been found that water increases the kinetics of diffusion of oxygen in the glass.
  • bubbling creates bubbles within the glass bath, the average diameter of which is between 0.05 and 5 cm, in particular between 0.5 and 5 cm, and even between 1 and 2 cm. Bubbles of too small diameter may indeed remain trapped in the glass because of their low rate of climb.
  • the bubbling carried out downstream of the process has indeed vis-à-vis the refining quality the two following potential risks: a temperature generally lower than the refining temperature and a reduced residence time before forming. It is therefore important that the bubbles obtained are relatively large in order to be completely eliminated before forming.
  • bubbles of too large diameter have the disadvantage of limiting the physicochemical exchanges between the gas and the glass bath, and therefore to limit the oxidation efficiency of the glass.
  • a significant fall and / or too sudden temperatures glass baths can also be caused by bubbles of too large diameter.
  • the size of bubbles can be adapted by varying factors, among which are the gas flow and the viscosity of the glass. If the presence of bubbles in the final glass is undesirable, it is possible to perform a second refining step after bubbling. Generally this second refining step will not require heating of the glass or the addition of refining agents, but only a decrease in the height of the glass and / or the residence time to eliminate bubbles in a natural way . For some applications, however, especially applications in the field of photovoltaics or solar mirrors, it has been found that a small number of bubbles may be present in the final glass, without in any way penalizing the properties of the glass.
  • the amount of oxidizing gas bubbled within the glass bath is preferably such that the total amount of oxygen (O 2 ) introduced into said glass bath is between 0.01 and 20 liters per kilogram of glass. This amount is preferably between 0.1 and 10 liters per kilogram of glass, in particular between 0.1 and 5 liters per kilogram of glass.
  • the total quantity of oxygen introduced will depend on the oxygen composition of the oxidizing gas, the total flow of oxidizing gas, the residence time of the glass in the furnace, the quantity of glass, the temperature, the chemical composition of the For a glass of the silico-soda-lime type as described below, the quantity of oxygen introduced is preferably between 0.1 and 1 liter per kilogram of glass, in particular between 0.2 and 0. , 9 liters per kilogram of glass.
  • the quantity of oxygen introduced during the bubbling is preferably between 0.5 and 2 liters per kilogram of glass.
  • the expression "liter” must be understood as “normo-liter”.
  • the temperature of the glass during bubbling has two contradictory effects. From a thermodynamic point of view, it has been found that the lower temperatures are likely to favor the production of oxidized species in the glass. Low temperatures, however, are accompanied by oxidation reaction kinetics which are slow. In addition, the rise rate of the bubbles at low temperature is very slow, which entails the risk of leaving bubbles trapped at the time of forming. For a desired final oxidation state, it There is therefore an optimum in terms of temperature, which depends on the viscosity of the glass and therefore on its chemical composition.
  • the glass temperature during bubbling is preferably between 1200 and 1450 0 C, in particular between 1200 and 1300 0 C or between 1300 ° C and 1450 0 C.
  • the temperature of the glass during the bubbling is preferably between 1550 and 1650 ° C.
  • a preferred embodiment consists of bubbling the oxidizing gas by means of at least one metal part (plates, tubes, etc.) pierced with a plurality of holes.
  • the part is preferably in the form of a tube inside which the oxidizing gas is injected.
  • the perforated portion is preferably located at the end of said tube.
  • the metal is preferably platinum-based, since this metal has a very high melting point and a relative chemical inertness in contact with the molten glass, and is resistant to oxidation. It can be pure platinum or platinum alloys, especially platinum and rhodium alloys. A platinum alloy containing between 5 and 25% rhodium has better mechanical strength than pure platinum but is less resistant to oxidation.
  • Doped platinum especially platinum stabilized with zirconia is preferred.
  • the metal may also have a melting point lower than that of platinum: it may for example be a steel, especially a refractory steel, which in this case will preferably be cooled, in particular by circulating water.
  • the size of the holes is between 10 and 500 micrometers, especially between 50 and 200 micrometers or between 10 and 150 micrometers, or even between 30 and 60 micrometers. It is preferable that the distance between the holes is greater than or equal to the thickness of the tube so as not to risk weakening the tube.
  • the production of holes of such small size in the metal tube is preferably carried out using a laser beam or mechanical means (for example using a drill).
  • Another embodiment consists in bubbling the oxidizing gas by means of at least one piece of porous refractory ceramic.
  • the part is preferably in the form of a tube inside which the oxidizing gas is injected.
  • the porous ceramic may for example be a ceramic foam. Ceramics based on chromium oxide (Cr 2 O 3 ) are preferred because of the good resistance of this oxide in contact with the glass. Other advantages of chromium oxide are explained later in the text. Other ceramics such as zirconia or alumina are also usable. Zirconia is particularly interesting because it has been observed that zirconia refractories immersed in the glass bath were capable of releasing large amounts of oxygen.
  • the mode of injection of the oxidizing gas can be either continuous or in pulsed mode.
  • the pulsed mode is to inject the gas, for example into the tubes described above by successive pulses of gas under high pressure with a controlled pulse time and a controlled period.
  • the pressure preferably varies from 0.5 to 5 bar.
  • the pulse time preferably varies from 10 to 500 ms and the frequency preferably from 0.05 to 2 Hz.
  • the pressure in the tube is instantaneously lowered to the hydrostatic pressure of the tube.
  • This technique makes it possible to control the size of the bubbles (and in particular to obtain smaller bubbles) and also to ensure bubbling through all the holes.
  • Another embodiment is to create oxygen bubbles by electrochemistry or electrolysis reactions.
  • An electrode anode
  • An electrode anode
  • a potential difference of a few volts is established between this anode and a counter-electrode (cathode).
  • a direct current flows between the anode and the cathode, which generates two types of reactions: oxygen bubbles are created in contact with the anode, and a reduction of the glass occurs in contact with the cathode.
  • Reduction reactions are diverse; it may in particular be the reduction of metal ions to metals, for example ferric or ferrous ions in iron metal, or even silicon ions in silicon metal.
  • the cathode is therefore preferably arranged at a location in the oven such as a drain, so to be able to eliminate the glass polluted by these metals.
  • the cathode is preferably molybdenum, which is resistant to high temperatures and reducing reactions.
  • the anode is preferably platinum, optionally alloyed, for example with rhodium. It is advantageously placed in the oven so as to maximize contact with the molten glass. It may for example be in the form of a plate disposed transversely to the direction of flow of the glass.
  • the distance between the anode and the cathode should not be too large so as not to prevent ionic conduction within the molten glass.
  • the potential difference between the anode and the cathode is preferably between 1 and 10 V, especially between 2 and 5 V.
  • the current density is adjusted so as to generate the desired amount of bubbles. It is generally between 2 and 10 mA / cm 2 .
  • the production process according to the invention is generally carried out in a melting furnace.
  • the melting furnace is commonly made of refractories, usually ceramics such as silicon oxide, aluminum oxide, zirconium oxide, chromium oxide, or solid solutions of aluminum oxide, zirconium oxide and silicon oxide.
  • Chromium oxide has proved particularly advantageous because, in combination with the bubbling of oxidizing gas, its presence makes it possible to further reduce the redox of the glass. It seems that the bubbling of oxidizing gas, in the presence of chromium oxide, generates in the glass and / or on the surface of the refractory, oxidized species of chromium, which in turn will oxidize the ferrous ions contained in the bath of glass.
  • chromium oxide refractory pieces are disposed near the area where the bubbling takes place. These parts may be refractory constituting the furnace or a part thereof. Alternatively or cumulatively, they may be parts added specifically for the implementation of the method according to the invention.
  • the oven generally comprises a vault supported by piers forming the side walls of the furnace, upstream and downstream gables and a sole.
  • the zones further downstream: the melting zone in which the raw materials are transformed into molten glass, then the refining zone, in which the molten glass bath is freed from any gaseous inclusion, then the cooling zone, called ember, in which the glass is gradually cooled to the forming temperature, and finally the thermal conditioning zone, where the glass is maintained at its forming temperature, before the forming zone.
  • the forming area is not an integral part of the oven.
  • the cooling or thermal conditioning zone is also located outside the furnace, generally in channels or "feeders" leading the molten glass to the forming zone.
  • the furnace may be of the electric type, that is to say be heated using electrodes, usually molybdenum, immersed in the glass bath.
  • the oven is however preferably heated with burners.
  • the oven preferably comprises several air burners arranged at the side walls of the furnace, each of said burners being capable of developing a flame transverse to the axis of the furnace.
  • air burner means a burner developing a flame located above the molten glass bath, and capable of heating the glass bath by radiation. It is also possible for the furnace to contain other types of burners, in particular burners capable of heating the glass bath by conduction, for example burners situated in vaults or gables and whose flame impacts the glass bath, or even submerged burners, in the sense that the flame develops in the glass bath.
  • the overhead burners are preferably arranged regularly from the upstream to the downstream of the furnace and / or are arranged in pairs of burners facing each other or in staggered rows, the burners of each pair operating alternately so that at a minimum given moment only the burners arranged at one of the side walls develop a flame.
  • regenerators through which the combustion gases and the oxidant are forced to pass.
  • the regenerators are made up of stacks of refractory parts and they make it possible to store the heat emitted by the combustion gases and to return this heat to the oxidizing gas.
  • the regenerators located at the burners that do not work (these burners are arranged at a first wall) store the energy emitted by the flames developed by the burners located at a second wall, which faces the first wall.
  • the flue gas in this case, usually air
  • the flue gas which passes into regenerators, is then preheated, which allows substantial energy savings.
  • the furnace preferably comprises, from upstream to downstream, a first tank defining the melting zone of the glass then the refining zone, then a second tank defining a zone for cooling or homogenizing the molten glass.
  • a transition zone called corset and being in the form of a narrower section of the vessel separates the two tanks previously described. It is also possible that the two tanks are separated by a refractory wall sinking into the glass bath from the vault, leaving a groove at the level of the sole, where the glass is forced to pass to go from the first to the second tank.
  • the area of the second tank immediately after the throat is commonly called "resurgence".
  • the oven may also include a third zone for a second refining step. In this area, the height of the glass bath is low to facilitate the removal of bubbles by natural rise.
  • the or each bubbling means is disposed in the oven at a zone in which the refined glass is cooled or is about to be cooled.
  • the or each bubbling means is therefore preferably disposed at the level of this second tank, or where appropriate at the level of the corset, throat or resurgence.
  • the bubbling means may for example be in the form of a plurality of plates or tubes arranged perpendicularly to the flow direction of the glass.
