EP2251850B1 - Device for determining the bearing of aircrafts - Google Patents

Device for determining the bearing of aircrafts Download PDF

Info

Publication number
EP2251850B1
EP2251850B1 EP10003943A EP10003943A EP2251850B1 EP 2251850 B1 EP2251850 B1 EP 2251850B1 EP 10003943 A EP10003943 A EP 10003943A EP 10003943 A EP10003943 A EP 10003943A EP 2251850 B1 EP2251850 B1 EP 2251850B1
Authority
EP
European Patent Office
Prior art keywords
signal pattern
designed
transmitters
vehicle
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10003943A
Other languages
German (de)
French (fr)
Other versions
EP2251850A2 (en
EP2251850A3 (en
Inventor
Frederik Meysel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP2251850A2 publication Critical patent/EP2251850A2/en
Publication of EP2251850A3 publication Critical patent/EP2251850A3/en
Application granted granted Critical
Publication of EP2251850B1 publication Critical patent/EP2251850B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0008Transmission of traffic-related information to or from an aircraft with other aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising

Definitions

  • the invention relates to a device for determining the position of vehicles having a plurality of transmitters, which are arranged for emitting signals and arranged on a vehicle whose position is to be determined.
  • vehicles such as aircraft or watercraft
  • lamps mounted on the fuselage which emit a corresponding red, green or white light signal.
  • red, green or white light signal Depending on which color signal is visible, can then be closed to the location of the vehicle in the room.
  • a green light and on the port side (left) a red light so that can be determined depending on recognizable color, which side of the vessel faces the viewer, in this way can then the direction of travel is closed become.
  • the US 5,337,047 discloses a device for aircraft, with which the aircraft type can be determined from far away.
  • the device has a laser device which, depending on the type of aircraft (size, number of engines) emits a different number of light signals with different frequencies and thus encodes the corresponding properties of the aircraft.
  • a disadvantage of the device known from the prior art is the fact that an automatic detection of the attitude based on the "sea and avoid” method is difficult, especially for distant flying objects.
  • Object of the present invention is therefore to provide an improved device for determining the location of a distant vehicle.
  • the transmitter for emitting a respective transmitter relevant individual signal pattern are arranged within a signal pattern sequence and the device comprises a provided for installation in other vehicles position determination unit which is adapted by means of a receiving unit for receiving the signal pattern, wherein the attitude determination unit for determining the position of the vehicle is formed in response to the signal pattern sequence containing signal pattern.
  • transmitters are arranged on the vehicle whose position is to be determined, which transmit a signal pattern that is unique to the transmitter within a signal pattern sequence.
  • the signal pattern sequence results from the set of all signal patterns that can be transmitted by the transmitters; for example, only one transmitter transmits its individual signal pattern at a time, or is it, for example, that the transmitters transmit their individual signal pattern partially interleaved,
  • the device further comprises a position determination unit which can be installed in other vehicles which are to determine the position of the one vehicle.
  • the position determination unit is connected to a receiver which can receive the signal pattern emitted by the transmitters and forwards it to the position determination unit.
  • the position determination unit is set up in such a way that it can evaluate the received signals and determine which signal pattern was received within the signal pattern sequence. Due to the fact that each transmitter emits a unique, individual signal pattern, the attitude determination unit can now determine the position of the vehicle, in particular the relative position of the vehicle with respect to the viewer. For example, with aircraft it can be determined which octant of the vehicle faces the viewer.
  • the transmitters are advantageously arranged on the vehicle in such a way that at least one signal pattern of a transmitter can be received independently of the angle of the viewer, that is to say no matter in which position the vehicle is located, at least one signal pattern of a transmitter can always be received. This ensures that there are no receive gaps at certain viewing angles.
  • at least three signal patterns of three different transmitters can always be received, so that a much more accurate position determination can be carried out. It is obvious that the accuracy of the orientation is proportional to the number of receivable signal patterns and vice versa.
  • At least one transmitter is arranged at each end of a spatial axis X, Y and Z. This results in an advantageous arrangement of the transmitter with a transmission direction to the front and back, left and right and up and down.
  • a corresponding transmission angle of more than 45 ° starting from the solder, each transmitter more than one signal pattern within the signal pattern sequence can be received in certain situations, so that a much more detailed orientation of the vehicle is possible.
  • each with individual signal patterns while the accuracy of the orientation can be further increased.
  • the transmitters are light sources that are set up to emit light or infrared signals.
  • the individual signal patterns of the respective transmitters are then emitted in the form of light patterns, which advantageously have a binary coding.
  • the individual encoding of the transmitter is independent of a corresponding wavelength and thus not due to a color coding.
  • a binary signal pattern of a transmitter can be the sequence of a pattern sequence of switched on and off light.
  • the receiving unit has an optical transmitter which can be used for receiving and for
  • Such a receiving unit may be, for example, a video camera, in particular a digital video camera. If one assumes a conventional industrial camera with a temporal resolution of about 50 images per second, then 20 bits per second can be safely transmitted. In this case, the sampling frequency is more than twice the bit rate emitted by the transmitters in the form of the light patterns.
  • each transmitter is advantageously assigned a corresponding time slot within the signal pattern sequence in which the respective transmitter can transmit its signal pattern. Within this time slot, only the transmitter is allowed to transmit its signal pattern, which is assigned to the time slot is. This ensures that there is no overlap when transmitting the signal pattern sequence by all participating stations, which can then no longer be adequately identified by the location determination unit. Thus, it is uniquely determined which transmitter is allowed to send out its signal pattern at which time, with only each one a transmitter is allowed to send its signal pattern at a time.
  • each signal pattern is divided into individual parts, which are then distributed within the signal pattern sequence, the transmitter does not send their signal pattern in one piece. Similar to the interleaving method in which the order of z. B. bits to be transmitted or information interchanged and interleaved, and the parts of the individual signal pattern sequence are distributed nested, so that a signal pattern of a particular station is not sent in one piece from the corresponding station. For example, one or more other parts of other transmitters and their corresponding signal pattern parts may be located between two parts of a signal pattern of a particular transmitter. This interleaving can ensure a correspondingly higher reliability during reception. The position determination unit can then recognize the parts of the received signal patterns as a function of the received patterns and assign them to the transmitters.
  • the device is preferably designed such that at least one transmitter at the beginning of the signal pattern sequence emits a start sequence signal pattern.
  • the simultaneous transmission of the start sequence signal pattern by all transmitters ensures that regardless of the position of the vehicle, the start sequence is always receivable and thus the beginning of the signal pattern sequence can be determined.
  • the position determination unit is set up in such a way that it can recognize the start sequence signal pattern. Only after the start sequence signal pattern has been transmitted, the transmitters transmit their individual signal patterns within the signal pattern sequence.
  • the transmitters also emit signal patterns with which certain information about the vehicle can be transmitted.
  • information can be, for example, the transponder code, the direction of travel, the speed, the altitude and the descent. / Climb rate of the vehicle.
  • these information signal patterns are transmitted by each transmitter at the end of the signal pattern sequence, so that here again, regardless of the position of the vehicle, the information signal pattern can be received.
  • the position determination unit is set up in such a way that it extracts the corresponding information from the received signal patterns of the signal pattern sequence.
  • corresponding check, parity and / or correction information are sent, with the aid of which the position determination unit can then check the integrity of the received signal patterns. For example, it can be determined whether certain signal patterns were not fully received by the receiving unit due to weather conditions. With the help of corresponding correction information within the signal pattern sequence, even smaller bit errors can then be corrected.
  • the device is set up for the automatic determination of an avoidance duty or risk of collision as a function of the position of the vehicle determined by the position determination unit.
  • the attitude determination unit is installed, it is ascertained with the aid of the device according to the invention how great a risk of collision with the faraway vehicle whose position is to be determined is and can optionally select or initiate a suitable avoidance maneuver.
  • Such collision detection can then further support the "See and Avoid" principle.
  • the attitude determination unit is connected to a display device on which the spatial position of the vehicle determined by the attitude determination unit can be displayed.
  • the spatial position of the vehicle can be intuitively displayed to the appropriate driver, even if the vehicle is located at a distance with which a purely visual recognition of the spatial position is no longer possible.
  • FIG. 1 schematically shows the device 1 of the present invention.
  • a plurality of transmitters 3 are arranged, which emit a signal pattern that is individual for the respective transmitter 3.
  • the transmitters 3 are arranged to emit a corresponding non-color-coded light pattern according to their arrangement on the fuselage,
  • a position determination unit 5 is installed, which is connected to a corresponding receiver 6.
  • the receiver 6 is set up to receive the light patterns emitted by the transmitters 3.
  • Such a receiver 6 can be, for example, a video camera with a usual temporal resolution of approximately 50 frames per second.
  • the optical receiver 6 of the device 1 now receives the light patterns emitted by the transmitters 3 and forwards them to the position determination unit 5, which then determines the relative position of the aircraft 2 as a function of the received light pattern within the signal pattern sequence.
  • FIGS. 2a and 2b schematically show once again a preferred arrangement of the transmitter 3, wherein at least at each end of a spatial axis, such a transmitter is arranged.
  • FIG. 2a shows a side view of the aircraft 2.
  • a transmitter 31 is arranged, which emits its light pattern in the direction of flight.
  • a transmitter 32 which emits its light pattern against the direction of flight.
  • a corresponding light pattern with the aid of the transmitter 33 and downwards a corresponding light pattern with the transmitter 34 is emitted. All transmitters transmit with an opening angle of min. 160 °.
  • the receivable signal pattern (E 31,33) overlap in certain areas, so that both the signal pattern of the transmitter 31 and the signal pattern of the transmitter 33 can be received at this point.
  • the location of the vehicle can be determined much more accurately. In the airspace even three or more signal patterns can be received simultaneously.
  • FIG. 2b shows a plan view of the aircraft 2, the location of which is to be determined in space,
  • a further transmitter 35 is arranged on the left wing, which emits a corresponding light pattern to the left.
  • a transmitter 36 is arranged, which also emits a corresponding light pattern to the right.
  • the beam angle of the two transmitters 37 and 38 is such chosen to intersect with the beam angle of the front transmitter 31 as well as with the side transmitters 35 and 36 in a certain area. If a corresponding light pattern of the transmitters 37 or 38 is received, then either the forwardly emitted light pattern of the transmitter 31 or one of the light patterns of the lateral transmitters 35 or 36 can be received, so that a much more accurate orientation of the aircraft 2 is possible.
  • FIG. 3 shows by way of example the schematic representation of a signal pattern sequence S, as they of an arrangement of the transmitter in FIG. 2a or 2b is sent out.
  • the individual signal patterns are binary coded light patterns, one bit being represented by the states light on (1) or light off (0).
  • a start sequence X is first sent out simultaneously by all transmitters, so that the position determination unit 5 can determine the beginning of the signal pattern sequence S.
  • the start sequence X consists of a 6-bit code, wherein the first three bits have the state 1 (light on) and the last three bits the state 0 (light off).
  • the first individual light pattern F is emitted exclusively by the forwardly directed transmitter 31, which is coded in this embodiment with binary 101. If the light pattern F of the transmitter 31 has been transmitted, in this exemplary embodiment, the downwardly pointing transmitter 34 next transmits its corresponding signal pattern D, which in this example is encoded with binary 010. This is followed by the left transmitter 35 with its signal pattern L (binary 100), followed by the rear-facing transmitter 32 with the signal pattern B (binary 110). Towards the end of the signal pattern sequence S, the upwardly directed transmitter 33 then transmits its signal pattern U with binary 001 and finally the right transmitter 36 its signal pattern R (binary 011).
  • the signal pattern sequence starts again with the start sequence X, possibly with a short break in between.
  • FIG. 4 indicates based on the signal pattern sequence S FIG. 3 a signal pattern sequence S1, which in addition to the individual in FIG. 3 described light pattern has a parity bit P for each light pattern.
  • each light pattern of the transmitters 31 to 38 which are binary-coded by three bits, is extended by a further parity bit, so that now each individual light pattern is represented by four bits.
  • Such a parity bit P in the simplest form indicates how many even or odd bits are contained in the corresponding message, so that a integrity check can be carried out by the position determination unit 5 with the least possible effort. This integrity check is therefore particularly advantageous so that faulty transmissions or short-term occlusion or other disturbances can be detected in good time and thus does not lead to incorrect calculations of the situation.
  • the individual high levels of a single signal light can be distributed in the code so that, for example, sufficient time is available for charging an energy store for a lightning discharge. Should this time be insufficient for an attitude transmission of, for example, 0.5 Hz (every 2 seconds), several lamps can each be accommodated in one coded light.
  • a pause of, for example, one second can be maintained.
  • the code described here by way of example contains enough redundancy to detect simple mis-transmissions. However, it is also possible to use codes which not only detect any incorrect transmission of individual bits, but can also correct them.
  • FIGS. 5a and 5b show by way of example a received signal code.
  • the signal patterns F, L and U are received, wherein the signal pattern F is transmitted by the transmitter 31, the signal pattern U by the transmitter 33 and the signal pattern L by the transmitter 35.
  • the other signal patterns within the signal pattern sequence S are not receivable, so that a binary 000 is determined by the position determination unit in these areas.
  • FIG. 5b shows a code sequence in which the signal patterns D, B and R were received.
  • each signal pattern or light pattern has its own position within the signal pattern sequence, which is output sequentially distributed over all transmitters,
  • FIG. 6 Another embodiment of how the signal pattern frequency S may be constructed is in FIG. 6 shown.
  • the individual parts of a single signal pattern of a transmitter are distributed over the signal pattern sequence, in which case only one part of a signal pattern can also be located at one point within the signal pattern sequence.
  • the signal pattern sequence S shown above as it would be received, if one could receive all signal patterns of the transmitter.
  • the transmitters emit a uniform start pattern at the beginning of each signal pattern sequence and, if appropriate, transmit information at the end of the signal pattern sequence.
  • the coding also takes place on the basis of the time at which the parts of the signal pattern are transmitted within the signal pattern sequence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)
  • Optical Communication System (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zur Lagebestimmung von Fahrzeugen mit einer Mehrzahl von Sendern, die zum Aussenden von Signalen eingerichtet und an einem Fahrzeug, dessen Lage bestimmt werden soll, angeordnet sind.The invention relates to a device for determining the position of vehicles having a plurality of transmitters, which are arranged for emitting signals and arranged on a vehicle whose position is to be determined.

