EP2249778A1 - Kationische tenside mit verbesserten eigenschaften - Google Patents

Kationische tenside mit verbesserten eigenschaften

Info

Publication number
EP2249778A1
EP2249778A1 EP08801595A EP08801595A EP2249778A1 EP 2249778 A1 EP2249778 A1 EP 2249778A1 EP 08801595 A EP08801595 A EP 08801595A EP 08801595 A EP08801595 A EP 08801595A EP 2249778 A1 EP2249778 A1 EP 2249778A1
Authority
EP
European Patent Office
Prior art keywords
acid
carbon atoms
fatty
oil
cationic surfactants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08801595A
Other languages
English (en)
French (fr)
Inventor
Ansgar Behler
Frank Clasen
Hans-Martin Haake
Monika Barbenheim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Priority to EP08801595A priority Critical patent/EP2249778A1/de
Publication of EP2249778A1 publication Critical patent/EP2249778A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners

Definitions

  • the invention is in the field of cationic surfactants and the cosmetic preparations containing these surfactants.
  • An important aspect of hair care is the conditioning of hair, e.g. after washing, as these daily different influencing factors such as sunlight, pollution or chlorinated water, but also various Behanlditch such as washing, bleaching, dyeing, waves. Combing or blow drying are exposed. All of this, on its own or in combination, can lead to hair damage, which may manifest as the hair surface becomes rougher. In addition, damaged hair has been found to have hydrophilization of the surface, an increase in the negative charges on the hair, and decreased mechanical stability. This then causes the hair to comb only bad, breaks fast and has split ends on the hair ends. The grip changes to the detriment and the natural shine of the hair is lost.
  • conditioners are used in cosmetic hair treatment agents, which increase the combing.
  • the electrostatic charge of the hair is prevented or minimized, the hair shines again and its surface is again significantly more hydrophobic.
  • the mechanical strength of hair is increased by conditioning, even during the otherwise harmful chemical treatments.
  • exemplary here are consistency or lipophilic conditioning agents such as fatty alcohols or partial glycerides called.
  • secondary conditioning agents silicones are used.
  • emulsifiers such as fat alcohol ethoxylates or alkyl polyglycosides or polymers, humectants or thickeners are said to have conditioning properties.
  • cationic surfactants are still to be mentioned as a conditioning component in cosmetic preparations. These are usually alkylammonium compounds with at least one long alkyl chain in the molecule. As a counterion, a halide such as chloride or methosulfate is often present. Examples of such cationic surfactants are cetrimonium chlorides, distearoyl hydroxyethylmonium methosulfate, distearyldimonium chlorides or behentrimonium chlorides.
  • the object of the present patent application has been to provide new cationic conditioning agents which do not have the above-mentioned disadvantages but nevertheless have excellent conditioning properties.
  • the present application therefore relates to cationic surfactants of the formula (I)
  • R1 is a saturated or unsaturated, branched or linear alkyl radical having 6 to 22 carbon atoms
  • R2 and R3 are independently alkyl radicals having 1 to 3 carbon atoms or hydrogen
  • n is 2 or 3
  • X is halogen, deprotonated carboxylic acids or methosulfate stand.
  • surfactants according to formula (I) are used in which R 1 is a saturated or unsaturated, branched or linear alkyl radical having 12 to 22 carbon atoms, R 2 is methyl and R 3 is methyl or hydrogen, n is 2 and X is chlorine ,
  • the surfactants of the formula (I) having a longer alkyl chain R1 are characterized by better conditioning properties, as demonstrated in the examples.
  • R 1 is a saturated or unsaturated, branched or linear alkyl radical having 18 to 22 carbon atoms.
  • the above-mentioned cationic surfactants are used for the preparation of cosmetic preparations. They are used as conditioning agents in these preparations.
  • the amounts used in these preparations are in proportions of 0.1 to 20 wt.%, Preferably from 0.1 to 10 wt.% And particularly preferably from 0.5 to 5 wt.% Based on the total formulation.
  • radical X for the deprotonated carboxylic acids mentioned as radical X, in particular organic acids such as citric acid, lactic acid or acetic acid are suitable.
  • the cosmetic preparations may be a variety of surfactant-based formulations, such as shampoos, conditioners, shower baths, shower gels, bubble baths, oil baths, 2-in-1 shampoos and the like.
  • the cationic surfactants of the formula (I) according to the invention can be used in detergents and cleaners, for example in cleaners for cleaning hard surfaces or in dishwashing detergents, both for manual and machine cleaning.
  • These agents may contain, as further auxiliaries and additives, mild surfactants, oil bodies, emulsifiers, pearlescent waxes, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic active ingredients, UV protection factors, antioxidants, deodorants, antiperspirants, antidandruff agents - tel, film formers, swelling agents, insect repellents, self-tanner, tyrosine inhibitors (depigmenting agents), hydrotropes, solubilizers, preservatives, perfume oils, dyes and the like.
  • Surfactants which may be present are anionic, nonionic, cationic and / or amphoteric or zwitterionic surfactants whose proportion of the agents is usually from about 1 to 70, preferably from 5 to 50 and in particular from 10 to 30% by weight.
  • anionic surfactants are soaps, alkylbenzenesulfonates, alkanesulfonates, olefinsulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, hydroxy mixed ether sulfates, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono and alkoxylated and non-alkoxylated dialkylsulfosuccinates, mono- and dialkylsulfosuccinamates, sulfotriglycerides, amide sisides, ethercarboxylic acids and their salts, fatty acid isethionates
  • anionic surfactants contain polyglycol ether chains, these may have a conventional, but preferably a narrow homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers, optionally partially oxidized alk (en) yloligoglycosides or glucuronic acid derivatives, fatty acid N-alkylglucamides, protein hydrolysates ( in particular vegetable products based on wheat), polyol fatty acid esters, sugar esters, sorbitan esters, poly-sorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, these may have a conventional, but preferably a narrow homolog distribution.
  • Typical examples of cationic surfactants are quaternary Ammonium compounds, such as, for example, dimethyl distearyl ammonium chloride or cetyl trimonium chloride, and ester quats, in particular quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • the surfactants mentioned are exclusively known compounds.