  • convection currents are created due to the existence of hot spots (especially at the level of the refining zone). These convection currents, which can be accentuated by the choice of the geometry of the furnace, contribute to obtaining a homogeneous glass.
  • a portion of the glass which is refined is brought back to the melting zone, while the other part is conveyed to the forming zone.
  • the part of the glass under the surface is brought back to the hot spot. Since high temperatures tend to favor reduced species, it is not preferable to bubble the oxidizing gas at this part of the glass bath. On the contrary, it is preferable to bubble the oxidizing gas at the part of the glass which is conveyed to the forming zone, so close to the surface of the glass.
  • the oxidation of glass may be characterized by "redox", which is a number equal to the ratio between the ferrous iron content (expressed as mass percentage of FeO) and the content of total iron in glass (expressed as a percentage by mass of Fe 2 O 3 ).
  • the ferrous iron content is determined by chemical analysis: the determination using the optical spectrum, usual for glasses containing at least 0.02% of FeO, is here totally inadequate and leads to greatly underestimate the true content of FeO in the glass.
  • the glass obtained has a redox less than or equal to 0.1, especially 0.08 and even 0.05 or 0.03.
  • the redox may even be equal to 0.
  • Blank redoxes can be obtained, particularly but not only, by using chromium oxide parts in contact with the glass bath.
  • the process according to the invention has in fact proved particularly advantageous for obtaining very low redox glasses.
  • These glasses could previously be obtained only chemically, in this case by the addition of oxidizing agents such as 2 O 5 , Sb 2 O 5 or CeO 2 .
  • oxidizing agents which are also refining agents
  • oxides of arsenic and antimony in addition to their toxicity, are not compatible with the process of float glass (float process), which consists in forming a glass sheet by pouring the molten glass on a bath of water.
  • float process consists in forming a glass sheet by pouring the molten glass on a bath of water.
  • Cerium oxide carries with it the risk of solarization, that is to say, modification of the optical properties of the glass under the effect of ultraviolet radiation.
  • the inventors have demonstrated that there is an optimum temperature of the glass during bubbling according to the targeted redox.
  • the temperature of the glass during the bubbling is preferably between 1350 ° C. and 1450 ° C.
  • the temperature of the glass during bubbling is preferably between 1250 ° C. and 1350 ° C.
  • the temperature of the glass during bubbling is preferably between 1150 ° C. C and 1250 ° C.
  • a particularly preferred temperature range is between 1200 and 1350 ° C., especially between 1200 and 1300 ° C.
  • null redoxes could be obtained for bubbling temperatures of between 1300 and 1350 ° C., in particular of the order of 1320 ° C.
  • the glass obtained is preferably characterized by an iron oxide content of less than or equal to 0.15% and in particular a redox of less than or equal to 0.1, especially 0.08 and even 0.05 or 0.03.
  • the method according to the invention is therefore particularly valuable for the preparation of glass substrates for photovoltaic cells, solar cells, flat or parabolic mirrors for the concentration of solar energy, or diffusers for backlighting screens.
  • display type LCD liquid crystal displays
  • the glass obtained therefore preferably contains a total iron oxide content of less than or equal to 0.08% by weight, preferably 0.02%, and especially 0.01% or 0.009%, and a redox less than or equal to 0, 1, especially 0.08 and even 0.05.
  • the glass obtained may contain an iron oxide content of between 0.08% and 0.15% and a redox in the abovementioned range.
  • This range of iron oxide corresponds to the iron oxide content typically obtained from common raw materials.
  • the invention makes it possible in this case to obtain redox and optical transmissions as high as those obtained hitherto by low iron oxide glasses, produced from iron-poor raw materials (especially sands) and consequently more expensive.
  • compositions of these glasses may especially be of the soda-lime or borosilicate type.
  • Compositions of the soda-lime-calcium type are more suitable for float forming and are therefore preferred.
  • Silicone-soda-lime glass is understood to mean a glass having a composition comprising, in percentages by weight: SiO 2 60-75%
  • the content of K 2 O is preferably greater than or equal to 1.5%, as taught in application FR-A-2 921 357, since this makes it possible to further increase the energy transmission of the glass, and this facilitates the oxidation of the glass.
  • the K 2 O content is greater than or equal to 2%, in particular
  • a product obtainable for the first time thanks to the invention is a glass substrate, in particular of the silico-sodo-calcium type, the composition of which is devoid of oxides of arsenic, antimony and cerium, said composition comprising a total iron oxide content of less than or equal to 0.2% and a redox of less than or equal to 0.1, especially 0.08 and even 0.05 or even 0.03, or even zero.
  • the iron oxide content is less than or equal to 0.02% by weight, especially 0.01% and even 0.009%.
  • the iron oxide content is greater than 0.02%, especially between 0.05% and 0.15% by weight.
  • the glass substrate according to the invention may further contain oxygen bubbles, in particular bubbles whose diameter does not exceed 200 microns. Preferably, at least 95% of the bubbles or all the bubbles have a diameter of less than 200 microns.
  • the amount of bubbles may advantageously be between 500 and 10,000 bubbles per liter of glass, in particular between 500 and 6000 bubbles per liter of glass. As indicated above, it has been found that the presence of oxygen bubbles does not present any disadvantage for certain applications referred to below.
  • the soda-lime-silica glass composition can comprise, in addition to the unavoidable impurities contained in particular in the raw materials, a small proportion (up to 1%) of other constituents, for example agents which assist in melting or refining. glass (SO 3 , CI ...), or elements from the dissolution of refractories used for the construction of furnaces (eg ZrO 2 ).
  • the composition according to the invention preferably comprises no agent absorbing visible or infrared radiation (especially for a wavelength between 380 and 1000 nm) other than those already mentioned.
  • the composition according to the invention preferably does not contain agents chosen from the following agents: oxides of transition elements such as CoO, CuO, Cr 2 O 3 , MnO 2 , rare earth oxides such as Er 2 O 3 , CeO 2 , La 2 O 3 , Nd 2 O 3 , or alternatively elemental coloring agents such as Se, Ag, Cu.
  • oxides of transition elements such as CoO, CuO, Cr 2 O 3 , MnO 2 , rare earth oxides such as Er 2 O 3 , CeO 2 , La 2 O 3 , Nd 2 O 3 , or alternatively elemental coloring agents such as Se, Ag, Cu.
  • the content of WO 3 is generally less than 0.1%.
  • the glass substrates according to the invention are in the form of glass sheets.
  • the substrate is preferably of the float type, that is to say likely to have been obtained by a process of pouring the molten glass on a bath of molten tin. It can also be obtained by rolling between two rollers, technique in particular to print patterns on the surface of the glass. Some reasons may be advantageous, as explained below.
  • This substrate can in particular be used in photovoltaic cells, solar cells, flat or parabolic mirrors for the concentration of solar energy, or diffusers for backlighting of LCD-type display screens (liquid crystal displays). It can also be used for interior applications (partitions, furniture %), in household appliances (refrigerator shelves ).
  • the substrate may advantageously be coated with at least one transparent and electroconductive thin layer, for example based on SnO 2 : F, SnO 2 : Sb, ZnO: Al, ZnO: Ga.
  • These layers may be deposited on the substrate by various deposition methods, such as chemical vapor deposition (CVD) or sputtering deposition, in particular assisted by magnetic field (magnetron process).
  • CVD chemical vapor deposition
  • sputtering deposition in particular assisted by magnetic field (magnetron process).
  • magnetic field magnetic field
  • halide or organometallic precursors are vaporized and transported by a carrier gas to the surface of the hot glass, where they decompose under the effect of heat to form the thin layer.
  • the advantage of the CVD process is that it is possible to implement it in the process of forming the glass sheet, especially when it is a floating process. It is thus possible to deposit the layer when the glass sheet is on the tin bath, at the exit of the tin bath, or in the lehr, that is to say when the glass sheet is annealed to eliminate mechanical stress.
  • the glass sheet coated with a transparent and electroconductive layer may in turn be coated with an amorphous silicon semiconductor or polycrystalline or CdTe to form a photovoltaic cell. It may in particular be a second thin layer based on amorphous silicon or CdTe.
  • another advantage of the CVD process lies in obtaining a higher roughness, which generates a phenomenon of trapping light, which increases the amount of photons absorbed by the semiconductor.
  • the substrate may be coated on at least one of its faces with an antireflection coating.
  • This coating may comprise a layer (for example based on porous silica with a low refractive index) or several layers: in the latter case a stack of layers based on dielectric material alternating layers with low and high refractive indices and ending by a low refractive index layer is preferred. It may especially be a stack described in WO 01/94989 or WO 2007/077373.
  • the antireflection coating may also comprise in the last layer a self-cleaning and antisoiling layer based on photocatalytic titanium oxide, as taught in the application WO 2005/110937. It is thus possible to obtain a low reflection that is sustainable over time.
  • the antireflection coating is disposed on the outer face, that is to say the face in contact with the atmosphere, while the optional transparent electroconductive layer is disposed on the internal face, on the side of the semiconductor.
  • the surface of the substrate may be textured, for example present patterns (in particular pyramid), as described in the applications WO 03/046617, WO 2006/134300, WO 2006/134301 or WO
  • the process has also proved particularly advantageous for obtaining colorless lithium aluminosilicate glass-ceramic precursor glasses.
  • Glass or glass-ceramic of the "lithium aluminosilicate” type means a glass or glass-ceramic which comprises the following constituents within the limits defined below expressed in percentages by weight: SiO 2 52 - 75%
  • This glass or glass-ceramic may comprise up to 1% by weight of non-essential components which do not affect the melting of the glass or the subsequent devitrification leading to the glass-ceramic.
  • the lithium aluminosilicate glass or glass-ceramic comprises the following constituents within the limits defined below, expressed in weight percentages:
  • vitroceramics due to their almost zero thermal expansion coefficients, are extremely resistant to thermal shocks. Thereby, they are frequently used as hotplates, in particular covering heating elements, or chimney inserts.
  • These glass-ceramics are obtained by a two-step process: in a first step, precursor glass plates are obtained, which undergo in a second step a controlled crystallization treatment.
  • the precursor glass may, for example, undergo a ceramization cycle comprising the following steps: a) raising the temperature up to the nucleation range, generally situated in the vicinity of the transformation domain, in particular at 50-80 ° C. per minute, b) crossing the nucleation interval (670-800 ° C.) in about twenty minutes, c) raising the temperature up to the temperature T of the ceramic bearing between 900 and 1000 ° C. in 15 to 30 minutes, d ) maintaining the temperature T of the ceramic bearing for a time t of 10 to 25 minutes, e) rapidly cooling to room temperature.
  • a ceramization cycle comprising the following steps: a) raising the temperature up to the nucleation range, generally situated in the vicinity of the transformation domain, in particular at 50-80 ° C. per minute, b) crossing the nucleation interval (670-800 ° C.) in about twenty minutes, c) raising the temperature up to the temperature T of the ceramic bearing between 900 and 1000 ° C. in 15 to 30 minutes, d ) maintaining the
  • the presence, in the final glass-ceramic, of such crystals and of a residual vitreous phase makes it possible to obtain a coefficient of thermal expansion that is generally zero or very low (the absolute value of the coefficient of expansion is typically less than or equal to 15 ⁇ 10 -7. / ° C, or even 5.10 "7 V 0 C).