Zur Vermeidung von Kollisionen zwischen zwei Fahrzeugen ist es wichtig, dass neben bekannten technischen Hilfsmitteln der Fahrzeugführer als Mensch in die Lage versetzt wird, die Lage eines anderen in seiner Nähe befindlichen Fahrzeuges zu erkennen, um so abschätzen zu können, ob sich das eigene Fahrzeug mit dem anderen Fahrzeug auf Kollisionskurs befindet bzw. wer ausweichpflichtig ist. Gerade bei Fahrzeugen, die aufgrund ihrer Entfernung nur sehr vage wahrgenommen werden können, ist es oft schwierig, ohne weitere technische Hilfsmittel festzustellen, in welcher Lage sich das Fahrzeug im Raum befindet.To avoid collisions between two vehicles, it is important that in addition to known technical aids the driver as a human being is able to detect the location of another vehicle located in its vicinity, so as to be able to estimate whether the own vehicle with the other vehicle is on a collision course or who is liable to avoidance. Especially with vehicles that can be perceived only very vague because of their distance, it is often difficult to determine without further technical aids, in which position the vehicle is in the room.

Zur Unterstützung der Lagebestimmung von Fahrzeugen durch den Menschen verfügen Fahrzeuge, wie Flugzeuge oder Wasserfahrzeuge, über am Rumpf angebrachte Lampen, die ein entsprechendes rotes, grünes oder weißes Lichtsignal aussenden. Je nachdem welches Farbsignal sichtbar ist, kann dann auf die Lage des Fahrzeuges im Raum geschlossen werden. So wird bei Wasserfahrzeugen an der Steuerbordseite (rechts) ein grünes Licht und an der Backbordseite (links) ein rotes Licht geführt, so dass je nach erkennbarer Farbe festgestellt werden kann, welche Seite des Wasserfahrzeuges dem Betrachter zugewandt ist, Auf diese Weise kann dann auf die Fahrtrichtung geschlossen werden.In order to assist vehicle orientation by humans, vehicles, such as aircraft or watercraft, have lamps mounted on the fuselage which emit a corresponding red, green or white light signal. Depending on which color signal is visible, can then be closed to the location of the vehicle in the room. Thus, in the case of vessels on the starboard side (right) a green light and on the port side (left) a red light, so that can be determined depending on recognizable color, which side of the vessel faces the viewer, in this way can then the direction of travel is closed become.

Bei Luftfahrzeugen muss jeder Luftfahrzeugführer den Luftraum ebenfalls aktiv beobachten. Obwohl elektronische Verfahren zur frühzeitigen Erkennung und Behandlung von Kollisionsrisiken zur Verfügung stehen, muss das visuelle Beobachten der Umgebung durch den Piloten weiterhin durchgeführt werden. Dieses als "See and Avoid" bekannte Prinzip wird derzeit auch von unbemannten Luftfahrzeugen zusätzlich zu elektronischen Verfahren basierend auf Satellitennavigation und Funkkommunikation verlangt.For aircraft, each pilot must also actively observe the airspace. Although electronic methods are available for the early detection and treatment of collision risks, visual observation of the environment by the pilot must continue. This principle known as "sea and avoid" is currently also required by unmanned aerial vehicles in addition to electronic methods based on satellite navigation and radio communication.