  • particularly skin-compatible surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefinsulfonates, ethercarboxylic acids, alkyloligoglucosides, fatty acid glucamides, alkylamidobetaines, amphoacetals and / or protein fatty acid condensates, the latter preferably based on wheat proteins.
  • Carboxylic acids with linear or branched C 6 -C 22 -fatty alcohols such as, for example, myristyl myristate, myristyl palmitate, myristyl stearate, myristyl isostearate, myristyl oleate, myristyl behenate, myristyl erucate, cetyl myristate, cetyl palmitate, cetyl stearate, cetyl isosteate, cetyl oleate, cetyl behenate, cetyl erucate, stearyl myristate, stearyl palmitate, Stearylstea- rat, tribehenate Steary
  • esters of linear C 6 -C 22 -fatty acids with branched alcohols in particular 2-ethylhexanol, esters of C 18 -C 38 -alkylhydroxycarboxylic acids with linear or branched C 6 -C 22 fatty alcohols, in particular dioctyl malates, esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimerdiol or trimer triol) and / or Guerbet alcohols, triglycerides Based on C 6 -Cio fatty acids, liquid mono- / di- / triglyceride mixtures based on C 6 - C 8 fatty acids, esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, in particular benzoic acid, esters of C C 2 -C 2 -dicarboxylic acids with linear or branched alcohols having 1 to 22 carbon
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • Block copolymers e.g. Polyethylene glycol-30 dipolyhydroxystearates
  • Alkyl and / or alkenyl oligoglycosides their preparation and their use are known from the prior art. They are prepared in particular by reacting glucose or oligosaccharides with primary alcohols having 8 to 18 carbon atoms.
  • the glycoside radical both monoglycosides in which a cyclic sugar residue is glycosidically linked to the fatty alcohol and oligomeric glycosides having a degree of oligomerization of preferably approximately 8 are suitable.
  • the degree of oligomerization is a statistical mean, which is based on a homolog distribution typical for such technical products.
  • Suitable partial glycerides are Hydroxystearin Textremonoglyce- chloride, hydroxystearic acid diglyceride, isostearic acid, Isostearinklaredigly- cerid, oleic acid monoglyceride, oleic acid diglyceride, Ricinolklaremoglycerid, diglyceride Ricinolklare-, Linolklaremonoglycerid, Linolklarediglycerid, LinolenTalkremonoglycerid, Linolenchurediglycerid, Erucaklaklamonoglycerid, Erucaklakladiglycerid, Weinklaremo- noglycerid, Weinklarediglycerid, Citronenklamonoglycerid, Citronendiglycerid, Citronendiglycerid, Acid monoglyceride, malic acid diglyceride and their technical mixtures, which may contain minor amounts of triglyceride subordinate to the manufacturing process. Also suitable are addition
  • sorbitan sorbitan As sorbitan sorbitan, sorbitan sesquiisostearate, sorbitan diisostearate, sorbitan triisostearate, sorbitan monooleate, sorbitan dioleate, trioleate, Sorbitanmonoerucat, Sorbitansesquierucat, sorbitan come dierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandi- ricinoleate, sesquihydroxystearat Sorbitantriricinoleat, Sorbitanmonohydroxystearat, sorbitan, Sorbitandihydroxystearat , Sorbitan trihydroxystearate, sorbitan monotartrate, sorbitan sesquivar tartrate, sorbitan ditartrate, sorbitan tritartrate, sorbitan monocitrate, sorbitan siccitrate, sorb
  • polyglycerol esters are polyglyceryl-2-dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3-diisostearates (Lameform® TGI), polyglyceryl-4 isostearates (Isolan® GI 34), polyglyceryl-3-oleates, diisostearoyl polyglycerol 3 diisostearates (Isolan® PDI), polyglyceryl-3-methylglucose distearate (Tego Carre® 450), polyglyceryl-3 beeswax (Cera Bellina®), polyglyceryl-4-caprate (polyglycerol caprate T2010 / 90), polyglyceryl-3-cetyl ether ( Chimexane® NL) 1 polyglyceryl-3 distearate (Cremophor® GS 32) and polyglyceryl polyricinoleate (Admul® WOL 1403) polyglycerol
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like optionally reacted with from 1 to 30 mol of ethylene oxide.
  • Typical anionic emulsifiers are aliphatic fatty acids having 12 to 22 carbon atoms, such as palmitic acid, stearic acid or behenic acid, and dicarboxylic acids having 12 to 22 carbon atoms, such as azelaic acid or sebacic acid.
  • zwitterionic surfactants can be used as emulsifiers.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants side are the so-called betaines such as the N-alkyl-N, N-dimethylammoniumglycinate, for example Kokosalkyldimethylammoniumglycinat, N-acylaminopropyl-NN-dimethylammonium glycinate, for example, the Kokosacylaminopropyldimethyl- ammoniumglycinat, and 2-alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline with in each case 8 to 18 C atoms in the alkyl or acyl group and the Kokosacylaminoethyl- hydroxyethylcarboxymethylglycinat.
  • betaines such as the N-alkyl-N, N-dimethylammoniumglycinate, for example Kokosalkyldimethylammoniumglycinat, N-acylaminopropyl-NN-dimethylammonium glycinate,
  • fatty acid amide derivative known by the CTFA name Cocamidopropyl Betaine.
  • ampholytic surfactants are surface-active compounds which, apart from a C8 / i 8 - are alkyl or acyl group, contain at least one free amino group and at least one -COOH or -SO ß H group and are capable of forming inner salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and Alkylaminoacetic acids having in each case about 8 to 18 carbon atoms in the alkyl group.
  • ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and
  • cationic surfactants are also suitable as emulsifiers, with those of the esterquat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Typical examples of fats are glycerides, ie solid or liquid vegetable or animal products, which consist essentially of mixed glycerol esters of higher fatty acids
  • waxes include natural waxes, such as candelilla wax, carnauba wax, Japan wax, Espartograswachs, cork wax, guarumewax, rice germ oil wax , Sugarcane wax, ouricury wax, montan wax, beeswax, shellac wax, spermaceti, lanolin (wool wax), crepe fat, ceresin, ozokeht (earth wax), petrolatum, paraffin waxes, microwaxes; chemically modified waxes (hard waxes), such as montan ester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as polyalkylene waxes and polyethylene glycol waxes in question.
  • natural waxes such as candelilla wax, carnauba wax
  • lecithin In addition to the fats, fat-like substances such as lecithins and phospholipids come into question as additives.
  • lecithin is understood by the specialist those glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification. Lecithins are therefore often referred to in the art as Phosphatidylcholine (PC).
  • PC Phosphatidylcholine
  • cephalins which are also referred to as phosphatidic acids and derivatives of 1, 2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood as meaning mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally regarded as fats.
  • glycerol phosphates glycerol phosphates
  • sphingosines or sphingolipids are also suitable.