  • the size of the crystals of ⁇ -quartz structure is generally very small so as not to diffuse the visible light.
  • the vitroceramics thus obtained are therefore transparent, and may show a coloration if coloring agents are added during the melting.
  • the crystals of ⁇ -spodumene structure are obtained by treatments at higher temperatures, and generally have larger sizes. They can diffuse visible light, giving rise to translucent but non-transparent glass-ceramics.
  • the glass is traditionally refined with the aid of refining agents such as Sb 2 O 5 or As 2 O 5 , the disadvantages of which have already been mentioned.
  • metal sulfides make it possible to obtain a very good refining quality and are compatible with the floating process (float process).
  • These metal sulphides in combination with the other elements of the glass, however, give a blue color to the glass obtained and the glass-ceramic from the precursor glass.
  • This disadvantage does not exist in the case of tinted vitroceramics, such as dark red glass ceramics obtained by staining with vanadium oxide.
  • colorless glass-ceramics whether translucent or transparent, the use of sulphides as refining agents has, on the contrary, proved to be unsuitable.
  • the method according to the invention solves this problem.
  • the inventors have indeed discovered that the undesirable blue color was related to the reduction, during the melting step, of the Ti 4+ ion to Ti 3+ ion by the sulphides.
  • the method according to the invention makes it possible, after the refining step, to restore the absence of color by reoxidation of the titanium ion.
  • the glass is a glass-ceramic precursor glass of the colorless lithium aluminosilicate type, and at least one reducing agent is added to the raw materials.
  • Precursor glass means any glass capable of forming a glass ceramic after appropriate ceramization treatment.
  • the reductant is preferably selected from a carbon reductant such as coke, or metal sulfides.
  • the coke disappears during the melting by turning into gaseous CO 2 .
  • the metal sulphide is preferably chosen from transition metal sulphides, for example zinc sulphide, alkali metal sulphides, for example potassium sulphide, sodium sulphide and lithium sulphide, and alkali metal sulphides. -errous, for example calcium sulphide, barium sulphide, magnesium sulphide and strontium sulphide.
  • the preferred sulfides are zinc sulphide, lithium sulphide, barium sulphide, magnesium sulphide and strontium sulphide.
  • Zinc sulphide has proved particularly advantageous because it does not help to color the glass or ceramic. It is also preferred when the ceramic glass must contain zinc oxide: in this case zinc sulphide plays a dual role of reducing / refining and source of zinc oxide.
  • the sulphide can also be introduced into vitrifiable raw materials in the form of a sulphide-enriched slag or glass frit which has the advantage of accelerating the digestion of the unmelted, of improving the chemical homogeneity of the glass. and its optical quality.
  • slags also contain a significant amount of iron which reduces infrared transmission. From this point of view, it is preferable to use glass frits whose chemical composition, in particular of iron, can be perfectly controlled.
  • the sulphide is added to the vitrifiable materials in an amount of less than 2%, advantageously less than 1% and more preferably between 0.07 and 0.8% of the total weight of batch materials.
  • the reducing agent is associated with an oxidizing agent, preferably a sulphate.
  • the sulphates have the advantage of not forming dye species in glass or glass-ceramic. Tin oxide, on the other hand, gives a yellow color, and therefore can not be used as an oxidizer.
  • the sulphate may in particular be a sulphate of sodium, of lithium, or of magnesium.
  • the sulphate contents introduced are preferably between 0.2 and 1% by weight, especially between 0.4 and 0.8%, expressed as SO 3 .
  • the reducing agent is a sulphide and the oxidant a sulphate
  • the mass quantity of sulfur provided by the sulphide represents more than 60% or even 70% of the total sulfur introduced.
  • the reducer is coke
  • the coke / sulfate ratio introduced is greater than or equal to 0.15, in particular 0.18 and even 0.20. In this way, excellent quality refining is ensured as well as fast melting.
  • the melting temperature of the raw materials is less than or equal to 1700 ° C., and advantageously greater than 1600 ° C.
  • the temperature of the precursor glass during the bubbling is preferably between 1550 ° C. and 1650 ° C.
  • the subject of the invention is also a colorless glass or vitroceramic substrate of the lithium aluminosilicate type.
  • This object is characterized in that it is free of arsenic oxide, antimony oxide, cerium oxide and tin oxide, and contains less than 1 bubble per cm 3 .
  • the amount of bubbles is preferably less than or equal to 10 "2, 10 or" 3 of bubble / cm 3. It preferably contains sulfur in analyzable quantity, in particular in a weight content of between 10 and 500 ppm of SO 3 , and even between 10 and 100 ppm of SO 3 .
  • Such colorless or well-refined glasses or glass-ceramics could previously only be obtained by the use of refining agents such as arsenic or antimony oxides.
  • the invention makes it possible for the first time to lead to colorless glass-ceramics free of such agents and still well-refined in the sense that they do not contain gaseous inclusions. It is of course possible to obtain, at the laboratory scale, colorless glass-ceramics without any refining agent, but the absence of refining agents necessarily generates a large quantity of bubbles.
  • the glass-ceramics according to the invention are preferably transparent and generally contain in this case crystals which are solid solutions of the ⁇ -quartz type.
  • colorless means the substantial absence of color visible to the naked eye. A material totally devoid of color is obviously impossible to obtain, and this lack of color can be expressed by the fact that the colorimetric coordinates a * and b * are both between -10 and +10, in particular between -2 and +6, for a thickness of 3 mm.
  • the coordinate a * is between -2 and +1, and / or the coordinate b * is between 0 and +6, in particular between 0 and +5.
  • a very positive a * coordinate is red, and very negative, green.
  • a very positive b * coordinate corresponds to a yellow color, and very negative, to a blue color.
  • the glass-ceramic or the precursor glass according to the invention are preferably transparent (and not only translucent).
  • the L * coordinate is greater than or equal to 80, even 90 and even 92, and / or that the light transmission (T L ) is greater than or equal to 80% or even 85%.
  • bubble means any type of gaseous inclusions, without prejudging their size or the composition of the gases they contain.
  • the glass or glass-ceramic according to the invention preferably does not contain the following oxides: Fe 2 O 3 , NiO, Cr 2 O 3 , CuO, CoO, Mn 3 O 4 and V 2 O 5 , with the exception of unavoidable impurities in levels sufficiently low not to affect the desired colorlessness.
  • the iron oxide content is preferably less than or equal to 0.05%, or even 0.02% so not to give color to the product obtained.
  • These substrates may in particular be used as cooking plates, in particular covering heating elements, or chimney inserts.
  • the glass bath obtained is of the lithium aluminosilicate type: it is a precursor glass intended to be ceramized in order to obtain a glass-ceramic.
  • the raw materials are chosen to obtain a glass bath with the following average weight composition: SiO 2 68.6%
  • the melting point is approximately 1600 ° C. to 1650 ° C.
  • the refining is carried out either with the aid of arsenic oxide (example C1, in which 0.6% of arsenic oxide is introduced with raw materials), ie (examples C2 and 1 et seq.) using zinc sulphide (ZnS, at a level of 0.12% of sulfur, ie 0.3% of SO 3 ) combined with sulphate of sodium (0.13% SO 3 ).
  • ZnS zinc sulphide
  • the sulphide / sulphate ratio introduced is such that the sulphide provides 70% of the total sulfur, which allows refining of excellent quality.
  • oxygen is optionally bubble within the glass bath using a rhodium-plated platinum tube pierced with a multitude of holes with a diameter of 50 micrometers.
  • the size of the bubbles is about 1 cm.
  • Comparative Example C1 corresponds to a colorless and transparent glass ceramic, the precursor glass of which has been conventionally refined with the aid of arsenic oxide. The precursor glass was not bubbled according to the invention.
  • Comparative example C2 corresponds to a glass-ceramic whose precursor glass has been refined using a mixture of sulphate and sulphide (in this case zinc sulphide).
  • the glass ceramic obtained has a very pronounced blue tint, characterized by a value of b * very negative.
  • the light transmission is very weak, so that the vision through the glass ceramic is greatly reduced.
  • the precursor glass, refined in the same manner as for example C2 was bubble with oxygen.
  • oxygen 0.5 liter per kg of glass
  • bubbling at 1600 ° C. makes it possible to obtain a less blue glass ceramic while bubbling at a slightly lower temperature (1560 ° C.) makes it possible to obtain a colorless glass ceramic, although less transmissive than the glass-ceramic C1.
  • the glass ceramic obtained has optical properties similar to those of the conventional glass ceramic C1.
  • the method according to the invention therefore makes it possible to obtain colorless glass-ceramics without the precursor glass having been refined using oxides of arsenic, antimony or tin.
  • Soda-lime-type glasses containing 100 ppm of iron oxide (expressed as Fe 2 O 3 ) were melted in a flame furnace (discontinuous fusion in pots). After refining, so when the glass is free of any gaseous inclusion, oxygen is optionally bubble within the glass bath using a rhodium-plated platinum tube pierced with a multitude of holes whose diameter is 50 micrometers. The size of the bubbles is about 1 cm.
  • Comparative Example C3 is a glass containing antimony oxide Sb 2 O 3 , the latter acting as a refining agent and iron oxidizer. He was not bubble.
  • the refining is carried out using sulphate.
  • the glass does not include any arsenic, antimony or cerium oxide.
  • Table 2 indicates for each example the temperature of the glass during bubbling, the amount of oxygen bubbled (in liters per kg of glass), and the redox of the glass obtained.
  • the reference example is highly oxidized (redox of 0.05) thanks to the presence of antimony oxide.
  • the bubbling according to the invention makes it possible in certain cases, in particular for quantities of oxygen introduced greater than 0.5 l / kg of glass and bubbling temperatures of between 1200 and 1350 ° C., to obtain even lower redoxes. .
  • bubbling carried out before or during refining does not make it possible to obtain such redoxes.
  • the glass is all the more oxidized as the amount of oxygen bubble is important. For the same amount of oxygen, there is a temperature optimum, since high temperatures tend to favor high redox while at lower temperatures the kinetics of oxidation is reduced.
  • a throat and a resurgence is melted a glass of the silico-soda-lime type, which is then floated in order to obtain glass sheets 2.9 mm thick.
  • An oxygen bubbling device consisting of a platinum piece pierced with a multitude of orifices with a diameter of 50 microns is immersed in the glass bath at the level of the resurgence, where the temperature of the glass is range of 1350 to 1400 ° C.
  • the oxygen flow rate varies between 2 and 5
  • the bubbling makes it possible to very lowly reduce the redox, from about 0.4 before bubbling to a value of between 0.05 and 0, 1 during bubbling.
  • the introduction of refractory pieces of chromium oxide near the bubbling device even allows to obtain a zero redox.
  • the energy transmission of the glass obtained is greater than 91.5%.
  • the redox obtained of the order of 0.11 to 0.14, makes it possible to obtain optical properties equivalent to those of a glass containing 0.014% iron oxide without bubbling.
  • the oven has a groove and a resurgence and is placed in the latter a row of 10% rhodium-plated platinum bubblers each formed of a tube pierced with a multitude of orifices whose diameter is between 50 and 100 micrometers.
  • the refined glass arrives in the resurgence where the temperature is 1325 ° C.
  • the flow rate of oxygen varies between 0 and 1 NL / kg of glass, forming bubbles within the melted glass whose diameter is approximately between 1 and 2 cm.
  • Table 4 shows the redox obtained as a function of the oxygen flow rate. It can be seen that the redox can be zero for flow rates of the order of 0.46 NL / kg or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