Aus der US 3,706,968 ist ein Signallicht für Flugzeuge bekannt, das je nach Lagewinkel des Betrachters eine unterschiedliche Farbe aufweist, so dass durch den Betrachter festgestellt werden kann, welche Seite ihm zugewandt ist, wodurch sich grob die Flugrichtung des Flugzeuges abschätzen lässt. Aufgrund der kreisförmigen Anordnung der Farbfilter beider Lampen und einer versetzten Anordnung der Farbfilter können durch unterschiedliche Farbkodierungen auch Lagewinkel < 90° ermittelt werden.From the US 3,706,968 is a signal light for aircraft known, which has a different color depending on the angle of view of the viewer, so that it can be determined by the viewer, which side is facing him, which can roughly estimate the direction of flight of the aircraft. Due to the circular arrangement of the color filters of both lamps and a staggered arrangement of the color filters, position angles <90 ° can also be determined by means of different color codes.

Die US 5,337,047 offenbart eine Vorrichtung für Flugzeuge, mit der aus weiter Entfernung der Flugzeugtyp ermittelt werden kann. Dazu weist die Einrichtung eine Laservorrichtung auf, die je nach Flugzeugtyp (Größe, Anzahl der Engines) eine unterschiedliche Anzahl von Lichtsignalen mit unterschiedlichen Frequenzen aussendet und so die entsprechenden Eigenschaften des Flugzeuges kodiert.The US 5,337,047 discloses a device for aircraft, with which the aircraft type can be determined from far away. For this purpose, the device has a laser device which, depending on the type of aircraft (size, number of engines) emits a different number of light signals with different frequencies and thus encodes the corresponding properties of the aircraft.

Aus der US 3,846,746 A ist ein System bekannt, mit dem die Höhe und die Flugrichtung eines anderen Flugzeuges ermittelt werden kann, indem das andere Flugzeug seine Höhe und Flugrichtung in einem Lichtmuster codiert. Dieses Lichtmuster mit den codierten Informationen wird von dem Flugzeug permanent ausgesendet und kann von anderen Flugzeugen empfangen und decodiert werden. Die Abstände zwischen den einzelnen Lichtsignalen ist dabei dieFrom the US 3,846,746 A A system is known with which the height and direction of flight of another aircraft can be determined by the other aircraft coding its height and flight direction in a light pattern. This light pattern with the coded information is transmitted by the aircraft permanently and can be received and decoded by other aircraft. The distances between the individual light signals is the

Basis der Codierung.Base of coding.

Des weiteren ist aus der US 4,755,818 A eine Vorrichtung bekannt, bei der die Flugzeuge über eine Lichtanlage verfügen, die Licht in einem 360° Winkel aussenden. Das Aussenden des Lichtes erfolgt dabei mit Hilfe einer entsprechenden Linse, die mit einem Laserlicht gespeist wird.Furthermore, from the US 4,755,818 A a device known in which the aircraft have a lighting system that emit light in a 360 ° angle. The emission of the light takes place with the aid of a corresponding lens, which is fed with a laser light.

Nachteilig bei der aus dem Stand der Technik bekannten Vorrichtung ist die Tatsache, dass eine automatische Erkennung der Fluglage basierend auf dem "See and Avoid" Verfahren gerade bei weit entfernten Flugobjekten nur schwerlich möglich ist.A disadvantage of the device known from the prior art is the fact that an automatic detection of the attitude based on the "sea and avoid" method is difficult, especially for distant flying objects.

Aufgabe der vorliegenden Erfindung ist es daher, eine verbesserte Vorrichtung zur Bestimmung der Lage eines weit entfernten Fahrzeuges anzugeben.Object of the present invention is therefore to provide an improved device for determining the location of a distant vehicle.

Die Aufgabe wird mit der Erfindung der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass die Sender zum Aussenden eines den jeweiligen Sender betreffenden individuellen Signalmusters innerhalb einer Signalmustersequenz eingerichtet sind und die Vorrichtung eine zum Einbau in andere Fahrzeuge vorgesehene Lagebestimmungseinheit aufweist, die mittels einer Empfangseinheit zum Empfangen der Signalmuster eingerichtet ist, wobei die Lagebestimmungseinheit zur Lagebestimmung des Fahrzeuges in Abhängigkeit der in den Signalmustersequenz enthaltenden Signalmuster ausgebildet ist.The object is achieved with the invention of the type mentioned in the present invention that the transmitter for emitting a respective transmitter relevant individual signal pattern are arranged within a signal pattern sequence and the device comprises a provided for installation in other vehicles position determination unit which is adapted by means of a receiving unit for receiving the signal pattern, wherein the attitude determination unit for determining the position of the vehicle is formed in response to the signal pattern sequence containing signal pattern.

Dadurch wird es möglich, dass die Lage eines Fahrzeuges auch dann bestimmt werden kann, wenn sich das Fahrzeug in einer großen Entfernung zum Betrachter befindet und die von dem Fahrzeug ausgesendeten Lichtsignale nur als eine einzige Lichtquelle wahrnehmbar sind. Dazu sind an dem Fahrzeug, dessen Lage bestimmt werden soll, Sender angeordnet, die ein jeweils für den Sender eindeutiges Signalmuster innerhalb einer Signalmustersequenz aussenden. Die Signalmustersequenz ergibt sich dabei aus der Menge aller von den Sendern aussendbaren Signalmuster, sie es beispielsweise, dass zu einer Zeit nur jeweils nur ein Sender sein individuelles Signalmuster aussendet, oder sei es beispielsweise, dass die Sender ihr individuelles Signalmuster teilweise verschachtelt/versetzt aussenden,This makes it possible that the position of a vehicle can be determined even if the vehicle is located at a great distance from the viewer and the light signals emitted by the vehicle can only be perceived as a single light source. For this purpose, transmitters are arranged on the vehicle whose position is to be determined, which transmit a signal pattern that is unique to the transmitter within a signal pattern sequence. The signal pattern sequence results from the set of all signal patterns that can be transmitted by the transmitters; for example, only one transmitter transmits its individual signal pattern at a time, or is it, for example, that the transmitters transmit their individual signal pattern partially interleaved,

Erfindungsgemäß weist die Vorrichtung des Weiteren eine Lagebestimmungseinheit auf, die in anderen Fahrzeugen, welche die Lage des einen Fahrzeuges bestimmen sollen, einbaubar ist. Die Lagebestimmungseinheit ist dabei mit einem Empfänger verbunden, der die von den Sendern ausgesendeten Signalmuster empfangen kann und an die Lagebestimmungseinheit weiterleitet. Die Lagebestimmungseinheit ist dabei derart eingerichtet, dass sie die empfangenen Signale auswertet und bestimmen kann, welches Signalmuster innerhalb der Signalmustersequenz empfangen wurde. Aufgrund der Tatsache, dass jeder Sender ein eindeutiges, individuelles Signalmuster aussendet, kann die Lagebestimmungseinheit nunmehr die Lage des Fahrzeuges, insbesondere die relative Lage des Fahrzeuges bezüglich des Betrachters, feststellen. So lässt sich bei Luftfahrtzeugen beispielsweise ermitteln, welcher Oktant des Fahrzeuges dem Betrachter zugewandt ist.According to the invention, the device further comprises a position determination unit which can be installed in other vehicles which are to determine the position of the one vehicle. The position determination unit is connected to a receiver which can receive the signal pattern emitted by the transmitters and forwards it to the position determination unit. The position determination unit is set up in such a way that it can evaluate the received signals and determine which signal pattern was received within the signal pattern sequence. Due to the fact that each transmitter emits a unique, individual signal pattern, the attitude determination unit can now determine the position of the vehicle, in particular the relative position of the vehicle with respect to the viewer. For example, with aircraft it can be determined which octant of the vehicle faces the viewer.

Dadurch wird es möglich, dass auch bei unbemannten Fahrzeugen, insbesondere bei unbemannten Luftfahrzeugen, das "See and Avoid" Prinzip angewendet werden kann, so wie es von menschlichen Piloten verlangt wird.This makes it possible that even with unmanned vehicles, especially in unmanned aerial vehicles, the "sea and avoid" principle can be applied, as required by human pilots.