  • Suitable pearlescing waxes are, for example: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polybasic, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total have at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring-opening products of olefin epoxides having 12 to 22 carbon atoms with fatty alcohols having 12 to 22 carbon atoms and / or polyols having 2 to 15 carbon atoms
  • substances such as lanolin and lecithin as well as polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used, the latter also serving as foam stabilizers.
  • stabilizers are especially used, the latter also serving as foam stabilizers.
  • metal salts of fatty acids e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate can be used.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, e.g. a quaternized hydroxyethylcellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers, e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as lauryldimonium hydroxypropyl hydrolysed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethylenimine, cationic silicone polymers, such as e.g.
  • Amodimethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat® 550 / Chemviron), polyamino-polyamides and their crosslinked water-soluble polymers, cationic chitin derivatives such as quaternized chitosan, optionally microcrystalline dispersed, condensation products from dihaloalkylene, such as Dibromobutane with bis-dialkylamines, such as Bis-dimethylamino-1,3-propane, cationic guar gum, e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese, quaternized ammonium salt polymers, e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Miranol.
  • Suitable anionic, zwitterionic, amphoteric and nonionic polymers are, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methylvinyl ether / maleic anhydride copolymers and their esters, uncrosslinked polyols crosslinked with polyols, acrylamidopropyltrimethylammonium chloride / Acrylate copolymers, octylacrylamide / methylmethacrylate / tert.butylaminoethylmethacrylate / 2-hydroxypropylmethacrylate copolymers, polyvinylpyrrolidone, vinylpyrrolidone / vinylacetate Copolymers, vinylpyrrolidone / dimethylaminoethyl methacrylate / vinylcaprolactam
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds which may be both liquid and resin-form at room temperature.
  • trimethicones which are mixtures of dimethicones having an average chain length of from 200 to 300 dimethylsiloxane units and hydrogenated silicates.
  • biogenic active substances include tocopherol, tocopherol acetate, tocopherol analog, ascorbic acid, (deoxy) ribonucleic acid and their fragmentation products, ⁇ -glucans, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils , Plant extracts, such as Prunus extract, Bambaranussexschreib and vitamin complexes to understand.
  • Typical film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or salts thereof and similar compounds.
  • Anti-dandruff agents used are Piroctone olamine (1-hydroxy-4-methyl-6- (2,4,4-trimethylpentyl) -2- (1H) -pyridinone monoethanolamine salt), Baypival® (climbazole), ketoconazole®, (4 Acetyl-1 - ⁇ - 4- [2- (2,4-dichlorophenyl) r-2- (1 H -imidazol-1-ylmethyl) -1,3-dioxylan-c-4-ylmethoxyphenyl ⁇ piperazine, ketoconazole, elubiol, selenium disulfide , Sulfur colloidal, Schwefelpolyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel-tar distillates, salicylic acid (or in combination with hexachlorophene), undenylenklad, Lame
  • Suitable swelling agents for aqueous phases are montmorillonites, clay minerals, pemulen and alkyl-modified Carbopol types (Goodrich).
  • Hydrotropes such as, for example, ethanol, isopropyl alcohol, or polyols can also be used to improve the flow behavior.
  • Polyols contemplated herein preferably have from 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols may contain other functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols having an average molecular weight of from 100 to 1000 daltons;
  • Methylol compounds in particular trimethylolethane, trimethylolpropane, th-methylolbutane, pentaerythritol and dipentaerythritol;
  • Lower alkyl glucosides especially those having 1 to 8 carbons in the alkyl radical, such as, for example, methyl and butyl glucoside;
  • Dialcoholamines such as diethanolamine or 2-amino-1, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the silver complexes known under the name Surfacine® and the further classes of compounds listed in Appendix 6, Part A and B of the Cosmetics Regulation.
  • Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (aniseed, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (macis, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, pines), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are ester type products, ethers, aldehydes, ketones, alcohols and hydrocarbons. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsalicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, Citronellellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial and Bourgeonal, to the ketones such as the Jonone, ⁇ -lsomethylionon and Methylcedrylketon to the alcohol Anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethylalcohol and terpineol; the hydrocarbons mainly include terpenes and balsams.
  • fragrance oils are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon oil, linden flower oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • Suitable flavors are, for example, peppermint oil, spearmint oil, aniseed oil, star aniseed oil, caraway oil, eucalyptus oil, fennel oil, citron oil, wintergreen oil, clove oil, menthol and the like.
  • Dyes which may be used are those which are suitable and approved for cosmetic purposes. Examples are Kochillerot A (Cl.16255), Patent Blue V (C.1.42051), Indigotin (C.1.73015), Chlorophyllin (C.1.75810), Quinoline Yellow (CI47005), Titanium Dioxide (C.1.77891), Indanthrene Blue RS (Cl.69800 ) and madder paint (Cl.58000).
  • a luminescent dye and luminol may be included. These dyes are usually used in concentrations of 0.001 to 0.1 wt .-%, based on the total mixture. Examples
  • Stearic acid dimethylethanolamine ester is introduced into an autoclave suitable for quaternization and rinsed several times with nitrogen. It is heated to 90 ° C and methyl chloride is added in portions. After completion of the addition, the mixture is stirred at 90 0 C for four hours.
  • Comparative half-page tests were performed under standardized conditions on 10 female subjects to determine essential properties of shampoos.
  • composition used data as active substance content
  • the cationic surfactants were formulated in the following composition:
  • Table 2 shows impressively that the cationic surfactants Type 1 and Type 2 have the best properties and better conditioning properties than Behentrimonium Chloride.
  • Type 3 is at least comparable.
  • Example 3 Biodegradability and toxicity
  • the biodegradability and toxicity according to OECD 301 B was determined for algae. It was found that the product according to the invention is degraded rapidly and has a low toxicity of 50-100 mg / l against algae.
  • Behentrimonium chloride is not degraded and has a significantly higher toxicity of ⁇ 1 mg / l to algae.