L'invention a pour objet un procédé continu d'élaboration de verre comprenant les étapes successives d'enfournement de matières premières pulvérulentes, d'obtention d'un bain de verre par fusion, d'affinage puis de refroidissement. Le procédé est caractérisé en ce que l'on bulle un gaz oxydant au sein dudit bain de verre après l'étape d'affinage.

Description

PROCEDE D'ELABORATION DE VERRE
L'invention se rapporte au domaine de la fusion du verre. Elle concerne plus particulièrement un procédé permettant de régler le degré d'oxydoréduction du verre, et les produits obtenus par ce procédé.
La fusion du verre se fait généralement à l'aide d'un procédé continu mettant en œuvre un four. A l'extrémité amont du four sont introduites des matières premières pulvérulentes (telles que par exemple sable, calcaire, dolomie, carbonate de sodium, acide borique, alumine, feldspaths, spodumène...). Ces matières non-encore fondues forment un tapis qui s'étend au-dessus du bain de verre dans une zone située en amont du four. Les matières premières pulvérulentes sont en effet moins denses que le verre fondu et flottent sur ce dernier. Le four est généralement chauffé à l'aide d'au moins un brûleur aérien, dont la ou chaque flamme s'étend au-dessus de cette zone ainsi qu'au- dessus de zones situées plus en aval et non recouvertes par ce tapis de matières non fondues. Le four peut par exemple comprendre plusieurs brûleurs aériens, développant chacun une flamme dans une direction sensiblement perpendiculaire au déplacement du verre. Sous l'effet du rayonnement émis par la ou chaque flamme du au moins un brûleur, les matières pulvérulentes fondent et/ou réagissent chimiquement les unes avec les autres de manière à créer un bain de verre fondu.
Ce bain de verre est toutefois rempli d'inclusions gazeuses (ou bulles), car les réactions chimiques subies par les matières premières pulvérulentes dégagent pour certaines de grandes quantités de gaz (par exemple du CO2 pour la décarbonatation du calcaire ou du carbonate de sodium). Le verre doit être débarrassé de ces inclusions gazeuses lors d'une étape appelée étape d'affinage. Cette étape se produit généralement à une température plus élevée que l'étape de fusion, car les hautes températures ont pour effet de diminuer la viscosité du verre, accélérant ainsi la remontée des bulles dans le bain de verre et leur élimination à la surface dudit bain de verre. La montée des bulles est d'autant plus rapide que les bulles sont de grand diamètre. Une technique d'affinage couramment employée consiste alors à permettre un dégagement gazeux au sein du bain de verre : les bulles ainsi formées vont coalescer avec les bulles résiduelles du bain de verre, formant des bulles de grand diamètre dont la vitesse d'élimination est élevée. Ce dégagement gazeux est souvent obtenu pendant l'affinage par la réduction thermiquement assistée d'espèces initialement oxydées, par exemple d'espèces telles que Sb2O5, As2O5, CeO2 ou SnO2. Ces espèces, appelées agents affinants, sont introduites en petites quantités avec les autres matières premières. Pour jouer pleinement leur rôle de dégagement d'oxygène, il importe que ces espèces soient initialement très majoritairement présentes dans leur degré d'oxydation le plus élevé. Pour ce faire, il est connu d'introduire ces agents conjointement avec des agents chimiques oxydants tels que des nitrates.
Une fois le verre affiné, c'est-à-dire débarrassé de ses inclusions gazeuses, il est ensuite progressivement refroidi jusqu'à des températures où sa viscosité rend possible sa mise en œuvre ou formage. Schématiquement, un procédé continu d'élaboration du verre comprend les étapes successives suivantes, correspondant à des zones différentes du four : enfournement, fusion, puis affinage et enfin refroidissement (ou braise).
Il est connu de buller des gaz oxydants (notamment l'oxygène) dans le bain de verre durant l'étape de fusion ou d'affinage du verre, voire près de la zone d'enfournement. Ce bullage a généralement pour but d'oxyder des impuretés organiques pouvant être mélangées aux matières premières (tel que décrit dans la demande EP-A-O 261 725), ou de maintenir des agents d'affinage tels que ceux susmentionnés dans un degré d'oxydation élevé. Les demandes ou brevets US 2007/0022780 et US 6,871 ,514 décrivent par exemple des procédés dans lesquels un bullage d'oxygène réalisé durant l'enfournement ou la fusion (à une température plus basse que la température d'affinage) permet de stabiliser les agents d'affinage dans leur degré d'oxydation le plus élevé, favorisant ainsi l'affinage ultérieur. La demande FR 2 187 709 décrit quant à elle le bullage d'oxygène durant l'étape de fusion ou d'affinage afin d'homogénéiser le verre fondu. La demande US 2008/0034799 décrit enfin le bullage d'oxygène durant la fusion et l'affinage de verres spéciaux (verres contenant de fortes teneurs en oxydes de métaux lourds comme le tantale, le plomb ou le bismuth) afin d'éviter la réduction de ces oxydes en métaux. Les inventeurs ont maintenant mis en évidence qu'un bullage de gaz oxydant réalisé après l'étape d'affinage pouvait présenter certains avantages, notamment en termes d'oxydoréduction du verre formé. Ces avantages sont explicités dans la suite du texte. Le procédé selon l'invention s'est notamment révélé particulièrement intéressant pour obtenir des verres à très bas rédox, donc des verres très oxydés, sans utilisation d'oxydants chimiques.
L'invention a donc pour objet un procédé continu d'élaboration de verre comprenant les étapes successives d'enfournement de matières premières pulvérulentes, d'obtention d'un bain de verre par fusion, d'affinage puis de refroidissement. Le procédé est caractérisé en ce que l'on bulle un gaz oxydant au sein dudit bain de verre après l'étape d'affinage.
On entend par fusion toute réaction ou ensemble de réactions chimiques permettant d'obtenir une masse de verre fondu à partir de matières premières à l'état solide. Il ne s'agit généralement pas d'une fusion au sens physique du terme, même si des réactions de fusion proprement dite peuvent intervenir dans le processus global de fusion.
On entend par étape d'affinage toute étape durant laquelle les inclusions gazeuses contenues dans le bain de verre sont éliminées. Il peut notamment s'agir d'un affinage chimique, au sens où des agents d'affinage sont introduits avec les matières premières. Ces agents d'affinage sont à l'origine de dégagements gazeux durant les étapes de fusion et d'affinage. Les agents d'affinage peuvent notamment être choisis parmi les oxydes d'arsenic, d'antimoine, de cérium ou d'étain, les sulfates (notamment le sulfate de sodium, ou encore de calcium, appelé gypse), les sulfures (par exemple le sulfure de zinc), ou encore les halogènes, notamment les chlorures (par exemple le chlorure de calcium ou de baryum), ou un de leurs mélanges. Des mélanges possibles sont par exemple l'oxyde d'étain et/ou d'antimoine et des halogènes comme des chlorures. Un autre mélange possible est la combinaison entre les sulfates et des espèces réduites, comme le coke ou des sulfures. Le verre est de préférence un verre à base de silice, c'est-à-dire contenant plus de 50%, notamment 60% en poids de SiO2. Il contient de préférence moins de 1 %, voire moins de 0,5% ou une quantité nulle d'oxydes de métaux lourds tels que Ta, Bi, Pb, Nb, Sb. Selon l'invention, le bullage de gaz oxydant est réalisé soit entre les étapes d'affinage et de refroidissement, soit pendant l'étape de refroidissement. Un bullage au moment du refroidissement est préféré dans certains cas car il a été observé que les températures plus basses favorisaient les espèces les plus oxydées. Dans tous les cas, il est important que le bullage ait lieu dans un bain de verre bien affiné, c'est-à-dire substantiellement exempt d'inclusions gazeuses avant bullage. La température du bain de verre au moment du bullage peut être soit égale ou proche de la température d'affinage, soit, plus généralement, inférieure à cette température d'affinage. De préférence, le bullage de gaz oxydant n'est réalisé qu'après l'étape d'affinage. Dans ce cas, aucun bullage de gaz oxydant n'est réalisé pendant la fusion ou l'affinage du verre, car ce type de bullage s'est révélé peu efficace pour obtenir les avantages liés à l'invention.
Le gaz oxydant contient de préférence de l'oxygène. Il peut s'agir en particulier d'oxygène pur, ou d'un mélange d'oxygène avec un autre gaz, notamment un gaz neutre tel que l'azote ou l'argon. Le gaz oxydant ne contient de préférence pas de gaz contenant du carbone, comme le gaz carbonique (CO2) ou des hydrocarbures. L'oxygène pur est préféré car son pouvoir oxydant est beaucoup plus efficace. De l'oxygène comprenant de la vapeur d'eau est également utilisable, car il s'est révélé que l'eau augmentait la cinétique de diffusion de l'oxygène dans le verre.
Il est préférable que le bullage crée au sein du bain de verre des bulles dont le diamètre moyen est compris entre 0,05 et 5 cm, notamment entre 0,5 et 5 cm, voire entre 1 et 2 cm. Des bulles de trop faible diamètre risquent en effet de rester emprisonnées dans le verre du fait de leur faible vitesse ascensionnelle. Le bullage réalisé en aval du procédé présente en effet vis-à-vis de la qualité d'affinage les deux risques potentiels suivants : une température généralement plus basse que la température d'affinage et un temps de séjour réduit avant le formage. Il importe donc que les bulles obtenues soient relativement grosses afin de pouvoir être totalement éliminées avant le formage. Des bulles de trop grand diamètre présentent toutefois l'inconvénient de limiter les échanges physicochimiques entre le gaz et le bain de verre, et par conséquent de limiter l'efficacité d'oxydation du verre. Une baisse importante et/ou trop brutale des températures du bain de verre peut également être occasionnée par des bulles de trop grand diamètre. La taille de bulles peut être adaptée en jouant sur différents facteurs, parmi lesquels figurent le débit de gaz et la viscosité du verre. Si la présence de bulles dans le verre final est indésirable, il est possible de réaliser une deuxième étape d'affinage après bullage. Généralement cette deuxième étape d'affinage ne nécessitera pas de réchauffage du verre ou l'ajout d'agents d'affinage, mais seulement une diminution de la hauteur du verre et/ou du temps de séjour afin d'éliminer les bulles de manière naturelle. Pour certaines applications toutefois, notamment les applications dans le domaine du photovoltaïque ou des miroirs solaires, il s'est révélé qu'un petit nombre de bulles pouvait être présent dans le verre final, sans pénaliser aucunement les propriétés du verre.
La quantité de gaz oxydant bullée au sein du bain de verre est de préférence telle que la quantité totale d'oxygène (O2) introduite dans ledit bain de verre est comprise entre 0,01 et 20 litres par kilogramme de verre. Cette quantité est de préférence comprise entre 0,1 et 10 litres par kilogramme de verre, notamment entre 0,1 et 5 litres par kilogramme de verre. La quantité totale d'oxygène introduite va dépendre de la composition en oxygène du gaz oxydant, du débit total de gaz oxydant, du temps de séjour du verre dans le four, de la quantité de verre, de la température, de la composition chimique du verre... Pour un verre du type silico-sodo-calcique tel que décrit par la suite, la quantité d'oxygène introduite est de préférence comprise entre 0,1 et 1 litre par kilogramme de verre, notamment entre 0,2 et 0,9 litres par kilogramme de verre. Pour un verre précurseur de vitrocéramique du type aluminosilicate de lithium, explicité dans la suite du texte, la quantité d'oxygène introduite lors du bullage est de préférence comprise entre 0,5 et 2 litres par kilogramme de verre. Dans tout le texte, l'expression « litre » doit être comprise comme « normo-litre ».
La température du verre lors du bullage a deux effets contradictoires. Sur le plan thermodynamique, il s'est révélé que les températures les plus basses étaient susceptibles de favoriser l'obtention d'espèces oxydées dans le verre. De faibles températures s'accompagnent toutefois de cinétiques de réaction d'oxydation qui sont lentes. En outre, la vitesse de montée des bulles à faible température est très lente, ce qui entraîne le risque de laisser des bulles emprisonnées au moment du formage. Pour un degré d'oxydation final désiré, il existe par conséquent un optimum en termes de température, qui dépend de la viscosité du verre et donc de sa composition chimique. La viscosité du verre lors du bullage est de préférence comprise entre 100 et 1000 Poises (1 Poise = 1 dPa.s), de préférence entre 300 et 600 Poises, ce qui correspond à des gammes de températures différentes selon la nature du verre. Pour un verre du type silico- sodo-calcique tel que décrit par la suite, la température du verre lors du bullage est de préférence comprise entre 1200 et 14500C, notamment entre 1200 et 13000C ou entre 1300°C et 14500C. Pour un verre précurseur de vitrocéramique du type aluminosilicate de lithium, explicité dans la suite du texte, la température du verre lors du bullage est de préférence comprise entre 1550 et 1650°C.
Différents moyens de bullage de gaz oxydant peuvent être utilisés dans le cadre du procédé selon l'invention.
Un mode de réalisation préféré consiste à buller le gaz oxydant au moyen d'au moins une pièce métallique (plaques, tubes...) percée d'une pluralité de trous. La pièce est de préférence sous forme d'un tube à l'intérieur duquel est injecté le gaz oxydant. La partie perforée est de préférence située à l'extrémité dudit tube. Le métal est de préférence à base de platine, car ce métal présente un point de fusion très élevé et une relative inertie chimique au contact du verre fondu, et résiste à l'oxydation. Il peut être en platine pur, ou en alliages de platine, notamment en alliages de platine et de rhodium. Un alliage de platine contenant entre 5 et 25% de rhodium présente une meilleure tenue mécanique que le platine pur mais résiste moins bien à l'oxydation. Le platine dopé, notamment le platine stabilisé à la zircone est préféré. Le métal peut également présenter un point de fusion plus bas que celui du platine : il peut par exemple être un acier, notamment un acier réfractaire, qui sera dans ce cas de préférence refroidi, notamment par circulation d'eau. Compte tenu de leur influence sur la taille des bulles, il est préférable que la taille des trous soit comprise entre 10 et 500 micromètres, notamment entre 50 et 200 micromètres ou entre 10 et 150 micromètres, voire entre 30 et 60 micromètres. Il est préférable que la distance entre les trous soit supérieure ou égale à l'épaisseur du tube afin de ne pas risquer de fragiliser le tube. La réalisation de trous d'aussi petite taille dans le tube métallique est de préférence réalisée à l'aide d'un faisceau laser ou de moyens mécaniques (par exemple à l'aide d'un foret). Un autre mode de réalisation consiste à buller le gaz oxydant au moyen d'au moins une pièce en céramique réfractaire poreuse. La pièce est de préférence sous forme d'un tube à l'intérieur duquel est injecté le gaz oxydant. La céramique poreuse peut être par exemple une mousse en céramique. Des céramiques à base d'oxyde de chrome (Cr2O3) sont préférées du fait de la bonne résistance de cet oxyde au contact du verre. D'autres avantages de l'oxyde de chrome sont explicités dans la suite du texte. D'autres céramiques telles que la zircone ou l'alumine sont également utilisables. La zircone est particulièrement intéressante car il a été observé que des réfractaires de zircone plongés dans le bain de verre étaient capables de dégager de fortes quantités d'oxygène.
