EP2238602A1 - Procédé et dispositif pour générer un champ magnétique pouvant être orienté librement dans l'espace au moyen d'aimants permanents supraconducteurs - Google Patents

Procédé et dispositif pour générer un champ magnétique pouvant être orienté librement dans l'espace au moyen d'aimants permanents supraconducteurs

Info

Publication number
EP2238602A1
EP2238602A1 EP09707077A EP09707077A EP2238602A1 EP 2238602 A1 EP2238602 A1 EP 2238602A1 EP 09707077 A EP09707077 A EP 09707077A EP 09707077 A EP09707077 A EP 09707077A EP 2238602 A1 EP2238602 A1 EP 2238602A1
Authority
EP
European Patent Office
Prior art keywords
permanent magnet
superconducting
magnetic field
superconducting permanent
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09707077A
Other languages
German (de)
English (en)
Inventor
Bernd BÜCHNER
Alexander Horst
Dirk Lindackers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Original Assignee
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV filed Critical Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Publication of EP2238602A1 publication Critical patent/EP2238602A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/202Electromagnets for high magnetic field strength

Definitions

  • the invention relates to the fields of materials science and physics and relates to a method and apparatus for generating a spatially freely orientable magnetic field by means of superconducting permanent magnets, as used for example in the production of thin layers. Furthermore, spectroscopic investigation methods, in which the magnetic field comes into play as an influencing variable, should be mentioned as an application.
  • magnetic fields are often an important process parameter. Especially when they are freely adjustable in their strength and orientation to the sample, ie without changing other process variables, new scientific and economic possibilities often arise. Particularly interesting is the use of magnetic flux densities, which are well above values of about 2 T-cw, which were previously accessible with electric or permanent magnets. For example, in the production of thin layers in sputtering or MBE systems or in the analysis of materials by means of spectroscopy or diffractometry, such flux densities are used today (S. Summers et al .: J. Phys. D: Appl. Phys.
  • Air coils are the simplest form of electromagnet. Without significant cooling, cw flux densities of approximately 0.2 T-cw can be generated with this design. In more complex constructions, such as Solenoid coils with soft iron return frames allow larger fields up to saturation magnetization of approximately 2 T-cw. In any case, the area of maximum flux density is found inside the coil or in a narrow air gap of a yoke. This results in considerable restrictions in the spatial orientation of the field and the sample space accessibility. An optical access is possible here preferably in the coil axis. SpNt coils with radial insight are limited in their viewing angle and thus do not allow independent change of the magnetic field orientation
  • the object of the present invention is to provide a method and a device for generating a freely orientable magnetic field by means of superconducting permanent magnets in a sample space, through which a freely in space orientable magnetic field at the desired location and in the desired magnetic flux direction and with a flux density up to 15 T is generated and maintained.
  • the inventive device for generating a freely orientable magnetic field by means of superconducting permanent magnets consists of a space in which at least one superconducting permanent magnet, at least one cooling device for the superconducting permanent magnet, at least one device for magnetizing the superconducting permanent magnet, at least one device for three-axis translation and triaxial Rotation of the superconducting permanent magnet in space and at least one movable in freely orientable magnetic field sample are.
  • the material of the superconductive permanent magnet is a high-temperature superconducting material.
  • the high temperature superconducting material YBa 2 is Cu 3 O 7 (YBCO).
  • the space is the working space of a manipulator.
  • the cooling device is a cryostat and even more advantageously the cooling in the cryostat is realized by means of liquid helium or nitrogen.
  • the device for magnetizing the superconducting permanent magnet a coil and even more advantageously, if .A coil with a field strength in the range of OT to 15 T and more is present.
  • the device for three-axis translation and three-axis rotation of the superconducting permanent magnet is a manipulator device.
  • At least one superconducting permanent magnet connected to a cooling device is exposed to a magnetic field in at least one device for magnetizing the superconducting permanent magnet, while the superconducting permanent magnet is exposed below by means of the cooling device cooled to its critical temperature and maintained at a temperature below the critical temperature, and then removed from the device for magnetization and transported by means of the device for triaxial translation and triaxial rotation to a location in space, of which the now permanent magnetic field passing through the device for three-axis translation and three-axis rotation of the superconducting permanent magnet is freely orientable in space, with the desired magnetic flux direction and a magnetic flux density up to 15 T acting on the sample.
  • the working space of a manipulator is used as the working space.
  • a high-temperature superconducting permanent magnet is used as the superconducting permanent magnet, wherein advantageously a superconducting permanent magnet made of YBCO is used.
  • a coil is used as the magnetizing device for the superconducting permanent magnet.
  • magnetic flux densities in the range of 0 T to 15 T are used.
  • the solution according to the invention makes it possible for the first time to allow a magnetic field to act on a sample which is freely orientable in a working space in six degrees of freedom (three translation, three rotations) and at the same time permanently in the desired magnetic flux direction and with a magnetic flux density of up to 15 T can be generated and maintained for a desired time.
  • the inventive separation of the magnetization and cooling under transition temperature of the permanent magnet of the sample processing / - investigation a free orientation of the magnetic field in the working space only possible.
  • the superconducting permanent magnet by means of the device for three-axis translation and three-axis rotation only in the magnetization device, advantageously a coil, which is also located in the working space or is coupled to this, positioned.
  • the magnetization device can be located at a location not required for the sample processing / examination in the working space, so that it does not hinder the free mobility of superconducting permanent magnet and sample.
  • the superconducting permanent magnet can now be transported by means of the device for triaxial translation and triaxial rotation to a location in the working space in which it assumes the position to the sample that is desired.
  • the permanent magnetic field before and / or during the Sample processing / examination is oriented relative to the sample (the position / position and orientation of the permanent magnetic field result from the sum of the three freely selectable spatial directions and an additional three freely selectable angles).
  • an identical or spatially changing magnetic flux direction and magnetic flux density can act on the sample.
  • the inventive method only works if the temperature of the superconducting permanent magnet is kept below the transition temperature during the sample processing / -Schsuchung.
  • the superconducting permanent magnet is cooled accordingly throughout the processing.
  • This can be realized, for example, with a cryostat which is positively, positively and / or materially connected to the superconducting permanent magnet.
  • a cryostat can be cooled, for example, by means of liquid helium, nitrogen and other cryogenic liquids.
  • the working space of a known cryo-manipulator for angle-resolved photon emission spectroscopy can be used as a usable working space.
  • the therefore known manipulators which can be used as a device for the three-axis translation and three-axis rotation of the superconducting permanent magnet, the quasi-goniomethsche rotation of the superconducting permanent magnet can be realized around all three spatial axes.
  • the system is compact and meets all the requirements of vacuum technology and magnetism. The invention will be explained in more detail using an exemplary embodiment.
  • a cuboid body with edge lengths of 8x8x10mm of YBa 2 Cu 3 ⁇ 7 (YBCO) as solid HT superconductor was mounted on the sample holder of a cryo manipulator and equipped with a temperature measuring diode and a Hall sensor for magnetic field measurement.
  • the cryomanipulator was lowered into a tube and sealed by means of flanges vacuum-tight and subsequently evacuated.
  • This tube with the cryomanipulator and the YBCO cuboid was positioned in a helium-cooled superconducting coil such that the YBCO cuboid was located in the center of the coil.
  • the superconductor coil has a maximum field strength of 9 T.
  • the superconductor coil was set to a field strength of 6 T, the temperature of the YBCO cuboid having the ambient temperature. Thereafter, the YBCO ingot in the sample holder of the cryomanipulator was cooled by means of liquid helium to a temperature of 48 K, that is, below the critical temperature of the YBa 2 Cu 3 ⁇ 7 -Mathals.
  • the field strength of the superconducting coil was changed from 6T to 0T. During this time the temperature level of the YBCO cuboid was kept at 48K.
  • a magnetic field strength of the YBCO cuboid of 2.8 T could be measured. This value is essentially determined by the quality (quality, size, orientation, thermal contact) of the YBCO material and can be further enhanced by optimization.
  • the YBCO cuboid was moved by means of the cryomanipulator in the still reachable by the tube degrees of freedom.
  • the magnetic field strength was measured by means of the resonant Hall sensor. It remained at a constant value of 2.8 T throughout the experiment and only weakened after stopping the He cooling and eventually returned to 0 T on further warming.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