Abstract

Vorgeschlagen werden kationische Tenside der Formel der (I) in der R1 für einen gesättigten oder ungesättigten, verzeigten oder linearen Alkylrest mit 6 bis 22 Kohlenstoffatomen, R2 und R3 unabhängig voneinander für Alkylreste mit 1 bis 3 Kohlenstoffatomen oder Wasserstoff, n für 2 oder 3 und X für Halogene, deprotonierte Carbonsäuren oder Methosulfat stehen.

Description

Kationische Tenside mit verbesserten Eigenschaften
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der kationischen Tenside sowie der kosmetischen Zubereitungen, die diese Tenside enthalten.
Stand der Technik
Ein wichtiger Aspekt bei der Haarpflege ist die Konditionierung der Haare z.B. nach dem Waschen, da diese täglich verschiedenen Einflußfaktoren wie Sonnenlicht, Umweltverschmutzung oder gechlortem Wasser, aber auch verschiedenen Behanldungen wie Waschen, Bleichen, Färben, Wellen. Kämmen oder Föhnen ausgesetzt sind. All dies kann alleine oder in der Kombination zu einer Haarschädigung führen, die sich darin äussern kann, dass die Haaroberfläche rauer wird. Ausserdem wird bei geschädigtem Haar eine Hydrophilisierung der Oberfläche, eine Zunahme der der negativen Ladungen auf dem Haar und eine verminderte mechanische Stabilität beobachtet. Dies führt dann dazu, dass sich das Haar nur schlecht kämmen last, schnell bricht und Spliss an den Haarenden aufweist. Der Griff verändert sich zum Nachteil und der natürliche Glanz des Haares geht verloren.
Daher werden in kosmetischen Haarbehandlungsmitteln Konditionierungsmittel eingesetzt, die die Kämmbarkeit erhöhen. Die elektrostatische Aufladung der Haare wird verhindert oder minimiert, die Haare glänzen wieder und ihre Oberfläche ist wieder deutlich hydrophober. Desweiteren wird durch Konditionierungsmittel die mechanische Festigkeit von Haaren erhöht, auch während der sonst schädigenden chemischen Behandlungen.
Viele verschiedene Substanzklassen wurden bereits zu diesem Zweck in kosmetischen Zubereitungen eingesetzt. Exemplarisch seien hier Konsistenzgeber oder lipophile Konditionierungsmittel wie Fettalkohole oder Partialglyceride genannt. As sekundäre Konditionierungsmittel kommen Silikone zum Einsatz. Aber auch Emulgatoren wie Fett- alkoholethoxylate oder Alkylpolyglykoside oder Polymeren, Befeuchtungsmitteln oder Verdickern werden konditionierende Eigenschaften zugesprochen.
Desweiteren sind noch kationische Tenside als konditionierende Komponente in kosmetischen Zubereitungen zu nennen. Dabei handelt es sich meist um Alkylammonium- verbindungen mit mindestens einer langen Alkylkette im Molekül. Als Gegenion ist häufig ein Halogenid wie Chlorid oder Methosulfat zugegen. Beispiele für derartige kationische Tenside sind Cetrimonium Chloride, Distearoyl Hydroxyethylmonium Methosulfat, Distearyldimonium Chloride oder Behentrimonium Chloride.
Alle diese Tenside weisen hervorragende konditionierende Eigenschaften auf, doch weisen sie auch einige Nachteile auf. Sie verfügen in der Regel über eine schlechte Bioabbaubarkeit, teils auch über eine hohe Wassertoxizität und sind nicht sehr hautschonend.
Daher hat die Aufgabe der vorliegenden Patentanmeldung darin bestanden, neue kationische Konditionierungsmittel zur Verfügung zu stellen, die nicht über die oben genannten Nachteile verfügen, aber dennoch hervorragende konditionierende Eigenschaften aufweisen.
Beschreibung der Erfindung
Gegenstand der vorliegenden Patentanmeldung sind daher kationische Tenside der Formel der (I)
in der R1 für einen gesättigten oder ungesättigten, verzeigten oder linearen Alkylrest mit 6 bis 22 Kohlenstoffatomen, R2 und R3 unabhängig voneinander für Alkylreste mit 1 bis 3 Kohlenstoffatomen oder Wasserstoff, n für 2 oder 3 und X für Halogene, depro- tonierte Carbonsäuren oder Methosulfat stehen. In einer bevorzugten Ausführungsform werden Tenside gemäß Formel (I) verwendet, in der R1 für einen gesättigten oder ungesättigten, verzweigten oder linearen Alkylrest mit 12 bis 22 Kohlenstoffatomen, R2 für Methyl und R3 für Methyl oder Wasserstoff, n für 2 und X für Chor stehen. Die Tenside der Formel (I) mit einer längeren Alkylkette R1 zeichnen sich durch bessere konditionierende Eigenschaften auf, wie in den Beispielen belegt wird.
Ganz besonders bevorzugt sind in diesem Zusammenhang die kationischen Tenside der Formel (I)1 wenn R1 für einen gesättigten oder ungesättigten, verzweigten oder linearen Alkylrest mit 18 bis 22 Kohlenstoffatomen steht.
Die oben genannten kationischen Tenside werden verwendet zur Herstellung von kosmetischen Zubereitungen. Sie finden Verwendung als Konditionierungsmittel in diesen Zubereitungen. Die Einsatzmengen in diesen Zubereitungen bewegen sich dabei in Mengenverhältnissen von 0,1 bis 20 Gew.%, bevorzugt von 0,1 bis 10 Gew.% und besonders bevorzugt von 0,5 bis 5 Gew.% basierend auf der Gesamtformulierung.
Für die als Rest X genannten deprotonierten Carbonsäuren kommen insbesondere organische Säuren wie Citronensäure, Milchsäure oder Essigsäure in Frage.
Gewerbliche Anwendbarkeit
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft kosmetische Zubereitungen, die mindestens ein kationisches Tensid gemäß Formel (I) enthalten. Bei den kosmetischen Zubereitungen kann es sich um die verschiedensten Zubereitungen auf Tensidbasis handeln, wie beispielsweise Shampoos, Conditioner, Duschbäder, Duschgels, Schaumbäder, Ölbäder, 2-in-1 -Shampoos u.a.
Weiterhin können die erfindungsgemäßen kationischen Tenside der Formel (I) in Wasch- und Reinigungsmitteln eingesetzt werden, z.B. in Reinigungsmitteln zum Reinigen von harten Oberflächen oder in Geschirrspülmitteln, sowohl für manuelles als auch maschinelles Reinigen. Diese Mittel können als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emul- gatoren, Perlglanzwachse, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, biogene Wirkstoffe, UV- Lichtschutzfaktoren, Antioxidantien, Deodorantien, Antitranspirantien, Antischuppenmit- tel, Filmbildner, Quellmittel, Insektenrepellentien, Selbstbräuner, Tyrosininhibitoren (Depigmentierungsmittel), Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten.
Tenside
Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder amphotere bzw. zwitterionische Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.- % beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α- Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glyce- rinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid- (ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und alkoxylierte und nichtalkoxylierte Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidsei- fen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Alkyloligoglucosidcarboxy- late, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalko- holpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäurea- midpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoron- säurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, PoIy- sorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid oder Cetyltrimoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäu- retrialkanolaminestersalze.
Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkyl- amidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetai- ne. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäure- tauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucosi- de, Fettsäureglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Olkörper
Als Olkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22- Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-C-i3-Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostea- rat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstea- rat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbe- henat, Isostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oley- loleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Eru- cylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucyleru- cat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von C18-C38-Alkylhydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Pro- pylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C6-Cio-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von C6- Ci8-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22- Fettalkoholcarbonate, wie z.B. Dicaprylyl Carbonate (Cetiol® CC), Guerbetcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethi- cone, Siliciummethicontypen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Emulgatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
> Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propy- lenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
> Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
> Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxy- carbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid; > Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentae- rythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglu- cosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Po- lyolen, vorzugsweise Glycerin oder Polyglycerin.
> Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG- alkylphosphate und deren Salze;
> Wollwachsalkohole;
> Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
> Block-Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate;
> Polymeremulgatoren, z.B. Pemulen-Typen (TR-1.TR-2) von Goodrich;
> Polyalkylenglycole sowie
> Glycerincarbonat.
> Ethylenoxidanlagerunqsprodukte
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Al- koxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Ci2/18-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind als Rückfettungsmittel für kosmetische Zubereitungen bekannt. > Alkyl- und/oder Alkenyloliαoαlykoside
Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
> Partialglyceride
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglyce- rid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäuredigly- cerid, ölsäuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäure- diglycerid, Linolsäuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremo- noglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfel- säuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
> Sorbitanester
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitan-diisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitan-dioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitan- dierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandi- ricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitan- sesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitan- monotartrat, Sorbitansesqui-tartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmono- citrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sor- bitansesquimaleat, Sorbitan-dimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
> Polvαlvcerinester
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipoly- hydroxystearate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® Gl 34), Polyglyceryl-3 Oleate, Diisostearoyl Polygly- ceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Ca- re® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL)1 Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Po- lyglyceryl Dimerate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
> Anionische Emulgatoren
Typische anionische Emulgatoren sind aliphatische Fettsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Palmitinsäure, Stearinsäure oder Behensäure, sowie Dicarbonsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Azelainsäure oder Sebacinsäure.
> Amphothere und kationische Emulgatoren
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Ten- side sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N.N- dimethylammonium-glycinate, beispielsweise das Kokosacylaminopropyldimethyl- ammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethyl- hydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA- Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8/i8- Alkyl- oder Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SOßH-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Al- kylpropion-säuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hy- droxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylamino- propionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe.. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkyl- aminopropionat, das Kokosacylaminoethylaminopropionat und das Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester- Salze, besonders bevorzugt sind.
Fette und Wachse
Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelilla- wachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokeht (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithi- ne und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fach- mann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycehn, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC). Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1 ,2-Diacyl-sn-glycerin-3-phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.
Perlqlanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell E- thylenglycoldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxy-substituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Überfettunqsmittel
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen. Stabilisatoren