Le mode d'injection du gaz oxydant peut être soit continu, soit en mode puisé. Le mode puisé consiste à injecter le gaz, par exemple dans les tubes décrits ci-dessus par impulsions successives de gaz sous haute pression avec un temps caractéristique d'impulsion et une période contrôlés. La pression varie de préférence de 0,5 à 5 bars. Le temps d'impulsion varie de préférence de 10 à 500 ms et la fréquence de préférence de 0,05 à 2 Hz. A la fin de chaque impulsion la pression dans le tube est instantanément baissée jusqu'à la pression hydrostatique du tube. Avec cette technique, à chaque impulsion, une bulle unique se forme à chaque trou, bulle qui se décroche du tube entre 2 impulsions successives du fait de la chute de pression.
Cette technique permet de contrôler la taille des bulles (et notamment d'obtenir des bulles plus petites) et également de s'assurer du bullage par tous les trous.
Un autre mode de réalisation consiste à créer des bulles d'oxygène par des réactions d'électrochimie ou d'électrolyse. Une électrode (anode) est plongée dans le verre, et une différence de potentiel de quelques volts est établie entre cette anode et une contre-électrode (cathode). Un courant continu circule entre l'anode et la cathode, qui génère deux types de réactions : des bulles d'oxygène sont créées au contact de l'anode, et une réduction du verre a lieu au contact de la cathode. Les réactions de réduction sont diverses ; il peut en particulier s'agir de réduction d'ions métalliques en métaux, par exemples les ions ferriques ou ferreux en fer métal, voire même les ions silicium en silicium métal. La cathode est donc de préférence disposée à un endroit du four tel qu'un drain, de manière à pouvoir éliminer le verre pollué par ces métaux. La cathode est de préférence en molybdène, qui résiste aux températures élevées et aux réactions de réduction. L'anode est de préférence en platine, éventuellement allié, par exemple avec du rhodium. Elle est avantageusement placée dans le four de manière à maximiser le contact avec le verre fondu. Elle peut par exemple être sous forme de plaque disposée transversalement au sens de circulation du verre. La distance entre l'anode et la cathode ne doit pas être trop importante de manière à ne pas empêcher la conduction ionique au sein du verre fondu. La différence de potentiel entre l'anode et la cathode est de préférence comprise entre 1 et 10 V, notamment entre 2 et 5 V. La densité de courant est réglée de manière à générer la quantité de bulles désirée. Elle est généralement comprise entre 2 et 10 mA/cm2.
Le procédé d'élaboration selon l'invention est généralement mis en œuvre dans un four de fusion. Le four de fusion est communément constitué de réfractaires, en général des céramiques telles que les oxyde de silicium, d'aluminium, de zirconium, de chrome, ou les solutions solides d'oxydes d'aluminium, de zirconium et de silicium. L'oxyde de chrome s'est révélé particulièrement avantageux car, en combinaison avec le bullage de gaz oxydant, sa présence permet de diminuer encore le rédox du verre. Il semblerait que le bullage de gaz oxydant, en présence d'oxyde de chrome, génère au sein du verre et/ou à la surface du réfractaire, des espèces oxydées du chrome, lesquelles vont à leur tour oxyder les ions ferreux contenus dans le bain de verre. Il est donc préférable que des pièces réfractaires en oxyde de chrome soient disposées à proximité de la zone où a lieu le bullage. Ces pièces peuvent être des réfractaires constituant le four ou une partie de celui-ci. Alternativement ou cumulativement, elles peuvent être des pièces rajoutées spécialement pour la mise en œuvre du procédé selon l'invention.
Le four comprend en général une voûte supportée par des piédroits formant les parois latérales du four, des pignons amont et aval et une sole. Dans un procédé de fusion continu, on peut distinguer l'amont du four, qui correspond à la zone d'enfournement des matières premières, puis les zones plus en aval : la zone de fusion dans laquelle les matières premières sont transformées en verre fondu, puis la zone d'affinage, dans laquelle le bain de verre fondu est débarrassé de toute inclusion gazeuse, puis la zone de refroidissement, appelée braise, dans laquelle le verre est progressivement refroidi jusqu'à la température de formage, et enfin la zone de conditionnement thermique, où le verre est maintenu à sa température de formage, avant la zone de formage. La zone de formage n'est pas partie intégrante du four. Dans certains cas, la zone de refroidissement ou de conditionnement thermique est également située hors du four, généralement dans des canaux ou « feeders » menant le verre fondu jusqu'à la zone de formage.
Le four peut être du type électrique, c'est-à-dire être chauffé à l'aide d'électrodes, généralement en molybdène, immergées dans le bain de verre. Le four est toutefois de préférence chauffé à l'aide de brûleurs. Le four comprend de préférence plusieurs brûleurs aériens disposés au niveau des parois latérales du four, chacun des desdits brûleurs étant susceptible de développer une flamme transversalement à l'axe du four. On entend par « brûleur aérien » un brûleur développant une flamme située au-dessus du bain de verre fondu, et susceptible de chauffer ce bain de verre par rayonnement. Il est également possible que le four contienne d'autres types de brûleurs, notamment des brûleurs capables de chauffer le bain de verre par conduction, par exemples des brûleurs situés en voûte ou en pignon et dont la flamme impacte le bain de verre, ou encore des brûleurs immergés, au sens où la flamme se développe au sein du bain de verre.
Les brûleurs aériens sont de préférence disposés régulièrement depuis l'amont vers l'aval du four et/ou sont agencés par paires de brûleurs se faisant face ou en quinconce, les brûleurs de chaque paire fonctionnant en alternance de manière à ce qu'à un instant donné seuls les brûleurs disposés au niveau d'une des parois latérales développent une flamme.
Ce type de four est parfois appelé « four à brûleurs transversaux ». L'alternance du fonctionnement des paires de brûleurs permet d'utiliser des régénérateurs, au travers desquels les gaz de combustion et le comburant sont obligés de passer. Constitués d'empilements de pièces réfractaires, les régénérateurs permettent de stocker la chaleur émise par les gaz de combustion et de restituer cette chaleur au gaz comburant. Dans une première phase de l'alternance, les régénérateurs situés au niveau des brûleurs qui ne fonctionnent pas (ces brûleurs sont disposés au niveau d'une première paroi) stockent l'énergie émise par les flammes développées par les brûleurs situés au niveau d'une deuxième paroi, qui fait face à la première paroi. Dans une deuxième phase de l'alternance, les brûleurs disposés au niveau de la deuxième paroi s'arrêtent, tandis que les brûleurs disposés au niveau de la première paroi se mettent à fonctionner. Le gaz de combustion (dans ce cas, en général de l'air), qui passe dans régénérateurs, est alors préchauffé, ce qui permet des économies d'énergie substantielles.
Le four comprend de préférence, depuis l'amont vers l'aval, une première cuve délimitant la zone de fusion du verre puis la zone d'affinage, puis une deuxième cuve délimitant une zone de refroidissement ou d'homogénéisation du verre fondu. Lorsque la deuxième cuve délimite une zone de refroidissement, il est préférable que tous les brûleurs soient disposés au niveau de la première cuve. En général un zone de transition appelée corset et se présentant sous la forme d'une cuve de section plus étroite sépare les deux cuves précédemment décrites. Il est également possible que les deux cuves soient séparées par un mur en réfractaires s'enfonçant dans le bain de verre depuis la voûte, ménageant une gorge au niveau de la sole, où le verre est forcé de passer pour aller de la première vers la deuxième cuve. La zone de la deuxième cuve située immédiatement après la gorge est couramment appelée « résurgence ». Le four peut également comprendre une troisième zone servant à une deuxième étape d'affinage. Dans cette zone, la hauteur du bain de verre est faible afin de faciliter l'élimination des bulles par remontée naturelle.
Le ou chaque moyen de bullage est disposé dans le four au niveau d'une zone dans laquelle le verre affiné est refroidi ou s'apprête à être refroidi. Dans le cas des fours à deux cuves qui viennent d'être décrit, le ou chaque moyen de bullage est donc de préférence disposé au niveau de cette deuxième cuve, ou le cas échéant au niveau du corset, de la gorge ou de la résurgence. Le moyen de bullage peut par exemple se présenter sous la forme d'une pluralité de plaques ou de tubes disposés perpendiculairement au sens de circulation du verre. Dans certains fours, des courants de convection sont créés du fait de l'existence de points chauds (en particulier au niveau de la zone d'affinage). Ces courants de convection, qui peuvent être accentués par le choix de la géométrie du four, contribuent à l'obtention d'un verre homogène. Compte tenu de ces courants de convection, une partie du verre qui est affiné est ramenée vers la zone de fusion, tandis que l'autre partie est acheminée vers la zone de formage. Dans le cas, par exemple, des fours où le verre de surface est soutiré en vue du formage, la partie du verre sous la surface est ramenée vers le point chaud. Les températures élevées ayant tendance à favoriser les espèces réduites, il n'est pas préférable de buller le gaz oxydant au niveau de cette partie du bain de verre. Il est au contraire préférable de buller le gaz oxydant au niveau de la partie du verre qui est acheminée vers la zone de formage, donc près de la surface du verre. Pour un verre contenant de l'oxyde de fer, l'oxydation du verre peut être caractérisée par le « rédox », qui est un nombre égal au rapport entre la teneur en fer ferreux (exprimée en pourcentage massique de FeO) et la teneur en fer total dans le verre (exprimée en pourcentage massique de Fe2O3). La teneur en fer ferreux est déterminée par analyse chimique : la détermination à l'aide du spectre optique, usuelle pour les verres contenant au moins 0,02% de FeO, est ici totalement inadaptée et conduit à sous-estimer grandement la véritable teneur en FeO dans le verre.
Selon un mode de réalisation préféré, le verre obtenu présente un rédox inférieur ou égal à 0,1 , notamment 0,08 et même 0,05 ou 0,03. Le rédox peut même être égal à 0. Des rédox nuls peuvent être obtenus, en particulier mais pas seulement, en utilisant des pièces en oxyde de chrome au contact du bain de verre.
Le procédé selon l'invention s'est en effet révélé particulièrement intéressant pour obtenir des verres à très bas rédox. Ces verres ne pouvaient jusqu'alors être obtenus que par voie chimique, en l'occurrence par l'ajout d'agents oxydants tels quΑs2O5, Sb2O5 ou CeO2. Ces agents oxydants (qui sont aussi des agents d'affinage) ne sont toutefois pas dénués d'inconvénients. Ainsi, les oxydes d'arsenic et d'antimoine, outre leur toxicité, ne sont pas compatibles avec le procédé de flottage du verre (procédé float), qui consiste à former une feuille de verre en déversant le verre en fusion sur un bain d'étain en fusion. L'oxyde de cérium entraîne quant à lui des risques de solarisation, c'est-à-dire de modification des propriétés optiques du verre sous l'effet du rayonnement ultraviolet. Les inventeurs ont mis en évidence qu'il existait une température optimale du verre lors du bullage en fonction du rédox visé.
Ainsi, pour un rédox de l'ordre de 0,1 et un verre du type silico-sodo- calcique, la température du verre lors du bullage est de préférence comprise entre 13500C et 14500C. Pour un rédox de l'ordre de 0,06, la température du verre lors du bullage est de préférence comprise entre 1250°C et 13500C. Pour un rédox de moins de 0,05, la température du verre lors du bullage est de préférence comprise entre 1150°C et 1250°C. Pour un verre de type silico-sodo- calcique, une plage de température particulièrement préférée est comprise entre 1200 et 13500C, notamment entre 1200 et 1300°C ou entre 1250 et 1350°C, voire entre 12800C et 1330°C. Dans un four de fusion continue, des rédox nuls ont pu être obtenus pour des températures de bullage comprises entre 1300 et 1350°C, notamment de l'ordre de 13200C.
Le verre obtenu est de préférence caractérisé par une teneur en oxyde de fer inférieure ou égale à 0,15% et notamment un rédox inférieur ou égal à 0,1 , notamment 0,08 et même 0,05 ou 0,03.
Le procédé selon l'invention est donc particulièrement appréciable pour l'élaboration de substrats de verres destinés à des cellules photovoltaïques, cellules solaires, miroirs plans ou paraboliques pour la concentration d'énergie solaire, ou encore des diffuseurs pour rétro-éclairage d'écrans de visualisation du type LCD (écrans à cristaux liquides). Pour toutes ces applications, il importe en effet que le substrat de verre présente la transmission optique la plus élevée possible dans les domaines du visible et du proche infrarouge. Cette propriété nécessite de diminuer au maximum la quantité de fer ferreux (FeO) dans le verre, par conséquent de diminuer au maximum la quantité totale d'oxyde de fer (par le choix de matières premières particulièrement pures) et le rédox du verre.
Le verre obtenu contient donc de préférence une teneur totale en oxyde de fer inférieure ou égale à 0,08% en masse, de préférence 0,02%, et notamment 0,01 % ou 0,009% et un rédox inférieur ou égal à 0,1 , notamment 0,08 et même 0,05.