Die Sender sind an dem Fahrzeug dabei vorteilhafterweise derart angeordnet, dass zumindest ein Signalmuster eines Senders unabhängig von dem Winkel des Betrachters auf das Fahrzeug empfangbar ist, das heißt egal in welcher Lage sich das Fahrzeug befindet, kann immer mindestens ein Signalmuster eines Senders empfangen werden. Damit kann sichergestellt werden, dass keine Empfangslücken bei bestimmten Betrachtungswinkeln entstehen. In einem Ausführungsbeispiel können dabei immer mindestens drei Signalmuster von drei unterschiedlichen Sendern empfangen werden, so dass sich eine wesentlich genauere Lagebestimmung durchführen lässt. Es ist offensichtlich, dass die Genauigkeit der Lagebestimmung proportional zu der Anzahl der empfangbaren Signalmuster ist und umgekehrt.The transmitters are advantageously arranged on the vehicle in such a way that at least one signal pattern of a transmitter can be received independently of the angle of the viewer, that is to say no matter in which position the vehicle is located, at least one signal pattern of a transmitter can always be received. This ensures that there are no receive gaps at certain viewing angles. In one embodiment, at least three signal patterns of three different transmitters can always be received, so that a much more accurate position determination can be carried out. It is obvious that the accuracy of the orientation is proportional to the number of receivable signal patterns and vice versa.

Besonders vorteilhaft ist es, wenn an jedem Ende einer Raumachse X, Y und Z mindestens ein Sender angeordnet ist. Somit ergibt sich eine vorteilhafte Anordnung der Sender mit einer Senderichtung nach vorne und hinten, links und rechts und oben und unten. Durch einen entsprechenden Sendewinkel von mehr als 45°, ausgehend vom Lot, je Sender kann dabei in bestimmten Lagen auch mehr als ein Signalmuster innerhalb der Signalmustersequenz empfangen werden, so dass eine wesentlich detailliertere Lagebestimmung des Fahrzeuges möglich wird. Durch zusätzliche Sender mit jeweils individuellen Signalmustern kann dabei die Genauigkeit der Lagebestimmung weiter erhöht werden.It is particularly advantageous if at least one transmitter is arranged at each end of a spatial axis X, Y and Z. This results in an advantageous arrangement of the transmitter with a transmission direction to the front and back, left and right and up and down. By a corresponding transmission angle of more than 45 °, starting from the solder, each transmitter more than one signal pattern within the signal pattern sequence can be received in certain situations, so that a much more detailed orientation of the vehicle is possible. By additional transmitter, each with individual signal patterns while the accuracy of the orientation can be further increased.

Bevorzugterweise sind die Sender Lichtquellen, die zum Aussenden von Licht- oder Infrarotsignalen eingerichtet sind. Die individuellen Signalmuster der jeweiligen Sender werden dann in Form von Lichtmustern ausgesendet, die vorteilhafterweise eine binäre Kodierung aufweisen. Somit erfolgt die individuelle Kodierung des Senders unabhängig von einer entsprechenden Wellenlänge und somit nicht aufgrund einer Farbkodierung. Ein binäres Signalmuster eines Senders kann dabei die Abfolge einer Mustersequenz von eingeschaltetem und ausgeschaltetem Licht sein.Preferably, the transmitters are light sources that are set up to emit light or infrared signals. The individual signal patterns of the respective transmitters are then emitted in the form of light patterns, which advantageously have a binary coding. Thus, the individual encoding of the transmitter is independent of a corresponding wavelength and thus not due to a color coding. A binary signal pattern of a transmitter can be the sequence of a pattern sequence of switched on and off light.

Um die von den optischen Sendern ausgesendeten Lichtmustern empfangen zu können, weist die Empfangseinheit einen optischen Sender auf, der zum Empfangen und zurIn order to be able to receive the light patterns emitted by the optical transmitters, the receiving unit has an optical transmitter which can be used for receiving and for

Aufnahme der Lichtsignale eingerichtet ist. Eine solche Empfangseinheit kann zum Beispiel eine Videokamera, insbesondere eine digitale Videokamera sein. Geht man dabei von einer üblichen Industriekamera mit einer zeitlichen Auflösung von circa 50 Bildern pro Sekunde aus, so können 20 Bit pro Sekunde sicher übertragen werden. In diesem Fall ist die Abtastfrequenz mehr als doppelt so hoch wie die von den Sendern ausgesendete Bitrate in Form der Lichtmuster.Recording the light signals is set up. Such a receiving unit may be, for example, a video camera, in particular a digital video camera. If one assumes a conventional industrial camera with a temporal resolution of about 50 images per second, then 20 bits per second can be safely transmitted. In this case, the sampling frequency is more than twice the bit rate emitted by the transmitters in the form of the light patterns.

Um die genaue zeitliche Abfolge der einzelnen Signalmuster innerhalb der Signalmustersequenz festzulegen, wird vorteilhafterweise jedem Sender ein entsprechender Zeitslot innerhalb der Signalmustersequenz zugewiesen, in dem der jeweilige Sender sein Signalmuster aussenden kann, Innerhalb dieses Zeitslots darf nur der Sender sein Signalmuster aussenden, der dem Zeitslot zugewiesen ist. Damit wird sichergestellt, dass es bei dem Aussenden der Signalmustersequenz durch alle beteiligten Sender nicht zu Überschneidungen kommt, die dann von der Lagebestimmungseinheit nicht mehr hinreichend identifiziert werden kann, Somit wird eindeutig festgelegt, welcher Sender zu welcher Zeit sein Signalmuster aussenden darf, wobei nur jeweils ein Sender zu einer Zeit sein Signalmuster senden darf.In order to determine the exact chronological sequence of the individual signal patterns within the signal pattern sequence, each transmitter is advantageously assigned a corresponding time slot within the signal pattern sequence in which the respective transmitter can transmit its signal pattern. Within this time slot, only the transmitter is allowed to transmit its signal pattern, which is assigned to the time slot is. This ensures that there is no overlap when transmitting the signal pattern sequence by all participating stations, which can then no longer be adequately identified by the location determination unit. Thus, it is uniquely determined which transmitter is allowed to send out its signal pattern at which time, with only each one a transmitter is allowed to send its signal pattern at a time.

Denkbar ist aber auch, dass jedes Signalmuster in einzelne Teile aufgeteilt wird, die dann innerhalb der Signalmustersequenz verteilt werden, wobei die Sender ihr Signalmuster nicht an einem Stück senden. Ähnlich dem Interleaving-Verfahren, bei dem die Reihenfolge von z. B. zu sendenden Bits oder Informationen untereinander vertauscht und verschachtelt werden, werden auch die Teile der einzelnen Signalmustersequenz verschachtelt verteilt, so dass ein Signalmuster eines bestimmten Senders nicht an einem Stück von dem entsprechenden Sender ausgesendet wird. So können beispielsweise zwischen zwei Teilen eines Signalmusters eines bestimmten Senders ein oder mehrere andere Teile anderer Sender und ihre entsprechenden Signalmusterteile liegen. Durch diese Verschachtelung kann eine entsprechend höhere Ausfallsicherheit beim Empfang gewährleistet werden. Die Lagebestimmungseinheit kann dann in Abhängigkeit der empfangenen Muster die Teile der empfangenen Signalmuster erkennen und entsprechend den Sendern zuordnen.It is also conceivable that each signal pattern is divided into individual parts, which are then distributed within the signal pattern sequence, the transmitter does not send their signal pattern in one piece. Similar to the interleaving method in which the order of z. B. bits to be transmitted or information interchanged and interleaved, and the parts of the individual signal pattern sequence are distributed nested, so that a signal pattern of a particular station is not sent in one piece from the corresponding station. For example, one or more other parts of other transmitters and their corresponding signal pattern parts may be located between two parts of a signal pattern of a particular transmitter. This interleaving can ensure a correspondingly higher reliability during reception. The position determination unit can then recognize the parts of the received signal patterns as a function of the received patterns and assign them to the transmitters.

Damit der Beginn der Signalmustersequenz durch die Lagebestimmungseinheit feststellbar ist, ist die Vorrichtung vorzugsweise derart ausgebildet, dass mindestens ein Sender am Beginn der Signalmustersequenz ein Startsequenz-Signalmuster aussendet. Durch das gleichzeitige Aussenden des Startsequenz-Signalmusters durch alle Sender wird sichergestellt, dass unabhängig von der Lage des Fahrzeuges die Startsequenz immer empfangbar ist und somit der Beginn der Signalmustersequenz bestimmbar ist. Die Lagebestimmungseinheit ist dabei derart eingerichtet, dass sie das Startsequenz-Signalmuster erkennen kann, Erst nach Aussenden des Startsequenz-Signalmusters senden die Sender ihre individuellen Signalmuster innerhalb der Signalmustersequenz aus.Thus, the beginning of the signal pattern sequence by the attitude determination unit can be detected, the device is preferably designed such that at least one transmitter at the beginning of the signal pattern sequence emits a start sequence signal pattern. By the simultaneous transmission of the start sequence signal pattern by all transmitters ensures that regardless of the position of the vehicle, the start sequence is always receivable and thus the beginning of the signal pattern sequence can be determined. The position determination unit is set up in such a way that it can recognize the start sequence signal pattern. Only after the start sequence signal pattern has been transmitted, the transmitters transmit their individual signal patterns within the signal pattern sequence.