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Polymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoni- umsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydroly- zed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), PoIy- aminopolyamide sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialky- laminen, wie z.B. Bis-Dimethylamino-1 ,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat- Copolymere, Vinylacetat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinyl- ether/Maleinsäureanhydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copoly- mere, Octylacrylamid/Methylmeth-acrylat/tert.Butylaminoethylmethacrylat/2-Hydroxypro- pylmethacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat- Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Ter- polymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
Siliconverbindungen
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphe- nylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy- , fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Si- methicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt.
Biogene Wirkstoffe
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, To- copherolpa Imitat, Ascorbinsäure, (Desoxy)Ribonucleinsäure und deren Fragmentierungsprodukte, ß-Glucane, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA- Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte, wie z.B. Prunusextrakt, Bambaranussextrakt und Vitaminkomplexe zu verstehen.
Filmbildner
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Antischuppenwirkstoffe
Als Antischuppenwirkstoffe kommen Pirocton Olamin (1-Hydroxy-4-methyl-6-(2,4,4- trimythylpentyl)-2-(1 H)-pyridinonmonoethanolaminsalz), Baypival® (Climbazole), Keto- conazol®, (4-Acetyl-1-{-4-[2-(2.4-dichlorphenyl) r-2-(1 H-imidazol-1-ylmethyl)-1 ,3- dioxylan-c-4-ylmethoxyphenyl}piperazin, Ketoconazol, Elubiol, Selendisulfid, Schwefel- kolloidal, Schwefelpolyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel-teer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Unde- xylensäure Monoethanolamid Sulfosuccinat Na-SaIz, Lamepon® UD (Protein- Undecylensäurekondensat), Zinkpyrithion, Aluminiumpyrithion und Magnesiumpyrithion / Dipyrithion-Magnesiumsulfat in Frage.
Quellmittel
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemu- len sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen.
Hydrotrope
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
> Glycerin;
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
> technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
> Methylolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Th- methylolbutan, Pentaerythrit und Dipentaerythrit;
> Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
> Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit, > Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
> Aminozucker, wie beispielsweise Glucamin;
> Dialkoholamine, wie Diethanolamin oder 2-Amino-1 ,3-propandiol.
Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formal- dehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die unter der Bezeichnung Surfacine® bekannten Silberkomplexe und die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Parfümöle und Aromen
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Li- nalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzyl- formiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citro- nellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-lsomethylionon und Methylcedrylketon, zu den Alkoho- len Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Linden- blütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und La- vandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Manda- rinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß- Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Aromen kommen beispielsweise Pfefferminzöl, Krauseminzöl, Anisöl, Sternanisöl, Kümmelöl, Eukalyptusöl, Fenchelöl, Citronenöl, Wintergrünöl, Nelkenöl, Menthol und dergleichen in Frage.
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden. Beispiele sind Kochenillerot A (Cl. 16255), Patentblau V (C.1.42051), Indigotin (C.1.73015), Chlorophyllin (C.1.75810), Chinolingelb (C.I.47005), Titandioxid (C.1.77891), Indanthrenblau RS (Cl. 69800) und Krapplack (Cl.58000). Als Lumineszenzfarbstoff kann auch Luminol enthalten sein. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt. Beispiele
Beispiel 1 : Allgemeine Vorschrift zur Herstellung einer Verbindung gemäß Formel (I) mit R1 = C18-Alkyl, n = 2, R2 = R3 = CH3, X = Cl:
Stearinsäure-Dimethylethanolaminester wird in einem für Quaternierungen geeigneten Autoklaven eingefüllt und mehrfach mit Stickstoff gespült. Es wird auf 90°C aufgeheizt und portionsweise Methylchlorid zudosiert. Nach vollendeter Zugabe wird noch vier Stunden bei 900C nachgerührt.
Ansatz
400 g (1 ,09 Mol) Stearinsäure-Dimethylethanolaminester
400 g C 16/18 Alkohol ("Lanette O")
52,1 g (1 ,09 Mol) Methylchlorid Ergebnis: festes, gut pelletierbares Produkt; Kationtensidgehalt 49,7
Beispiel 2: Bestimmung der konditionierenden Eigenschaften
Halbseitentest
Vergleichende Halbseitentests wurden unter standardisierten Bedingungen an 10 weiblichen Probanden durchgeführt, um wesentliche Eigenschaften von Shampoos zu bestimmen.
Verwendete Zusammensetzung (Angaben als Aktivsubstanzgehalt)
Die kationischen Tenside wurden in folgender Zusammensetzung formuliert:
2 Gew.% kationisches Tensid
3,2 Gew.% C16/18 Fettalkohol
0,8 Gew.% Ceteareth-20 ad 100 Wasser pH 3,5 - 4,0 (pH-Wert-Einstellung mit Citronensäure) Tabelle 1 : Ergebnisse des Halbseitentests
Die Bestimmungen wurden gegen eine identische Formulierung durchgeführt, die an Stelle des kationischen Tensids gemäß der vorliegenden Erfindung Behentrimonium Chloride enthielt. Dabei bedeuten signifikant schlechter als Formulierung mit Behentrimonium Chloride schlechter als Formulierung mit Behentrimonium Chloride 0 vergleichbar mit Formulierung mit Behentrimonium Chloride + besser als Formulierung mit Behentrimonium Chloride ++ signifikant besser als Formulierung mit Behentrimonium Chloride
Tabelle 2 zeigt eindrucksvoll, dass die Kationtenside Typ 1 und Typ 2 über die besten Eigenschaften verfügen und bessere konditionierende Eigenschaften als Behentrimonium Chloride aufweisen. Typ 3 ist zumindest vergleichbar. Beispiel 3: Bioabbaubarkeit und Toxizität
Für das Kationtensid Typ 1 aus Tabelle 2 wurde die Bioabbaubarkeit und Toxizität gemäß OECD 301 B gegenüber Algen bestimmt. Dabei zeigte sich, das das erfindungsgemäße Produkt schnell abgebaut wird und eine geringe Toxizität von 50 -100 mg/l gegen Algen aufweist.
Im selben Test wird Behentrimonium Chlorid nicht abgebaut und hat eine wesentlich höhere Toxizität von <1 mg/l gegen Algen.