Alternativement, le verre obtenu peut contenir une teneur en oxyde de fer comprise entre 0,08% et 0,15% et un rédox dans la gamme précitée. Cette gamme d'oxyde de fer correspond à la teneur en oxyde de fer typiquement obtenue à partir de matières premières courantes. L'invention permet dans ce cas d'obtenir des rédox et des transmissions optiques aussi élevées que celles obtenues jusqu'alors par des verres pauvres en oxyde de fer, produits à partir de matières premières (notamment des sables) pauvres en fer et par conséquent plus coûteuses.
La composition chimique de ces verres peut notamment être du type silico- sodo-calcique, ou encore du type borosilicate. Les compositions du type silico- sodo-calcique se prêtent mieux au formage par procédé float et sont par conséquent préférées. On entend par verre silico-sodo-calcique un verre ayant une composition comprenant en pourcentages massiques : SiO2 60-75%
B2O3 0-5%
AI2O3 0-10% MgO 0-8%
CaO 6-15%
Na2O 10-20%
K2O 0-10%.
La teneur en K2O est de préférence supérieure ou égale à 1 ,5%, tel qu'enseigné dans la demande FR-A-2 921 357, car cela permet d'augmenter encore plus la transmission énergétique du verre, et cela facilite l'oxydation du verre. De préférence, la teneur en K2O est supérieure ou égale à 2%, notamment
3%.
Un produit susceptible d'être obtenu pour la première fois grâce à l'invention est un substrat en verre, notamment du type silico-sodo-calcique, dont la composition est dénuée d'oxydes d'arsenic, d'antimoine et de cérium, ladite composition comprenant une teneur totale en oxyde de fer inférieure ou égale à 0,2% et un rédox inférieur ou égal à 0,1 , notamment 0,08 et même 0,05 ou encore 0,03, voire nul. Selon un premier mode préféré de réalisation, la teneur en oxyde de fer est inférieure ou égale à 0,02% en masse, notamment 0,01 % et même 0,009%. Ces substrats permettent d'obtenir des transmissions optiques au moins aussi bonnes que celles obtenues actuellement par l'utilisation d'oxydants chimiques tels que l'oxyde d'antimoine.
Selon un deuxième mode préféré de réalisation, la teneur en oxyde de fer est supérieure à 0,02%, notamment comprise entre 0,05% et 0,15% en masse. Ces substrats permettent d'obtenir des transmissions optiques équivalentes à celles actuellement obtenues par des verres pauvres en oxyde de fer (0,015% ou moins) et ne contenant pas d'oxydants chimiques.
Le substrat de verre selon l'invention peut en outre contenir des bulles d'oxygène, en particulier des bulles dont le diamètre n'excède pas 200 micromètres. De préférence, au moins 95% des bulles, voire la totalité des bulles présentent un diamètre inférieur à 200 micromètres. La quantité de bulles peut avantageusement être comprise entre 500 et 10000 bulles par litre de verre, notamment entre 500 et 6000 bulles par litre de verre. Comme indiqué précédemment, il s'est révélé que la présence de bulles d'oxygène ne présentait aucun inconvénient pour certaines applications visées ci-après.
La composition de verre silico-sodo-calcique peut comprendre, outre les impuretés inévitables contenues notamment dans les matières premières, une faible proportion (jusqu'à 1 %) d'autres constituants, par exemple des agents aidant à la fusion ou l'affinage du verre (SO3, CI...), ou encore des éléments provenant de la dissolution des réfractaires servant à la construction des fours (par exemple ZrO2).
La composition selon l'invention ne comprend de préférence aucun agent absorbant les rayonnements visibles ou infrarouges (notamment pour une longueur d'ondes comprise entre 380 et 1000 nm) autre que ceux déjà cités. En particulier, la composition selon l'invention ne contient de préférence pas d'agents choisis parmi les agents suivants : les oxydes d'éléments de transition tels que CoO, CuO, Cr2O3, MnO2, les oxydes de terres rares tels que Er2O3, CeO2, La2O3, Nd2O3, ou encore les agents colorants à l'état élémentaire tels que Se, Ag, Cu. Ces agents ont bien souvent un effet colorant indésirable très puissant, se manifestant à de très faibles teneurs, parfois de l'ordre de quelques ppm ou moins (1 ppm = 0,0001 %). Leur présence diminue ainsi très fortement la transmission du verre. La teneur en WO3 est généralement inférieure à 0,1 %. Les substrats de verre selon l'invention se présentent sous la forme de feuilles de verre. Le substrat est de préférence du type flotté, c'est-à-dire susceptible d'avoir été obtenu par un procédé consistant à déverser le verre fondu sur un bain d'étain en fusion. Il peut également être obtenu par laminage entre deux rouleaux, technique permettant en particulier d'imprimer des motifs à la surface du verre. Certains motifs peuvent être avantageux, comme explicité ci- après.
Ce substrat peut en particulier être utilisé dans des cellules photovoltaïques, cellules solaires, miroirs plans ou paraboliques pour la concentration d'énergie solaire, ou encore des diffuseurs pour rétro-éclairage d'écrans de visualisation du type LCD (écrans à cristaux liquides). Il peut également être employé pour des applications intérieures (cloisons, ameublement...), dans l'électroménager (tablettes de réfrigérateurs...).
Dans le cas des applications dans le domaine du photovoltaïque, et afin de maximiser le rendement énergétique de la cellule, plusieurs améliorations peuvent être apportées, cumulativement ou alternativement :
- le substrat peut avantageusement être revêtu d'au moins une couche mince transparente et électroconductrice, par exemple à base de SnO2:F, SnO2:Sb, ZnO:AI, ZnO:Ga. Ces couches peuvent être déposées sur le substrat par différents procédés de dépôt, tels que le dépôt chimique en phase vapeur (CVD) ou le dépôt par pulvérisation cathodique, notamment assisté par champ magnétique (procédé magnétron). Dans le procédé CVD, des précurseurs halogénures ou organométalliques sont vaporisés et transportés par un gaz vecteur jusqu'à la surface du verre chaud, où ils se décomposent sous l'effet de la chaleur pour former la couche mince.
L'avantage du procédé CVD est qu'il est possible de le mettre en œuvre au sein du procédé de formage de la feuille de verre, notamment lorsqu'il s'agit d'un procédé de flottage. Il est ainsi possible de déposer la couche au moment où la feuille de verre est sur le bain d'étain, à la sortie du bain d'étain, ou encore dans l'étenderie, c'est-à-dire au moment où la feuille de verre est recuite afin d'éliminer les contraintes mécaniques. La feuille de verre revêtue d'une couche transparente et électroconductrice peut être à son tour revêtue d'un semi-conducteur à base de silicium amorphe ou polycristallin ou de CdTe pour former une cellule photovoltaïque. Il peut notamment s'agir d'une deuxième couche mince à base de silicium amorphe ou de CdTe. Dans ce cas, un autre avantage du procédé CVD réside en l'obtention d'une rugosité plus forte, qui génère un phénomène de piégeage de la lumière, lequel augmente la quantité de photons absorbée par le semi-conducteur.
- le substrat peut être revêtu sur au moins une de ses faces d'un revêtement antireflets. Ce revêtement peut comprendre une couche (par exemple à base de silice poreuse à bas indice de réfraction) ou plusieurs couches : dans ce dernier cas un empilement de couches à base de matériau diélectrique alternant des couches à bas et haut indices de réfraction et se terminant par une couche à bas indice de réfraction est préféré. Il peut notamment s'agir d'un empilement décrit dans la demande WO 01/94989 ou WO 2007/077373. Le revêtement antireflet peut également comprendre en dernière couche une couche autonettoyante et antisalissure à base d'oxyde de titane photocatalytique, tel qu'enseigné dans la demande WO 2005/110937. On peut ainsi obtenir une faible réflexion durable dans le temps. Dans des applications dans le domaine du photovoltaïque, le revêtement antireflet est disposé en face externe, c'est-à-dire la face en contact avec l'atmosphère, tandis que l'éventuelle couche transparente électroconductrice est disposée en face interne, du côté du semiconducteur.
- la surface du substrat peut être texturée, par exemple présenter des motifs (notamment en pyramide), tel que décrit dans les demandes WO 03/046617, WO 2006/134300, WO 2006/134301 ou encore WO
2007/015017. Ces texturations sont en général obtenues à l'aide d'un formage du verre par laminage.
Le procédé s'est également révélé particulièrement avantageux pour obtenir des verres précurseurs pour vitrocéramiques du type aluminosilicate de lithium incolores.
Par verre ou vitrocéramique du type « aluminosilicate de lithium », on entend un verre ou une vitrocéramique qui comprend les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux : SiO2 52 - 75 %
AI2O3 18-27%
Li2O 2,5 - 5,5 %
K2O 0-3 % Na2O 0 - 3 %
ZnO 0 - 3,5 %
MgO 0 - 3 %
CaO 0 - 2,5
BaO 0 - 3,5 % SrO 0-2 %
TiO2 1 ,2 - 5,5 %
ZrO2 0 - 3 %
P2O5 0 - 8 %
Ce verre ou cette vitrocéramique peut comprendre jusqu'à 1 % en poids de constituants non essentiels qui n'affectent pas la fusion du verre ou la dévitrification ultérieure conduisant à la vitrocéramique.
De préférence, le verre ou la vitrocéramique du type aluminosilicate de lithium comprend les constituants suivants dans les limites définies ci-après exprimées en pourcentages pondéraux :
SiO2 65 - 70 %
AI2O3 18-19,8%
Li2O 2,5 - 3,8 %
K2O 0-<1,0%
Na2O 0-<1,0%
ZnO 1 ,2 - 2,8 %
MgO 0,55 - 1 ,5 %
BaO O - 1 ,4 %
SrO O - 1 ,4 %
TiO2 1 ,8 - 3,2 %
ZrO2 1 ,0 - 2,5 %
Ces vitrocéramiques, de par leurs coefficients de dilatation thermique presque nuls, sont extrêmement résistantes aux chocs thermiques. De ce fait, elles sont fréquemment employées comme plaques de cuisson, notamment recouvrant des éléments chauffants, ou inserts de cheminée.
Ces vitrocéramiques sont obtenues par un procédé en deux étapes : dans une première étape, on obtient des plaques de verre précurseur, qui subissent dans une deuxième étape un traitement de cristallisation contrôlée.
Ce traitement thermique, appelé « céramisation », permet de faire croître au sein du verre des cristaux de structure β-quartz ou β-spodumène (selon la température de céramisation), qui ont la particularité de posséder des coefficients de dilatation thermique négatifs. Le verre précurseur peut par exemple subir un cycle de céramisation comprenant les étapes suivantes : a) élévation de la température jusqu'au domaine de nucléation, généralement situé au voisinage du domaine de transformation, notamment à 50-800C par minute, b) traversée de l'intervalle de nucléation (670-8000C) en une vingtaine de minutes, c) élévation de la température jusqu'à la température T du palier de céramisation comprise entre 900 et 1000°C en 15 à 30 minutes, d) maintien de la température T du palier de céramisation pendant une temps t de 10 à 25 minutes, e) refroidissement rapide jusqu'à la température ambiante.
La présence, dans la vitrocéramique finale, de tels cristaux et d'une phase vitreuse résiduelle, permet d'obtenir un coefficient de dilatation thermique globalement nul ou très faible (la valeur absolue du coefficient de dilatation est typiquement inférieure ou égale à 15.10"7/°C, voire 5.10"7V0C). La taille des cristaux de structure β-quartz est généralement très faible de manière à ne pas diffuser la lumière visible. Les vitrocéramiques ainsi obtenues sont donc transparentes, et peuvent présenter une coloration si des agents colorants sont ajoutés lors de la fusion. Les cristaux de structure β-spodumène sont obtenus par des traitements à plus haute température, et présentent généralement des tailles plus importantes. Ils peuvent diffuser la lumière visible, donnant naissance à des vitrocéramiques translucides mais non transparentes. Le verre est traditionnellement affiné à l'aide d'agents affinants tels que Sb2O5 ou As2O5, dont les inconvénients ont déjà été mentionnés.
Plus récemment, des affinants chimiques alternatifs plus efficaces ont été proposés, qui sont des sulfures métalliques. Les sulfures métalliques permettent d'obtenir une très bonne qualité d'affinage et sont compatibles avec le procédé de flottage (procédé float). Ces sulfures métalliques, en combinaison avec les autres éléments du verre, confèrent toutefois une coloration bleue au verre obtenu et à la vitrocéramique issue du verre précurseur. Cet inconvénient n'existe pas dans le cas des vitrocéramiques teintées, telles que les vitrocéramiques rouge foncées obtenues par coloration à l'oxyde de vanadium. Dans le cas des vitrocéramiques incolores, qu'elles soient translucides ou transparentes, l'usage des sulfures comme agents d'affinage s'est au contraire révélé inadapté.
Le procédé selon l'invention permet de résoudre ce problème. Les inventeurs ont en effet découvert que la coloration bleue indésirable était liée à la réduction, pendant l'étape de fusion, de l'ion Ti4+ en ion Ti3+ par les sulfures. Le procédé selon l'invention permet, après l'étape d'affinage, de restaurer l'absence de couleur par réoxydation de l'ion titane.
Selon un mode de réalisation préféré du procédé selon l'invention, le verre est un verre précurseur pour vitrocéramique du type aluminosilicate de lithium incolore, et au moins un réducteur est ajouté aux matières premières.
Par « verre précurseur », on entend tout verre susceptible de former une vitrocéramique après traitement de céramisation adéquat.
Le réducteur est de préférence choisi parmi un réducteur carboné comme le coke, ou les sulfures métalliques. Le coke disparaît pendant la fusion en se transformant en CO2 gazeux.
Le sulfure métallique est de préférence choisi parmi les sulfures de métal de transition, par exemple le sulfure de zinc, les sulfures de métal alcalin, par exemple le sulfure de potassium, le sulfure de sodium et le sulfure de lithium, les sulfures de métal alcalino-terreux, par exemple le sulfure de calcium, le sulfure de baryum, le sulfure de magnésium et le sulfure de strontium. Les sulfures préférés sont le sulfure de zinc, le sulfure de lithium, le sulfure de baryum, le sulfure de magnésium et le sulfure de strontium. Le sulfure de zinc s'est avéré particulièrement avantageux car il ne contribue pas à colorer le verre ou la vitrocéramique. Il est également privilégié quand la vitrocéramique doit contenir de l'oxyde de zinc : dans ce cas le sulfure de zinc joue un double rôle de réducteur/affinant et de source d'oxyde de zinc.
Le sulfure peut aussi être introduit dans les matières premières vitrifiables sous la forme d'un laitier ou d'une fritte de verre enrichie en sulfure qui présentent l'avantage d'accélérer la digestion des infondus, d'améliorer l'homogénéité chimique du verre et sa qualité optique. Toutefois, il est bien connu que les laitiers contiennent aussi du fer en quantité importante qui réduit la transmission des infrarouges. De ce point de vue, il est préférable d'utiliser des frittes de verre dont la composition chimique, notamment en fer, peut être parfaitement contrôlée.