L'invention a trait au domaine des sciences des matériaux et concerne un dispositif, pouvant être utilisé par exemple pour la fabrication de couches minces. Le but de l'invention est de fournir un procédé et un dispositif permettant de générer et de maintenir un champ magnétique pouvant être orienté librement dans l'espace. Ce but est atteint grâce à un dispositif comprenant un aimant permanent supraconducteur, un système de refroidissement, un système de magnétisation, un système pour imprimer un mouvement de translation selon trois axes et un mouvement de rotation selon trois axes à l'aimant permanent, ainsi qu'un échantillon mobile. Le but de l'invention est atteint également grâce à un procédé selon lequel un aimant permanent supraconducteur est soumis à un champ magnétique et ainsi refroidi jusqu'à une température inférieure à sa température de transition et maintenu à cette température, le système pour imprimer un mouvement de translation selon trois axes et un mouvement de rotation selon trois axes étant ensuite utilisé pour transporter l'aimant permanent à un emplacement depuis lequel le champ magnétique désormais permanent agit sur l'échantillon.
EP09707077A 2008-02-01 2009-01-13 Procédé et dispositif pour générer un champ magnétique pouvant être orienté librement dans l'espace au moyen d'aimants permanents supraconducteurs Withdrawn EP2238602A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810000221 DE102008000221A1 (de) 2008-02-01 2008-02-01 Verfahren und Vorrichtung zur Erzeugung eines räumlich frei orientierbaren Magnetfeldes mittels supraleitender Dauermagneten
PCT/EP2009/050301 WO2009095298A1 (fr) 2008-02-01 2009-01-13 Procédé et dispositif pour générer un champ magnétique pouvant être orienté librement dans l'espace au moyen d'aimants permanents supraconducteurs