Claims

Patentansprüche
1. Kationische Tenside der Formel der (I)
in der R1 für einen gesättigten oder ungesättigten, verzeigten oder linearen Alkylrest mit 6 bis 22 Kohlenstoffatomen, R2 und R3 unabhängig voneinander für Alkylreste mit 1 bis 3 Kohlenstoffatomen oder Wasserstoff, n für 2 oder 3 und X für Halogen, deprotonierte Carbonsäuren oder Methosulfat stehen.
2. Kationische Tenside gemäß Anspruch 1 , dadurch gekennzeichnet, dass R1 für einen gesättigten oder ungesättigten, verzweigten oder linearen Alkylrest mit 12 bis 22 Kohlenstoffatomen, R2 für Methyl und R3 für Methyl oder Wasserstoff, n für 2 und X für Chor stehen.
3. Kationische Tenside gemäß mindestens einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass R1 für einen gesättigten oder ungesättigten, verzweigten oder linearen Alkylrest mit 18 bis 22 Kohlenstoffatomen steht.
4. Kosmetische Zubereitungen enthaltend mindestens ein kationisches Tenside gemäß einem der Ansprüche 1 bis 3.
5. Verwendung von kationischen Tensiden gemäß einem der Ansprüche 1 bis 3 zur Herstellung von kosmetischen Zubereitungen.
6. Verwendung von kationischen Tensiden gemäß einem der Ansprüche 1 bis 3 als Konditionierungsmittel in kosmetischen Zubereitungen.
EP08801595A 2008-03-12 2008-08-16 Kationische tenside mit verbesserten eigenschaften Withdrawn EP2249778A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08801595A EP2249778A1 (de) 2008-03-12 2008-08-16 Kationische tenside mit verbesserten eigenschaften