De préférence, le sulfure est ajouté aux matières vitrifiables en une quantité inférieure à 2 %, avantageusement inférieure à 1 % et mieux encore comprise entre 0,07 et 0,8 % du poids total des matières vitrifiables. Dans le cas du coke, la teneur introduite est de préférence comprise entre 800 et 1500 ppm (1 ppm = 0,0001 % en masse).
Pour jouer pleinement son rôle affinant, le réducteur est associé à un agent oxydant, de préférence un sulfate. Les sulfates présentent l'avantage de ne pas former d'espèces colorantes dans le verre ou la vitrocéramique. L'oxyde d'étain, en revanche, confère une coloration jaune, et ne peut donc pas être utilisé comme oxydant. Le sulfate peut notamment être un sulfate de sodium, de lithium, ou encore de magnésium.
Les teneurs en sulfate introduit sont de préférence comprises entre 0,2 et 1 % en masse, notamment entre 0,4 et 0,8%, exprimées en SO3. Pour obtenir une qualité d'affinage optimale, il convient d'introduire suffisamment de réducteur par rapport à la quantité d'oxydant. Dans le cas où le réducteur est un sulfure et l'oxydant un sulfate, il est préféré que la quantité massique de soufre apportée par le sulfure représente plus de 60%, voire 70% du soufre total introduit. Dans le cas où le réducteur est du coke, il est préféré que le rapport coke/sulfate introduit soit supérieur ou égal à 0,15, notamment 0,18 et même 0,20. On assure de cette manière un affinage d'excellente qualité ainsi qu'une fusion rapide.
De préférence, la température de fusion des matières premières est inférieure ou égale à 17000C, et avantageusement supérieure à 16000C. La température du verre précurseur pendant le bullage est de préférence comprise entre 15500C et 16500C.
L'invention a également pour objet un substrat en verre ou vitrocéramique incolore, du type aluminosilicate de lithium. Cet objet se caractérise en ce qu'il est dénué d'oxyde d'arsenic, d'oxyde d'antimoine, d'oxyde de cérium et d'oxyde d'étain, et en ce qu'il contient moins de 1 bulle par cm3. La quantité de bulles est de préférence inférieure ou égale à 10"2, voire 10"3 bulle/cm3. Il contient de préférence du soufre en quantité analysable, notamment en une teneur pondérale comprise entre 10 et 500 ppm de SO3, voire entre 10 et 100 ppm de SO3. De tels verres ou vitrocéramiques incolores et néanmoins bien affinées ne pouvaient être obtenus auparavant que par l'utilisation d'agents d'affinage comme les oxydes d'arsenic ou d'antimoine. L'invention permet pour la première fois d'aboutir à des vitrocéramiques incolores exemptes de tels agents et malgré tout correctement affinées, au sens où elles ne contiennent pas d'inclusions gazeuses. Il est bien sûr possible d'obtenir, à l'échelle du laboratoire, des vitrocéramiques incolores et dénuées de tout agent affinant, mais l'absence d'affinants génère nécessairement une grande quantité de bulles.
Les vitrocéramiques selon l'invention sont de préférence transparentes et contiennent généralement dans ce cas des cristaux qui sont des solutions solides du type β-quartz. On entend par « incolore » l'absence substantielle de couleur visible à l'œil nu. Un matériau totalement dénué de couleur est évidemment impossible à obtenir, et l'on peut exprimer cette absence de couleur par le fait que les coordonnées colorimétriques a* et b* sont toutes deux comprises entre -10 et +10, notamment entre -2 et +6, pour une épaisseur de 3 mm. De préférence, la coordonnée a* est comprise entre -2 et +1 , et/ou la coordonnée b* est comprise entre 0 et +6, notamment entre 0 et +5. Une coordonnée a* très positive correspond à une couleur rouge, et très négative, à une couleur verte. Une coordonnée b* très positive correspond à une couleur jaune, et très négative, à une couleur bleue. La vitrocéramique ou le verre précurseur selon l'invention sont de préférence transparents (et pas seulement translucides). Dans ce cas, il est préférable que la coordonnée L* soit supérieure ou égale à 80, voire 90 et même 92, et/ou que la transmission lumineuse (TL) soit supérieure ou égale à 80%, voire 85%. Ces grandeurs sont calculées de manière connue, à partir d'un spectre expérimental réalisé pour des longueurs d'onde comprises entre 380 et 780 nm, en prenant en considération l'illuminant D65 tel que défini par la norme ISO/CIE 10526 et l'observateur de référence colorimétrique C. I. E. 1931 tel que défini par la norme ISO/CIE 10527. Toutes les valeurs sont données pour une épaisseur de verre ou vitrocéramique de 3 mm.
On entend par « bulle » tout type d'inclusions gazeuses, sans préjuger de leur taille ou de la composition des gaz qu'elles renferment.
Afin d'éviter toute coloration indésirable, le verre ou la vitrocéramique selon l'invention ne contient de préférence pas les oxydes suivants : Fe2O3, NiO, Cr2O3, CuO, CoO, Mn3O4 et V2O5, à l'exception d'impuretés inévitables en des teneurs suffisamment faibles pour ne pas affecter le caractère incolore désiré. En particulier, il est difficile d'éviter la présence de traces d'oxyde de fer (Fe2O3), et la teneur en oxyde de fer est de préférence inférieure ou égale à 0,05%, voire 0,02% afin de ne pas conférer de couleur au produit obtenu. Ces substrats peuvent être en particulier utilisés comme plaques de cuisson, notamment recouvrant des éléments chauffants, ou inserts de cheminée. Pour une application en tant que plaque recouvrant des éléments chauffants, il est préférable de déposer en face inférieure (la plus proche des éléments chauffants) une couche opaque afin de ne pas être ébloui par les éléments. L'invention sera mieux comprise à la lecture des exemples de réalisation non limitatifs qui suivent.
EXEMPLE 1 : Obtention d'une vitrocéramique du type aluminosilicate de lithium incolore
Dans un four chauffé à l'aide de brûleurs fonctionnant à l'oxygène sont introduites des matières premières. Le bain de verre obtenu est du type aluminosilicate de lithium : il s'agit d'un verre précurseur destiné à être céramisé afin d'obtenir une vitrocéramique. Les matières premières sont choisies pour obtenir un bain de verre de composition pondérale moyenne suivante : SiO2 68,6 %
AI2O3 19,5 %
Fe2O3 0,017 % Li2O 3,6 %
ZnO 1 ,8 %
MgO 1 ,2 %
BaO 0,8 % TiO2 2,7 %
ZrO2 1 ,7 %.
La température de fusion est d'environ 16000C à 16500C. L'affinage est réalisé soit à l'aide d'oxyde d'arsenic (exemple C1 , dans lequel 0,6% d'oxyde d'arsenic est introduit avec les matières premières), soit (exemples C2 et 1 et suivants) à l'aide de sulfure de zinc (ZnS, à hauteur de 0,12% de soufre, soit 0,3% de SO3) associé à du sulfate de sodium (à hauteur de 0,13% de SO3). Le rapport sulfure/sulfate introduit est tel que le sulfure apporte 70% du soufre total, ce qui permet un affinage d'excellente qualité.
Dans une zone du four où le verre est affiné, donc exempt de toute inclusion gazeuse, de l'oxygène est le cas échéant bulle au sein du bain de verre à l'aide d'un tube de platine rhodié percé d'une multitude de trous dont le diamètre est de 50 micromètres. La taille des bulles est d'environ 1 cm.
Après mise en forme afin d'obtenir un substrat plan, ce dernier est céramisé comme indiqué supra pour obtenir une vitrocéramique. Le tableau 1 ci-après indique pour chaque exemple la température du verre lors du bullage (notée T, mesurée par pyrométrie, et exprimée en °C) et la quantité d'oxygène (notée QO2 et exprimée en litres) bulle par kilogramme de verre. Il indique également les propriétés optiques de la vitrocéramique suivantes, pour une épaisseur de 3 mm : - le facteur de transmission lumineuse globale (TL), calculé entre 380 et 780 mm, en prenant en considération l'illuminant D65 tel que défini par la norme ISO/CIE 10526 et l'observateur de référence colorimétrique C. I. E. 1931 tel que défini par la norme ISO/CIE 10527,
- les coordonnées colorimétriques (L*, a*, b*), calculées entre 380 et 780 mm, en prenant en considération l'illuminant D65 tel que défini par la norme ISO/CIE 10526 et l'observateur de référence colorimétrique C. I. E. 1931 tel que défini par la norme ISO/CIE 10527. Tableau 1
L'exemple comparatif C1 correspond à une vitrocéramique incolore et transparente, dont le verre précurseur a été affiné de manière conventionnelle à l'aide d'oxyde d'arsenic. Le verre précurseur n'a pas subi de bullage selon l'invention.
L'exemple comparatif C2 correspond à une vitrocéramique dont le verre précurseur a été affiné à l'aide d'un mélange de sulfate et de sulfure (en l'occurrence de sulfure de zinc). En l'absence de bullage selon l'invention, la vitrocéramique obtenue présente une teinte bleue très prononcée, caractérisée par une valeur de b* très négative. La transmission lumineuse est très faible, si bien que la vision au travers de la vitrocéramique est fortement réduite.
Dans les exemples selon l'invention numérotés de 1 à 7, le verre précurseur, affiné de la même manière que pour l'exemple C2, a été bulle à l'aide d'oxygène. Pour de faibles quantités d'oxygène (0,5 litre par kg de verre), un bullage à 16000C permet d'obtenir une vitrocéramique moins bleue, tandis qu'un bullage à température légèrement plus basse (15600C) permet d'obtenir une vitrocéramique incolore, quoique moins transmissive que la vitrocéramique C1.
Pour des quantités d'oxygène plus importantes, la vitrocéramique obtenue présente des propriétés optiques similaires à celles de la vitrocéramique conventionnelle C1. Le procédé selon l'invention permet par conséquent d'obtenir des vitrocéramiques incolores sans que le verre précurseur ait été affiné à l'aide d'oxydes d'arsenic, d'antimoine ou d'étain.
EXEMPLE 2 : Obtention d'un verre du type silico-sodo-calcique et de faible rédox
Des verres de type silico-sodo-calcique contenant 100 ppm d'oxyde de fer (exprimé sous forme Fe2O3) ont été fondus en four à flamme (fusion discontinue en pots). Après affinage, donc lorsque le verre est exempt de toute inclusion gazeuse, de l'oxygène est le cas échéant bulle au sein du bain de verre à l'aide d'un tube de platine rhodié percé d'une multitude de trous dont le diamètre est de 50 micromètres. La taille des bulles est d'environ 1 cm.
L'exemple comparatif C3 est un verre contenant de l'oxyde d'antimoine Sb2O3, ce dernier jouant le rôle d'affinant et d'oxydant du fer. Il n'a pas été bulle.
Dans les exemples selon l'invention, l'affinage est réalisé à l'aide de sulfate. Le verre ne comprend aucun oxyde d'arsenic, d'antimoine ou de cérium.
Le tableau 2 ci-après indique pour chaque exemple la température du verre lors du bullage, la quantité d'oxygène bullée (en litres par kg de verre), et le rédox du verre obtenu.
Tableau 2
L'exemple de référence est très oxydé (rédox de 0,05) grâce à la présence d'oxyde d'antimoine. Le bullage selon l'invention permet dans certains cas, notamment pour des quantités d'oxygène introduites supérieures à 0,5 l/kg de verre et des températures de bullage comprises entre 1200 et 13500C, d'obtenir des rédox encore plus faibles. En revanche, un bullage réalisé avant ou pendant l'affinage ne permet pas d'obtenir de tels rédox.
Le verre est d'autant plus oxydé que la quantité d'oxygène bulle est importante. Pour une même quantité d'oxygène, il existe un optimum de température, puisque les températures élevées tendent à favoriser les rédox élevés tandis qu'aux températures plus basses la cinétique d'oxydation est réduite.
EXEMPLE 3
Dans un four de fusion continu muni d'une première cuve dédiée à la fusion et à l'affinage, d'une gorge et d'une résurgence est fondu un verre du type silico-sodo-calcique, qui est ensuite flotté afin d'obtenir des feuilles de verre de 2,9 mm d'épaisseur. Un dispositif de bullage d'oxygène formé d'une pièce en platine percée d'une multitude d'orifices d'un diamètre de 50 micromètres est plongé dans le bain de verre au niveau de la résurgence, où la température du verre est de l'ordre de 1350 à 14000C. Le débit d'oxygène varie entre 2 et 5
NL/min, formant des bulles d'environ 1 cm de diamètre au sein du bain de verre.
Dans le cas d'un verre comprenant 0,014% de Fe2O3 (fer total), le bullage permet d'abaisser très fortement le rédox, d'environ 0,4 avant bullage à une valeur comprise entre 0,05 et 0,1 pendant le bullage. L'introduction de pièces réfractaires en oxyde de chrome à proximité du dispositif de bullage permet même d'obtenir un rédox nul. La transmission énergétique du verre obtenu (calculée selon la norme ISO 9050) est supérieure à 91 ,5%. Dans le cas d'un verre contenant environ 0,04% d'oxyde de fer, le rédox obtenu, de l'ordre de 0,11 à 0,14, permet d'obtenir des propriétés optiques équivalentes à celles d'un verre contenant 0,014% d'oxyde de fer sans bullage. EXEMPLE 4
Dans un four de fusion continue chauffé à l'aide de flammes et construit en réfractaires de type alumine-zircone-silice électrofondue on obtient une masse de verre fondue. La température de fusion est de l'ordre de 13800C. Les compositions chimiques testées sont indiquées dans le tableau 3 ci-après, exprimées en pourcentages pondéraux.
Tableau 3
Le four est doté d'une gorge et d'une résurgence et on place dans cette dernière une rangée de bulleurs en platine rhodié à 10% formés chacun d'un tube percé d'une multitude d'orifices dont le diamètre est compris entre 50 et 100 micromètres. Le verre affiné arrive dans la résurgence où la température est de 1325°C. Le débit d'oxygène varie entre 0 et 1 NL/kg de verre, formant au sein du verre fondu des bulles dont le diamètre est approximativement compris entre 1 et 2 cm.
On représente dans le tableau 4 ci-après le rédox obtenu en fonction du débit d'oxygène. On peut voir que les rédox peuvent être nuls pour des débits de l'ordre de 0,46 NL/kg ou plus. Tableau 4
Dans un deuxième type d'essais, le débit en oxygène est nul, mais les bulleurs sont polarisés de manière à former des anodes. Une cathode en molybdène est placée au niveau d'un drain de manière à fermer le circuit électrique. Des rédox quasi nuls sont également atteints grâce à cette technique, pour des densités de courant comprises entre 2 et 10 mA/cm2, typiquement de 5mA/cm2 et des différences de potentiel de l'ordre de quelques Volts.
Il a été remarqué que l'oxydation est plus facilement réalisée dans le cas de la composition B.
La présente invention étant décrite dans ce qui précède à titre d'exemple, il est entendu que l'homme du métier est à même d'en réaliser différentes variantes sans pour autant sortir du cadre du brevet tel que défini par les revendications.