Des Weiteren ist es besonders vorteilhaft, wenn neben den Signalmustern zur Lagebestimmung die Sender auch Signalmuster aussenden, mit denen bestimmte Informationen über das Fahrzeug ausgesendet werden können, Solche Informationen können zum Beispiel der Transpondercode, die Fahrtrichtung, die Geschwindigkeit, die Flughöhe sowie die Sink-/Steigrate des Fahrzeuges sein. Bevorzugterweise werden diese Informations-Signalmuster von jedem Sender am Ende der Signalmustersequenz ausgesendet, so dass auch hier wieder unabhängig von der Lage des Fahrzeuges die Informationssignalmuster empfangen werden können. Dabei ist die Lagebestimmungseinheit derart eingerichtet, dass sie aus den empfangenen Signalmustern der Signalmustersequenz die entsprechenden Informationen extrahiert.Furthermore, it is particularly advantageous if, in addition to the signal patterns for position determination, the transmitters also emit signal patterns with which certain information about the vehicle can be transmitted. Such information can be, for example, the transponder code, the direction of travel, the speed, the altitude and the descent. / Climb rate of the vehicle. Preferably, these information signal patterns are transmitted by each transmitter at the end of the signal pattern sequence, so that here again, regardless of the position of the vehicle, the information signal pattern can be received. In this case, the position determination unit is set up in such a way that it extracts the corresponding information from the received signal patterns of the signal pattern sequence.

Um die Übertragungssicherheit zu erhöhen ist es besonders vorteilhaft, wenn zusätzlich zu den Signalmustern entsprechende Prüf-, Paritäts- und/oder Korrekturinformationen gesendet werden, mit deren Hilfe dann die Lagebestimmungseinheit die Integrität der empfangenen Signalmuster überprüfen kann. So kann zum Beispiel festgestellt werden, ob bestimmte Signalmuster aufgrund von Witterungsbedingungen nicht vollständig von der Empfangseinheit empfangen wurden. Mit Hilfe von entsprechenden Korrekturinformationen innerhalb der Signalmustersequenz lassen sich dann auch kleinere Bitfehler korrigieren.In order to increase the transmission reliability, it is particularly advantageous if, in addition to the signal patterns, corresponding check, parity and / or correction information are sent, with the aid of which the position determination unit can then check the integrity of the received signal patterns. For example, it can be determined whether certain signal patterns were not fully received by the receiving unit due to weather conditions. With the help of corresponding correction information within the signal pattern sequence, even smaller bit errors can then be corrected.

Des Weiteren ist es besonders vorteilhaft, wenn die Vorrichtung zur automatischen Ermittlung einer Ausweichpflicht bzw. Kollisionsgefahr in Abhängigkeit der von der Lagebestimmungseinheit ermittelten Lage des Fahrzeuges eingerichtet ist. Somit kann in den Fahrzeugen, in denen die Lagebestimmungseinheit eingebaut ist, mit Hilfe der erfindungsgemäßen Vorrichtung festgestellt werden, wie groß ein Kollisionsrisiko mit dem weit entfernten Fahrzeug, dessen Lage ermittelt werden soll, ist und kann gegebenenfalls ein geeignetes Ausweichmanöver auswählen bzw. einleiten. Eine solche Kollisionserkennung kann dann das "See and Avoid" Prinzip weiter unterstützen.Furthermore, it is particularly advantageous if the device is set up for the automatic determination of an avoidance duty or risk of collision as a function of the position of the vehicle determined by the position determination unit. Thus, can in the vehicles in which the attitude determination unit is installed, it is ascertained with the aid of the device according to the invention how great a risk of collision with the faraway vehicle whose position is to be determined is and can optionally select or initiate a suitable avoidance maneuver. Such collision detection can then further support the "See and Avoid" principle.

Bei bemannten Fahrzeugen kann es besonders vorteilhaft sein, wenn die Lagebestimmungseinheit mit einer Anzeigevorrichtung verbunden ist, auf der die von der Lagebestimmungseinheit ermittelte Raumlage des Fahrzeuges angezeigt werden kann. So kann intuitiv dem entsprechenden Fahrzeugführer die Raumlage des Fahrzeuges angezeigt werden, auch dann, wenn das Fahrzeug sich in einer Entfernung befindet, mit der eine rein visuelle Erkennung der Raumlage nicht mehr möglich ist.In manned vehicles, it may be particularly advantageous if the attitude determination unit is connected to a display device on which the spatial position of the vehicle determined by the attitude determination unit can be displayed. Thus, the spatial position of the vehicle can be intuitively displayed to the appropriate driver, even if the vehicle is located at a distance with which a purely visual recognition of the spatial position is no longer possible.

Die Erfindung wird anhand der beigefügten Zeichnungen beispielhaft näher erläutert.The invention will be described by way of example with reference to the accompanying drawings.

Es zeigen:

Figur 1
- schematische Darstellung der Vorrichtung;
Figur 2a, 2b
- schematische Darstellung der Senderanordnung an einem Flugzeug;
Figur 3
- Ausführungsbeispiel eines Signalmustercodes;
Figur 4
- Ausführungsbeispiel eines Signalmustercodes mit Paritätbits;
Figur 5a, 5b
- Ausführungsbeispiel einer empfangenen Signalmustersequenz;
Figur 6
- Ausführungsbeispiel einer interleaving Signalmustersequenz
Show it:
FIG. 1
- Schematic representation of the device;
Figure 2a, 2b
schematic representation of the transmitter arrangement on an aircraft;
FIG. 3
Embodiment of a signal pattern code;
FIG. 4
Embodiment of a signal pattern code with parity bits;
Figure 5a, 5b
Embodiment of a received signal pattern sequence;
FIG. 6
Embodiment of an interleaving signal pattern sequence

Figur 1 zeigt schematisch die Vorrichtung 1 der vorliegenden Erfindung. An einem Flugzeug 2, dessen Lage im Raum mit Hilfe der Vorrichtung 1 bestimmt werden soll, sind eine Mehrzahl von Sendern 3 angeordnet, die ein für den jeweiligen Sender 3 individuelles Signalmuster aussenden. In diesem Ausführungsbeispiel sind die Sender 3 derart eingerichtet, dass sie ein entsprechendes nicht farblich kodiertes Lichtmuster entsprechend ihrer Anordnung am Rumpf aussenden, FIG. 1 schematically shows the device 1 of the present invention. On an aircraft 2, whose position in space is to be determined with the aid of the device 1, a plurality of transmitters 3 are arranged, which emit a signal pattern that is individual for the respective transmitter 3. In this embodiment, the transmitters 3 are arranged to emit a corresponding non-color-coded light pattern according to their arrangement on the fuselage,

In einem weiteren Flugzeug 4, das die Lage des Flugzeuges 2 ermitteln soll, ist eine Lagebestimmungseinheit 5 eingebaut, die mit einem entsprechenden Empfänger 6 verbunden ist. In diesem Ausführungsbeispiel ist der Empfänger 6 zum Empfangen der von den Sendern 3 ausgestrahlten Lichtmuster eingerichtet, Ein solcher Empfänger 6 kann dabei zum Beispiel eine Videokamera mit einer üblichen zeitlichen Auflösung von circa 50 Bildern pro Sekunde sein.In a further aircraft 4, which is to determine the position of the aircraft 2, a position determination unit 5 is installed, which is connected to a corresponding receiver 6. In this exemplary embodiment, the receiver 6 is set up to receive the light patterns emitted by the transmitters 3. Such a receiver 6 can be, for example, a video camera with a usual temporal resolution of approximately 50 frames per second.

Der optische Empfänger 6 der Vorrichtung 1 empfängt nun die von den Sendern 3 ausgestrahlten Lichtmuster und leitet sie an die Lagebestimmungseinheit 5 weiter, die dann in Abhängigkeit der empfangenen Lichtmuster innerhalb der Signalmustersequenz die relative Lage des Flugzeuges 2 ermittelt.The optical receiver 6 of the device 1 now receives the light patterns emitted by the transmitters 3 and forwards them to the position determination unit 5, which then determines the relative position of the aircraft 2 as a function of the received light pattern within the signal pattern sequence.

Figuren 2a und 2b zeigen schematisch noch einmal eine bevorzugte Anordnungsweise der Sender 3, wobei mindestens an jedem Ende einer Raumachse ein solcher Sender angeordnet ist. Figur 2a zeigt eine Seitenansicht des Flugzeuges 2. Am Bug des Flugzeuges 2 ist ein Sender 31 angeordnet, der in Flugrichtung sein Lichtmuster aussendet. Am Heck des Flugzeuges befindet sich ein Sender 32, der sein Lichtmuster entgegen der Flugrichtung aussendet. Nach oben wird ein entsprechendes Lichtmuster mit Hilfe des Senders 33 und nach unten ein entsprechendes Lichtmuster mit dem Sender 34 ausgestrahlt. Alle Sender senden mit einem Öffnungswinkel von min. 160°. FIGS. 2a and 2b schematically show once again a preferred arrangement of the transmitter 3, wherein at least at each end of a spatial axis, such a transmitter is arranged. FIG. 2a shows a side view of the aircraft 2. At the bow of the aircraft 2, a transmitter 31 is arranged, which emits its light pattern in the direction of flight. At the rear of the aircraft is a transmitter 32, which emits its light pattern against the direction of flight. At the top, a corresponding light pattern with the aid of the transmitter 33 and downwards a corresponding light pattern with the transmitter 34 is emitted. All transmitters transmit with an opening angle of min. 160 °.