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08004512A EP2100587A1 (de) 2008-03-12 2008-03-12 Kationische Tenside mit verbesserten Eigenschaften
EP08801595A EP2249778A1 (de) 2008-03-12 2008-08-16 Kationische tenside mit verbesserten eigenschaften
PCT/EP2008/006751 WO2009112061A1 (de) 2008-03-12 2008-08-16 Kationische tenside mit verbesserten eigenschaften

Publications (1)

Publication Number Publication Date
EP2249778A1 true EP2249778A1 (de) 2010-11-17

Family

ID=39639535

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08004512A Withdrawn EP2100587A1 (de) 2008-03-12 2008-03-12 Kationische Tenside mit verbesserten Eigenschaften
EP08801595A Withdrawn EP2249778A1 (de) 2008-03-12 2008-08-16 Kationische tenside mit verbesserten eigenschaften

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08004512A Withdrawn EP2100587A1 (de) 2008-03-12 2008-03-12 Kationische Tenside mit verbesserten Eigenschaften

Country Status (5)

Country Link
US (1) US20110014148A1 (de)
EP (2) EP2100587A1 (de)
JP (1) JP2011513444A (de)
CN (1) CN101969919A (de)
WO (1) WO2009112061A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927073B (zh) * 2018-07-04 2020-10-23 江南大学 一种腰果酚氨基酸表面活性剂及其制备方法
CN113481062A (zh) * 2021-07-08 2021-10-08 安徽启威生物科技有限公司 一种羽绒清洗蓬松剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109709A (en) * 1980-12-26 1982-07-08 Lion Corp Hair cosmetic
DE3440935A1 (de) * 1984-11-09 1986-05-15 Wella Ag, 6100 Darmstadt Haarkonditionierungsmittel mit perlglanz
JP2000128740A (ja) * 1998-10-23 2000-05-09 Kao Corp 毛髪化粧料
ITMI20042505A1 (it) * 2004-12-24 2005-03-24 Oro Consulting S R L Sostanza emulsionante e-o tensioattiva ad attivita' battericida per la preparazione di emulsioni e di tensidi per uso dermofarmaceutico e cosmetico emulsioni e tensidi preparati con questa sostanzaa prodotto dermofarmaceutico e prodotto cosmetico ott

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009112061A1 *

Also Published As

Publication number Publication date
US20110014148A1 (en) 2011-01-20
CN101969919A (zh) 2011-02-09
WO2009112061A1 (de) 2009-09-17
EP2100587A1 (de) 2009-09-16
JP2011513444A (ja) 2011-04-28

Similar Documents

Publication Publication Date Title
EP2012741B1 (de) Verdickungsmittel
EP1395643B1 (de) Tensidmischungen
WO2003032931A1 (de) Kosmetische und/oder pharmazeutische zubereitungen
EP1524029A1 (de) Selbstemulgierende Zubereitungen
EP1254653B1 (de) Verwendung von kationischen Zubereitungen
EP1254655B1 (de) Verwendung von Esterquats
EP1286952B1 (de) Esterquatmischungen
EP2366377B1 (de) Konditionierungsmittel und konditionierende Shampoo-Zusammensetzung enthaltend Pentaerythrit-Ester
DE10213019A1 (de) Verwendung von Extrakten des Olivenbaumes als Antischuppenmittel
WO2003032930A1 (de) Kondotionierendes haarwaschmittel
EP1254654B1 (de) Verwendung von kationischen Zubereitungen
WO2004083351A1 (de) Tensidmischungen
EP2249778A1 (de) Kationische tenside mit verbesserten eigenschaften
EP1264634B1 (de) Verwendung von Alkyl(ether)phosphaten
EP1374845A1 (de) Kosmetische Zubereitungen
WO2002087538A1 (de) Verwendung von kationischen zubereitungen
EP1374846A1 (de) Hochviskose ölhaltige Zubereitungen
DE102005028763A1 (de) Haarbehandlungsmittel
EP1413285A1 (de) Haarkonditioniermittel mit einem Gehalt an Kationische Tenside, Ölkörper und Fettalkohole
WO2002038124A1 (de) Verwendung von amphoteren tensiden
EP1064933A1 (de) Pro-liposomal verkapselte Esterquats
DE10117501A1 (de) Mineralölhaltige Waschzubereitungen
DE10306838A1 (de) Haarbehandlungsmittel
WO2003030843A2 (de) Haarbehandlungsmittel
DE10237031A1 (de) Quaternierte Fettsäurealkanolaminestersalze aur Basis konjugierter Linolsäure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101130