Claims

REVENDICATIONS
1. Procédé continu d'élaboration de verre comprenant les étapes successives d'enfournement de matières premières pulvérulentes, d'obtention d'un bain de verre par fusion, d'affinage puis de refroidissement, caractérisé en ce que l'on bulle un gaz oxydant au sein dudit bain de verre après l'étape d'affinage.
2. Procédé selon la revendication 1 , tel que le bullage de gaz oxydant est réalisé pendant l'étape de refroidissement.
3. Procédé selon l'une des revendications précédentes, tel que le bullage de gaz oxydant n'est réalisé qu'après l'étape d'affinage.
4. Procédé selon l'une des revendications précédentes, tel que le gaz oxydant est de l'oxygène. 5. Procédé selon l'une des revendications précédentes, tel que le bullage crée au sein du bain de verre des bulles dont le diamètre moyen est compris entre 0,05 et 5 cm, notamment entre 0,
5 et 5 cm, voire entre 1 et 2 cm.
6. Procédé selon l'une des revendications précédentes, tel que la quantité de gaz oxydant bullée au sein du bain de verre est telle que la quantité totale d'oxygène (O2) introduite dans ledit bain de verre est comprise entre 0,01 et 20 litres par kilogramme de verre, notamment entre 0,1 et 5 litres par kilogramme de verre.
7. Procédé selon l'une des revendications précédentes, tel que l'on bulle le gaz oxydant au moyen d'au moins une pièce métallique percée d'une pluralité de trous.
8. Procédé selon l'une des revendications 1 à 6, tel que l'on bulle le gaz oxydant au moyen d'au moins une pièce en céramique réfractaire poreuse.
9. Procédé selon l'une des revendications précédentes, tel que la viscosité du verre lors du bullage est comprise entre 100 et 1000 Poises, de préférence entre 300 et 600 Poises.
10. Procédé selon l'une des revendications précédentes, tel que le verre contient plus de 50%, notamment 60% en poids de SiO2.
11. Procédé selon l'une des revendications précédentes, tel que le verre obtenu présente un rédox inférieur ou égal à 0,1 , notamment 0,08 ou 0,05.
12. Procédé selon la revendication précédente, tel que le verre obtenu contient une teneur totale en oxyde de fer inférieure ou égale à 0,15% en masse, notamment 0,08%, en particulier 0,02% ou 0,01 %.
13. Procédé selon l'une des revendications précédentes, tel que le verre est un verre précurseur pour vitrocéramique du type aluminosilicate de lithium incolore, et au moins un réducteur est ajouté aux matières premières, de préférence associé à un sulfate.
14. Procédé selon la revendication précédente, tel que le réducteur est choisi parmi le coke ou les sulfures métalliques, notamment le sulfure de zinc.
15. Procédé selon la revendication 13 ou 14, tel que la température du verre pendant le bullage est comprise entre 15500C et 16500C.
16. Substrat en verre, notamment du type silico-sodo-calcique, dont la composition est dénuée d'oxydes d'arsenic, d'antimoine et de cérium, ladite composition comprenant une teneur totale en oxyde de fer inférieure ou égale à 0,2% en masse et un rédox inférieur ou égal à 0,1 , notamment 0,08 et même 0,05, voire nul.
17. Substrat selon la revendication précédente, comprenant une teneur totale en oxyde de fer inférieure ou égale à 0,02% en masse, notamment 0,01 % et même 0,009%.
18. Substrat selon la revendication 16, comprenant une teneur totale en oxyde de fer est supérieure à 0,02% et inférieure ou égale à 0,15%.
19. Substrat selon l'une des revendications 16 à 18, tel que la quantité de bulles d'oxygène est comprise entre 500 et 10000 bulles par litre de verre.
20. Substrat en verre ou vitrocéramique incolore du type aluminosilicate de lithium, caractérisé en ce qu'il est dénué d'oxyde d'arsenic, d'oxyde d'antimoine, d'oxyde de cérium et d'oxyde d'étain, et en ce qu'il contient moins de 1 bulle par cm3.
21. Utilisation du substrat selon l'une des revendications de substrat précédentes dans des cellules photovoltaïques, cellules solaires, miroirs plans ou paraboliques pour la concentration d'énergie solaire, ou des diffuseurs pour rétroéclairage d'écrans de visualisation du type LCD (écrans à cristaux liquides).
22. Utilisation du substrat en vitrocéramique selon la revendication 20 comme plaque de cuisson, notamment recouvrant des éléments chauffants, ou insert de cheminée.
EP09722477A 2008-03-03 2009-03-03 Procede d'elaboration de verre Withdrawn EP2252555A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0851371A FR2928145A1 (fr) 2008-03-03 2008-03-03 Procede d'elaboration de verre
FR0856322A FR2936239B1 (fr) 2008-09-19 2008-09-19 Procede de d'elaboration de verre
PCT/FR2009/050344 WO2009115725A2 (fr) 2008-03-03 2009-03-03 Procede d'elaboration de verre

Publications (1)

Publication Number Publication Date
EP2252555A2 true EP2252555A2 (fr) 2010-11-24

Family

ID=41078138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09722477A Withdrawn EP2252555A2 (fr) 2008-03-03 2009-03-03 Procede d'elaboration de verre

Country Status (6)

Country Link
US (1) US20110098171A1 (fr)
EP (1) EP2252555A2 (fr)
JP (1) JP2011513183A (fr)
KR (1) KR20110000729A (fr)
CN (1) CN101959805A (fr)
WO (1) WO2009115725A2 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023419A1 (fr) * 2008-09-01 2010-03-04 Saint-Gobain Glass France Procede d'obtention de verre et verre obtenu
US8304358B2 (en) * 2008-11-21 2012-11-06 Ppg Industries Ohio, Inc. Method of reducing redox ratio of molten glass and the glass made thereby
FR2946335B1 (fr) 2009-06-05 2011-09-02 Saint Gobain Procede de depot de couche mince et produit obtenu.
FR2948929A1 (fr) * 2009-08-07 2011-02-11 Fives Stein Four de fusion de matieres premieres vitrifiables avec zone de prechauffage optimisee
DE102010023176B4 (de) * 2010-06-09 2013-02-21 Schott Ag Verfahren zur Herstellung von Klarglas oder klarem Ziehglas unter Verwendung eines speziellen Läuterverfahrens
DE102010032113B9 (de) * 2010-07-23 2017-06-22 Schott Ag Transparente oder transparente eingefärbte Lithiumaluminiumsilikat-Glaskeramik mit einstellbarer thermischer Ausdehnung und deren Verwendung
FR2963342B1 (fr) 2010-07-27 2012-08-03 Saint Gobain Procede d'obtention d'un materiau comprenant un substrat muni d'un revetement
KR101554532B1 (ko) 2011-05-10 2015-09-21 니폰 덴키 가라스 가부시키가이샤 박막 태양 전지용 유리판
DE102012100233B4 (de) * 2012-01-12 2014-05-15 Schott Ag Hochtransmittive Gläser mit hoher Solarisationsbeständigkeit, ihre Verwendung und Verfahren zu ihrer Herstellung
KR101350239B1 (ko) * 2012-11-01 2014-01-13 한국세라믹기술원 Led 전등 디퓨저용 유리 조성물, led 전등 디퓨저 및 그 제조방법
US9725349B2 (en) 2012-11-28 2017-08-08 Corning Incorporated Glass manufacturing apparatus and methods
US20140152914A1 (en) * 2012-11-30 2014-06-05 Corning Incorporated Low-Fe Glass for IR Touch Screen Applications
US9016090B2 (en) * 2013-06-12 2015-04-28 Hamid Hojaji Glass microspheres comprising sulfide, and methods of producing glass microspheres
PL3142976T3 (pl) * 2014-05-12 2018-09-28 Agc Glass Europe Tafla szkła o wysokiej transmisji w podczerwieni dla panelu dotykowego
WO2015197600A2 (fr) * 2014-06-23 2015-12-30 Schott Ag Système de stockage d'énergie électrique composé d'un élément discoïde distinct, élément distinct, son procédé de fabrication et son utilisation
WO2015197597A2 (fr) * 2014-06-23 2015-12-30 Schott Ag Batterie couche mince à faible teneur en fluide et à durée de vie accrue
CN106463658A (zh) 2014-06-23 2017-02-22 肖特股份有限公司 包括片状不连续元件的蓄电系统、片状不连续元件及其制造方法和应用
JP2018505515A (ja) 2014-12-01 2018-02-22 ショット アクチエンゲゼルシャフトSchott AG シート状の独立した部材を有する蓄電システム、独立したシート状の部材、その製造方法、およびその使用
US10196296B2 (en) 2015-01-17 2019-02-05 Hamid Hojaji Fluid permeable and vacuumed insulating microspheres and methods of producing the same
TW201711967A (zh) * 2015-08-26 2017-04-01 美商.康寧公司 用於增進的均質性之玻璃熔融系統及方法
US9643876B2 (en) 2015-10-04 2017-05-09 Hamid Hojaji Microspheres and methods of making the same
CN106630637A (zh) * 2016-11-08 2017-05-10 南通瑞森光学元件科技有限公司 一种超强硬度微晶玻璃
US11912608B2 (en) 2019-10-01 2024-02-27 Owens-Brockway Glass Container Inc. Glass manufacturing
US11667555B2 (en) 2020-02-12 2023-06-06 Owens-Brockway Glass Container Inc. Glass redox control in submerged combustion melting
CN114481320A (zh) * 2020-11-11 2022-05-13 中国科学院上海硅酸盐研究所 非真空坩埚下降法生长锂铊共掺碘化钠闪烁晶体的方法
JP2024511361A (ja) 2021-03-16 2024-03-13 ショット アクチエンゲゼルシャフト 特定の熱膨張挙動を示す精密部品
US20220298079A1 (en) 2021-03-16 2022-09-22 Schott Ag Glass ceramic having specific thermal expansion characteristics
CN113135656A (zh) * 2021-05-27 2021-07-20 常州亚玛顿股份有限公司 太阳能电池用抗pid玻璃及其制备方法
CN113735414A (zh) * 2021-10-19 2021-12-03 西安宏星电子浆料科技股份有限公司 一种消除介质浆料用高铋玻璃粉中气泡的方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2331052A (en) * 1941-11-27 1943-10-05 Owens Illinois Glass Co Method of refining molten glass
US3716349A (en) * 1971-05-17 1973-02-13 American Optical Corp Method for producing laser glasses having high resistance to internal damage and the product produced thereby
FR2456713A1 (fr) * 1979-05-17 1980-12-12 Emballage Ste Gle Pour Melanges vitrifiables
NL8602341A (nl) * 1986-09-16 1988-04-18 Heineken Technische Beheer Bv Werkwijze voor het bereiden van een uv-absorberend groen glas.
DE19939773C2 (de) * 1999-08-21 2003-06-18 Schott Glas Vorrichtung und Verfahren für das Läutern von Gläsern oder Glaskeramiken
WO2002016279A1 (fr) * 2000-08-24 2002-02-28 Schott Glas Vitroceramique transparente foncee a l'aide d'un ajout d'oxyde de vanadium
DE10041759A1 (de) * 2000-08-25 2002-03-28 Schott Glas Vorrichtung zum Homogenisieren einer Glasschmelze
DE10042771B4 (de) * 2000-08-31 2004-02-12 Schott Glas Verfahren zur Steuerung und Einstellung des Redoxzustandes von Redox-Läutermitteln in einer Glasschmelze
ATE327208T1 (de) * 2000-09-01 2006-06-15 Schott Ag Vorrichtung zum läutern einer glasschmelze
EP1306353A1 (fr) * 2001-10-27 2003-05-02 Schott Glas Procédé de fabrication de produits en verre par l'affinage sous pression réduite sans addition d'As2O3 ou de Sb2O3
WO2005021450A1 (fr) * 2003-08-29 2005-03-10 Nippon Sheet Glass Company, Limited Dispositif et procede de fusion du verre
JP5130626B2 (ja) * 2005-04-22 2013-01-30 日本電気硝子株式会社 バブリングノズル及び熔融ガラスの清澄方法
US7584632B2 (en) * 2005-07-28 2009-09-08 Corning Incorporated Method of increasing the effectiveness of a fining agent in a glass melt
US7854144B2 (en) * 2005-07-28 2010-12-21 Corning Incorporated Method of reducing gaseous inclusions in a glass making process
CN102173581B (zh) * 2005-08-15 2013-06-26 安瀚视特股份有限公司 玻璃组成物
US7454925B2 (en) * 2005-12-29 2008-11-25 Corning Incorporated Method of forming a glass melt
US8648252B2 (en) * 2006-03-13 2014-02-11 Guardian Industries Corp. Solar cell using low iron high transmission glass and corresponding method
DE102007008299B4 (de) * 2006-08-12 2012-06-14 Schott Ag Verfahren zur Herstellung von Gläsern, wobei die chemische Reduktion von Bestandteilen vermieden wird
US20090320525A1 (en) * 2008-06-26 2009-12-31 William Weston Johnson Method of bubbling a gas into a glass melt
US8304358B2 (en) * 2008-11-21 2012-11-06 Ppg Industries Ohio, Inc. Method of reducing redox ratio of molten glass and the glass made thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009115725A2 *

Also Published As

Publication number Publication date
CN101959805A (zh) 2011-01-26
US20110098171A1 (en) 2011-04-28
WO2009115725A2 (fr) 2009-09-24
KR20110000729A (ko) 2011-01-05
JP2011513183A (ja) 2011-04-28
WO2009115725A3 (fr) 2009-11-26

Similar Documents

Publication Publication Date Title
EP2252555A2 (fr) Procede d&#39;elaboration de verre
EP2331472B1 (fr) Procede d&#39;obtention de verre
EP1599423B1 (fr) Procede et dispositif de preparation d&#39;un verre par melange de verres fondus
US11814315B2 (en) Low iron, high redox ratio, and high iron, high redox ratio, soda-lime-silica glasses and methods of making same
TWI403482B (zh) 中度熱膨漲係數玻璃
EP3191420B1 (fr) Plaque en vitroceramique
KR101020694B1 (ko) 무알칼리 유리
JP6342338B2 (ja) ガラス、ガラスセラミックを製造するための方法ならびにそれらの使用
EP2195278A1 (fr) Feuille de verre silico-sodo-calcique
EP2401234B1 (fr) Feuille de verre
CA2614772A1 (fr) Procede de fabrication de verre flotte avec une pellicule d&#39;oxyde conducteur transparent (tco) formee integralement sur le cote du bain d&#39;etain du verre et produit correspondant
US20220388892A1 (en) Low Iron, High Redox Ratio, and High Iron, High Redox Ratio, Soda-Lime-Silica Glasses and Methods of Making Same
WO2009047462A1 (fr) Feuille de verre silico-sodo-calcique
FR2928145A1 (fr) Procede d&#39;elaboration de verre
JP2015509476A (ja) ガラス、ガラスセラミックスを生成するための方法、およびその使用
FR2936239A1 (fr) Procede de d&#39;elaboration de verre
JP2020073434A (ja) 低鉄、高レドックス比、及び高鉄、高レドックス比、ソーダ石灰シリカガラス並びにその製造方法
US20110271717A1 (en) System and method for control of glass transmittance
BE1017302A3 (fr) Composition de verre silico-sodo-calcique.
KR101340384B1 (ko) 소다라임 실리케이트 판유리의 제조방법 및 이에 의해 제조된 고투명 판유리
FR2935374A1 (fr) Procede d&#39;obtention de verre et verre obtenu.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101004

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: C03C 4/10 20060101ALI20110301BHEP

Ipc: C03C 10/00 20060101ALI20110301BHEP

Ipc: C03C 3/087 20060101ALI20110301BHEP

Ipc: C03B 5/193 20060101ALI20110301BHEP

Ipc: C03B 5/04 20060101AFI20110301BHEP

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141001