Publications (1)

Publication Number Publication Date
EP2238602A1 true EP2238602A1 (fr) 2010-10-13

Family

ID=40677470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09707077A Withdrawn EP2238602A1 (fr) 2008-02-01 2009-01-13 Procédé et dispositif pour générer un champ magnétique pouvant être orienté librement dans l'espace au moyen d'aimants permanents supraconducteurs

Country Status (3)

Country Link
EP (1) EP2238602A1 (fr)
DE (1) DE102008000221A1 (fr)
WO (1) WO2009095298A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3290187B1 (fr) * 2016-08-29 2020-04-15 Airbus Operations GmbH Imprimante 3d avec tête d'impression en vol stationnaire ou lit d'impression
DE102020122176A1 (de) 2020-08-25 2022-03-03 Carl Zeiss Ag Magnetfeldvorrichtung und Mikroskop

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217038A (ja) * 1988-07-06 1990-01-22 Toshiba Corp 磁気共鳴イメージング装置
DE19615514A1 (de) * 1996-04-19 1997-10-23 Bruker Analytische Messtechnik Laden einer supraleitenden Magnetspule
JPH11248810A (ja) * 1998-02-27 1999-09-17 Rikagaku Kenkyusho 核磁気共鳴装置
US6330467B1 (en) * 1999-02-04 2001-12-11 Stereotaxis, Inc. Efficient magnet system for magnetically-assisted surgery
JP2004349276A (ja) * 2003-04-25 2004-12-09 Japan Science & Technology Agency 超電導永久磁石装置
JP5020533B2 (ja) * 2006-04-27 2012-09-05 株式会社日立メディコ ドラッグデリバリーシステム、及びそれを制御するためのコンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009095298A1 *

Also Published As

Publication number Publication date
DE102008000221A1 (de) 2009-08-13
WO2009095298A1 (fr) 2009-08-06

Similar Documents

Publication Publication Date Title
DE102005028414B4 (de) Einrichtung zur Erzeugung eines gepulsten Magnetfelds
EP1325239B1 (fr) Dispositif comportant un rotor et des paliers magnetiques pour le logement sans contact du rotor
EP2066991B1 (fr) Installation frigorifique comportant un élément de raccordement chaud et un élément de raccordement froid, ainsi qu'un tube échangeur de chaleur relié à ces éléments de raccordement
DE10130678B4 (de) Kernresonanz-Vorrichtung
DE69831225T2 (de) Verringerung der effektiven magnetischen suszeptibilität von supraleitenden rf-spulen in kernspinresonanz-sonden
DE102006012511B3 (de) Kryostat mit einem Magnetspulensystem, das eine unterkühlte LTS- und eine in einem separaten Heliumtank angeordnete HTS-Sektion umfasst
WO2015135513A1 (fr) Stabilisateur de champ magnétique supraconducteur
DE102014217249A1 (de) Supraleitende Spuleneinrichtung mit Dauerstromschalter sowie Verfahren zum Schalten
DE102015225731B3 (de) Leicht zugängliche tiefgekühlte NMR Shim-Anordnung
EP2238602A1 (fr) Procédé et dispositif pour générer un champ magnétique pouvant être orienté librement dans l'espace au moyen d'aimants permanents supraconducteurs
Mizutani et al. Applications of superconducting permanent magnets driven by static and pulsed fields
DE102014217250A1 (de) Supraleitende Spuleneinrichtung mit schaltbarem Leiterabschnitt sowie Verfahren zum Umschalten
DE102018212764A1 (de) Supraleitender Magnet, Verfahren zu dessen Herstellung, elektrische Maschine und hybridelektrisches Luftfahrzeug
JPH06196321A (ja) 強度可変均一平行磁場発生装置
US4722134A (en) Process of producing superconducting bar magnets
DE102016216654A1 (de) Linear-Transversalflussmotor
DE102016216655A1 (de) Reluktanzmotor
Niraula et al. Particle irradiation induced defects in high temperature superconductors
US5306701A (en) Superconducting magnet and fabrication method
US7667562B1 (en) Magnetic field replicator and method
DE102018218473A1 (de) Rotor, Maschine und Verfahren zum Aufmagnetisieren
Westendorp Domains in SmCo5 at Low Temperatures
DE19813211A1 (de) Supraleitende Einrichtung mit Leitern aus Hoch-Tc-Supraleitermaterial
WO1992018992A1 (fr) Duplicateur de champ magnetique et procede
JP4283406B2 (ja) 酸化物超伝導材料の着磁方法および着磁装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HORST, ALEXANDER

Inventor name: BUECHNER, BERND

Inventor name: LINDACKERS, DIRK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150811

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160802

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEIBNIZ-INSTITUT FUER FESTKOERPER- UND WERKSTOFFFO