Durch den breiten Öffnungswinkel der Sender überschneiden sich die empfangbaren Signalmuster in bestimmten Bereichen (E31,33), so dass an dieser Stelle sowohl das Signalmuster von Sender 31 als auch das Signalmuster von Sender 33 empfangen werden kann. Somit lässt sich die Lage des Fahrzeuges wesentlich genauer bestimmen. Im Luftraum können dabei sogar drei oder mehr Signalmuster gleichzeitig empfangen werden.Because of the wide opening angle of the transmitter is the receivable signal pattern (E 31,33) overlap in certain areas, so that both the signal pattern of the transmitter 31 and the signal pattern of the transmitter 33 can be received at this point. Thus, the location of the vehicle can be determined much more accurately. In the airspace even three or more signal patterns can be received simultaneously.

Figur 2b zeigt eine Draufsicht auf das Flugzeug 2, dessen Lage im Raum bestimmt werden soll, Dabei ist am linken Flügel ein weiterer Sender 35 angeordnet, der ein entsprechendes Lichtmuster nach links ausstrahlt. Am rechten Flügel ist ein Sender 36 angeordnet, der ebenfalls ein entsprechendes Lichtmuster nach rechts aussendet. FIG. 2b shows a plan view of the aircraft 2, the location of which is to be determined in space, Here, a further transmitter 35 is arranged on the left wing, which emits a corresponding light pattern to the left. On the right wing a transmitter 36 is arranged, which also emits a corresponding light pattern to the right.

Um die Genauigkeit der Lagebestimmung des Flugzeuges 2 zu erhöhen, befinden sich in diesem Ausführungsbeispiel im vorderen Bereich des Flugzeuges links und rechts jeweils zwei Sender 37 und 38, die ebenfalls ein entsprechend kodiertes Lichtsignal aussenden, Der Ausstrahlwinkel der beiden Sender 37 und 38 ist dabei derart gewählt, dass er sich mit dem Ausstrahlwinkel des vorderen Senders 31 als auch mit den seitlichen Sendern 35 und 36 in einem bestimmten Bereich überschneidet. Wird ein entsprechendes Lichtmuster der Sender 37 oder 38 empfangen, so kann immer entweder das nach vorne ausgestrahlte Lichtmuster des Senders 31 oder eines der Lichtmuster der seitlichen Sender 35 oder 36 empfangen werden, so dass eine wesentlich genauere Lagebestimmung des Flugzeuges 2 möglich ist.To increase the accuracy of the orientation of the aircraft 2, located in this embodiment in the front region of the aircraft left and right two transmitters 37 and 38, which also emit a corresponding coded light signal, the beam angle of the two transmitters 37 and 38 is such chosen to intersect with the beam angle of the front transmitter 31 as well as with the side transmitters 35 and 36 in a certain area. If a corresponding light pattern of the transmitters 37 or 38 is received, then either the forwardly emitted light pattern of the transmitter 31 or one of the light patterns of the lateral transmitters 35 or 36 can be received, so that a much more accurate orientation of the aircraft 2 is possible.

Figur 3 zeigt beispielhaft die schematische Darstellung einer Signalmustersequenz S, wie sie von einer Anordnung der Sender in Figur 2a beziehungsweise 2b ausgesendet wird. Die einzelnen Signalmuster sind dabei binär kodierte Lichtmuster, wobei ein Bit durch die Zustände Licht an (1) oder Licht aus (0) repräsentiert wird. FIG. 3 shows by way of example the schematic representation of a signal pattern sequence S, as they of an arrangement of the transmitter in FIG. 2a or 2b is sent out. The individual signal patterns are binary coded light patterns, one bit being represented by the states light on (1) or light off (0).

Am Anfang der Signalmustersequenz S wird zunächst eine Startsequenz X von allen Sendern gleichzeitig ausgesendet, so dass die Lagebestimmungseinheit 5 den Beginn der Signalmustersequenz S ermitteln kann. Die Startsequenz X besteht dabei aus einem 6-Bit-Code, wobei die ersten drei Bit den Zustand 1 (Licht an) und die letzten drei Bit den Zustand 0 (Licht aus) aufweisen.At the beginning of the signal pattern sequence S, a start sequence X is first sent out simultaneously by all transmitters, so that the position determination unit 5 can determine the beginning of the signal pattern sequence S. The start sequence X consists of a 6-bit code, wherein the first three bits have the state 1 (light on) and the last three bits the state 0 (light off).

Daran anschließend wird ausschließlich von dem nach vorne gerichteten Sender 31 das erste individuelle Lichtmuster F ausgesendet, das in diesem Ausführungsbeispiel mit binär 101 kodiert ist. Wurde das Lichtmuster F des Senders 31 ausgesendet, so sendet in diesem Ausführungsbeispiel als nächstes der nach unten zeigende Sender 34 sein entsprechendes Signalmuster D aus, was in diesem Beispiel mit binär 010 kodiert ist. Daran schließt sich der linke Sender 35 mit seinem Signalmuster L (binär 100) an, gefolgt von dem nach hinten ausgerichteten Sender 32 mit dem Signalmuster B (binär 110). Zum Ende hin der Signalmustersequenz S sendet dann der nach oben ausgerichtete Sender 33 sein Signalmuster U mit binär 001 und abschließend der rechte Sender 36 sein Signalmuster R (binär 011) aus.Following this, the first individual light pattern F is emitted exclusively by the forwardly directed transmitter 31, which is coded in this embodiment with binary 101. If the light pattern F of the transmitter 31 has been transmitted, in this exemplary embodiment, the downwardly pointing transmitter 34 next transmits its corresponding signal pattern D, which in this example is encoded with binary 010. This is followed by the left transmitter 35 with its signal pattern L (binary 100), followed by the rear-facing transmitter 32 with the signal pattern B (binary 110). Towards the end of the signal pattern sequence S, the upwardly directed transmitter 33 then transmits its signal pattern U with binary 001 and finally the right transmitter 36 its signal pattern R (binary 011).

Haben alle Sender nacheinander ihr entsprechendes Signalmuster aus der Signalmustersequenz S ausgesendet, so beginnt die Signalmustersequenz wieder mit der Startsequenz X, evtl. mit einer kurzen Pause dazwischen.If all transmitters have transmitted their corresponding signal pattern from the signal pattern sequence S in succession, the signal pattern sequence starts again with the start sequence X, possibly with a short break in between.

Vorteilhafterweise können sich aber jedoch auch nach dem letzten individuellen Signalmusters R des Senders 36 weitere Lichtmuster anschließen, die von allen Sendern gleichzeitig ausgesendet werden und entsprechende Informationen I über das Flugzeug 2 in binärer Form kodiert enthalten. So lassen sich unter anderem der Transpondercode, die Flugrichtung, die Geschwindigkeit sowie die Sink- und Steigrate des Flugzeuges 2 am Ende der Signalmustersequenz S übertragen.However, after the last individual signal pattern R of the transmitter 36, further light patterns can advantageously follow, which are transmitted simultaneously by all transmitters and contain corresponding information I coded in binary form via the aircraft 2. Thus, among other things, the transponder code, the direction of flight, the speed and the sink and climb rate of the aircraft 2 at the end of the signal pattern sequence S transmitted.

Figur 4 zeigt basierend auf der Signalmustersequenz S aus Figur 3 eine Signalmustersequenz S1, die zusätzlich zu den einzelnen in Figur 3 beschriebenen Lichtmustern ein Paritätsbit P für jedes Lichtmuster aufweist. Dabei wird beispielhaft jedes Lichtmuster der Sender 31 bis 38, die durch drei Bits binär kodiert sind, um ein weiteres Paritätsbit erweitert, so dass nunmehr jedes einzelne Lichtmuster durch vier Bit repräsentiert wird. Ein solches Paritätsbit P in der einfachsten Form gibt an, wie viele gerade oder ungerade Bits in der entsprechenden Nachricht enthalten sind, so dass mit möglichst geringem Aufwand eine Integritätskontrolle durch die Lagebestimmungseinheit 5 durchgeführt werden kann. Diese Integritätskontrolle ist insbesondere deshalb vorteilhaft, damit Fehlübertragungen oder kurzfristige Verdeckungen oder andere Störeinflüsse rechtzeitig erkannt werden können und es somit nicht zu falschen Berechnungen der Lage kommt. FIG. 4 indicates based on the signal pattern sequence S FIG. 3 a signal pattern sequence S1, which in addition to the individual in FIG. 3 described light pattern has a parity bit P for each light pattern. In this case, by way of example, each light pattern of the transmitters 31 to 38, which are binary-coded by three bits, is extended by a further parity bit, so that now each individual light pattern is represented by four bits. Such a parity bit P in the simplest form indicates how many even or odd bits are contained in the corresponding message, so that a integrity check can be carried out by the position determination unit 5 with the least possible effort. This integrity check is therefore particularly advantageous so that faulty transmissions or short-term occlusion or other disturbances can be detected in good time and thus does not lead to incorrect calculations of the situation.

Die einzelnen High-Level eines einzelnen Signallichtes können im Code dabei so verteilt werden, dass zum Beispiel genügend Zeit für die Aufladung eines Energiespeichers für eine Blitzentladung zur Verfügung steht. Sollte bei einer Fluglageübermittlung von zum Beispiel 0,5 Hz (alle 2 Sekunden) diese Zeit nicht reichen, können mehrere Leuchtmittel in jeweils einem kodierten Licht untergebracht werden.The individual high levels of a single signal light can be distributed in the code so that, for example, sufficient time is available for charging an energy store for a lightning discharge. Should this time be insufficient for an attitude transmission of, for example, 0.5 Hz (every 2 seconds), several lamps can each be accommodated in one coded light.

Zur Übertragung der zusätzlichen Informationen I können geringere Leistungen verwendet werden.Lower powers can be used to transmit the additional information I.

Zwischen jeweils zwei Signalmustersequenzen kann eine Pause von zum Beispiel einer Sekunde eingehalten werden.Between each two signal pattern sequences, a pause of, for example, one second can be maintained.

Der hier beispielhaft beschriebene Code enthält genug Redundanz, um einfache Fehlübertragungen zu erkennen. Es können aber auch Codes verwendet werden, die jegliche Fehlübertragung einzelner Bits nicht nur erkennen, sondern auch korrigieren können.The code described here by way of example contains enough redundancy to detect simple mis-transmissions. However, it is also possible to use codes which not only detect any incorrect transmission of individual bits, but can also correct them.

Figuren 5a und 5b zeigen beispielhaft einen empfangenen Signalcode. FIGS. 5a and 5b show by way of example a received signal code.

In Figur 5a werden dabei neben der Startsequenz X die Signalmuster F, L und U empfangen, wobei das Signalmuster F von dem Sender 31, das Signalmuster U von dem Sender 33 und das Signalmuster L von dem Sender 35 ausgesendet wird. Die anderen Signalmuster innerhalb der Signalmustersequenz S sind dabei nicht empfangbar, so dass in diesen Bereichen von der Lagebestimmungseinheit binär eine 000 ermittelt wird.In FIG. 5a In this case, in addition to the start sequence X, the signal patterns F, L and U are received, wherein the signal pattern F is transmitted by the transmitter 31, the signal pattern U by the transmitter 33 and the signal pattern L by the transmitter 35. The other signal patterns within the signal pattern sequence S are not receivable, so that a binary 000 is determined by the position determination unit in these areas.

Aufgrund der empfangenen Signalmuster kann nun bestimmt werden, welche Sender dem Betrachter, in diesem Fall dem Flugzeug 4 zugewandt sind, so dass daraufhin letztlich auf die Lage des Flugzeuges 2 im Raum geschlossen werden kann.On the basis of the received signal patterns, it can now be determined which transmitters are facing the viewer, in this case the aircraft 4, so that ultimately the position of the aircraft 2 in space can be concluded.

Figur 5b zeigt eine Codesequenz, bei der die Signalmuster D, B und R empfangen wurden. Dabei hat jedes Signalmuster beziehungsweise Lichtmuster eine eigene Position innerhalb der Signalmustersequenz, das über alle Sender verteilt zeitlich sequentiell ausgegeben wird, FIG. 5b shows a code sequence in which the signal patterns D, B and R were received. In this case, each signal pattern or light pattern has its own position within the signal pattern sequence, which is output sequentially distributed over all transmitters,

Ein anderes Ausführungsbeispiel wie die Signalmusterfrequenz S aufgebaut sein kann, ist in Figur 6 gezeigt. Dabei werden die einzelnen Teile eines einzelnen Signalmusters eines Senders über die Signalmustersequenz verteilt, wobei auch hier nur jeweils ein Teil eines Signalmusters an einer Stelle innerhalb der Signalmustersequenz stehen kann. Als Beispiel ist in Figur 6 die Signalmustersequenz S oben gezeigt, wie sie empfangbar wäre, wenn man alle Signalmuster der Sender empfangen könnte.Another embodiment of how the signal pattern frequency S may be constructed is in FIG FIG. 6 shown. In this case, the individual parts of a single signal pattern of a transmitter are distributed over the signal pattern sequence, in which case only one part of a signal pattern can also be located at one point within the signal pattern sequence. As an example, in FIG. 6 the signal pattern sequence S shown above, as it would be received, if one could receive all signal patterns of the transmitter.

In dem Ausführungsbeispiel von Figur 6 sind jedoch nur die Sender D, B und F empfangbar, was unter der Signalmustersequenz S gezeigt wird. Dabei verteilen sich die einzelnen Teile eines Signalmusters eines entsprechenden Senders über die ganze Signalmustersequenz hinweg, so dass ähnlich wie bei Interleaving-Verfahren ein komplettes Signalmuster eines Senders nicht in seiner gesamten Folge ausgesendet wird. So können zwischen den einzelnen Teilen, die hier schraffiert dargestellt sind, auch andere Teile anderer Sender und Signalmuster liegen, die dann, wie im unteren Teil der Figur 6 gezeigt, empfangen werden können. Dort werden insgesamt fünf Teile empfangen (ED,B,F), so dass zum Beispiel mittels einer einfachen Und-Verknüpfung mit den abgespeicherten Signalmustern der einzelnen Sender herausgefunden werden kann, welche Signalmuster welcher Sender empfangen wurden.In the embodiment of FIG. 6 however, only the transmitters D, B and F are receivable, which is shown below the signal pattern sequence S. In this case, the individual parts of a signal pattern of a corresponding transmitter spread over the entire signal pattern sequence, so that similar to interleaving a complete signal pattern of a transmitter is not transmitted in its entire sequence. Thus, between the individual parts, which are hatched here, other parts of other transmitters and signal patterns lie, which then, as in the lower part of the FIG. 6 shown, can be received. There will be a total of five parts receive (E D, B, F ), so that it can be found, for example, by means of a simple AND link with the stored signal patterns of each transmitter, which signal patterns were received which transmitter.

Auch in dieser Ausführungsform ist es natürlich selbstverständlich denkbar, dass die Sender am Anfang jeder Signalmustersequenz ein einheitliches Startmuster aussenden und gegebenenfalls am Ende der Signalmustersequenz Informationen mit übertragen. In diesem Ausführungsbeispiel erfolgt die Codierung darüber hinaus auch noch anhand des Zeitpunktes, an dem die Teile der Signalmuster innerhalb der Signalmustersequenz ausgesendet werden.Of course, in this embodiment as well, it is of course conceivable that the transmitters emit a uniform start pattern at the beginning of each signal pattern sequence and, if appropriate, transmit information at the end of the signal pattern sequence. In this embodiment, the coding also takes place on the basis of the time at which the parts of the signal pattern are transmitted within the signal pattern sequence.

Claims (16)

  1. Apparatus (1) for determining the orientation of vehicles (2) having a plurality of transmitters (31 to 38) which are designed to emit signals and are arranged on a vehicle (2) whose orientation is intended to be determined, characterized in that the transmitters (31 to 38) are designed to emit an individual signal pattern, relating to the respective transmitter (31 to 38), within a signal pattern sequence (S), and the apparatus 1 has an orientation determining unit (5), which is intended to be installed in other vehicles (4) and is designed to receive the signal patterns by means of a receiving unit (6), with the orientation determining unit (5) being designed to determine the orientation of the vehicle (2) as a function of the signal patterns contained in the signal pattern sequence (S).
  2. Apparatus (1) according to Claim 1, characterized in that the transmitters (31 to 38) are arranged on the vehicle (2) such that at least one signal pattern within the signal pattern sequence (S) can be received independently of the orientation of the vehicle (2) in space.
  3. Apparatus (1) according to Claim 1 or 2, characterized in that the transmitters (31 to 38) are designed to emit the signal patterns by means of electromagnetic signals, in particular light signals or infrared signals.
  4. Apparatus (1) according to Claim 3, characterized in that the transmitters (31 to 38) are designed to emit a light pattern as a signal pattern, in particular a binary light pattern.
  5. Apparatus (1) according to Claim 4, characterized in that the transmitters (31 to 38) are designed to emit a binary light pattern such that each binary light pattern has an individual binary coding relating to the respective transmitter (31 to 38).
  6. Apparatus (1) according to one of Claims 3 to 5, characterized in that the receiving unit (6) is an optical sensor, in particular a video camera for receiving optical signals.
  7. Apparatus (1) according to one of the preceding claims, characterized in that at least one transmitter (31 to 38) is arranged at each end of a spatial axis (X, Y, Z) of the vehicle.
  8. Apparatus (1) according to one of the preceding claims, characterized in that the transmitters (31 to 38) are designed to emit the signal patterns at an angle of at least 45° from the vertical.
  9. Apparatus (1) according to one of the preceding claims, characterized in that each transmitter (31 to 38) is designed to emit the respective signal pattern in a time slot, which is assigned to the respective transmitter (31 to 38), within the signal pattern sequence (S).
  10. Apparatus (1) according to one of the preceding claims, characterized in that each transmitter (31 to 38) is designed to emit the respective signal pattern such that parts of the respective signal pattern are interleaved with one another within the signal pattern sequence (S).
  11. Apparatus (1) according to one of the preceding claims, characterized in that the transmitters (31 to 38) are designed to emit a start sequence signal pattern (X) at the start of the signal pattern sequence (S), and the orientation determining unit (5) is designed to identify the start sequence signal pattern (X) as the start of the signal pattern sequence (S).
  12. Apparatus (1) according to one of the preceding claims, characterized in that at least one of the transmitters (31 to 38) is designed to emit an information signal pattern (I), which contains information relating to the vehicle (2), within the signal pattern sequence (S), and the orientation determining unit (5) is designed to extract the information from the received information signal pattern (I).
  13. Apparatus (1) according to Claim 12, characterized in that the information signal pattern (I) contains information relating to the transponder code, the direction of travel, the speed, the altitude and/or the rate of climb/descent of the vehicle (2).
  14. Apparatus (1) according to one of the preceding claims, characterized in that the transmitters (31 to 38) are designed to emit test, parity and/or correction information within the signal patterns, and the orientation determining unit is designed to monitor the integrity of the received signal patterns as a function of the test, parity and/or correction information.
  15. Apparatus (1) according to one of the preceding claims, characterized in that the apparatus (1) is designed to determine a risk of collision as a function of the determined orientation of the vehicle (2).
  16. Apparatus (1) according to one of the preceding claims, characterized in that the orientation determining unit (5) is connected to a display apparatus for displaying the orientation of the vehicle (2), in particular the relative orientation with respect to the other vehicle (4).
EP10003943A 2009-05-05 2010-04-14 Device for determining the bearing of aircrafts Not-in-force EP2251850B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009019700A DE102009019700A1 (en) 2009-05-05 2009-05-05 Device for determining the position of vehicles

Publications (3)

Publication Number Publication Date
EP2251850A2 EP2251850A2 (en) 2010-11-17
EP2251850A3 EP2251850A3 (en) 2011-12-28
EP2251850B1 true EP2251850B1 (en) 2012-12-19

Family

ID=42163764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10003943A Not-in-force EP2251850B1 (en) 2009-05-05 2010-04-14 Device for determining the bearing of aircrafts

Country Status (3)

Country Link
US (1) US20110276268A1 (en)
EP (1) EP2251850B1 (en)
DE (1) DE102009019700A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8219264B1 (en) * 2009-06-08 2012-07-10 The United States Of America As Represented By The Secretary Of The Air Force Close formation flight positioning system using air data measurements
GB2556644B (en) * 2017-02-28 2018-11-28 Matthew Russell Iain Unmanned aerial vehicles

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652981A (en) * 1970-04-13 1972-03-28 Angelo J Campanella Proximity warning and collision avoidance systems
US3846746A (en) * 1970-06-19 1974-11-05 Technology Inc Pilot warning indicator system
US3706968A (en) 1970-11-20 1972-12-19 Lockheed Aircraft Corp Beacon providing visual direction information
US3940630A (en) * 1974-10-21 1976-02-24 Mcdonnell Douglas Corporation Vehicle locator
US4346430A (en) * 1980-02-28 1982-08-24 Holland Bruce B Coded strobe light device for aircraft
US4755818A (en) * 1986-08-15 1988-07-05 The United States Of America As Represented By The Secretary Of The Army Aircraft collision warning system
FR2680751A1 (en) * 1991-09-03 1993-03-05 Thomson Csf COLLISION REMOVAL METHOD FOR COOPERATIVE CARRIERS AND ONBOARD OPTICAL ASSEMBLY FOR ITS IMPLEMENTATION.
US5337047A (en) 1992-08-26 1994-08-09 Myers Michael V Aircraft external lighting apparatus, method and coding system for aircraft identification
FR2784185B1 (en) * 1998-10-06 2001-02-02 Thomson Csf DEVICE FOR THE HARMONIZATION BETWEEN A LASER EMISSION CHANNEL AND A PASSIVE OBSERVATION CHANNEL
US6211808B1 (en) * 1999-02-23 2001-04-03 Flight Safety Technologies Inc. Collision avoidance system for use in aircraft
US6462669B1 (en) * 1999-04-06 2002-10-08 E. P . Survivors Llc Replaceable LED modules
US6252525B1 (en) * 2000-01-19 2001-06-26 Precise Flight, Inc. Anti-collision system
US7541944B2 (en) * 2004-07-12 2009-06-02 The Boeing Company Systems and methods for collision avoidance
US7961086B2 (en) * 2006-04-17 2011-06-14 James Roy Bradley System and method for vehicular communications
US7701362B2 (en) * 2007-02-16 2010-04-20 Precise Flight, Inc. Optical system for detecting an object
US8456159B2 (en) * 2010-01-15 2013-06-04 Vale S.A. Stabilization system for sensors on moving platforms
US20110238308A1 (en) * 2010-03-26 2011-09-29 Isaac Thomas Miller Pedal navigation using leo signals and body-mounted sensors

Also Published As

Publication number Publication date
DE102009019700A1 (en) 2010-12-09
EP2251850A2 (en) 2010-11-17
EP2251850A3 (en) 2011-12-28
US20110276268A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
DE102006007644B4 (en) Method and system for preventing intrusion of a mobile object into a section of a traffic route
DE102015225241A1 (en) Method and system for automatically controlling a following vehicle with a fore vehicle
DE102020122758A1 (en) COLLABORATION BETWEEN A UAV AND AN AUTOMOBILE
DE102014225803A1 (en) Recognition of a used emergency vehicle in traffic
DE102016014549A1 (en) Method for determining the visibility from a vehicle
DE102013005073A1 (en) Method and warning device for securing a danger spot, especially in road traffic
EP2251850B1 (en) Device for determining the bearing of aircrafts
WO2009090185A2 (en) Method and system for preventing a movable object from entering a protected section
DE102015223836A1 (en) Vehicle and method for recovering a fully automatic vehicle
DE102013002875A1 (en) Control device for controlling direction display of motor car, has transmitting and receiving device coupled with motor car, by which data related to phase and frequency of flashing of direction displays are indirectly received by motor car
EP1086016B1 (en) Device for generating a warning signal, especially for helicopters
DE102017124583A1 (en) System for monitoring access to a vehicle
DE19826737A1 (en) Collision warning method for aircraft
DE102017123198A1 (en) System and method for navigating an aircraft in a hall
DE102004012104A1 (en) Emergency vehicle approach warning method in which vehicles and traffic control systems are warned of the approach of an emergency vehicle by an electromagnetic signal which causes an acoustic and or visual warning to be generated
DE102010052474A1 (en) Flight Guidance System
WO2011157723A1 (en) System and method for collision avoidance
EP2511894A1 (en) Method for monitoring an air area around an aircraft
DE102016211649B4 (en) Method for controlling a light unit of a motor vehicle exterior lighting, motor vehicle, vehicle-external device and system
DE102018000770A1 (en) Method for following a service vehicle
DE102008054203A1 (en) Apparatus for airfield lighting of an airport
EP3012153B1 (en) Reversing warning system for adaptive control of reversing warning alarm
WO2018188702A1 (en) Device and method for detecting terrain
DE102022105247A1 (en) Rescue system and method for assisting landing of a rescue aircraft
DE102017218099A1 (en) Communication method and motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: G08G 5/00 20060101AFI20111121BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20120618

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 589736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010001878

Country of ref document: DE

Effective date: 20130221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130319

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130319

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: DEUTSCHES ZENTRUM FUR LUFT- UND RAUMFAHRT E.V.

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

26N No opposition filed

Effective date: 20130920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010001878

Country of ref document: DE

Effective date: 20130920

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130414

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100414

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130414

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010001878

Country of ref document: DE

Representative=s name: GRAMM, LINS & PARTNER PATENT- UND RECHTSANWAEL, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160331

Year of fee payment: 7

Ref country code: GB

Payment date: 20160329

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 589736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150414

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170414

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200317

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010001878

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103